The Hutch suggests changing common marrow-donation procedure
By NEVAGiles23
Originally published October 18, 2012 at 2:49 PM | Page modified October 18, 2012 at 10:51 PM
The most common method of extracting cells from unrelated donors for patients needing bone-marrow transplants should change in light of new research revealing higher complication rates than an older approach, said the head of clinical research for the Fred Hutchinson Cancer Research Center.
Significant new research published Thursday in the New England Journal of Medicine the first large, randomized study comparing the two sources of bone-marrow stem cells showed patients who received transplants from unrelated donors' blood were significantly more likely to get a complication known as chronic graft-versus-host-disease than those who received cells from donors' pelvic bones.
In an editorial accompanying the study, Dr. Fred Appelbaum, director of clinical research at the Hutch, said the blood-extraction method supplanted the traditional pelvic-bone extraction method about a decade ago. It is now used in more than three-quarters of the unrelated-donor transplants for patients with such blood malignancies as leukemia or lymphoma.
The complication, short-handed as GVHD, means the transplant recognizes the patient's tissues as foreign objects and attacks them. The condition can be relatively mild, or severe and debilitating.
"While this study should change practice, it will be interesting to see if it really does," Appelbaum wrote in his editorial. "The benefits of peripheral blood are seen early, under the watchful eyes of the transplant physician, while the deleterious effects occur late, often after the patient has left the transplant center."
About 5,500 unrelated donor transplants were done in the U.S. last year, and about 20 million potential unrelated donors are typed and listed in the registries worldwide.
The study, led by a former Hutch transplant physician, Dr. Claudio Anasetti, now at the H. Lee Moffitt Cancer Center in Tampa, Fla., looked at short- and long-term survival, transplant success and complications, both acute and chronic.
Patients survived equally well on both types of transplants, and the peripheral blood-derived grafts began doing their job faster and engrafted more reliably.
But GVHD can cause skin rashes, diarrhea and liver problems, sometimes up to three years after the transplant.
More:
The Hutch suggests changing common marrow-donation procedure
Peripheral Blood Stem Cell Transplants from Unrelated Donors Associated with Higher Rates of Chronic Graft-Versus-Host …
By NEVAGiles23
Newswise Claudio Anasetti, M.D., chair of the Department of Blood & Marrow Transplant at Moffitt Cancer Center, and colleagues from 47 research sites in the Blood and Marrow Transplant Clinical Trials Network conducted a two-year clinical trial comparing two-year survival probabilities for patients transplanted with peripheral blood stem cells or bone marrow stem cells from unrelated donors. The goal was to determine whether graft source, peripheral blood stem cells or bone marrow, affects outcomes in unrelated donor transplants for patients with leukemia or other hematologic malignancies.
Fifty transplant centers in the United States and Canada participated in this phase III study, which randomized 278 patients to receive bone marrow and 273 patients to receive peripheral blood stem cells as the graft source for transplant. The results of the study are in the Oct. 18 issue of The New England Journal of Medicine.
According to the trial analyses, there were no observed differences in overall survival, relapse, non-relapse mortality, or acute graft-versus-host disease (GHVD) between the patients receiving peripheral blood stem cells or bone marrow stem cells from unrelated donors. GVHD is a serious and often deadly post-transplant complication that occurs when the newly transplanted donor cells attack the transplant recipients body. While engraftment was faster in patients receiving peripheral blood stem cells, there was a higher incidence of overall chronic GVHD in these patients (53 percent) than in those transplanted with bone marrow stem cells (40 percent). Patients receiving transplants of peripheral blood stem cells from unrelated donors also had a higher incidence of chronic GVHD affecting multiple organs (46 percent) than patients who received bone marrow stem cells (31 percent).
Although peripheral blood stem cells from related donors have demonstrated clinical benefits, our trial demonstrates that when these stem cells originate from unrelated donors, they are not superior to bone marrow stem cells in terms of patient survival, and they increase the risk for chronic GVHD, said Anasetti, lead study author. More effective strategies to prevent GVHD are needed to improve outcomes for all patients receiving unrelated donor transplants.
Peripheral blood stem cells are stem cells originally found in the bone marrow that have been moved into the blood stream by a special regimen of drugs. Unlike bone marrow stem cells, which must be extracted from the bones in an operating room, peripheral blood stem cells are more easily obtained through apheresis, a process similar to regular blood donation, which collects the peripheral blood stem cells through a tube inserted in a vein. A critical step before the transplant involves finding a donor that is tissue matched to the recipient.
About one-third of patients who need a peripheral blood stem cell or bone marrow transplant for treatment of leukemia or another blood disease are able to secure a related donor. According to the National Marrow Donor Program, for the 70 percent who cannot find a donor within their family, most will be able to find an unrelated donor. Because the majority of transplant patients need cells from unrelated donors, its necessary to better understand the risks associated with transplants of unrelated donor cells.
Clinical trials on related donor transplants have demonstrated that peripheral blood stem cell transplants in patients with leukemia and other blood diseases result in better engraftment, lower relapse rates, and increased survival compared with transplants with bone marrow stem cells. However, those trials also found that peripheral blood stem cell transplants carry an increased risk of GVHD. Patients who survive early post-transplant may develop chronic GVHD, a disabling condition managed with long-term immunosuppressant therapy.
Many transplant centers are increasingly using peripheral blood stem cells as a source for adult stem cells because of their superiority in clinical trials that have directly compared outcomes between peripheral blood stem cells and bone marrow stem cells from related donors. However, there has not been a comparative study of the two transplant sources that has prospectively analyzed patient outcomes in unrelated donor transplants.
The study was funded by the National Heart, Lung and Blood Institute (U10HL069294), the National Cancer Institute and the National Marrow Donor Program.
About Moffitt Cancer Center Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitts excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of Americas Best Hospitals for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.
Stem Cells Reveal Defect in Parkinson's Cells
By NEVAGiles23
The nuclei of brain stem cells in some Parkinson's patients become misshapen with age. The discovery opens up new ways to target the disease.
Nubby nucleus: Brain cells from a deceased Parkinsons patient have deformed nuclei (right) compared with normal brain cells from an individual of a similar age. Merce Marti and Juan Carlos Izpisua Belmonte
Stem cells in the brains of some Parkinson's patients are increasingly damaged as they age, an effect that eventually diminishes their ability to replicate and differentiate into mature cell types. Researchers studied neural stem cells created from patients' own skin cells to identify the defects. The findings offer a new focus for therapeutics that target the cellular change.
The report, published today in Nature, takes advantage of the ability to model diseases in cell culture by turning patient's own cells first into so-called induced pluripotent stem cells and then into disease-relevant cell typesin this case, neural stem cells. The basis of these techniques was recognized with a Nobel Prize in medicine last week.
The authors studied cells taken from patients with a heritable form of Parkinson's that stems from mutations in a gene. After growing several generation of neural stem cells derived from patients with that mutation, they saw the cell nuclei start to develop abnormal shapes. Those abnormalities compromise the survival of the neural stem cells, says study coauthor Ignacio Sancho-Martinez of the Salk Institute for Biological Studies in La Jolla, California.
Today's study "brings to light a new avenue for trying to figure out the mechanism of Parkinson's," says Scott Noggle of the New York Stem Cell Foundation. It also provides a new set of therapeutic targets: "Drugs that target or modify the activity [of the gene] could be applicable to Parkinson's patients. This gives you a handle on what to start designing drug screens around."
The strange nuclei were also seen in patients who did not have a known genetic basis for Parkinson's disease. The authors suggest this indicates that dysfunctional neural stem cells could contribute to Parkinson's. While that conclusion is "highly speculative," says Ole Isacson, a neuroscientist at Harvard Medical School, the study demonstrates the "wealth of data and information that we now can gain from iPS cells."
Read the rest here:
Stem Cells Reveal Defect in Parkinson's Cells
DOH nagbabala vs stem cell therapy
By NEVAGiles23
MANILA, Philippines - Dapatpa ring mag-ingat ang publiko laban sa nauusong stem cell therapy para sa medical at aesthetic purposes.
Sa isang advisory, sinabi ni Health Secretary Enrique Ona na ang stem cell therapy ay hindi pa rin bahagi ng standard of care at ikinukonsidera pa rin bilang investigative procedure for compassionate use.
Ayon kay Ona, ang aplikasyon ng stem cell bilang lunas sa malignancies, blood disorders, degenerative diseases tulad ngAlzheimers Disease, metabolic diseases tulad ngdiabetes, at immune cell therapy ay isinasailalim pa rin ng clinical evaluation at pag-aaral.
Pinapayuhan rin ni Ona ang publiko na iwasan ang stem cell therapies na gumagamit ng embryonic stem cells, aborted fetuses, genetically-altered at animal fresh cells, bilang sources ng stem cells.
Magpapalabas sila ng guidelines sa paggamit ng stem cell therapy at ng proseso para sa pagpapalisensiya ng mga nag-aalok ng naturang serbisyo.
Ang stem cell bilang therapy sa oncology, end-organ diseases at regenerative medicine ay in demand ngayon at maging sa Pilipinas ay naobserbahan na rin umano ang pagdami ng mga center na nag-aalok ng stem cell at aesthetic purposes.
Read the original:
DOH nagbabala vs stem cell therapy
New blood-vessel-generating cells with therapeutic potential discovered
By NEVAGiles23
Washington, October 17 (ANI): Researchers believe they have discovered stem cells that play a decisive role in new blood vessel growth.
If the researchers at the University of Helsinki, Finland, learn to isolate and efficiently produce these stem cells found in blood vessel walls, the cells offer new opportunities in the treatment of cardiovascular diseases, cancer and many other diseases.
The growth of new blood vessels, also known as angiogenesis, is needed in adults when repairing damaged tissue or organs.
Unfortunately, malignant tumours are also capable of growing new blood vessels to receive oxygen and nutrients. In other words, the treatment of diseases would benefit from two types of methods - ones that help launch the process of angiogenesis and ones that make it possible to prevent the process.
Medications that prevent the growth of new blood vessels have already been introduced, but their effectiveness and long-term efficacy leave much to be desired.
For more than a decade, Adjunct Professor Petri Salven from the University of Helsinki has studied the mechanisms of angiogenesis to discover how blood vessel growth could be prevented or accelerated effectively.
He has examined the birth and origin of endothelial cells, which form the thin layer that lines the interior surface of blood vessels. Endothelial cells are necessary for new blood vessel growth. Where do these highly diversified cells come from? Can their production be prevented or increased?
For a long time, it was assumed that new cells in the blood vessel walls of an adult originate in the bone marrow. In an article published in the PNAS journal in 2008, Salven's research team showed that such stem cells were not found in bone marrow.
Now Salven is ready to reveal where these mysterious stem cells originate.
"We succeeded in isolating endothelial cells with a high rate of division in the blood vessel walls of mice. We found these same cells in human blood vessels and blood vessels growing in malignant tumours in humans. These cells are known as vascular endothelial stem cells, abbreviated as VESC. In a cell culture, one such cell is able to produce tens of millions of new blood vessel wall cells," Salven said.
See original here:
New blood-vessel-generating cells with therapeutic potential discovered
Human Cadaver Brains May Provide New Stem Cells
By NEVAGiles23
Death will come for us all one day, but life will not fade from our bodies all at once. After our lungs stop breathing, our hearts stop beating, our minds stop racing, our bodies cool, and long after our vital signs cease, little pockets of cells can live for days, even weeks. Now scientists have harvested such cells from the scalps and brain linings of human corpses and reprogrammed them into stem cells.
In other words, dead people can yield living cells that can be converted into any cell or tissue in the body.
As such, this work could help lead to novel stem cell therapies and shed light on a variety of mental disorders, such as schizophrenia, autism and bipolar disorder, which may stem from problems with development, researchers say.
Making stem cells
Mature cells can be made or induced to become immature cells, known as pluripotent stem cells, which have the ability to become any tissue in the body and potentially can replace cells destroyed by disease or injury. This discovery was honored last week with the Nobel Prize.
Past research showed this same process could be carried out with so-called fibroblasts taken from the skin of human cadavers. Fibroblasts are the most common cells of connective tissue in animals, and they synthesize the extracellular matrix, the complex scaffolding between cells. [Science of Death: 10 Tales from the Crypt]
Cadaver-collected fibroblasts can be reprogrammed into induced pluripotent stem cells using chemicals known as growth factors that are linked with stem cell activity. Reprogrammed cells could then develop into a multitude of cell types, including the neurons found in the brain and spinal cord. However, bacteria and fungi on the skin can wreak havoc on the culturing processes used to grow cells in labs, making the process tricky to successfully carry out.
Now scientists have taken fibroblasts from the scalps and the brain linings of 146 human brain donors and grown induced pluripotent stem cells from them as well.
"We were able to culture living cells from deceased individuals on a larger scale than ever done before," researcher Thomas Hyde, a neuroscientist, neurologist and chief operating officer at the Lieber Institute for Brain Development in Baltimore, told LiveScience. Previous studies had only grown fibroblasts from a total of about a half-dozen cadavers.
The bodies had been dead up to nearly two days before scientists collected tissues from them. The corpses had been kept cool in the morgue, but not frozen.
Continued here:
Human Cadaver Brains May Provide New Stem Cells
Realizing the potential of stem cell therapy
By NEVAGiles23
Public release date: 15-Oct-2012 [ | E-mail | Share ]
Contact: Kat Snodgrass 202-962-4090 Society for Neuroscience
NEW ORLEANS New animal studies provide additional support for investigating stem cell treatments for Parkinson's disease, head trauma, and dangerous heart problems that accompany spinal cord injury, according to research findings released today. The work, presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health, shows scientists making progress toward using stem cell therapies to repair neurological damage.
The studies focused on using stem cells to produce neurons essential, message-carrying cells in the brain and spinal cord. The loss of neurons and the connections they make for controlling critical bodily functions are the chief hallmarks of brain and spinal cord injuries and of neurodegenerative afflictions such as Parkinson's disease and ALS (amyotrophic lateral sclerosis), also known as Lou Gehrig's disease.
Today's new findings show that:
Other recent findings discussed show that:
"As the fields of developmental and regenerative neuroscience mature, important progress is being made to begin to translate the promise of stem cell therapy into meaningful treatments for a range of well-defined neurological problems," said press conference moderator Jeffrey Macklis, MD, of Harvard University and the Harvard Stem Cell Institute, an expert on development and regeneration of the mammalian central nervous system. "Solid, rigorous, and well-defined pre-clinical work in animals can set the stage toward human clinical trials and effective future therapies."
###
This research was supported by national funding agencies such as the National Institutes of Health, as well as private and philanthropic organizations.
Todd Bentsen, (202) 962-4086
The rest is here:
Realizing the potential of stem cell therapy
Cell transformation earns Nobel Prize
By NEVAGiles23
About a week ago, the Nobel Prize winners in medicine were revealed as Sir John B. Gurdon and Shinya Yamanaka for their work in cell research.
The award was given to these two doctors for the discovery that mature cells can be reprogrammed to become pluripotent." That is, any mature cells can go back to their original state, thus reversing the process of cell aging.
Yamanaka was able to draw this conclusion due to a combination of his own research and the research of Gurdon done 40 years earlier.
In 1962, Gurdon was able to take the nucleus from a frogs intestine and place it into a frogs egg. From this, a normal frog was born. Gurdons research was inspiration to Yamanakas experiment, where he wanted to reverse the process of cell maturity without using an egg.
He was able to figure out a gene combination, which he inserted into a mature cell, so that the cell was able to go back to its primitive state.
According to Yamanaka, whats significant about this technology is not only can we avoid the ethical controversy of using embryos, but also a transplant patient can avoid organ rejection because the treatment will be done by using the patients own cells and not somebody elses.
Past controversy of stem cell research has come from the fact that in order to examine a brand new cell, the scientist would have to kill an embryo. Yamanaka also mentions that this discovery may some day be a possible cure for Parkinsons disease.
Since, Yamanakas discovery was made in 2006, classroom textbooks have already been changed and biology teachers have been informing their students about this new method.
DePaul professor Dr. Elizabeth LeClaire talked to her biology students about the research Thursday.
I dont think [the research] will revolutionize the world of medicine, said LeClaire. This may not be the answer you want to hear, but most diseases are very common and are caused by diet and exercise.
Visit link:
Cell transformation earns Nobel Prize
Stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases
By NEVAGiles23
Public release date: 12-Oct-2012 [ | E-mail | Share ]
Contact: Marguerite Beck marbeck@wakehealth.edu 336-716-2415 Wake Forest Baptist Medical Center
WINSTON-SALEM, N.C. Oct. 12, 2012 Scientists at Wake Forest Baptist Medical Center have taken the first steps to create neural-like stem cells from muscle tissue in animals. Details of the work are published in two complementary studies published in the September online issues of the journals Experimental Cell Research and Stem Cell Research.
"Reversing brain degeneration and trauma lesions will depend on cell therapy, but we can't harvest neural stem cells from the brain or spinal cord without harming the donor," said Osvaldo Delbono, M.D., Ph.D., professor of internal medicine at Wake Forest Baptist and lead author of the studies.
"Skeletal muscle tissue, which makes up 50 percent of the body, is easily accessible and biopsies of muscle are relatively harmless to the donor, so we think it may be an alternative source of neural-like cells that potentially could be used to treat brain or spinal cord injury, neurodegenerative disorders, brain tumors and other diseases, although more studies are needed."
In an earlier study, the Wake Forest Baptist team isolated neural precursor cells derived from skeletal muscle of adult transgenic mice (PLOS One, Feb.3, 2011).
In the current research, the team isolated neural precursor cells from in vitro adult skeletal muscle of various species including non-human primates and aging mice, and showed that these cells not only survived in the brain, but also migrated to the area of the brain where neural stem cells originate.
Another issue the researchers investigated was whether these neural-like cells would form tumors, a characteristic of many types of stem cells. To test this, the team injected the cells below the skin and in the brains of mice, and after one month, no tumors were found.
"Right now, patients with glioblastomas or other brain tumors have very poor outcomes and relatively few treatment options," said Alexander Birbrair, a doctoral student in Delbono's lab and first author of these studies. "Because our cells survived and migrated in the brain, we may be able to use them as drug-delivery vehicles in the future, not only for brain tumors but also for other central nervous system diseases."
In addition, the Wake Forest Baptist team is now conducting research to determine if these neural-like cells also have the capability to become functioning neurons in the central nervous system.
Read the original here:
Stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases
Read in
By NEVAGiles23
TOKYO: Shinya Yamanaka, fresh from the Nobel Prize for medicine, states that science and ethics must go hand in hand. Interviewed by the Mainichi Shimbun after the award, he said: "I would like to invite ethical experts as teachers at my laboratory and work to guide iPS [induced pluripotent stem] cell research from that direction as well. The work of a scientific researcher is just one part of the equation. "
Yamanaka, 50, found that adult cells can be transformed into cells in their infancy, stem cells (iPS), which are, so to speak, the raw material for the reconstruction of tissue irreparably damaged by disease. For regenerative medicine the implications of Yamanaka's discovery are obvious. Adult skin cells can for example be reprogrammed and transformed into any other cell that is desired: from the skin to the brain, from the skin to the heart, from the skin to elements that produce insulin.
"Their discovery - says the statement of the jury that awarded him the Nobel Prize on October 8 - has revolutionized our understanding of how cells and organisms develop. Through the programming of human cells, scientists have created new opportunities for the study of diseases and development of methods for the diagnosis and therapy ".
These "opportunities" are not only "scientific", but also "ethical". Much of the scientific research and global investment is in fact launched to design and produce stem cells from embryos, arriving at the point of manipulating and destroying them, facing scientists with enormous ethical problems.
" Ethics are really difficult - Yamanaka explainsto Mainichi - In the United States I began work on mouse experiments, and when I returned to Japan I learned that human embryonic stem cells had been created. I was happy that they would contribute to medical science, but I faced an ethical issue. I started iPS cell research as a way to do good things as a researcher, and I wanted to do what I could to expand the merits of embryonic stem cells. If we make sperm or eggs from iPS cells, however, it leads to the creation of new life, so the work I did on iPS cells led to an ethical problem. If we don't prepare debates for ethical problems in advance, technology will proceed ahead faster than we think.. "
The "ethical question" Yamanaka pushed to find a way to "not keep destroying embryos for our research."
Speaking with his co-workers at the University of Kyoto, immediately after receiving the award, Yamanaka showed dedication and modesty.
"Now - he said - I strongly feel a sense of gratitude and responsibility" gratitude for family and friends who have supported him in a demanding journey of discovery that lasted decades; responsibility for a discovery that gives hope to millions of patients. Now iPS cells can grow into any tissue of the human body allowing regeneration of parts so far irretrievably lost due to illness.
His modesty also led him to warn against excessive hopes. To a journalist who asked him for a message to patients and young researchers awaiting the results of his research heresponded: "The iPS cells are also known as versatile cells, and the technology may be giving the false impression to patients that they could be cured any day now. It will still take five or 10 years of research before the technology is feasible. There are over 200 researchers at my laboratory, and I want patients to not give up hope"
"Dozens of times - he continued - I tried to get some results and I have often failed in the experiments .... Many times I was tempted to give up or cry. Without the support of my family, I could not have continued this search. From now on I will be facing the moment of truth. I would like to return to my laboratory as quickly as possible. "
Link:
Read in
Nobel Winners Unlocked Cells' Unlimited Potential
By NEVAGiles23
AFP/Getty Images
John B. Gurdon (left) and Shinya Yamanaka will share the prize, worth about $1.2 million.
The two scientists who won this year's Nobel Prize in Physiology or Medicine discovered that cells in our body have the remarkable ability to reinvent themselves. They found that every cell in the human body, from our skin and bones to our heart and brain, can be coaxed into forming any other cell.
The process is called reprogramming, and its potential for new drugs and therapies is vast. If neurons or heart cells are damaged by disease or aging, then cells from the skin or blood potentially could be induced to reprogram themselves and repair the damaged tissue.
The winners John Gurdon of the Gurdon Institute in Cambridge, England, and Shinya Yamanaka of Kyoto University in Japan and the Gladstone Institute in San Francisco made their discoveries more than 40 years apart.
In 1962, Gurdon proved that a cell from a frog's stomach contained the entire blueprint to make a whole frog. When he took the cell's nucleus and popped it into a frog egg, the egg developed into a normal frog.
This method eventually was used to clone all sorts of animals, including cats, dogs, horses and, most famously, Dolly the sheep the first mammal cloned from an adult cell. Gurdon, 79, continues to study reprogramming and was working in his lab when he received the call from the Nobel committee.
But a major obstacle stood in the way of further development of these stem cells: Getting the frog's stomach cell to strip away its specialization and turn into one of the 200 or so cell types known to exist in animals always required the use of an egg.
A question hung over the field for decades: Could a specialized cell reprogram itself all on its own?
In 2006, Yamanaka and graduate student Kazutoshi Takahashi found the answer, and it sent shockwaves through biology and medicine. They demonstrated that any cell could be reset and induced to develop into another cell type. And, even more remarkably, that it took little to get the job done.
Continue reading here:
Nobel Winners Unlocked Cells' Unlimited Potential
NeoStem Announces Very Small Embryonic-Like Cells (VSEL(TM)) Publication in Stem Cells and Development
By NEVAGiles23
NEW YORK, Oct. 8, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE MKT:NBS), an emerging leader in the fast growing cell therapy market, announced today that data from its collaborative studies with the University of Michigan School of Dentistry further expands the therapeutic potential of its proprietary regenerative cell therapy product, "VSELSTM" (very small embryonic-like stem cells), by demonstrating bone regeneration capabilities in a study published online ahead of print1 in the journal Stem Cells and Development (DOI: 10.1089/scd.2012.0327). The paper highlights that human VSEL stem cells form human bone when implanted in the bone tissue of SCID mice.
VSELs are a population of stem cells found in adult bone marrow with potential regenerative properties similar to those of embryonic stem cells. NeoStem has shown that these cells can be mobilized into the peripheral blood, enabling a minimally invasive means for collecting what NeoStem believes to be a population of stem cells that have the potential to achieve the positive benefits associated with embryonic stem cells without the ethical or moral dilemmas or the potential negative effects known to be associated with embryonic stem cells.
This published controlled study, funded by NIH and led by Dr. Russell Taichman, Major Ash Collegiate Professor and Co-Director of the Scholars Program in Dental Leadership Department of Periodontics & Oral Medicine, University of Michigan and Dr. Aaron Havens, Department of Orthodontics and Pediatric Dentistry at University of Michigan, involved isolating G-CSF mobilized VSEL stem cells from the blood of healthy donors and transplanting them into burr holes made in the cranial bones of SCID mice. After three months, it was observed that the implanted VSEL stem cells had differentiated into human bone tissue in the crania of the mice. Dr. Taichman stated, "I believe this work represents a true partnership between Industry and Academic Institutions. Our findings that VSEL cells can generate human bone in animals would not have been feasible without the help and vision that Dr. Denis Rodgerson and his team at NeoStem brought to the table. It was my privilege to have been a part of this collaborative effort, and I see the resulting data as a significant milestone in stem cell therapy development. It is truly inspiring."
Dr. Robin Smith, Chairman and CEO of NeoStem, added, "This is very exciting data that we believe will be the foundation for future VSEL stem cell studies of bone regeneration in humans. We look forward to moving the development work from the laboratory into the clinic to develop a therapeutic stem cell product to enhance bone formation in humans."
About NeoStem, Inc.
NeoStem, Inc. continues to develop and build on its core capabilities in cell therapy, capitalizing on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a significant role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. We are emerging as a technology and market leading company in this fast developing cell therapy market. Our multi-faceted business strategy combines a state-of-the-art contract development and manufacturing subsidiary, Progenitor Cell Therapy, LLC ("PCT"), with a medically important cell therapy product development program, enabling near and long-term revenue growth opportunities. We believe this expertise and existing research capabilities and collaborations will enable us to achieve our mission of becoming a premier cell therapy company.
Our contract development and manufacturing service business supports the development of proprietary cell therapy products. NeoStem's most clinically advanced therapeutic, AMR-001, is being developed at Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011. Amorcyte is developing a cell therapy for the treatment of cardiovascular disease and is enrolling patients in a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is collaborating with Becton-Dickinson in the early clinical exploration of a T-cell therapy for autoimmune conditions. In addition, pre-clinical assets include our VSELTM Technology platform as well as our mesenchymal stem cell product candidate for regenerative medicine. Our service business and pipeline of proprietary cell therapy products work in concert, giving us a competitive advantage that we believe is unique to the biotechnology and pharmaceutical industries. Supported by an experienced scientific and business management team and a substantial intellectual property estate, we believe we are well positioned to succeed.
Forward-Looking Statements for NeoStem, Inc.
This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements reflect management's current expectations, as of the date of this press release, and involve certain risks and uncertainties. Forward-looking statements include statements herein with respect to the successful execution of the Company's business strategy, including with respect to the Company's or its partners' successful development of AMR-001 and other cell therapeutics, the size of the market for such products, its competitive position in such markets, the Company's ability to successfully penetrate such markets and the market for its CDMO business, and the efficacy of protection from its patent portfolio, as well as the future of the cell therapeutics industry in general, including the rate at which such industry may grow. Forward looking statements also include statements with respect to satisfying all conditions to closing the disposition of Erye, including receipt of all necessary regulatory approvals in the PRC. The Company's actual results could differ materially from those anticipated in these forward- looking statements as a result of various factors, including but not limited to (i) the Company's ability to manage its business despite operating losses and cash outflows, (ii) its ability to obtain sufficient capital or strategic business arrangement to fund its operations, including the clinical trials for AMR-001, (iii) successful results of the Company's clinical trials of AMR-001 and other cellular therapeutic products that may be pursued, (iv) demand for and market acceptance of AMR-001 or other cell therapies if clinical trials are successful and the Company is permitted to market such products, (v) establishment of a large global market for cellular-based products, (vi) the impact of competitive products and pricing, (vii) the impact of future scientific and medical developments, (viii) the Company's ability to obtain appropriate governmental licenses and approvals and, in general, future actions of regulatory bodies, including the FDA and foreign counterparts, (ix) reimbursement and rebate policies of government agencies and private payers, (x) the Company's ability to protect its intellectual property, (xi) the company's ability to successfully divest its interest in Erye, and (xii) matters described under the "Risk Factors" in the Company's Annual Report on Form 10-K filed with the Securities and Exchange Commission on March 20, 2012 and in the Company's other periodic filings with the Securities and Exchange Commission, all of which are available on its website. The Company does not undertake to update its forward-looking statements. The Company's further development is highly dependent on future medical and research developments and market acceptance, which is outside its control.
(1) Human Very Small Embryonic-Like Cells Generate Skeletal Structures, In Vivo. Havens A., et al., Stem Cells and Development.
Follow this link:
NeoStem Announces Very Small Embryonic-Like Cells (VSEL(TM)) Publication in Stem Cells and Development
Dr. Eva Feldman, Principal Investigator, To Update Interim Data On Neuralstem ALS Trial
By NEVAGiles23
ROCKVILLE, Md., Oct.4, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE Amex: CUR) announced that Eva Feldman, MD, PhD, principal investigator of the Phase Itrial to test Neuralstem's human spinal cord stem cells, NSI-566, in the treatment of amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease), will update trial data at the American Neurological Association annual meeting on Monday, October 8th (http://www.aneuroa.org/i4a/pages/index.cfm?pageid=3311). Dr. Feldman's poster presentation, "Completion and Outcomes of Phase I Intraspinal Stem Cell Transplantation Trial for ALS," will be up from 11:30-6:30. Dr. Feldman will be discussing the data between 5:30-6:30.
(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )
Dr. Feldman is the President of the American Neurological Association, as well as Director of the A. Alfred Taubman Medical Research Institute and Director of Research of the ALS Clinic at the University of Michigan Health System. Dr. Feldman is an unpaid consultant to Neuralstem.
About the Trial
The Phase I trial to assess the safety of Neuralstem's spinal cord neural stem cells and intraspinal transplantation method in ALS patients commenced in January 2010, and consisted of 18 treatments in 15 patients. The trial was designed to follow a risk escalation paradigm. The first 12 patients were each transplanted in the lumbar (lower back) region of the spine, beginning with non-ambulatory and advancing to ambulatory cohorts.
The trial then advanced to transplantation in the cervical (upper back) region of the spine. The first cohort of three was treated in the cervical region only. In an amendment to the trial design, The Food and Drug Administration (FDA) approved the return of previously-treated patients to this cohort. Consequently, the last cohort of three patients received injections in the cervical region in addition to the lumbar injections they had received earlier. All injections delivered 100,000 cells, for a dosing range of up to 1.5 million cells. The last patient was treated in August, 2012. The entire trial concludes six months after the final surgery.
About Neuralstem
Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem has recently completed an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.
In addition to ALS, the company is also targeting major central nervous system conditions with its NSI-566 cell therapy platform, including spinal cord injury, ischemic spastic paraplegia and chronic stroke. The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in spinal cord injury.
Neuralstem also has the ability to generate stable human neural stem cell lines suitable for the systematic screening of large chemical libraries. Through this proprietary screening technology, Neuralstem has discovered and patented compounds that may stimulate the brain's capacity to generate new neurons, possibly reversing the pathologies of some central nervous system conditions. The company is in a Phase Ib safety trial evaluating NSI-189, its first neurogenic small molecule compound, for the treatment of major depressive disorder (MDD).Additional indications could include chronic traumatic encephalopathy (CTE), Alzheimer's disease, and post-traumatic stress disorder (PTSD).
Excerpt from:
Dr. Eva Feldman, Principal Investigator, To Update Interim Data On Neuralstem ALS Trial
Study Sheds Light on Bone Marrow Stem Cell Therapy for Pancreatic Recovery
By NEVAGiles23
Newswise LOS ANGELES (Oct. 2, 2012) Researchers at Cedars-Sinais Maxine Dunitz Neurosurgical Institute have found that a blood vessel-building gene boosts the ability of human bone marrow stem cells to sustain pancreatic recovery in a laboratory mouse model of insulin-dependent diabetes.
The findings, published in a PLoS ONE article of the Public Library of Science, offer new insights on mechanisms involved in regeneration of insulin-producing cells and provide new evidence that a diabetics own bone marrow one day may be a source of treatment.
Scientists began studying bone marrow-derived stem cells for pancreatic regeneration a decade ago. Recent studies involving several pancreas-related genes and delivery methods transplantation into the organ or injection into the blood have shown that bone marrow stem cell therapy could reverse or improve diabetes in some laboratory mice. But little has been known about how stem cells affect beta cells pancreas cells that produce insulin or how scientists could promote sustained beta cell renewal and insulin production.
When the Cedars-Sinai researchers modified bone marrow stem cells to express a certain gene (vascular endothelial growth factor, or VEGF), pancreatic recovery was sustained as mouse pancreases were able to generate new beta cells. The VEGF-modified stem cells promoted growth of needed blood vessels and supported activation of genes involved in insulin production. Bone marrow stem cells modified with a different gene, PDX1, which is important in the development and maintenance of beta cells, resulted in temporary but not sustained beta cell recovery.
Our study is the first to show that VEGF contributes to revascularization and recovery after pancreatic injury. It demonstrates the possible clinical benefits of using bone marrow-derived stem cells, modified to express that gene, for the treatment of insulin-dependent diabetes, said John S. Yu, MD, professor and vice chair of the Department of Neurosurgery at Cedars-Sinai, senior author of the journal article.
Diabetes was reversed in five of nine mice treated with the injection of VEGF-modified cells, and near-normal blood sugar levels were maintained through the remainder of the six-week study period. The other four mice survived and gained weight, suggesting treatment was beneficial even when it did not prompt complete reversal. Lab studies later confirmed that genetically-modified cells survived and grew in the pancreas and supported the repopulation of blood vessels and beta cells.
Anna Milanesi, MD, PhD, working in Yus lab as an endocrinology fellow, is the articles first author. The researchers cautioned that although this and other related studies help scientists gain a better understanding of the processes and pathways involved in pancreatic regeneration, more research is needed before human clinical trials can begin.
Insulin-dependent diabetes occurs when beta cells of the pancreas fail to produce insulin, a hormone that regulates sugar in the blood. Patients must take insulin injections or consider transplantation of a whole pancreas or parts of the pancreas that make insulin, but transplantation carries the risk of cell rejection.
# # #
PLoS ONE: Beta-cell Regeneration Mediated by Human Bone Marrow Mesenchymal Stem Cells.
Read more here:
Study Sheds Light on Bone Marrow Stem Cell Therapy for Pancreatic Recovery
New Therapy May Help Burn Victims
By NEVAGiles23
Lesley Kelly, 45, underwent stem cell therapy to repair scar tissue buildup in her right arm. (Cytori Therapeutics, Inc.)
By Lara Salahi, ABC News For more than 40 years, Lesley Kelly of Glasgow, Scotland, lived with third-degree burns that stretched over 60 percent of her body.
Kelly was 2 years old when she fell into a bathtub filled with hot water that scorched most of the right side of her body. She lost full range of motion around many of her joints.
"When you have bad scarring, the buildup is very thick and has no elasticity," said Kelly, 45, whose right elbow was most affected by the buildup of scar tissue. "The problem with thermal burn scarring [is that] it's hard to get the range of motion."
Kelly underwent numerous reparative surgeries through the years, but the scar tissue continued to grow back. The procedures did not lessen the look of her scars.
In 2011, Kelly underwent a new, experimental procedure that used stem cells from her own fat tissue to repair the buildup around her right elbow.
Surgeons cleaned the scar buildup around the elbow and used liposuction to pull fat from off Kelly's waist. They separated the fat cells from the stem and regenerative cells, which were then injected into the wound on Kelly's arm. The procedure took less than two hours.
Within months, Kelly was able to regain 40 degrees of motion that she had lost more than 40 years ago.
"If this technology was available earlier in my life, my scars would not have been as bad," said Kelly.
There are an estimated 50,000 to 70,000 burn cases each year in the U.S., according to the American Burn Association.
See the article here:
New Therapy May Help Burn Victims
Grants Pass man meets donor who saved his life
By NEVAGiles23
GRANTS PASS This month, Jerry Condit met the only man in the world who could and did save his life.
Condit needed a stem cell transplant to replace bone marrow lost to leukemia, a blood-attacking cancer diagnosed in January 2008 on his 69th birthday.
Doctors estimated he had two years to live if it went untreated. But finding a suitable donor was difficult. In fact, the National Marrow Donor Program says only about half of the people in need of transplants ever find a donor.
After searching national and international registries of millions of potential donors, doctors found only one match: Marco Rixen, a 34-year-old resident of Germany.
He matched 11 of the 12 markers they were looking for, said Condits wife, Jan. It was enough to consider Rixen a match.
The transplant was performed in May 2008 at Oregon Health & Science University in Portland. Rixen made his donation at a medical center in Germany, where a courier rushed the stem cells to a plane bound for Portland. Less than 36 hours later, Condits transfusion was under way.
For the first two years after the transplant, Condit and Rixen could communicate only through the bone marrow donation agency. After that, names and e-mail addresses were released.
The two kept in touch, and one day the Condits got a message from Rixen that said he was planning to visit the United States.
I didnt know if I would ever get the chance to meet him, said Condit, who cant travel because of his vulnerable immune system. He wrote us and said he was coming here, and we just about fell over.
Rixen and his wife, Anja, spent Sept. 19 with the Condits in Grants Pass before heading to Las Vegas to renew their wedding vows in front of an Elvis impersonator and then visit the Grand Canyon.
Follow this link:
Grants Pass man meets donor who saved his life
Stem cell transplantation for boy with thalassaemia
By NEVAGiles23
A 10-year-old boy has been infused with stem cells harvested from the bone marrow of his brother to treat him for thalassaemia a disorder caused by destruction of red blood cells. Called allogeneic transplantation of stem cells, this was done at Kovai Medical Center and Hospital.
D. Dhanush may not have to undergo expensive and excruciating blood transfusion anymore if his body accepts the donor cells. But his condition will have to be evaluated very minutely for the next two years to confirm that the cells donated by his brother have been received well and adapted him.
Presenting the boy before media persons, Clinical Haematologist and Head of the Bone Marrow Transplant Unit T. Rajasekar explained that transplantation was of two types autologous and allogeneic.
The autologous procedure involves harvesting of stem cells from the patients themselves (those suffering from thalassaemia or leukaemia). The extracted cells are frozen and stored for high dose treatment.
After being treated, these are infused into the patient through a vein. This procedure was done for one person suffering from myeloma (cancer of plasma cells or white blood cells that produce anti-bodies that help fight infections/diseases) and another with a relapsed lymphoma (cancer of the lymphocytes cells that are part of immune system).
Under the allogeneic procedure, matching stem cells from a donor are used. Mostly, these cells are from siblings or a close relative as they need to pass the human leukocyte antigen (HLA) matching test. HLA matching is required, or the cells will be rejected by the recipient. Ideally, it is sibling whose cells will match because he or she will have the HLA from both parents. It is the combination of HLAs from both parents that are found in the children.
The cells can be harvested from the marrow or from the blood. In the case presented on Tuesday, Dr. Rajasekar said the cells were brought out of the bone marrow in Dhanushs brother and into his blood, from where these were harvested.
Chairman of the hospital Nalla G. Palaniswami said the tough procedure was performed by the new Comprehensive Cancer Centre, which was gradually bringing in specialists of all sub-specialities of cancer care. Only then can this be called a comprehensive centre, he said.
The hospital would form a KMCH Foundation, which would use funds from donors to treat poor children suffering from cancer and some other disorders that required expensive treatment.
The stem cell transplantation that Dhanush, the son of a police head constable, underwent cost Rs.12 lakh. Of this, Rs.9 lakh was provided by a donor, Dr. Palaniswami said. Dean of the hospital V. Kumaran and Head of Department of Interventional Radiology Mathew Cherian spoke on how the cancer centre was established and how developments were being made.
Read more from the original source:
Stem cell transplantation for boy with thalassaemia
International Stem Cell Corp Granted Key Patent for Liver Disease Program
By NEVAGiles23
CARLSBAD, CA--(Marketwire - Sep 25, 2012) - International Stem Cell Corporation ( OTCQB : ISCO ) (www.internationalstemcell.com) ("ISCO" or "the Company") a California-based biotechnology company, today announced that the United States Patent and Trademark Office (USPTO) has granted the Company a patent for a method of creating pure populations of definitive endoderm, precursor cells to liver and pancreas cells, from human pluripotent stem cells.This patent is a key element of ISCO's metabolic liver disease program and allows the Company to produce the necessary quantities of precursor cells in a more efficient and cost effective manner.
The patent, 8,268,621, adds to the Company's growing portfolio of proprietary technologies relating to the development of potential treatments for incurable diseases using human parthenogenetic Stem Cells (hpSC).Human parthenogenetic stem cells are unique pluripotent stem cells that offer the possibility to reduce the cost of health care while avoiding the ethical issues that surround the use of fertilized human embryos.Aside from the Company's current liver disease program, this new patented method can be used as a route to create pancreatic and endocrine cells that could be used in future studies of diabetes and other metabolic disorders.
ISCO currently has the largest collection of hpSC including cell lines which immune match the donor, as is the case with induced pluripotent stem cells (iPS), and cell lines which immune-match millions of individuals and potentially reduce tissue rejection issues.The Company is focusing its therapeutic development efforts on three clinical applications where cell and tissue therapy is already proven but where there currently is an insufficient supply of safe and efficacious cells: Parkinson's disease, inherited/metabolic liver diseases and corneal blindness.
About International Stem Cell Corporation
International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products.ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs) hence avoiding ethical issues associated with the use or destruction of viable human embryos.ISCO scientists have created the first parthenogenetic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com.
To receive ongoing corporate communications via email, visit: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0
To like our Facebook page or follow us on Twitter for company updates and industry related news, visit: http://www.facebook.com/InternationalStemCellCorporation and http://www.twitter.com/intlstemcell
Safe harbor statement
Statements pertaining to anticipated developments, the potential use of technologies to develop therapeutic products and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects" or "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products and the management of collaborations, regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.
Continued here:
International Stem Cell Corp Granted Key Patent for Liver Disease Program
University of Maryland study: Neonatal heart stem cells may help mend kids' broken hearts
By NEVAGiles23
Public release date: 10-Sep-2012 [ | E-mail | Share ]
Contact: Bill Seiler bseiler@umm.edu 410-328-8919 University of Maryland Medical Center
Baltimore, MD September 10, 2012 Researchers at the University of Maryland School of Medicine, who are exploring novel ways to treat serious heart problems in children, have conducted the first direct comparison of the regenerative abilities of neonatal and adult-derived human cardiac stem cells. Among their findings: cardiac stem cells (CSCs) from newborns have a three-fold ability to restore heart function to nearly normal levels compared with adult CSCs. Further, in animal models of heart attack, hearts treated with neonatal stem cells pumped stronger than those given adult cells. The study is published in the September 11, 2012, issue of Circulation.
"The surprising finding is that the cells from neonates are extremely regenerative and perform better than adult stem cells," says the study's senor author, Sunjay Kaushal, M.D., Ph.D., associate professor of surgery at the University of Maryland School of Medicine and director, pediatric cardiac surgery at the University of Maryland Medical Center. "We are extremely excited and hopeful that this new cell-based therapy can play an important role in the treatment of children with congenital heart disease, many of whom don't have other options."
Dr. Kaushal envisions cellular therapy as either a stand-alone therapy for children with heart failure or an adjunct to medical and surgical treatments. While surgery can provide structural relief for some patients with congenital heart disease and medicine can boost heart function up to two percent, he says cellular therapy may improve heart function even more dramatically. "We're looking at this type of therapy to improve heart function in children by 10, 12, or 15 percent. This will be a quantum leap in heart function improvement."
Heart failure in children, as in adults, has been on the rise in the past decade and the prognosis for patients hospitalized with heart failure remains poor. In contrast to adults, Dr. Kaushal says heart failure in children is typically the result of a constellation of problems: reduced cardiac blood flow; weakening and enlargement of the heart; and various congenital malformations. Recent research has shown that several types of cardiac stem cells can help the heart repair itself, essentially reversing the theory that a broken heart cannot be mended.
Stem cells are unspecialized cells that can become tissue- or organ-specific cells with a particular function. In a process called differentiation, cardiac stem cells may develop into rhythmically contracting muscle cells, smooth muscle cells or endothelial cells. Stem cells in the heart may also secrete growth factors conducive to forming heart muscle and keeping the muscle from dying.
To conduct the study, researchers obtained a small amount of heart tissue during normal cardiac surgery from 43 neonates and 13 adults. The cells were expanded in a growth medium yielding millions of cells. The researchers developed a consistent way to isolate and grow neonatal stem cells from as little as 20 milligrams of heart tissue. Adult and neonate stem cell activity was observed both in the laboratory and in animal models. In addition, the animal models were compared to controls that were not given the stem cells.
Dr. Kaushal says it is not clear why the neonatal stem cells performed so well. One explanation hinges on sheer numbers: there are many more stem cells in a baby's heart than in the adult heart. Another explanation: neonate-derived cells release more growth factors that trigger blood vessel development and/or preservation than adult cells.
"This research provides an important link in our quest to understand how stem cells function and how they can best be applied to cure disease and correct medical deficiencies," says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs, University of Maryland; the John Z. and Akiko K. Bowers Distinguished Professor; and dean, University of Maryland School of Medicine. "Sometimes simple science is the best science. In this case, a basic, comparative study has revealed in stark terms the powerful regenerative qualities of neonatal cardiac stem cells, heretofore unknown."
Excerpt from:
University of Maryland study: Neonatal heart stem cells may help mend kids' broken hearts
Cedars-Sinai Heart Institute awarded $1.3 million to study cardiac stem cells
By NEVAGiles23
Public release date: 6-Sep-2012 [ | E-mail | Share ]
Contact: Sally Stewart Sally.stewart@cshs.org 310-248-6566 Cedars-Sinai Medical Center
LOS ANGELES Sept. 6, 2012 A team of Cedars-Sinai Heart Institute stem cell researchers today was awarded a $1.3 million grant from the California Institute of Regenerative Medicine to continue study of an experimental stem cell therapy that treats heart attack patients with heart-derived cells. Earlier this year, data from the first clinical trial of the stem cell treatment showed the therapy helped damaged hearts regrow healthy muscle.
To date, this cell therapy, developed by Eduardo Marbn, MD, PhD, director of the Cedars-Sinai Heart Institute and Mark S. Siegel Family Professor, is the only treatment shown to regenerate the injured human heart. In this therapy, human heart tissue is used to grow specialized heart stem cells, which then are injected back into the patient's heart. The new research will focus on understanding the cellular mechanisms that have produced favorable outcomes.
"We have seen encouraging results in patients with this treatment, and it has the potential to revolutionize how we treat heart attack patients," Marbn said. "This further study will allow us to better understand how it works, which we hope will lead us to even more stem-cell based treatments for the heart."
During a heart attack, clots form suddenly on top of cholesterol-laden plaques, which block the flow of blood to the heart muscle. This causes living heart tissue to die and be replaced by a scar. The larger the scar, the higher the chance of death or disability from the heart attack.
Conventional treatments aim to limit the initial injury by opening the clogged artery and prevent further harm with medications. Regenerative therapy aims to regrow healthy heart muscle and dissolve the heart tissue -- an approach that, according to a study by Marbn published in The Lancet, led to an average 50 percent reduction in scar size.
Early study by Cedars-Sinai researchers indicates that much of the benefit in the experimental therapy is due to an indirect effect of the transplanted cardiac-derived cells. These cells seem to stimulate proliferation of the surrounding undamaged heart cells -- a previously unrecognized means of cardiac regeneration in response to cell therapy.
"This is vital basic science work that we believe will ultimately open pathways to new treatments in the fight against heart disease, the leading cause of premature death and disability," Marbn said.
The process to grow the cardiac-derived stem cells involved in the study was developed by Marbn when he was on the faculty of Johns Hopkins University. The university has filed for a patent on that intellectual property, and has licensed it to a company in which Dr. Marbn has a financial interest.
Continue reading here:
Cedars-Sinai Heart Institute awarded $1.3 million to study cardiac stem cells