China medicdal tourism– Cirrhosis–Stem cells therapy 1.mp4 – Video
By NEVAGiles23
16-02-2012 20:19 Many of our patients travel to Guangzhou from all over the world for medical treatment and tourism. China medical tourism can help with becoming a patient, travel arrangements and language assistance. If you want to know more about our services, please browse the web:htttp://www.medicaltourism.hk/ or mail to us: giels-x@medicaltourism.hk firstcare-china@hotmail.com Adult stem cells provide real improvement for cirrhosis patients Breakthrough adult stem cell research has shown that stem cells are able to regenerate and repair damaged or destroyed liver cells. For patients with cirrhosis, this means improved liver function, decreased pain and a significantly improved quality of life. Stem cell therapy offers the safest and most effective treatment alternative for liver cirrhosis and it is quickly becoming a preferred treatment in Asia. China medical tourism offers unique access to the best stem cell therapies available at leading medical facilities. Supporting data and statistics Three out of every four patients treated experienced a significant improvement in their condition following stem cell treatment. The following clinical results were observed: •Improved liver function •Decreased pain •Improved values for liver function, PLT (blood platelet) and blood ammonia You may see improvements during your hospitalization due to neurotrophic factors released during the stem cell transplantation, which stimulate nerve activity; new cells will grow for up to six months after you ...
Original post:
China medicdal tourism-- Cirrhosis--Stem cells therapy 1.mp4 - Video
Juice Beauty’s to boost organic skin care further with Stem Cellular Repair line
By NEVAGiles23
Posted on February 17, 2012, Friday
KUCHING: Organic solutions company Juice Beauty is introducing three new products in its Stem Cellular Repair line to the public, incorporating technology and science in delivering the new products.
“The three products, namely Stem Cellular Repair Moisturiser, Stem Cellular Repair Eye Treatment and Stem Cellular Repair Booster Serum work at the cellular level to repair damage and increase cellular proliferation,” explained Juice Beauty retail outlet manager, Shirley Ann Tan.
The products were noted to have used the brand’s own proprietary blend of organic fruit stem cells injected into its clinically validated antioxidant rich organic juice base to help decrease DNA damage and accelerate cellular proliferation.
Tan stated that Juice Beauty products were antioxidant-rich and made from 100 per cent organic juices. The formulations were protected from environmental contamination with high tech airtight pump jars.
The manager added, “The reason we are so intent in creating organic products is that we want people to avoid using harmful chemicals in their skin care range for health purposes. People with eczema, skin problems and allergies could feel free to try out our organic products.”
Juice Beauty’s boasts its patent-pending juice base which does not have any drying effect on the skin or suffocate the skin as alcohol- or petroleum-based products do.
“Using an organic juice base provides the benefit of having every drop of the product feed your skin,” she highlighted.
The new products are currently available at Juice Beauty’s outlet at tHe Spring Mall.
<< Previous Entry - Next Entry >>
Read the original post:
Juice Beauty’s to boost organic skin care further with Stem Cellular Repair line
Histogenics to Present at 7th Annual New York Stem Cell Summit
By NEVAGiles23
WALTHAM, Mass.--(BUSINESS WIRE)--
Histogenics Corporation, a privately held regenerative medicine company, today announced that the Company will present at the 7th Annual New York Stem Cell Summit on February 21st at Bridgewaters New York City. Kirk Andriano, Ph.D., Vice President of Research and Development for Histogenics, will speak about current and future cell therapies being developed by the Company as it works toward commercialization. Lead candidates include NeoCart®, an autologous bioengineered neocartilage grown outside the body using the patient’s own cells for the regeneration of cartilage lesions, and VeriCart™, a three-dimensional cartilage matrix designed to stimulate cartilage repair in a simple, one-step procedure. NeoCart recently entered a Phase 3 clinical trial after reporting positive Phase 2 data, in which all primary endpoints were met and a favorable safety profile was demonstrated.
Dr. Andriano earned his BS in chemistry and biology from Utah State University and his MS and Ph.D. in bioengineering from the University of Utah. Prior to his work at Histogenics, he was the Chief Technology Officer for ProChon Biotech, Ltd. which was acquired by Histogenics in May 2011.
About Histogenics
Histogenics is a leading regenerative medicine company that combines cell therapy and tissue engineering technologies to develop highly innovative products for tissue repair and regeneration. In May of 2011, Histogenics acquired Israeli cell-therapy company ProChon BioTech. Histogenics’ flagship products focus on the treatment of active patients suffering from articular cartilage derived pain and immobility. The Company takes an interdisciplinary approach to engineering neocartilage that looks, acts and lasts like hyaline cartilage. It is developing new treatments for sports injuries and other orthopaedic conditions, where demand is growing for long-term alternatives to joint replacement. Histogenics has successfully completed Phase 1 and Phase 2 clinical trials of its NeoCart autologous tissue implant and is currently in a Phase 3 IND clinical study. Based in Waltham, Massachusetts, the company is privately held. For more information, visit http://www.histogenics.com.
Read the original:
Histogenics to Present at 7th Annual New York Stem Cell Summit
Pathfinder to Present at New York Stem Cell Summit
By NEVAGiles23
CAMBRIDGE, Mass., Feb. 16, 2012 (GLOBE NEWSWIRE) -- Pathfinder Cell Therapy, Inc. ("Pathfinder," or "the Company") (OTCQB:PFND.PK - News), a biotechnology company focused on the treatment of diseases characterized by organ-specific cell damage, today announced that Richard L. Franklin, M.D., Ph.D., Founder, CEO and President of Pathfinder, will present at the 7th Annual New York Stem Cell Summit being held on Tuesday, February 21, 2012.
Event: 7th Annual New York Stem Cell Summit
Date: Tuesday, February 21, 2012
Place: Bridgewaters New York, 11 Fulton Street, New York, NY
Time: 3:35 pm ET
Dr. Franklin will be providing an overview of the Company's novel Pathfinder Cell therapy.
The New York Stem Cell Summit brings together stem cell company executives, researchers, investors and physicians to explore investment opportunities in stem cell research and innovation. More information can be found at http://www.stemcellsummit.com.
About Pathfinder
Pathfinder is developing a novel cell-based therapy and has generated encouraging preclinical data in models of diabetes, renal disease, myocardial infarction, and critical limb ischemia, a severe form of peripheral vascular disease. Leveraging its internal discovery of Pathfinder Cells ("PCs") Pathfinder is pioneering a new field in regenerative medicine.
PCs are a newly identified mammalian cell type present in very low quantities in a variety of organs, including the kidney, liver, pancreas, lymph nodes, myometrium, bone marrow and blood. Early studies indicate that PCs stimulate regeneration of damaged tissues without the cells themselves being incorporated into the newly generated tissue. Based on testing to date, the cells appear to be "immune privileged," and their effects appear to be independent of the tissue source of PCs. For more information please visit: http://www.pathfindercelltherapy.com.
FORWARD LOOKING STATEMENTS
This press release contains forward-looking statements. You should be aware that our actual results could differ materially from those contained in the forward-looking statements, which are based on management's current expectations and are subject to a number of risks and uncertainties, including, but not limited to, our inability to obtain additional required financing; costs and delays in the development and/or FDA approval, or the failure to obtain such approval, of our product candidates; uncertainties or differences in interpretation in clinical trial results, if any; our inability to maintain or enter into, and the risks resulting from our dependence upon, collaboration or contractual arrangements necessary for the development, manufacture, commercialization, marketing, sales and distribution of any products; competitive factors; our inability to protect our patents or proprietary rights and obtain necessary rights to third party patents and intellectual property to operate our business; our inability to operate our business without infringing the patents and proprietary rights of others; general economic conditions; the failure of any products to gain market acceptance; technological changes; and government regulation. We do not intend to update any of these factors or to publicly announce the results of any revisions to these forward-looking statements.
View original post here:
Pathfinder to Present at New York Stem Cell Summit
Stem cell study in mice offers hope for treating heart attack patients
By NEVAGiles23
In the investigation, reported online in the journal PLoS ONE, the researchers isolated and characterized a novel type of cardiac stem cell from the heart tissue of middle-aged mice following a heart attack.
Then, in one experiment, they placed the cells in the culture dish and showed they had the ability to differentiate into cardiomyocytes, or "beating heart cells," as well as endothelial cells and smooth muscle cells, all of which make up the heart.
In another, they made copies, or "clones," of the cells and engrafted them in the tissue of other mice of the same genetic background who also had experienced heart attacks. The cells induced angiogenesis, or blood vessel growth, or differentiated, or specialized, into endothelial and smooth muscle cells, improving cardiac function.
"These findings are very exciting," said first author Jianqin Ye, PhD, MD, senior scientist at UCSF's Translational Cardiac Stem Cell Program. First, "we showed that we can isolate these cells from the heart of middle-aged animals, even after a heart attack." Second, he said, "we determined that we can return these cells to the animals to induce repair."
Importantly, the stem cells were identified and isolated in all four chambers of the heart, potentially making it possible to isolate them from patients' hearts by doing right ventricular biopsies, said Ye. This procedure is "the safest way of obtaining cells from the heart of live patients, and is relatively easy to perform," he said.
"The finding extends the current knowledge in the field of native cardiac progenitor cell therapy," said senior author Yerem Yeghiazarians, MD, director of UCSF's Translational Cardiac Stem Cell Program and an associate professor at the UCSF Division of Cardiology. "Most of the previous research has focused on a different subset of cardiac progenitor cells. These novel cardiac precursor cells appear to have great therapeutic potential."
The hope, he said, is that patients who have severe heart failure after a heart attack or have cardiomyopathy would be able to be treated with their own cardiac stem cells to improve the overall health and function of the heart. Because the cells would have come from the patients, themselves, there would be no concern of cell rejection after therapy.
The cells, known as Sca-1+ stem enriched in Islet (Isl-1) expressing cardiac precursors, play a major role in cardiac development. Until now, most of the research has focused on a different subset of cardiac progenitor, or early stage, cells known as, c-kit cells.
The Sca-1+ cells, like the c-kit cells, are located within a larger clump of cells called cardiospheres.
The UCSF researchers used special culture techniques and isolated Sca-1+ cells enriched in the Isl-1expressing cells, which are believed to be instrumental in the heart's development. Since Isl-1 is expressed in the cell nucleus, it has been difficult to isolate them but the new technique enriches for this cell population.
The findings suggest a potential treatment strategy, said Yeghiazarians. "Heart disease, including heart attack and heart failure, is the number one killer in advanced countries. It would be a huge advance if we could decrease repeat hospitalizations, improve the quality of life and increase survival." More studies are being planned to address these issues in the future.
An estimated 785,000 Americans will have a new heart attack this year, and 470,000 who will have a recurrent attack. Heart disease remains the number one killer in the United States, accounting for one out of every three deaths, according to the American Heart Association.
Medical costs of cardiovascular disease are projected to triple from $272.5 billion to $818.1 billion between now and 2030, according to a report published in the journal Circulation.
More information: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0030329
Provided by University of California, San Francisco (news : web)
Go here to see the original:
Stem cell study in mice offers hope for treating heart attack patients
Stem Cells Help Regrow Heart Tissue
By NEVAGiles23
Stem cells harvested from a patient's own heart can be used to help repair muscle damaged during a heart attack, according to a preliminary study published online Monday in The Lancet. While it's too soon to know if the technique will help patients live longer, the study is the second small, promising study of cardiac stem cells in three months.
The new study involved 25 patients who had suffered very serious heart attacks; 24% of their heart's major pumping chamber had been replaced by scar tissue. One year later, doctors saw no improvement in those randomly assigned to get standard care. Among the 17 given stem cells, however, "we reversed about half the injury to the heart," said study author Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles, in an e-mail. "We dissolved scar and replaced it with living heart muscle."
Warren Sherman, director of stem cell research and regenerative medicine at Columbia University Medical Center in New York, says the study was an important proof of the potential of stem cells - harvested from patients, grown in the lab, then injected back into patients' hearts.
Doctors don't yet know exactly how the stem cells reduce the size of the dead zone of scar tissue, says Kenneth Margulies, director of heart failure and transplant research at the University of Pennsylvania. And while the shrinking suggests that the stem cells are replacing dead cells with living ones, doctors can't definitely prove that without doing a biopsy of the actual cells, he says.
The new study's encouraging results seem to confirm the findings of another small study of heart stem cells, published in The Lancet in November, which also showed an improvement in heart-attack survivors who received the treatment, Margulies says. On the other hand, a third study, found no benefit from stem cells created from patients' own bone marrow.
Four stem-cell patients developed serious complications, compared to only one of the other patients, the study says. That suggests stem-cell therapy has a "satisfactory" safety record, but "is not risk-free," Margulies says.
The idea of regenerating heart tissue "was a pretty far-out idea" only 10 to 20 years ago, Margulies says. There's some evidence that heart tissue is capable of making some small repairs on its own, although not enough to help people who've had a heart attack.
Marban developed the process of growing heart stem cells while working at Johns Hopkins University, which has filed an application for a patent on the idea and licensed it to a company in which Marban has a financial interest. No money from that company was used to pay for the study, which was funded by Cedars-Sinai and the National Institutes of Health.
About 1.3 million Americans have a heart attack each year.
USA Today
You Might Be Interested In
Advanced Cell Technology Announces Approval of Wills Eye Institute as Additional Site for Stem Cell Clinical Trial for …
By NEVAGiles23
MARLBOROUGH, Mass.--(BUSINESS WIRE)--
Advanced Cell Technology, Inc. (“ACT”; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today that the Wills Eye Institute in Philadelphia has received institutional review board (IRB) approval as a site for the company’s Phase I/II clinical trial for Stargardt’s Macular Dystrophy (SMD), a form of juvenile macular degeneration, using human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells. Earlier this year, the Company also announced that the IRB at Wills Eye Institute had approved the participation of the institution as a site for ACT’s clinical trial for dry age-related macular degeneration (dry AMD).
“We thank Wills Eye Institute once more for providing their IRB and their invaluable contribution to our macular degeneration studies,” said Gary Rabin, ACT’s chairman and CEO. “We are very happy that we can now report that Wills Eye Institute has been approved as a clinical trial site for both our SMD and dry AMD clinical trials. Ranked as one of the best ophthalmology hospitals in the country by U.S. News & World Report, the Wills Eye Institute is a truly world-class institution. Our team is eagerly anticipating working with Dr. Carl Regillo, a renowned retinal surgeon and director of clinical retina research at Wills Eye Institute, as well as a professor of ophthalmology at Thomas Jefferson University, along with the rest of his team as we move forward with these ground-breaking trials.”
The Phase I/II trial for SMD is a prospective, open-label study designed to determine the safety and tolerability of the hESC-derived RPE cells following sub-retinal transplantation into patients with SMD. The trial will ultimately enroll 12 patients, with cohorts of three patients each in an ascending dosage format. Preliminary results relating to both early safety and biological function for the first two patients in the U.S., one SMD patient and one dry AMD patient, were recently reported in The Lancet.
Specific patient enrollment for both trials at the Wills Eye Institute will be determined in the near future. Further information about patient eligibility for the SMD study and the concurrent study on dry AMD is also available on http://www.clinicaltrials.gov; ClinicalTrials.gov Identifiers: NCT01345006 and NCT01344993.
About Stargardt's Disease
Stargardt’s disease or Stargardt’s Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium.
About hESC-derived RPE Cells
The retinal pigment epithelium (RPE) is a highly specialized tissue located between the choroids and the neural retina. RPE cells support, protect and provide nutrition for the light-sensitive photoreceptors. Human embryonic stem cells differentiate into any cell type, including RPE cells, and have a similar expression of RPE-specific genes compared to human RPE cells and demonstrate the full transition from the hESC state.
About Advanced Cell Technology, Inc.
Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.
About Wills Eye Institute
Wills Eye Institute is a global leader in ophthalmology, established in 1832 as the nation’s first hospital specializing in eye care. U.S. News & World Report has consistently ranked Wills Eye as one of America’s top three ophthalmology centers since the survey began in 1990. Wills Eye is a premier training site for all levels of medical education. Its resident and post-graduate training programs are among the most competitive in the country. One of the core strengths of Wills is the close connection between innovative research and advanced patient care. Wills provides the full range of primary and subspecialty eye care for improving and preserving sight, including cataract, cornea, retina, emergency care, glaucoma, neuro-ophthalmology, ocular oncology, oculoplastics, pathology, pediatric ophthalmology and ocular genetics, refractive surgery and retina. Ocular Services include the Wills Laser Correction Center, Low Vision Service, and Diagnostic Center. Its 24/7 Emergency Service is the only one of its kind in the region. Wills Eye also has a network of nine multi-specialty, ambulatory surgery centers throughout the tri-state area. To learn more, please visit http://www.willseye.org.
Forward-Looking Statements
Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words “will,” “believes,” “plans,” “anticipates,” “expects,” “estimates,” and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the company’s periodic reports, including the report on Form 10-K for the year ended December 31, 2010. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Company’s clinical trials will be successful.
See original here:
Advanced Cell Technology Announces Approval of Wills Eye Institute as Additional Site for Stem Cell Clinical Trial for ...
Stem Cell Stocks: Mending Scarred Hearts
By NEVAGiles23
A new study at Johns Hopkins University has shown that stem cells from patients' own cardiac tissue can be used to heal scarred tissue after a heart attack. This is certainly exciting news considering heart failure is still the No. 1 cause of death in men and women.
The study included 25 heart attack victims, 17 of whom got the stem cell treatment. Those patients saw a 50% reduction in cardiac scar tissue after one year, while the eight control patients saw no improvement.
The procedure involves removing a tiny portion of heart tissue through a needle, cultivating the stem cells from that tissue, and reinserting them in a second minimally invasive procedure, according to Bloomberg.
"If we can regenerate the whole heart, then the patient would be completely normal," said Eduardo Marban, director of Cedars-Sinai Heart Institute who was the study's lead author. "We haven't fulfilled that yet, but we've gotten rid of half of the injury, and that's a good start."
Business section: Investing ideas
Interested in investing in the promise that stem cell therapy holds? For a look at the investing landscape, we compiled a list of the 10 largest companies involved in stem cell therapy.
Do you think this industry will see growth from stem cell research? (Click here to access free, interactive tools to analyze these ideas.)
1. BioTime (NYSE: BTX ) : Focuses on regenerative medicine and blood plasma volume expanders. Market cap at $291.95M. The company develops and markets research products in the field of stem cells and regenerative medicine. It develops therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases; cardiovascular and blood diseases; therapeutic applications of stem cells to treat orthopedic diseases, injuries, and cancer; and retinal cell product for use in the treatment of age-related macular degeneration.
2. Cleveland BioLabs (Nasdaq: CBLI ) : Market cap at $111.50M. Its products include Protectan CBLB502, a radioprotectant molecule with multiple medical and defense applications for reducing injury from acute stresses, such as radiation and chemotherapy by mobilizing various natural cell protecting mechanisms, including inhibition of apoptosis, reduction of oxidative damage, and induction of factors that induce protection and regeneration of stem cells in bone marrow and the intestines, and Protectan CBLB612, a modified lipopeptide mycoplasma that acts as a stimulator and mobilizer of hematopoietic stem cells to peripheral blood, providing hematopoietic recovery during chemotherapy and during donor preparation for bone marrow transplantation.
3. Gentium: Focuses on the development and manufacture of its primary product candidate, defibrotide, an investigational drug based on a mixture of single-stranded and double-stranded DNA extracted from pig intestines. Market cap at $128.29M. The company develops defibrotide for the treatment and prevention of hepatic veno-occlusive disease (VOD), a condition that occurs when veins in the liver are blocked as a result of cancer treatments, such as chemotherapy or radiation, that are administered prior to stem cell transplantation.
4. Geron (Nasdaq: GERN ) : Develops biopharmaceuticals for the treatment of cancer and chronic degenerative diseases, including spinal cord injury, heart failure, and diabetes. Market cap at $265.57M. The company has licensing agreement with the University Campus Suffolk to develop human embryonic stem cell-derived chondrocytes for the treatment of cartilage damage and joint disease.
5. Harvard Bioscience: Develops, manufactures, and markets apparatus and scientific instruments used in life science research in pharmaceutical and biotechnology companies, universities, and government laboratories in the United States and internationally. Market cap at $118.28M. Develops devices used by clinicians and researchers in the field of regenerative medicine, including bioreactors for growing tissue and organs outside the body, and injectors for stem cell therapy.
6. Lydall (NYSE: LDL ) : Designs and manufactures specialty engineered products for thermal/acoustical, filtration/separation, and bio/medical applications in the United States. Market cap at $163.44M. In addition, it offers Cell-Freeze, a medical device used for cryogenic storage of peripheral blood stem cells.
8. Osiris Therapeutics (Nasdaq: OSIR ) : Focuses on the development and marketing of therapeutic products to treat various medical conditions in the inflammatory, autoimmune, orthopedic, and cardiovascular areas. Market cap at $157.26M. A stem cell company, focuses on the development and marketing of therapeutic products to treat various medical conditions in the inflammatory, autoimmune, orthopedic, and cardiovascular areas.
7. Verastem: Market cap at $229.00M. Focuses on discovering and developing proprietary small molecule drugs targeting cancer stem cells (CSCs) in breast and other cancers.
Interactive Chart: Press Play to compare changes in analyst ratings over the last two years for the stocks mentioned above. Analyst ratings sourced from Zacks Investment Research.
Kapitall's Alexander Crawford does not own any of the shares mentioned above.
Read the original:
Stem Cell Stocks: Mending Scarred Hearts
Neuralstem Announces Closing of $5.2-Million Registered Direct Offering
By NEVAGiles23
ROCKVILLE, Md., Feb. 14, 2012 /PRNewswire/ -- Neuralstem, Inc. (NYSE Amex: CUR) announced today that it has closed on its previously announced registered direct placement of 5,200,000 shares of common stock at a price of $1.00 per share, and 5,200,000 warrants each with an exercise price of $1.02 per share and exercisable starting six months from the issuance date for a term of five years. The company received aggregate gross proceeds of $5,200,000, which will be used for general corporate purposes, including ongoing U.S. clinical trials.
(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )
T.R. Winston & Company, LLC acted as the exclusive placement agent for the offering.
About Neuralstem
Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem is in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.
In addition to ALS, the company is also targeting major central nervous system conditions with its cell therapy platform, including spinal cord injury, ischemic spastic paraplegia, chronic stroke, and Huntington's disease. The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in chronic spinal cord injury.
Neuralstem also has the ability to generate stable human neural stem cell lines suitable for the systematic screening of large chemical libraries. Through this proprietary screening technology, Neuralstem has discovered and patented compounds that may stimulate the brain's capacity to generate new neurons, possibly reversing the pathologies of some central nervous system conditions. The company has received approval from the FDA to conduct a Phase Ib safety trial evaluating NSI-189, its first small molecule compound, for the treatment of major depressive disorder (MDD). Additional indications could include schizophrenia, Alzheimer's disease and bipolar disorder.
For more information, please visit http://www.neuralstem.com and connect with us on Twitter and Facebook.
Cautionary Statement Regarding Forward Looking Information
This news release may contain forward-looking statements made pursuant to the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995. Investors are cautioned that such forward-looking statements in this press release regarding potential applications of Neuralstem's technologies constitute forward-looking statements that involve risks and uncertainties, including, without limitation, risks inherent in the development and commercialization of potential products, uncertainty of clinical trial results or regulatory approvals or clearances, need for future capital, dependence upon collaborators and maintenance of our intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in Neuralstem's periodic reports, including the annual report on Form 10-K for the year ended December 31, 2010 and the quarterly report on Form 10-Q for the period ended September 30, 2011.
Read the rest here:
Neuralstem Announces Closing of $5.2-Million Registered Direct Offering
Stem Cells May Help Regenerate Heart Muscle
By NEVAGiles23
A promising stem cell therapy approach could soon provide a way to regenerate heart muscle damaged by heart attacks.
Researchers at Cedars-Sinai Heart Institute and The Johns Hopkins University harvested stem cells from the hearts of 17 heart attack patients and after prepping the cells, infused them back into the patients' hearts. Their study is published in the current issue of The Lancet.
The patients received the stem cell infusions about three months after their heart attacks.
Researchers found that six months after treatment, patients had significantly less scarring of the heart muscle and also showed a considerable increase the amount of healthy heart muscle, compared to eight post-heart attack patients studied who did not receive the stem cell infusions. One year after, scar size was reduced by about 50 percent.
"The damaged tissue of the heart was replaced by what looks like healthy myocardium," said Dr. Peter Johnston, a study co-author and an assistant professor of medicine at The Johns Hopkins University School of Medicine. "It's functioning better than the damaged myocardium in the control subjects, and there's evidence it's starting to contract and generate electrical signals the way healthy heart tissue does."
While this research is an early study designed to demonstrate that this stem cell therapy is safe, cardiologists say it's an approach that could potentially benefit millions of people who have suffered heart attacks. Damage to the heart muscle is permanent and irreparable, and little can be done to compensate for loss of heart function.
"In the U.S., six million patients have heart failure, and the vast majority have it because of a prior heart attack," said Johnston.
The damaged scar tissue that results from a heart attack diminishes heart function, which can ultimately lead to enlargement of the heart.
At best, Johnston said, there are measures doctors can try to reduce or compensate for the damage, but in many cases, heart failure ultimately sets in, often requiring mechanical support or a transplant.
"This type of therapy can save people's lives and reduce the chances of developing heart failure," he said.
Cardiac Regeneration A Promising Field
Other researchers have also had positive early results in experiments with stem cell therapy using different types of cells, including bone marrow cells and a combination of bone marrow and heart cells.
"It's exciting that studies using a number of different cell types are yielding similar results," said Dr. Joshua Hare, professor of cardiology and director of the University of Miami Interdisciplinary Stem Cell Institute.
The next steps, he said, include determining what the optimal cell types are and how much of the cells are needed to regenerate damaged tissue.
"We also need to move to larger clinical trials and measure whether patients are improving clinically and exhibiting a better quality of life after the therapy."
In an accompanying comment, Drs. Chung-Wah Siu amd Hung-Fat Tse of the University of Hong Kong wrote that given the promising results of these studies, health care providers will hopefully recognize the benefits that cardiac regeneration can offer.
And Hare added that someday, this type of regeneration can possibly offer hope to others who suffered other types of organ damage.
"This stategy might work in other organs," he said. "Maybe this can work in the brain, perhaps for people who had strokes."
Read more:
Stem Cells May Help Regenerate Heart Muscle
Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent …
By NEVAGiles23
Dr. Uma Lakshmipathy speaks at various conferences about work on the creation of integration-free induced pluripotent stem cells at high efficiency with Sendai Virus using the CytoTune™ -iPS Reprogramming Kit. Uma Lakshmipathy's next speaking engagement will be in Mid February at the Stem Cell Banking Conference in London.
Carlsbad, California (PRWEB) February 14, 2012
Uma's last presentation about the Generation of Induced Pluripotent Stem Cells summarized here was also recorded for viewing and placed on the Life Technologies website. (http://find.lifetechnologies.com/stemcells/umavideo/article)
The CytoTune™ - iPS Reprogramming Kit is a high efficiency, integration- free, easy-to-use somatic cell reprogramming kit used in the generation of induced pluripotent stem cells. This kit utilizes Sendai Virus particles of the four Yamanaka factors, which have been shown to be critical in the successful generation of induced pluripotent stem cells.
In her presentations, Uma Lakshmipathy discusses two current challenges faced when generating iPSC including low efficiency and expertise of users.
Low Efficiency
The most common method for generation of induced pluripotent stem cells is the transfection of the four Yamanaka factors using lentivirus or retrovirus. One of the biggest challenges for scientists right now is the low efficiency of iPSC generation. With difficult to transfect cell types or cells from older patients, efficiencies can be 0.001% or lower when using lentiviral or retroviral methods.
Expertise of Users
The second challenge is for users with little expertise that have a difficult time detecting these emerging iPSC colonies. When looking for pluripotent stem cells, people can either pick them up really easily or have trouble deciding what clones to place their bet on.
Efficiency & Safety of IPSC Generation
There are several methods which improve reprogramming efficiency including viral non-integrating and small molecule methods such as mRNA, microRNA and small molecules. The developers of the CytoTune™ -iPS Reprogramming Kit concentrated on a non-integrating viral method utilizing Sendai Virus, a negative sense RNA virus. Sendai Virus is able to infect a wide variety of cell types and generates induced pluripotent stem cells at efficiencies 100-fold higher than lentiviral or retroviral methods.
When comparing efficiency vs. safety of reprogramming methods, small molecules like microRNA, RNA and protein which don’t leave a footprint are safer for cell therapy research; however, the efficiency of generating induced pluripotent stem cells with these methods is pretty low at this point in time.
The highest efficiency so far has been achieved with viral methods such as Retrovirus and Lentivirus. More recently the CytoTune™ -iPS Reprogramming Kit actually exceeds the efficiency that can be obtained with these traditional viral systems and at the same time it is much safer because it is a non-integrating RNA virus. Therefore it will not leave a footprint in the iPSCs that are created.
The CytoTune™ -iPS Reprogramming Kit will:
Reduce hands on time - enables successful iPS reprogramming in one simple transduction Generate more cells - high efficiency reprogramming offers more iPS cells from a single experiment Use in a broad range of experiments - lack of genomic integration and viral remnants allows use from basic to clinical research
Ease of Use
The CytoTune™ -iPS Reprogramming Kit provides a simple system for somatic cell reprogramming. For most cell types, the CytoTune™ -iPS Reprogramming Kit requires only one application of the virus for successful cell reprogramming, unlike other methods such as Lentivirus and mRNA which can require multiple rounds of transduction to produce iPS cells. Selection of colonies is also easier with the CytoTune™ –iPS Reprogramming Kit due to the lower number of non-induced pluripotent stem cells that are generated.
To view this presentation visit http://find.lifetechnologies.com/stemcells/umavideo/article
Uma Lakshmipathy's protocol, "Transfection of Human Embryonic Stem Cells" can be seen here http://bit.ly/y91Gpd
###
Jennifer Hornstein
Life Technologies
(760) 602-4577
Email Information
Go here to read the rest:
Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ...
Researchers Develop Cerebral Cortex Cells From Skin
By NEVAGiles23
February 13, 2012
Researchers at the University of Cambridge report that they created cerebral cortex cells from a small sample of human skin.
The new development could pave the way for techniques to explore a wide range of diseases such as autism and Alzheimer’s.
The findings could also enable scientists to study how the human cerebral cortex develops — and how it “wires up” and how that can go wrong.
“This approach gives us the ability to study human brain development and disease in ways that were unimaginable even five years ago,” Dr Rick Livesey of the Gurdon Institute and Department of Biochemistry at the University of Cambridge said in a statement.
During the research, the scientists biopsied skin from patients and then reprogrammed the cells from the skin samples back into stem cells.
These stem cells, along with human embryonic stem cells, were used to generate cerebral cortex cells.
Livesey said they are using this system to help recreate Alzheimer’s disease in the lab, which primarily affects the type of nerve cell the researchers made.
“Dementia is the greatest medical challenge of our time – we urgently need to understand more about the condition and how to stop it,” Dr Simon Ridley, Head of Research at Alzheimer’s Research UK, said in a press release. “We hope these findings can move us closer towards this goal.”
Brain cells developed this way could help researchers gain a better understanding of how the brain develops and what goes wrong when it is affected by disease.
Scientists hope the cells could be used to provide healthy tissues, which can be implanted into patients to treat neurodegenerative diseases and brain damage.
The findings were published in the journal Nature Neuroscience.
—
On the Net:
Source: RedOrbit Staff & Wire Reports
Read the original here:
Researchers Develop Cerebral Cortex Cells From Skin
Scarred Hearts Can Be Mended With Stem Cell Therapy, Study Shows
By NEVAGiles23
February 13, 2012, 9:47 PM EST
By Ryan Flinn
Feb. 14 (Bloomberg) -- Stem cells grown from patients’ own cardiac tissue can heal damage once thought to be permanent after a heart attack, according to a study that suggests the experimental approach may one day help stave off heart failure.
In a trial of 25 heart-attack patients, 17 who got the stem cell treatment showed a 50 percent reduction in cardiac scar tissue compared with no improvement for the eight who received standard care. The results, from the first of three sets of clinical trials generally needed for regulatory approval, were published today in the medical journal Lancet.
“The findings in this paper are encouraging,” Deepak Srivastava, director of the San Francisco-based Gladstone Institute of Cardiovascular Disease, said in an interview. “There’s a dire need for new therapies for people with heart failure, it’s still the No. 1 cause of death in men and women.”
The study, by researchers from Cedars-Sinai Heart Institute in Los Angeles and Johns Hopkins University in Baltimore, tested the approach in patients who recently suffered a heart attack, with the goal that repairing the damage might help stave off failure. While patients getting the stem cells showed no more improvement in heart function than those who didn’t get the experimental therapy, the theory is that new tissue regenerated by the stem cells can strengthen the heart, said Eduardo Marban, the study’s lead author.
“What our trial was designed to do is to reverse the injury once it’s happened,” said Marban, director of Cedars- Sinai Heart Institute. “The quantitative outcome that we had in this paper is to shift patients from a high-risk group to a low- risk group.”
Minimally Invasive
The stem cells were implanted within five weeks after patients suffering heart attacks. Doctors removed heart tissue, about the size of half a raisin, using a minimally invasive procedure that involved a thin needle threaded through the veins. After cultivating the stem cells from the tissue, doctors reinserted them using a second minimally invasive procedure. Patients got 12.5 million cells to 25 million cells.
A year after the procedure, six patients in the stem cell group had serious side effects, including a heart attack, chest pain, a coronary bypass, implantation of a defibrillator, and two other events unrelated to the heart. One of patient’s side effects were possibly linked to the treatment, the study found.
While the main goal of the trial was to examine the safety of the procedure, the decrease in scar tissue in those treated merits a larger study that focuses on broader clinical outcomes, researchers said in the paper.
Heart Regeneration
“If we can regenerate the whole heart, then the patient would be completely normal,” Marban said. “We haven’t fulfilled that yet, but we’ve gotten rid of half of the injury, and that’s a good start.”
While the study resulted in patients having an increase in muscle mass and a shrinkage of scar size, the amount of blood flowing out of the heart, or the ejection fraction, wasn’t different between the control group and stem-cell therapy group. The measurement is important because poor blood flow deprives the body of oxygen and nutrients it needs to function properly, Srivastava said.
“The patients don’t have a functional benefit in this study,” said Srivastava, who wasn’t not involved in the trial.
The technology is being developed by closely held Capricor Inc., which will further test it in 200 patients for the second of three trials typically required for regulatory approval. Marban is a founder of the Los Angeles-based company and chairman of its scientific advisory board. His wife, Lisa Marban, is also a founder and chief executive officer.
--Editors: Angela Zimm, Andrew Pollack
-0- Feb/13/2012 22:32 GMT
To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net
To contact the editor responsible for this story: Reg Gale at rgale5@bloomberg.net
Continued here:
Scarred Hearts Can Be Mended With Stem Cell Therapy, Study Shows
Vet offers stem cell therapy for dogs
By NEVAGiles23
COLUMBIA, SC (WIS) - Cutting-edge arthritis treatment for our four-legged family members is now available in Columbia.
Banks Animal Hospital is the first in the area to offer in-house Stem Cell therapy. It uses your pets own body to heal itself.
Take 13-year-old Maggie, for example. The energetic pup has a limp that usually keeps her from jumping or going up stairs.
"Today when everybody's out there filming her little limp it's not as pronounced because she wants to please," said Maggie's owner, Beth Phibbs. "She's just a great dog."
But a great attitude wasn't enough to repair a bad case of cervical spine arthritis.
So Monday, Beth brought Maggie to Banks Animal Hospital for the Stem Cell therapy. Like many, Beth had never heard of Stem Cell work in animals. "Until Dr. Banks mentioned it to me I was like, beg your pardon?"
"There's no down side, no side effects because you're using your own cells," said Dr Ken Banks.
Banks and his staff first gather some of Maggie's blood and fat. Both are good places to find the repair cells they're after. Adult stem cells, not the controversial embryonic kind, are then separated and spun down.
"The repair system in Maggie's body has failed," said Jason Richardson of MediVet-America. "It's fallen asleep at the wheel, we're taking these repair cells, activating them so a chronic condition like osteo arthritis to Maggie will now be an acute illness."
This kind of treatment used to take days with material being shipped across the country, but now it can be done in hours.
"The ability to do it same day, convenience, the ability to do it in clinic saves a lot of money to the doctor which he can then pass on to the patient," said Richardson.
The treatment will still run you around $2,000, but Richardson says that's half of what the similar treatment use to cost.
When it's over, Maggie should be able to live out her life pain and drug free -- something Phibbs is looking forward to.
"I'm hoping in a couple of weeks she's gonna have a new lease on life," said Phibbs.
Copyright 2012 WIS. All rights reserved.
The rest is here:
Vet offers stem cell therapy for dogs
Stem Cell Treatment Might Reverse Heart Attack Damage
By NEVAGiles23
MONDAY, Feb. 13 (HealthDay News) -- Stem cell therapy's promise for healing damaged tissues may have gotten a bit closer to reality. In a small, early study, heart damage was reversed in heart-attack patients treated with their own cardiac stem cells, researchers report.
The cells, called cardiosphere-derived stem cells, regrew damaged heart muscle and reversed scarring one year later, the authors say.
Up until now, heart specialists' best tool to help minimize damage following a heart attack has been to surgically clear blocked arteries.
"In our treatment, we dissolved scar and replaced it with living heart muscle. Such 'therapeutic regeneration' has long been the holy grail of cell therapy, but had never been accomplished before; we now seem to have done it," said study author Dr. Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles.
However, outside experts cautioned that the findings are preliminary and the treatment is far from ready for widespread use among heart-attack survivors.
The study, published online Feb. 14 in The Lancet, involved 25 middle-aged patients (average age 53) who had suffered a heart attack. Seventeen underwent stem cell infusions while eight received standard post-heart attack care, including medication and exercise therapy.
The stem cells were obtained using a minimally invasive procedure, according to the researchers from Cedars-Sinai and the Johns Hopkins Hospital in Baltimore.
Patients received a local anesthetic and then a catheter was threaded through a neck vein down to the heart, where a tiny portion of muscle was taken. The sample provided all the researchers needed to generate a supply of new stem cells -- 12 million to 25 million -- that were then transplanted back into the heart-attack patient during a second minimally invasive procedure.
One year after the procedure, the infusion patients' cardiac scar sizes had shrunk by about half. Scar size was reduced from 24 percent to 12 percent of the heart, the team said. In contrast, the patients receiving standard care experienced no scar shrinkage.
Initial muscle damage and healed tissue were measured using MRI scans.
After six months, four patients in the stem-cell group experienced serious adverse events compared with only one patient in the control group. At one year, two more stem-cell patients had a serious complication. However, only one such event -- a heart attack -- might have been related to the treatment, according to the study.
In a news release, Marban said that "the effects are substantial and surprisingly larger in humans than they were in animal tests."
Other experts were cautiously optimistic. Cardiac expert Dr. Bernard Gersh, a professor of medicine at Mayo Clinic, is not affiliated with the research but is familiar with the findings.
"This study demonstrates that it is safe and feasible to administer these cardiac-derived stem cells and the results are interesting and encouraging," he said.
Another specialist said that while provocative and promising, the findings remain early, phase-one research. "It's a proof-of-concept study," said interventional cardiologist Dr. Thomas Povsic, an assistant professor of medicine at the Duke Clinical Research Institute, in Durham, N.C.
And Dr. Chip Lavie, medical director of Cardiac Rehabilitation and Prevention at the John Ochsner Heart and Vascular Institute, in New Orleans, also discussed the results. He said that while the study showed that the cardiac stem cells reduced scar tissue and increased the area of live heart tissue in heart attack patients with moderately damaged overall heart tissue, it did not demonstrate a reduction in heart size or any improvement in the heart's pumping ability.
"It did not improve the ejection fraction, which is a very important measurement used to define the overall heart's pumping ability," Lavie noted. "Certainly, much larger studies of various types of heart attack patients will be needed before this even comes close to being a viable potential therapy for the large number of heart attack initial survivors."
Povsic concurred that much larger studies are needed. "The next step is showing it really helps patients in some kind of meaningful way, by either preventing death, healing them or making them feel better."
It's unclear what the cost will be, Povsic added. "What society is going to be willing to pay for this is going to be based on how much good it ends up doing. If they truly regenerate a heart and prevent a heart transplant, that would save a lot money."
Marban, who invented the stem cell treatment, said the while it would not replace bypass surgery or angioplasty, "it might be useful in treating 'irreversible' injury that may persist after those procedures."
As a rough estimate, he said that if larger, phase 2 trials were successful, the treatment might be available to the general public by about 2016.
More information
The U.S. National Heart, Lung, and Blood Institute describes current heart attack treatment.
Read the original here:
Stem Cell Treatment Might Reverse Heart Attack Damage
Dogs who got stem cell therapy are well
By NEVAGiles23
WALKER, Mich. (WOOD) - Dogs who received the first in-clinic stem cell therapy in West Michigan returned to the vets who treated them Monday morning.
Boris and Natasha returned to Kelley's Animal Clinic for their 60-day checkup after receiving stem cell treatment in December 2011.
Dr. James Kelley and his staff of vets removed fat tissue from the dogs and activated it with an enzyme before injecting it into their back legs.
This adult animal stem cell technology is different from the controversial embryonic stem cell therapy.
Kelley said both dogs are doing amazingly well and that the procedure has done more than just help their arthritis.
"We're finding that not only the joints are affected, the rest of the animal is affected as well," said Kelley. "The skin is better. The attitude in these dogs is much improved."
Kelley and his staff have done 16 stem cell treatments since the first on Boris and Natasha, and he said all the dogs are showing signs of improvement after a short period of time.
The rest is here:
Dogs who got stem cell therapy are well
Bone marrow recipient meets donor who gave him the gift of life
By NEVAGiles23
BOCA RATON—
A physician from Indianapolis met the woman who saved his life on Sunday morning, providing an emotional kick-off for the second annual Walk for Life, sponsored by the Gift of Life Bone Marrow Foundation.
"It's almost like a total out of body experience," said Scott Savader, 53, moments after he embraced former Sunrise resident Jill Rubin, who provided the stem cells that were transplanted into Savader's body nearly two years ago.
As the two met for the first time, about 300 people cheered before heading off on a 5K walk at Florida Atlantic University. The effort is part of a campaign to raise awareness and raise $100,000 for lab tests necessary to match donors and recipients.
Savader said receiving the transplant was "like being plucked from a fire or a sinking car. There is a bond there now that transcends just knowing somebody. If not for her generosity, I would have died."
Each year, 10,000 people in the U.S. are diagnosed with a disease treatable with a bone marrow transplant. Yet only about half find the donor who could save them, according to Jay Feinberg, the Delray Beach resident who started the foundation after he was diagnosed with an aggressive form of leukemia.
He received a transplant in 1995 and has since dedicated his life to making matches for others.
Savader, a radiologist, was diagnosed with myelofibrosis in 2008.
Rubin, 45, a physical therapist, said she registered as a bone marrow donor 10 years ago while attending a fair in Plantation. She and her family have since moved to Deland.
"This is very emotional for me," said Rubin as she and Savader posed for pictures.
After spending a little time with Savader and his family Sunday, Rubin said she felt even better about her gift to him.
She also learned that Savader grew up and went to high school in Cooper City. "Small world," she said.
Temperatures in the 40s and a chilly wind did little to dampen enthusiasm for the walk. Participants were inspired by Savader and Rubin and other success stories.
Among the latter were 6-year-old Matthew Welling, on hand with his parents Michael and Susie Welling of Port Chester, N.Y., and Boca Raton resident Jill Goldsmith, who donated the bone marrow that reversed the boy's osteoporosis in 2007.
"It was an amazing, life-changing experience," said Goldsmith, 50, as she watched Matthew dance happily around a field at the university.
"What I had to do to save a life was so easy," said Goldsmith. "And to see him now, well, I feel proud and honored and so blessed."
During last year's walk, more than 1,000 new donors were added to the registry and resulted in 14 matches for patients throughout the U.S. They joined a total registry of nearly 200,000, said Feinberg.
Volunteering to become a potential donor begins with an oral swab that is then tested for tissue type. Most of the foundation's money goes toward paying for those lab tests, which cost about $55 each, said Feinberg.
For information, go to mwclary@tribune.com">http://www.giftoflife.org.
mwclary@tribune.com or at 954-356-4465
Read more:
Bone marrow recipient meets donor who gave him the gift of life
Human brain cells created from skin
By NEVAGiles23
Eventually they hope the cells could also be used to provide healthy tissue that can be implanted into patients to treat neurodegenerative diseases and brain damage.
Dr Rick Livesey, who led the research at the University of Cambridge's Gurdon [corr] Institute, said: "The cerebral cortex makes up 75% of the human brain, is where all the important processes that make us human take place. It is, however, also the major place where disease can occur.
"We have been able to take reprogrammed skin cells so they develop into brain stem cells and then essentially replay brain development in the laboratory.
"We can study brain development and what goes wrong when it is affected by disease in a way we haven't been able to before. We see it as a major breakthrough in what will now be possible."
The cerebral cortex is the part of the brain that is responsible for most of the major high-level thought processes such as memory, language and consciousness.
While human brain cells have been created from stem cells before, this has relied upon embryonic stem cells. Attempts to make them from skin cells have produced neurons that are not found in the cerebral cortex.
Dr Livesey and his colleagues were able to create the two major types of neuron that form the cerebral cortex from reprogrammed skin cells and show that they were identical to those created from the more controversial embryonic stem cells.
Dr Livesey, whose findings are published in the journal Nature Neuroscience, said this may eventually lead to new treatments for patients where damaged tissue could be replaced by brain cells grown in the laboratory from a sample of their skin.
He said: "You don't need to rebuild damage to recover function as the brain is quite good at recovering itself – it does this after stroke for example. However, it may be possible to give it some extra real estate that it can use to do this.
"We can make large numbers of cerebral cortex neurons by taking a sample of skin from anybody, so in principal it should be possible to put these back into the patients."
Dr Simon Ridley, head of research at Alzheimer's Research UK, which funded the study alongside the Wellcome Trust, added: "Turning stem cells into networks of fully functional nerve cells in the lab holds great promise for unravelling complex brain diseases such as Alzheimer's."
See more here:
Human brain cells created from skin
ACT Announces Third Patient with Stargardt’s Disease Treated in U.S. Clinical Trial with RPE Cells Derived from …
By NEVAGiles23
MARLBOROUGH, Mass.--(BUSINESS WIRE)--
Advanced Cell Technology, Inc. (“ACT”; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today the dosing of third patient in its Phase 1/2 trial for Stargardt’s macular dystrophy (SMD) using retinal pigment epithelial (RPE) cells derived from human embryonic stem cells (hESCs). The patient was treated on Monday (Feb. 6) by Steven Schwartz, M.D., Ahmanson Professor of Ophthalmology at the David Geffen School of Medicine at the University of California, Los Angeles (UCLA) and retina division chief at UCLA’s Jules Stein Eye Institute. The outpatient transplantation surgery was performed successfully and the patient is recovering uneventfully.
“With the treatment of this third Stargardt’s patient at Jules Stein Eye Institute, we have now completed the treatment of the first cohort of patients under our clinical protocol for phase I/II of our U.S. SMD trial,” said Gary Rabin, chairman and chief executive officer of ACT. “We will continue to regularly monitor the three SMD patients in this trial, and by early spring anticipate review of their progress and safety-related data by the Data and Safety Monitoring Board (DSMB). With approval of the DSMB, we would then advance to the next cohort of patients and administer a higher dosage of RPE cells. In the context of all three trials we have running, this patient is the fifth person worldwide to be treated with our hESC-derived RPE cells. To date, there have been no complications or side effects due to the RPE cells, and we remain cautiously optimistic that our ongoing clinical programs will demonstrate the safety and tolerability of ACT’s stem cell-derived RPE cells.”
Each of the three clinical trials being undertaken by the company in the U.S. and Europe will enroll 12 patients, with cohorts of three patients each in an ascending dosage format. These trials are prospective, open-label studies, designed to determine the safety and tolerability of hESC-derived RPE cells following sub-retinal transplantation into patients with SMD or dry age-related macular degeneration (dry AMD) at 12 months, the study’s primary endpoint. Preliminary results relating to both early safety and biological function for the first two patients in the United States, one SMD patient and one dry AMD patient, were recently reported in The Lancet. On January 20, 2012, the first SMD patient to be enrolled in the Company’s U.K. clinical trial was treated at Moorfields Eye Hospital in London.
Further information about patient eligibility for the SMD study and the concurrent study on dry AMD is also available on www.clinicaltrials.gov; ClinicalTrials.gov Identifiers: NCT01345006 and NCT01344993.
About Stargardt's Disease
Stargardt’s disease or Stargardt’s Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium, which is the site of damage that the company believes the hESC-derived RPE may be able to target for repair after administration.
About Advanced Cell Technology, Inc.
Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.
Forward-Looking Statements
Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words “will,” “believes,” “plans,” “anticipates,” “expects,” “estimates,” and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the company’s periodic reports, including the report on Form 10-K for the year ended December 31, 2010. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Company’s clinical trials will be successful.
See original here:
ACT Announces Third Patient with Stargardt’s Disease Treated in U.S. Clinical Trial with RPE Cells Derived from ...
Stem Cells Therapy MS2.mp4 – Video
By NEVAGiles23
09-02-2012 23:02 Stem Cell Therapy latest news - Jan 2012, MS options Contact Kevin for help to raise funds for treatment part 2 of 4