Page 8«..78910..2030..»

Family of 2-year-old hopes to find bone marrow donor – KHOU.com

By NEVAGiles23

The right bone marrow donor match has been hard to find for one 2-year-old.

Shern-Min Chow, KHOU 6:49 PM. CDT March 20, 2017

The right bone marrow donor match for this 2-year-old has been hard to find. (Photo: KHOU)

HOUSTON - Roman Shen is a happy 2-year-old. You wouldn't know it, but he suffers from Shwachman Diamond Syndrome, or SDS. That means his bone marrow doesn't work properly and doesnt make its own white blood cells.

The right bone marrow donor match has been hard to find.

Mostly because he is mixed race, Chinese-Italian, and they are underrepresented in the bone marrow registry," said Nicole Shen, his mother.

Mixed race people are 4 percent of the bone marrow registry. So for the past 2 years, Romans parents have been actively involved with the registry, launching and participating in Be the Match registration drives.

It takes about 10 minutes. You swab the inside of your cheek. You could save my son's life or someone else's life," Nicole Shen said.

Why is race so important to marrow donation?

You're matching antigens that are produced by your stem cells and those are in many cases matched to ethnicity," saidBe The Match spokeswoman FeliciaGann.

One in 540 registrants will end up being a match. Donors give either with platelets, which are given much like a blood donation or with actual bone marrow, removed from the hip bone via needle. Bone marrow transplants are used to treat over 70 diseases.

The Gulf Coast Regional Blood Center houses the Gulf Coast Marrow Donor Program (GCMDP) and is an accredited donor center for the National Marrow Donor Program (NMDP) which operates the Be The Match Registry. For more information, contact the GCMDP at (713)-791-6697.

To register as a potential marrow donor, you must be 18 to 44 years old and in general good health. Registration takes 10 minutes and involves completing a form and a cheek swab with a Q-tip.

You may register at any of the Gulf Coast Regional Blood Center Locations onlineor arrange for representatives come to you by emailing fgann@giveblood.org.

2017 KHOU-TV

Here is the original post:
Family of 2-year-old hopes to find bone marrow donor - KHOU.com

To Read More: Family of 2-year-old hopes to find bone marrow donor – KHOU.com
categoriaBone Marrow Stem Cells commentoComments Off on Family of 2-year-old hopes to find bone marrow donor – KHOU.com | dataMarch 20th, 2017
Read All

Retired Richland sergeant battling rare blood disease, awaiting marrow transplant – Tri-City Herald

By NEVAGiles23


Tri-City Herald
Retired Richland sergeant battling rare blood disease, awaiting marrow transplant
Tri-City Herald
People who are healthy, between 18 and 44, and want to register as a bone marrow/stem cell donor can do it at join.bethematch.org/hope4sarge or join.bethematch.org/hopeforsarge. A swab kit will be mailed to their home with instructions and a confirmation.

More here:
Retired Richland sergeant battling rare blood disease, awaiting marrow transplant - Tri-City Herald

To Read More: Retired Richland sergeant battling rare blood disease, awaiting marrow transplant – Tri-City Herald
categoriaBone Marrow Stem Cells commentoComments Off on Retired Richland sergeant battling rare blood disease, awaiting marrow transplant – Tri-City Herald | dataMarch 20th, 2017
Read All

At SXSW, One Panel Discussion Centered On Potentially Life-Saving Mission – Patch.com

By NEVAGiles23

At SXSW, One Panel Discussion Centered On Potentially Life-Saving Mission
Patch.com
Many patients fighting blood cancer and other blood diseases like sickle cell anemia can be saved with a bone marrow or stem cell transplant. Thirty percent of all patients needing transplants find a compatible donor within their family, but 70 ...

Read this article:
At SXSW, One Panel Discussion Centered On Potentially Life-Saving Mission - Patch.com

To Read More: At SXSW, One Panel Discussion Centered On Potentially Life-Saving Mission – Patch.com
categoriaBone Marrow Stem Cells commentoComments Off on At SXSW, One Panel Discussion Centered On Potentially Life-Saving Mission – Patch.com | dataMarch 20th, 2017
Read All

Borrowing from nature: UW-Madison scientists use plants to grow … – La Crosse Tribune

By NEVAGiles23

To grow clusters of human stem cells that mimic organs in the lab and might be used someday in tissue implants, Bill Murphy, a UW-Madison professor of biomedical engineering, creates tiny scaffolds made of plastic or rubber.

The three-dimensional scaffolds must support the cells and feed them, help them organize and allow them to communicate.

One spring day in 2014, Murphy looked out his office window near UW Hospital, onto the universitys Lakeshore Nature Preserve, and saw a structure that does those very things naturally: plants specifically, cellulose, the main component of the cell walls of green plants.

Now, Murphy and Gianluca Fontana, a UW-Madison post-doctoral fellow with help from Olbrich Botanical Gardens have grown skin, brain, bone marrow and blood vessel cells on cellulose from plants such as parsley, spinach, vanilla and bamboo.

Plants could be an alternative to artificial scaffolds for growing stem cells, the researchers reported Monday in the journal Advanced Healthcare Materials.

Rather than having to manufacture these devices using high-tech approaches, we could literally pick them off of a tree, said Murphy, co-director of the UW-Madison Stem Cell and Regenerative Medicine Center.

The strength, porosity and large surface area of plants could prove superior to making scaffolds using current methods, such as 3-D printing and injection molding, Murphy said.

Plants have a huge capacity to grow cell populations, he said. They can deliver fluids very efficiently to their leaves ... At the microscale, theyre very well organized.

In addition, there are many plants to chose from. After Murphys inspirational gaze out the window, he and Fontana tested plants as scaffolds for stem cells using varieties they could easily obtain: parsley, spinach, jewelweed, water horsetail, summer lilac and, from the UW Arboretum, softstem bulrush.

Then Fontana asked John Wirth, Olbrich's conservatory curator, about other species that might work. Wirth invited Fontana to walk through the tropical greenhouse and take samples back to his lab.

I had never had a request like this before; it made me look at plant material in a different way, Wirth said. I think its a fantastic way of using these pieces of living tissue, to grow human tissue.

Olbrich plants that proved useful include vanilla, bamboo, wasabi, elephant ear, zebra plant and various orchids.

To use plants as scaffolds, the scientists strip away all of the cells, leaving husks of cellulose. Since human cells have no affinity for plants, they add peptides as biological fasteners.

Theyre like grappling hooks for the cells to attach to the plant, Murphy said.

To determine if plant scaffolds could really replace those made of plastic or rubber, the researchers hope to test the cellulose models in animal studies this year.

A major goal of tissue engineering is to develop implants that could regenerate tissue in people to repair bone or muscle damage after traumatic injuries, for example.

It is likely the human body wouldn't reject tissue implants formed on plant scaffolds because the plant cells would be removed, Murphy said.

Were crossing kingdoms, he said. But were optimistic that these materials would be well-tolerated.

Read more:
Borrowing from nature: UW-Madison scientists use plants to grow ... - La Crosse Tribune

To Read More: Borrowing from nature: UW-Madison scientists use plants to grow … – La Crosse Tribune
categoriaSkin Stem Cells commentoComments Off on Borrowing from nature: UW-Madison scientists use plants to grow … – La Crosse Tribune | dataMarch 20th, 2017
Read All

SRK launches BMT, Birthing Centre at Nanavati hospital – Free Press Journal

By NEVAGiles23

By FPJ Bureau|Mar 19, 2017 12:05 am

Mumbai : A Bone Marrow Transplant (BMT) and Birthing Centre was launched by actor Shah Rukh Khan on Friday at Nanavati Super Speciality Hospital (NSSH) at Vile Parle. On the occasion, Khan told the people present to take their medicines on timeand do regular check ups and get rid of ailments.

BMT is a procedure to replace damaged or destroyed bone marrow with healthy bone marrow stem cells. Bone marrow is the soft, fatty tissue inside our bones which produces blood cells. Stem cells are immature cells in the bone marrow that give rise to different blood cells.

Dr Nimish Kulkarni, Associate Consultant of BMT, said, BMT are considered the last-mile treatment solutions for patients with blood and cancer disorders. We specialise in providing transplant services for benign hematological disorders like Thalassemia, Sickle cell disease, Aplastic anemia, bleeding disorders and coagulation disorders. Shah Rukh said, I have been associated with Nanavati Hospital before 25 years ago as a patient. Every year more than 10,000 people are dying of cancer in India, even my parents succumbed to cancer. I am glad now we have a world class treatment.

Dr. Ali has looked after me and my various injuries. He has looked after my sister and wife too. Few people know that when my third son, Abram, was born, he was in a very critical condition. He was rushed to the Paediatric centre here and looked after even before we could meet him. Its a strange cycle that my child was saved in the same hospital which has a ward named after my mother. I am thankful to them, Khan added. Kulkarni added, The specialisation also extends to providing advanced transplant treatments for malignant hematological disorders like acute and chronic leukemia, Hodgkins and Non-Hodgkins Lymphoma, Multiple Myeloma, Myelodysplasia,

Previous Article Srikrishna all for old scheme of judges postings

Next Article Lok Sabha Speaker arrives in city to participate in RSS supported yagna

Link:
SRK launches BMT, Birthing Centre at Nanavati hospital - Free Press Journal

To Read More: SRK launches BMT, Birthing Centre at Nanavati hospital – Free Press Journal
categoriaBone Marrow Stem Cells commentoComments Off on SRK launches BMT, Birthing Centre at Nanavati hospital – Free Press Journal | dataMarch 19th, 2017
Read All

Having chest pain? Your own stem cells may help with the treatment – Knowridge Science Report

By NEVAGiles23

A non-surgical treatment that uses a patients own bone marrow stem cells to treat chest pain or angina improved both symptoms and the length of time treated patients could be physically active, according to recent research.

Angina is chest pain or discomfort caused when the heart does not get enough oxygen-rich blood due to narrowing or blockages in the arteries leading to the heart.

Most studies that have explored stem-cell therapies for angina required surgery to directly inject stem cells into the heart muscle or the heart blood vessels.

We injected a catalyst molecule that caused bone marrow stem cells to enter the patients blood, then harvested them to re-inject into the patient.

This is not considered a surgical procedure, is easy to implement, and allows for repeated administrations, said Hadyanto Lim, Ph.D., study senior author.

Fifteen patients were first injected with a molecule called granulocyte colony stimulating factor (G-CSF) once a day for four days.

G-CSF stimulates stem cells to migrate into the bloodstream from the bone marrow where they reside. Stem cells have the ability to transform into different types of cells.

On the fourth day, three hours after the last G-CSF injection, blood was drawn and stem cells were separated from the blood.

Stem cells were identified by the presence of a protein called CD34 on the cells surface.

Thirty minutes after the cell separation procedure finished, the collected stem cells were injected back into the patient through an IV.

Four weeks after receiving the treatment, patients experienced significantly fewer angina-related symptoms, and they were able to exercise at a higher intensity and for a longer period of time.

Most patients also reported mild muscle pains in their backs or legs, but the pain could be managed with acetaminophen.

When lifestyle changes and drug therapies do not control chest pains and discomfort, patients are often recommended for surgical procedures.

This includes coronary angioplasty in which a small mesh tube is inserted in the narrow heart artery to open it up and coronary artery bypass grafting in which healthy blood vessels are used to shunt blood around the narrowed heart arteries.

However, 20 percent to 30 percent of patients with severe coronary atherosclerosis are not suitable for these interventions.

The studys limitations are the small number of patients and absence of a control group. Because no control group was used, the placebo effect cannot be ruled out, Lim noted.

Although this treatment is currently used to treat some cancers multiple myeloma and lymphoma it will need more investigation before it can be made available to the general public to treat angina, according to Lim.

Like Knowridge Science Report onFacebook.

News source: AHA. The content is edited for length and style purposes. Figure legend: This Knowridge.com image is for illustrative purposes only.

The rest is here:
Having chest pain? Your own stem cells may help with the treatment - Knowridge Science Report

To Read More: Having chest pain? Your own stem cells may help with the treatment – Knowridge Science Report
categoriaBone Marrow Stem Cells commentoComments Off on Having chest pain? Your own stem cells may help with the treatment – Knowridge Science Report | dataMarch 18th, 2017
Read All

From Skin to Brain: Stem Cells Without Genetic Modification

By NEVAGiles23

For Release: March 15, 2017 Contact: Grove Potter, mpotter3@buffalo.edu University at Buffalo 716-645-2130 From skin to brain: Stem cells without genetic modification

UB study yields neural crest cells from adult skin cells, and could lead to new treatments for Parkinsons and other brain illnesses

BUFFALO, N.Y. A discovery, several years in the making, by a University at Buffalo research team has proven that adult skin cells can be converted into neural crest cells (a type of stem cell) without any genetic modification, and that these stem cells can yield other cells that are present in the spinal cord and the brain.

The applications could be very significant, from studying genetic diseases in a dish to generating possible regenerative cures from the patients own cells.

Its actually quite remarkable that it happens, says Stelios T. Andreadis, PhD, professor and chair of UBs Department of Chemical and Biological Engineering, who recently published a paper on the results in the journal Stem Cells.

The identity of the cells was further confirmed by lineage tracing experiments, where the reprogrammed cells were implanted in chicken embryos and acted just as neural crest cells do.

Stem cells have been derived from adult cells before, but not without adding genes to alter the cells. The new process yields neural crest cells without addition of foreign genetic material. The reprogrammed neural crest cells can become smooth muscle cells, melanocytes, Schwann cells or neurons.

In medical applications this has tremendous potential because you can always get a skin biopsy, Andreadis says. We can grow the cells to large numbers and reprogram them, without genetic modification. So, autologous cells derived from the patient can be used to treat devastating neurogenic diseases that are currently hampered by the lack of easily accessible cell sources.

The process can also be used to model disease. Skin cells from a person with a genetic disease of the nervous system can be reprogrammed into neural crest cells. These cells will have the disease-causing mutation in their chromosomes, but the genes that cause the mutation are not expressed in the skin. The genes are likely to be expressed when cells differentiate into neural crest lineages, such as neurons or Schwann cells, thereby enabling researchers to study the disease in a dish. This is similar to induced pluripotent stem cells, but without genetic modification or reprograming to the pluripotent state.

The discovery was a gradual process, Andreadis says, as successive experiments kept leading to something new. It was one step at a time. It was a very challenging task that took almost five years and involved a wide range of expertise and collaborators to bring it to fruition, Andreadis says. Collaborators include Gabriella Popescu, PhD, professor in the Department of Biochemistry in the Jacobs School of Medicine and Biomedical Sciences at UB; Song Liu, PhD, vice chair of biostatistics and bioinformatics at Roswell Park Cancer Institute and a research associate professor in biostatistics UBs School of Public Health and Health Professions; and Marianne Bronner, PhD, professor of biology and biological engineering, California Institute of Technology.

Andreadis credits the persistence of his then-PhD student, Vivek K. Bajpai, for sticking with it.

He is an excellent and persistent student, Andreadis says. Most students would have given up. Andreadis also credits a seed grant from UBs office of the Vice President for Research and Economic Developments IMPACT program that enabled part of the work. The work recently received a $1.7 million National Institutes of Health grant to delve into the mechanisms that occur as the cells reprogram, and to employ the cells for treating the Parkinsons-like symptoms in a mouse model of hypomyelinating disease. This work has the potential to provide a novel source of abundant, easily accessible and autologous cells for treatment of devastating neurodegenerative diseases. We are excited about this discovery and its potential impact and are grateful to NIH for the opportunity to pursue it further, Andreadis said.

The research, described in the journal Stem Cells under the title Reprogramming Postnatal Human Epidermal Keratinocytes Toward Functional Neural Crest Fates, was supported by grants from the National Institutes of Health.

SEE ORIGINAL STUDY

Read more:
From Skin to Brain: Stem Cells Without Genetic Modification

To Read More: From Skin to Brain: Stem Cells Without Genetic Modification
categoriaSkin Stem Cells commentoComments Off on From Skin to Brain: Stem Cells Without Genetic Modification | dataMarch 16th, 2017
Read All

Science in Focus: Creating Neurons from Skin Cells to Understand Autism – UCSF News Services

By NEVAGiles23

Studying brain disorders is complicated for many reasons, not the least being the ethics of obtaining living neurons. To overcome that obstacle, UC San Francisco postdoc Aditi Deshpande, PhD, is starting with skin cells.

Thanks to developments in stem cell technology, new information about the human brain is now being gleaned from a simple cheek swab or skin sample. This technology is key to the kind of progress Despande and researchers like her are making. It allows them to work with cells otherwise unobtainable living brain cells that have the same genetics as the patients.

Deshpande begins with skin cells obtained from the Simons Foundation from volunteers whose DNA contains a specific deletion or duplication of one chromosome. She cultures these cells and then turns them into induced pluripotent stem cells cells that have been coaxed back to their embryonic state and are able to become any other type of cell. From there, she reprograms them to become a specific type of neuron thats involved in attention and information processing.

The deletion or duplication Deshpande is looking for stems from a 2008 finding by Lauren Weiss, PhD, an associate professor of neurology in the UCSF Department of Psychiatry and the UCSF Institute for Human Genetics.

Weiss discovered a 29-gene region of DNA on chromosome 16 that is associated with autism, seizures and other brain disorders. Normally, a person has two copies of the region one on each copy of chromosome 16. In some of Deshpandes samples, the region is deleted from one chromosome, leaving one copy. In others, the region is duplicated, resulting in three copies. Subjects with only one copy of the region were more likely to have macrocephaly an enlarged brain than a typical subject, and those with three copies were more likely to have microcephaly a smaller brain.

Whats really interesting, said Deshpande, is that although these subjects seem to have opposite features in terms of brain size, we see a related effect, based on whether they have fewer or more copies of the region.

Some known models of autism show a connection between a neurons growth or appearance and macrocephaly, she explained. We wanted to know if the same thing is happening here.

To compare the effect of the mutation, Deshpande first stains the obtained skin cells so that she can visualize the neurons under a microscope. After staining, Deshpande used cell-counting software to assess several thousands of neurons from deletion and duplication samples and measure them against normal neurons. She found that the neurons missing the DNA region exhibited some differences compared to typical neurons.

Her next step in her research is to discern which of the regions 29 genes are involved in these differences.

The work is meticulous, but Deshpande doesnt mind. I simply love looking at neurons, she said. It really makes you appreciate the complexity of the brain.

Read the original here:
Science in Focus: Creating Neurons from Skin Cells to Understand Autism - UCSF News Services

To Read More: Science in Focus: Creating Neurons from Skin Cells to Understand Autism – UCSF News Services
categoriaSkin Stem Cells commentoComments Off on Science in Focus: Creating Neurons from Skin Cells to Understand Autism – UCSF News Services | dataMarch 16th, 2017
Read All

Some genetic variations difficult to evaluate using current stem cell modeling techniques – Science Daily

By NEVAGiles23


NetDugout
Some genetic variations difficult to evaluate using current stem cell modeling techniques
Science Daily
Stem cell-based disease modeling involves taking cells from patients, such as skin cells, and introducing genes that reprogram the cells into human-induced pluripotent stem cells (hiPSCs). These "master cells" are unspecialized, meaning they can be ...
Would You Slather Blood and Breast Milk on Your Face?Racked

all 19 news articles »

Read more here:
Some genetic variations difficult to evaluate using current stem cell modeling techniques - Science Daily

To Read More: Some genetic variations difficult to evaluate using current stem cell modeling techniques – Science Daily
categoriaSkin Stem Cells commentoComments Off on Some genetic variations difficult to evaluate using current stem cell modeling techniques – Science Daily | dataMarch 16th, 2017
Read All

3 Women Blinded By Unproven Stem Cell Treatments – NPR

By NEVAGiles23

Scientists have long hoped that stem cells might have the power to treat diseases. But it's always been clear that they could be dangerous too, especially if they're not used carefully.

Now a pair of papers published Wednesday in the New England Journal of Medicine is underscoring both the promise and the peril of using stem cells for therapy.

In one report, researchers document the cases of three elderly women who were blinded after getting stem cells derived from fat tissue at a for-profit clinic in Florida. The treatment was marketed as a treatment for macular degeneration, the most common cause of blindness among the elderly. Each woman got cells injected into both eyes.

In a second report, a patient suffering from the same condition had a halt in the inexorable loss of vision patients usually experience, which may or may not have been related to the treatment. That patient got a different kind of stem cell derived from skin cells as part of a carefully designed Japanese study.

The Japanese case marks the first time anyone has given induced pluripotent stem (iPS) cells to a patient to treat any condition.

"These two reports are about as stark a contrast as it gets," says George Q. Daley, Harvard Medical School's dean and a leading stem cell researcher. He wrote an editorial accompanying the two papers. "It's really striking."

The report about the three women in their 70s and 80s who were blinded in Florida is renewing calls for the Food and Drug Administration to crack down on the hundreds of clinics that are selling unproven stem cell treatments for a wide variety of medical conditions, including arthritis, autism and stroke.

"One of the big mysteries about this particular case and the mushrooming stem cell clinic industry more generally is why the FDA has chosen to effectively sit itself out on the sidelines even as this situation overall grows increasingly risky to patients," says Paul Knoepfler, a University of California, Davis, stem cell researcher who has studied the proliferation of stem cell clinics.

"The inaction by the FDA not only puts many patients at serious risk from unproven stem cell offerings, but also it undermines the agency's credibility," Knoepfler wrote in an email.

In response to a query from Shots, an FDA spokeswoman wrote in an email that the agency is in the process of finalizing four new guidelines aimed at clarifying how clinics could use stem cells as treatments. The agency also noted that it had previously issued a warning to patients.

In the meantime, "consumers are encouraged to contact FDA and the appropriate state authorities in their jurisdictions to report any potentially illegal or harmful activity related to stem cell based products," the FDA email says.

Other researchers say the cases should stand as a warning to patients considering unproved stem cell treatments, especially those tried outside carefully designed research studies.

"Patients have to be wary and tell the difference between the snake oil salesmen who are going to exploit them and the kind of slow, painstaking legitimate clinical trials that are also going on," Daley says.

The New England Journal of Medicine report did not name the Florida clinic, but noted that the treatment was listed on a government website that serves as a clearinghouse for research studies. The sponsor is listed as Bioheart, Inc., which is part of U.S. Stem Cell Inc. in Sunrise, Fla.

Kristen Comella, the scientific director of U.S. Stem Cell, would not discuss the cases. "There were legal cases associated with eye patients that were settled under confidentiality, so I am not permitted to speak on any details of those cases due to the confidentiality clause," Comella said by phone.

She acknowledged, however, that the clinic had been performing the stem cell procedures. They were discontinued after at least two patients suffered detached retinas, she says.

But Comella defended the use of stem cells from fat tissue to treat a wide variety of other health problems.

"We have treated more than 7,000 patients and we've have had very few adverse events reported. So the safety track record is very strong," Comella says. "We feel very confident about the procedures that we do, and we've had great success in many different indications."

According to the New England Journal of Medicine report, The Florida clinic was using adult stem cells, which circulate in various parts of the body, including in fat tissue. While those cells may someday be turn out to be useful for treating disease, none have been proven to work.

The body produces a variety of stem cells. The kind that have generated the most excitement and controversy are human embryonic stem cells, which are derived from early human embryos and can be coaxed to become any kind of cell in the body.

Scientists are also excited about iPS cells, which can be made in the laboratory by turning any cell in the body, such as skin cells, into cells that resemble embryonic stem cells.

Those are the cells that were tested by the Japanese scientists. The stem cells were converted into retinal pigment epithelium (RPE) cells, which are the cells that are destroyed by macular degeneration.

"This represents a landmark," says Daley. "It's the first time any patient has been treated with cellular derivatives of iPS cells. So it's definitely a world first."

Daley noted that the scientists only treated one of the patient's eyes in case something went wrong, to ensure remaining vision would not be threatened in the other eye.

After at least a year, no complications had occurred and the patient had not experienced any further deterioration of vision in the treated eye. While that is promising, more patients would have to be treated and followed for much longer to know whether that approach is successful, Daley says.

"Given that macular degeneration is the most frequent cause of vision loss and blindness in the elderly and our population is aging, the prevalence of macular degeneration is going up dramatically," Daley says. "So to be able to preserve or even restore sight would be a really remarkable medical advance."

Despite the potentially encouraging results with the first patient, Daley noted that the Japanese scientists decided not to treat a second patient and suspended the study. That's because they discovered worrisome genetic variations in the RPE cells they had produced for the second patient.

"They weren't certain these would cause problems for the patient, but they were restrained enough and cautious enough that they decided not to go forward," Daley says. "That's what contrasts so markedly with the approach of the second group, who treated the three patients with an unproven stem cell therapy that ended up have devastating effects on their vision."

In this case, the New England Journal of Medicine report says, patients paid $5,000 each to receive injections of solutions that supposedly contained stem cells that were obtained from fat removed from their abdomens through liposuction.

Even though the safety and effectiveness of this procedure is unknown, all three patients received injections in both eyes.

"That's what led to these horrible results," says Thomas Albini, a retina specialist at the University of Miami's Bascom Palmer Eye Institute, who helped write the report.

Before the procedure, all three women still had at least some vision. Afterwards, one woman was left completely blind while the other two were effectively blind, Albini and his colleagues reported.

The cases show that patients need to be warned that something that "sounds too good to be true may indeed be too good to be true and may even be horrible," Albini says.

Continue reading here:
3 Women Blinded By Unproven Stem Cell Treatments - NPR

To Read More: 3 Women Blinded By Unproven Stem Cell Treatments – NPR
categoriaIPS Cell Therapy commentoComments Off on 3 Women Blinded By Unproven Stem Cell Treatments – NPR | dataMarch 16th, 2017
Read All

Gainers & Losers Of Mar.9: CBAY, IMMU, TGTX, NSPR, TNDM… – RTT News

By NEVAGiles23

The following are some of the biotech stocks that made their way onto the Day's Gainers & Losers' list of March 9, 2017.

GAINERS

1. Ocera Therapeutics Inc. (OCRX)

Gained 71.82% to close Thursday's trading at $1.89.

News: The Company reported additional encouraging results from its Phase 2b STOP-HE study of intravenous (IV) OCR-002 in hospitalized patients with Hepatic Encephalopathy.

The initial STOP-HE results, reported in January 2017, had demonstrated highly statistically significant reduction in ammonia levels over placebo, strong evidence of benefit across multiple endpoints with higher doses (15g, 20g), clinical improvement dose trend, increased responder rate with increased dose and superiority over placebo at all doses. OCR-002 was also safe and well-tolerated.

The additional study data revealed on Thursday indicates that IV OCR-002 provided clinical benefit over placebo in other parameters as well, such as the Physician Overall Evaluation, Model for End-Stage Liver Disease (MELD) scores, and in renal function as measured by the change from baseline in Blood Urea Nitrogen (BUN) levels.

2. Cymabay Therapeutics Inc. (CBAY)

Gained 20.29% to close Thursday's trading at $4.09.

News: The Company will provide a corporate overview at the 29th Annual ROTH Conference on March 13th and at the Oppenheimer 27th Annual Healthcare Conference on March 21st.

Near-term catalysts:

- The results from phase II study of Cymabay's investigational drug Seladelpar in primary biliary cholangitis are expected in 3Q 2017. - The company's most advanced product candidate is Arhalofenate for treatment of gout, which has completed phase II studies. The drug candidate is licensed to Kowa Pharmaceuticals America, Inc. in the U.S.

Licensing discussions for other territories are underway. Ex-US licensing agreement for Arhalofenate is expected to be inked this year.

3. Neuralstem Inc. (CUR)

Gained 19.64% to close Thursday's trading at $5.30.

News: The preclinical data of the Company's NSI-566 spinal cord-derived neural stem cells in a rodent model of traumatic brain injury shows robust engraftment and long-term survival. The data are published in Journal of Neurotrauma.

NSI-566 is being explored in three indications: stroke, chronic spinal cord injury (cSCI), and Amyotrophic Lateral Sclerosis (ALS).

A phase I safety study of NSI-566 for the treatment of paralysis from chronic motor stroke is being conducted at the BaYi Brain Hospital in Beijing, China. In addition, NSI-566 was evaluated in a Phase 1 safety study to treat paralysis due to chronic spinal cord injury as well as a Phase 1 and Phase 2a risk escalation, safety trials for ALS. Subjects from all three indications are currently in long-term observational follow-up periods to continue to monitor safety and possible therapeutic benefits, according to the company.

Near-term catalyst:

-- Data from a phase II trial of NSI-189 for the treatment of major depressive disorder is expected in 3Q 2017.

4. Immunomedics Inc. (IMMU)

Gained 19.48% to close Thursday's trading at $6.01.

News: A global licensing agreement between Seattle Genetics (SGEN) and Immunomedics, worth over $2 billion, has been put on hold by a Delaware judge, following an injunction filed by venBio Select Advisor LLC, the largest shareholder of Immunomedics, to block the deal.

The license agreement between Seattle Genetics and Immunomedics was signed last month, and it involves antibody-drug conjugate, Sacituzumab govitecan, or IMMU-132.

Sacituzumab Govitecan (IMMU-132) is Immunomedics' lead investigational drug. As part of the agreement, Seattle Genetics is responsible for initiating phase III clinical trials of IMMU-132 in patients with metastatic triple-negative breast cancer (TNBC) and will be responsible for submitting the initial Biologics License Application to the FDA for accelerated approval.

VenBio is seeking to thwart the deal saying it undervalues the potential of IMMU-132. Now that a temporary restraining order has been placed on the deal, maybe there is an opportunity for a better deal.

5. Curis Inc. (CRIS)

Gained 20.78% to close Thursday's trading at $3.08.

News: The Company reported Q4 and full-year 2016 financial results and updated the progress of its pipeline.

The net loss for Q4, 2016 narrowed to $11.3 million or $0.08 per share on total revenue of $2.36 million. This compared with a net loss of $13.5 million or $0.10 per share and total revenue of $2.09 million in the year-ago period.

As for its clinical pipeline, the company noted that its phase I trial for CA-170 continues to progress on track through the dose escalation stage, and extension of the CA-170 Phase 1 study is all set to begin with enrollment of immunotherapy-nave patients in Korea and Spain, and with additional trial centers in other European countries projected to open in the second quarter.

A phase II trial of another drug candidate CUDC-907 in patients with relapsed/refractory MYC-altered diffuse large B cell lymphoma, or DLBCL , is expected to complete enrollment within the first half of this year.

6. VIVUS Inc. (VVUS)

Gained 16.35% to close Thursday's trading at $1.21.

News: The Company reported Q4 and full-year 2016 financial results.

VIVUS reversed to profit in the fourth quarter and full year of 2016 from net losses in the comparable year-ago periods.

Net income for the 2016 fourth quarter and full year was $56.6 million or $0.54 per share and $23.3 million or $0.22 per share, respectively, as compared to a net loss of $12.2 million or $0.12 per share and $93.1 million or $0.90 per share in 2015, respectively.

VIVUS had cash, cash equivalents and available-for-sale securities of $269.5 million at December 31, 2016.

The company noted that it will use its strong cash position for the acquisition and development of a new product pipeline to drive value creation for its stockholders while addressing the unmet needs of patients.

7. TG Therapeutics Inc. (TGTX)

Gained 16.26% to close Thursday's trading at $11.80. Shares of TG Therapeutics have been on the rise since announcing positive top line data from its phase III trial of TG-1101 in patients with high risk Chronic Lymphocytic Leukemia, dubbed GENUINE, on March 6, 2017.

News: The Company has priced an underwritten public offering of 5,128,206 shares of its common stock at a price of $9.75 per share.

Anticipated event: Q4 and full-year 2016 financial results and an update on business outlook for 2017 are slated to be presented on March 10, 2017.

LOSERS

1. InspireMD Inc. (NSPR)

Lost 37.56% to close Thursday's trading at $1.23.

News: The Company has priced its public offering of shares of Series C Convertible Preferred Stock, Series B warrants and Series C warrants.

Each share of Series C Convertible Preferred Stock is convertible into 4 shares of common stock at a conversion price equal to $1.60 per share. The Series B warrants have an exercise price of $2.00 per share of common stock and Series C warrants have an exercise price of $1.60 per share of common stock.

The gross proceeds from the offering are estimated to be up to $7.5 million. The offering is expected to close on or about March 14, 2017.

2. Cogentix Medical Inc. (CGNT)

Lost 13.12% to close Thursday's trading at $1.92.

News: The Company reported Q4 and full-year 2016 financial results.

Net loss for Q4 2016 widened to $18.57 million or $0.40 per share on revenue of $13.2 million. This compared with a net loss of $1.09 million or $0.04 per share and revenue of $13.64 million in the year-ago period.

3. BIOLASE Inc. (BIOL)

Lost 12.41% to close Thursday's trading at $1.20.

News: The Company reported Q4 and full-year 2016 financial results

The net loss for the fourth quarter of 2016 widened to $4.4 million or $0.07 per share as revenues declined to $13.8 million. This compared with a net loss of $2.5 million or $0.04 per share and revenue of $14.5 million in the fourth quarter of 2015.

4. Tandem Diabetes Care Inc. (TNDM)

Lost 11.63% to close Thursday's trading at $1.90.

News: The Company reported Q4 and full-year 2016 financial results.

The net loss for the fourth quarter of 2016 widened to $14.82 million or $0.48 per share as sales fell to $28.91 million. This compared with a net loss of $12.09 million or $0.40 per share and sales of $29.12 million in the fourth quarter of 2015. Tandem has also filed a registration statement on Form S-1 with the SEC relating to a proposed follow-on public offering of approximately $50 million of its common stock.

by RTT Staff Writer

For comments and feedback: editorial@rttnews.com

Business News

See the original post:
Gainers & Losers Of Mar.9: CBAY, IMMU, TGTX, NSPR, TNDM... - RTT News

To Read More: Gainers & Losers Of Mar.9: CBAY, IMMU, TGTX, NSPR, TNDM… – RTT News
categoriaSpinal Cord Stem Cells commentoComments Off on Gainers & Losers Of Mar.9: CBAY, IMMU, TGTX, NSPR, TNDM… – RTT News | dataMarch 10th, 2017
Read All

Cardiac research nets Holly Mewhort prestigious heart association award – UCalgary News

By NEVAGiles23

Numerous people may say they want to grow up to be a heart surgeon, but very few actually achieve that goal. Holly Mewhort, MD, PhD, is one who has done so. And thats not the only thing Mewhort, who is part of the Libin Cardiovascular Institute of Albertas cardiac surgical residency program, has accomplished.

She has also excelled in basic and translational research. She recently received international recognition for her work in cardiac research, winning the Vivien Thomas Young Investigator Award from the American Heart Association, a prestige award given to early investigators who are focusing on fundamental and applied surgical research.

That research was done as part of her PhD program, which she completed in June 2016 under the supervision of Libin Institutes Paul Fedak, MD, PhD. Fedak is a cardiac surgeon and basic/translational researcher who directs the Marlene and Don Campbell Family Cardiac Research Laboratory at the Cumming School of Medicine.

Research shows biomaterial can trigger healing in damaged heart muscle

Mewhorts research investigates the use of biomaterial in regenerating and restoring heart tissue in patients who had previously suffered a heart attack. The material, CorMatrix-ECM, is a connective tissue matrix surgically applied to damaged heart tissue to trigger healing.Mewhort describes the material as providing the scaffolding that holds cells together and influences their behaviour and survival.

Her research in this area began four years ago in the lab and has had great success. In preclinical trials, the project has shown that this bio-material can restore function to damaged heart muscle by promoting the formation of new blood vessel networks a process called vasculogenesis.

The investigators have completed a pilot clinical trial, which saw the patch applied to the heart tissue of a handful of patients during coronary bypass surgery. The results havent been published yet, but the data looks promising.

Mewhort is thrilled to be part of a research project that has been successfully translated from bench to bedside. If it works at the clinical trial level, this could be a game-changer for patients who have suffered a heart attack, she says, noting until now, there hasnt been a way of restoring function to damaged heart tissue in those patients.

Cardiac surgery research program is 'cutting edge'

Its also exciting for Mewhort to win the same award her mentor, Dr. Paul Fedak, received 14 years ago. He was also a cardiac surgery trainee pursuing a PhD, investigating stem cell regeneration of heart tissue. The fact that two researchers connected with the University of Calgary earned the same international award is impressive, as competition is stiff. Past winners have studied at such institutions as the University of Toronto, Duke and Stanford.

Fedak, who studied at the University of Toronto, was recruited to come to Calgary about a decade ago and has since set up a cutting-edge cardiac surgery research program. Mewhort is the first PhD graduate of his laboratory. As her mentor, Fedak, who, besides being an academic researcher is a full-time clinical heart surgeon, is pleased to see the program turning out well-respected young academic surgical scientists.

He says Mewhorts award fulfils another career goal, explaining that when he won the Vivien Thomas Young Investigator Award his desire became to see one of his students do the same. For Fedak, the award signifies the coming-of-age of academic cardiac surgeon training in Calgary.

This shows us how far we have come with our program, he says.

Receiving her mentors praise is a big deal for Mewhort, as Fedak was one of the reasons she chose to pursue her surgery training and PhD in Calgary. Mewhorts future looks bright as she continues her residency in cardiac surgery on campus with the ultimate goal of having an active surgical and research career, much like her mentor.

Here is the original post:
Cardiac research nets Holly Mewhort prestigious heart association award - UCalgary News

To Read More: Cardiac research nets Holly Mewhort prestigious heart association award – UCalgary News
categoriaCardiac Stem Cells commentoComments Off on Cardiac research nets Holly Mewhort prestigious heart association award – UCalgary News | dataMarch 10th, 2017
Read All

How ‘Cannibalism’ By Breast Cancer Cells Promotes Dormancy: A Possible Clue Into Cancer Recurrence – IFLScience

By NEVAGiles23

By studying the cannabilistic tendency of cancer cells, my research team has made some progress in finding out why.

The chances of recurrence and disease outcome vary with cancer subtype. About one-third of patients diagnosed with triple negative breast cancer, the most aggressive subtype, may experience a recurrence in another part of the body. This is called distant recurrence.

It has been difficult, if not impossible, to predict if and when the same cancer will recur and to stop it. Recurrent disease may arise from just a single cancer cell that survived the initial treatment and became dormant. The dormancy allowed it to hide somewhere in the body, not growing or causing harm for an unpredictable amount of time.

Determining what puts these dormant cells to sleep and what provokes them to wake up and begin multiplying uncontrollably could lead to important new treatments to prevent a demoralizing secondary cancer diagnosis.

Recently, my research team and I uncovered several clues that might explain what triggers these breast cancer cells to go dormant and then reawaken. We showed that cell cannibalism is linked to dormancy.

How do bone stem cells affect breast cancer?

Breast cancer can recur in the breast or in other organs, such as the lungs and bone. Where breast cancer decides to grow depends largely on the microenvironment. This refers to the cells that surround it, including immune cells, cells comprising blood vessels, fibroblasts and the select proteins they produce, among other factors.

Over a century ago, a surgeon named Stephen Paget famously compared the organ-specific prevalence of cancer metastasis to seeds and soil. Because breast cancer often relapses in bones, in this metaphor, which still holds forth today, the bone marrow provides a favorable microenvironment (the soil) for dormant breast cancer cells (the seeds) to thrive.

Just as seeds need soil to provide an environment for growth, cancer cells need an environment to grow. From http://www.shutterstock.com

Thus, a substantial amount of recent work has involved trying to determine the role in cancer dormancy of a special type of cell, called mesenchymal stem cells (MSCs). These are found in bone marrow.

MSCs in bone marrow are highly versatile. They are able to form bone, cartilage and fibrous tissue, as well as cells that support the immune system and formation of blood. They are also known to travel to sites of tissue injury and inflammation, where they aid in healing.

Breast cancer cells readily interact with MSCs if they meet in the bone marrow. They also readily interact if the breast cancer cells recruit them to the site of the primary tumor.

My research team and I recently focused on potential outcomes of these cellular interactions. We found an odd thing happens, which may provide insight into how these breast cancer cells hide for a long time.

In the laboratory setting, we produced breast tumor models containing MSCs. We also re-created the hostile conditions that naturally challenge developing tumors in patients, such as localized nutrient deficits caused by rapid growth of cancer cells and overcrowding.

See more here:
How 'Cannibalism' By Breast Cancer Cells Promotes Dormancy: A Possible Clue Into Cancer Recurrence - IFLScience

To Read More: How ‘Cannibalism’ By Breast Cancer Cells Promotes Dormancy: A Possible Clue Into Cancer Recurrence – IFLScience
categoriaBone Marrow Stem Cells commentoComments Off on How ‘Cannibalism’ By Breast Cancer Cells Promotes Dormancy: A Possible Clue Into Cancer Recurrence – IFLScience | dataMarch 10th, 2017
Read All

Lions LB Paul Worrilow gave stem cells to anonymous leukemia patient – Detroit Free Press

By NEVAGiles23

Subscribe today for full access on your desktop, tablet, and mobile device.

472

Let friends in your social network know what you are reading about

Get to know the Lions' newest linebacker, who agreed to a one-year deal to come to Detroit from Atlanta

Try Another

Audio CAPTCHA

Image CAPTCHA

Help

CancelSend

A link has been sent to your friend's email address.

A link has been posted to your Facebook feed.

Atlanta Falcons linebacker Paul Worrilow kisses his 15-month-old daughter, Julie, after the first day of training camp in Flowery Branch, Ga., on July 28, 2016.(Photo: Curtis Compton, Associated Press)

Height, weight: 6 feet, 230 pounds.

Joined the Lions:Worrilow, who turns 27 in May, agreed to a one-year contract with the Lions on Wednesday.

NFL career: He made the Atlanta Falcons in 2013 as an undrafted free agent after being a walk-on at Delaware. Worrilow was the Falcons' starting middle linebacker job in 2013-15. He led the team in tackles each of his first two seasons. Last season, the Falcons wanted to get faster at linebacker, so they drafted two, and Worrilow lost his job to rookie Deion Jones. Worrilow was relegated mostly tospecial teams in 2016 and played just four defensive snaps in the playoffs -- none in the Super Bowl.I know I can go and play good ball, Worrilow told the Atlanta Journal-Constitution. Whether if thats here or somewhere else.

Off the field:In 2011, he signed up for Delawares bone-marrow program. He underwent a six-hour procedure to donate peripheral blood stem cells to an anonymous 21-year-old leukemia patient.

Lions to make Ricky Wagner highest-paid RT; he's 'living his dream'

Contact Carlos Monarrez: cmonarrez@freepress.com. Follow him on Twitter @cmonarrez.

Download our free Lions Xtra app on your Apple and Android devices.

1:40

1:04

0:57

1:07

0:59

1:40

2:39

1:18

2:10

1:38

0) { %>

0) { %>

Read more:
Lions LB Paul Worrilow gave stem cells to anonymous leukemia patient - Detroit Free Press

To Read More: Lions LB Paul Worrilow gave stem cells to anonymous leukemia patient – Detroit Free Press
categoriaBone Marrow Stem Cells commentoComments Off on Lions LB Paul Worrilow gave stem cells to anonymous leukemia patient – Detroit Free Press | dataMarch 10th, 2017
Read All

Stem Cell Therapy An Option For ENC Patients | Public Radio East – Public Radio East

By NEVAGiles23

Stem cell therapy is a quickly advancing treatment being used across the country. Now, its becoming more prevalent in eastern North Carolina to those living with chronic pain an alternative to surgery. The minimally invasive procedure is showing results in alleviating back, knee, hip and shoulder pain. Though stem cell therapy is classified by the Food and Drug Administration as experimental, patients say theyre finding relief. Meet New Bern resident and a local endodontist Dr. Donnie Luper. He was skeptical of the procedure at first.

How did you know what those stem cells were going to differentiate into? I mean was I going to grow a foot out of my shoulder or something like that?

Luper tore his rotator cuff 25 years ago during a tubing incident on the Trent River. A subsequent fall during a golf trip in 2015 sent him to a specialist.

I went to see a shoulder surgeon in Richmond. He told me that he didnt think it was a complete tear of my rotator cuff, that I could probably have a minor surgical procedure done and I asked him about stem cell.

After talking with a friend who opted for stem cell treatment for her knee pain, Luper decided to find out more.

My option was if I would have had that shoulder surgery and they had do that bicep tendon repair, I mean I would have been in a sling for six weeks and probably not working for three months.

According to the Food and Drug Administration, stem cells sometimes called the bodys master cells - have the ability to divide and develop into many different cell types. Each new cell has the potential to remain a stem cell or become another type of cell, such as a nerve cell, a skin cell, or a red blood cell. They may also help repair the body by dividing to replenish cells that are damaged by disease, injury or normal wear. Parkinsons disease, spinal cord injuries, damaged organs and cancer could all be possibly treated with the use of stem cells, but more research is needed. Dr. Angelo Tellis is the owner/physician of Aegean Medical, which provides stem cell therapy to patients in Cary, Jacksonville, Morehead City and New Bern.

The adult stem cells we call multipotent stem cells so they can only differentiate into very specific or certain kinds of tissue. Whereas the embryonic stem cells we call pluripotent and can become a variety, almost any tissue. But I only deal with adult stem cells, theyre found to be more useful in clinical applications.

Dr. Tellis says adult stem cells are more responsive to growing tissue in very specific locations. When patients go into Dr. Tellis office for the two hour procedure, he starts by numbing an area of the abdomen and performing liposuction to collect one or two syringes of body fat.

Stem cells can be found in a lot of different tissues throughout the body, but theyre actually in one of the highest concentrations in your own body fat.

The stem cell sample is combined with platelet rich plasma or PRP collected through a blood draw.

That has a lot of the chemical signals and messengers that activate stem cells. So Ill typically combine that with some of the stem cells collected from the body fat and then go under x-ray guidance and put it exactly in the targeted location where we want to create that healing process.

Soreness and stiffness can be expected immediately following the procedure and for about a week after. Dr. Tellis says the results tend to improve with time, taking about three to six months for full recovery. This was Lupers experience in 2016.

Really didnt have to take any pain medications. The joint was really sore over the weekend just because of the injection of the fluid there and after that, I had a small amount of discomfort, but nothing I really had to take medication for.

After three months, Luper says he felt 90 percent better. But he decided to get a second opinion from a shoulder surgeon.

And he told me he thought the stem cells had done a lot but that I still had one little bone spur that was rubbing against the muscle and constantly tearing the little bit of the muscle.

After surgery, Luper says his left shoulder started feeling significantly better in about a month. He was also able to return to one of his favorite pastimes golf. While surgery helped eliminate all of his pain, Luper believes stem cells helped regenerate tissue that was damaged years ago.

He said my rotator cuff muscle didnt even look like it had been torn. I actually tore that, Im sixty now, and I actually tore that when I was 34, 35 tubing on the river and I had to do physical therapy for about three months, but he said he saw absolutely no evidence that Id ever had a rotator cuff tear.

Even though some have found relief and possibly a cure through stem cell therapy, the Food and Drug Administration has not approved any stem cell-based products for use, other than HEMACORD (HE-muh-cord). According to their website, the use of stem cells raises safety concerns such as excessive cell growth, the development of tumors as well as cells migrating from the site of administration and differentiating into inappropriate cell types. And then, theres the cost of the procedure, which is not covered by insurance. The price for the treatment ranges from $2,500 to $5,000. But for those who want to avoid major surgery and the downtime associated with recovery, the risk and cost may be worth it.

If Id have surgery, my deductible would have been that because I have an out-of-pocket max. And I would want to do anything to avoid surgery, especially something that would keep me out of work for three months.

The FDA recommends that consumers interested in stem cell therapy should start a conversation with their doctor about the potential risk to benefit ratio. In addition to Aegean Medical, Advanced Health and Physical Medicine in Greenville and Regenerative Medicine Clinic of Wilmington also provide stem cell therapy in eastern North Carolina.

More here:
Stem Cell Therapy An Option For ENC Patients | Public Radio East - Public Radio East

To Read More: Stem Cell Therapy An Option For ENC Patients | Public Radio East – Public Radio East
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Therapy An Option For ENC Patients | Public Radio East – Public Radio East | dataMarch 7th, 2017
Read All

Could you save his life? Edmonton boy needs to find stem cell match – Globalnews.ca

By NEVAGiles23


Globalnews.ca
Could you save his life? Edmonton boy needs to find stem cell match
Globalnews.ca
Doctors say he needs a bone marrow transplant. Now, the family is desperately searching for a stem cell match. The world needs to know that this is what we need and this can save kids' lives, Mishio said. Not just Brady's life there's other ...

The rest is here:
Could you save his life? Edmonton boy needs to find stem cell match - Globalnews.ca

To Read More: Could you save his life? Edmonton boy needs to find stem cell match – Globalnews.ca
categoriaBone Marrow Stem Cells commentoComments Off on Could you save his life? Edmonton boy needs to find stem cell match – Globalnews.ca | dataMarch 7th, 2017
Read All

Skin cells of schizophrenia patients reveal faulty genetic pathway that began in womb – Genetic Literacy Project

By NEVAGiles23

The skin cells of four adults with schizophrenia have provided an unprecedented window into how the disease began while they were still in the womb, according to a recent paper in Schizophrenia Research.

The paper was publishedby researchers at the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo in collaboration with the Icahn School of Medicine at Mount Sinai. It provides what the authors call the first proof of concept for their hypothesis that a common genomic pathway lies at the root of schizophrenia.

The researchers say the work is a first step toward the design of treatments that could be administered to pregnant mothers at high risk for bearing a child with schizophrenia, potentially preventing the disease before it begins.

The authors gained insight into the early brain pathology of schizophrenia by using skin cells from four adults with schizophrenia and four adults without the disease that were reprogrammed back into induced pluripotent stem cells and then into neuronal progenitor cells.

The next step in the research is to use these induced pluripotent stem cells to further study how the genome becomes dysregulated, allowing the disease to develop.

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post: Faulty genomic pathway linked to schizophrenia developing in utero, study finds

View post:
Skin cells of schizophrenia patients reveal faulty genetic pathway that began in womb - Genetic Literacy Project

To Read More: Skin cells of schizophrenia patients reveal faulty genetic pathway that began in womb – Genetic Literacy Project
categoriaSkin Stem Cells commentoComments Off on Skin cells of schizophrenia patients reveal faulty genetic pathway that began in womb – Genetic Literacy Project | dataMarch 7th, 2017
Read All

Suicide Switch for Transplanted Stem Cells – The Scientist

By NEVAGiles23


Science Times
Suicide Switch for Transplanted Stem Cells
The Scientist
The team then differentiated the iPSCs into neural stem and progenitor cells, and transplanted them into mice with a spinal cord injury. The mice began to recover some motor function, but as neural tumors and teratomas grew from the transplanted cells ...
Stem Cell Assay Market, 2016-2024: By Type, Applications ...QWTJ LIVE One Stop

all 17 news articles »

Original post:
Suicide Switch for Transplanted Stem Cells - The Scientist

To Read More: Suicide Switch for Transplanted Stem Cells – The Scientist
categoriaSpinal Cord Stem Cells commentoComments Off on Suicide Switch for Transplanted Stem Cells – The Scientist | dataMarch 2nd, 2017
Read All

Human ‘Embryoids’ And Other Embryo Research Raises Concern … – NPR

By NEVAGiles23

Notes This is a 7-day-old embryo that scientists kept alive in a laboratory dish. If it developed further, the clusters in green would become cells that shape the body and the red/purple cells would form the placenta.

Ali Brivanlou slides open a glass door at the Rockefeller University in New York to show off his latest experiments probing the mysteries of the human embryo.

"As you can see, all my lab is glass just to make sure there is nothing that happens in some dark rooms that gives people some weird ideas," says Brivanlou, perhaps only half joking.

Brivanlou knows that some of his research makes some people uncomfortable. That's one reason he has agreed to give me a look at what's going on.

His lab and one other discovered how to keep human embryos alive in lab dishes longer than ever before at least 14 days. That has triggered an international debate about a long-standing convention (one that's legally binding in some countries, though not in the U.S.) that prohibits studying human embryos that have developed beyond the two-week stage.

Ali Brivanlou's research team at Rockefeller University in New York was one of two groups internationally that figured out how to keep human embryos alive in lab dishes beyond the 14-day stage of development. Rob Stein/NPR hide caption

And in other experiments, he's using human stem cells to create entities that resemble certain aspects of primitive embryos. Though Brivanlou doesn't think these "embryoids" would be capable of developing into fully formed embryos, their creation has stirred debate about whether embryoids should be subject to the 14-day rule.

Brivanlou says he welcomes these debates. But he hopes society can reach a consensus to permit his work to continue, so he can answer some of humanity's most fundamental questions.

"If I can provide a glimpse of, 'Where did we come from? What happened to us, for us to get here?' I think that, to me, is a strong enough rationale to continue pushing this," he says.

For decades, scientists thought the longest an embryo could survive outside the womb was only about a week. But Brivanlou's lab, and one in Britain, announced last year in the journals Nature and Nature Cell Biology that they had kept human embryos alive for two weeks for the first time.

That enabled the scientists to study living human embryos at a crucial point in their development, a time when they're usually hidden in a woman's womb.

"Women don't even know they are pregnant at that stage. So it has always been a big black box," Brivanlou says.

Gist Croft, a stem cell biologist in Brivanlou's lab, shows me some samples, starting with one that's 12 days old.

"So you can see this with the naked eye," Croft says, pointing to a dish. "In the middle of this well, if you look down, there's a little white speck it looks like a grain of sand or a piece of dust."

Under a microscope, the embryo looks like a fragile ball of overlapping bubbles shimmering in a silvery light with thin hairlike structures extending from all sides.

Croft and Brivanlou explain that those willowy structures are what embryos would normally extend at this stage to search for a place to implant inside the uterus. Scientists used to think embryos could do that only if they were receiving instructions from the mother's body.

"The amazing thing is that it's doing its thing without any information from mom," Brivanlou says. "It just has all the information already in it. That was mind-blowing to me."

The embryos they managed to keep alive in the lab dish beyond seven days of development have also started secreting hormones and organizing themselves to form the cells needed to create all the tissues and organs in the human body.

The two scientists think studying embryos at this and later stages could lead to discoveries that might point to new ways to stop miscarriages, treat infertility and prevent birth defects.

"The only way to understand what goes wrong is to understand what happens normally, or as normally as we can, so we can prevent all of this," Brivanlou says.

The 14-day cutoff

But Brivanlou isn't keeping these embryos alive longer than 14 days because of the rule.

A long-standing rule prohibits scientists from keeping human embryos alive more than two weeks, after which the central nervous system starts to develop. The 14-day rule was developed decades ago to avoid raising too many ethical questions about experimenting on human embryos. It's a law in some countries, and just a guideline in the U.S.

"The decision about pulling the plug was probably the toughest decision I've made in my scientific career," he says. "It was sad for me."

The 14-day rule was developed decades ago to avoid raising too many ethical questions about experimenting on human embryos.

Two weeks is usually the moment when the central nervous system starts to appear in the embryo in a structure known as the "primitive streak."

It's also roughly the stage at which an embryo can no longer split into twins. The idea behind the rule is, that's when an embryo becomes a unique individual.

But the rule was initiated when no one thought it would ever be possible to keep embryos growing in a lab beyond two weeks. Brivanlou thinks it's time to rethink the 14-day rule.

"This is the moment," he says.

Scientists, bioethicists and others are debating the issue in the U.S., Britain and other countries. The rule is law in Britain and other countries and incorporated into widely followed guidelines in the United States.

Insoo Hyun, a bioethicist at Case Western Reserve University, advocates revisiting the rule. It would allow more research to be done on embryos that are destined to be destroyed anyway, he says embryos donated by couples who have finished infertility treatment.

"Given that it has to be destroyed," Hyun says, "some would argue that it's best to get as much information as possible scientifically from it before you destroy it."

But others find it morally repugnant to use human embryos for research at any stage of their development and argue that lifting the 14-day rule would make matters worse.

"Pushing it beyond 14 days only aggravates what is the primary problem, which is using human life in its earliest stages solely for experimental purposes," says Dr. Daniel Sulmasy, a Georgetown University bioethicist.

The idea of extending the 14-day rule even makes some people who support embryo research queasy, especially without first finding another clear stopping point.

Hank Greely, a Stanford University bioethicist, worries that going beyond 14 days could "really draws into question whether we're using humans or things that are well along the path to humans purely as guinea pigs and purely as experimental animals."

Embryo alternative: "Embryoids"

So as that debate continues, Brivanlou and his colleagues are trying to develop another approach. The scientists are attempting to coax human embryonic stem cells to organize themselves into entities that resemble human embryos. They are also using induced pluripotent stem (iPS) cells, which are cells that behave like embryonic stem cells, but can be made from any cell in the body.

Embryoids like this one are created from stem cells and resemble very primitive human embryos. Scientists hope to use them to learn more about basic human biology and development. Courtesy of Rockefeller University hide caption

Embryoids like this one are created from stem cells and resemble very primitive human embryos. Scientists hope to use them to learn more about basic human biology and development.

Brivanlou's lab has already shown that these "embryo-like structures" or "embryoids" can create the three fundamental cell types in the human body.

But the scientists have only been able to go so far using flat lab dishes. So the researchers are now trying to grow these embryonic-like structures in three dimensions by placing stem cells in a gel.

"Essentially, we're trying to, in a way, to re-create a human embryo in a dish starting from stem cells," says Mijo Simunovic, another of Brivanlou's colleagues.

In early experiments, Simunovic says, he has been able to get stem cells to "spontaneously" form a ball with a "cavity in its center." That's significant because that's what early human embryos do in the uterus.

Simunovic says it's unclear how close these structures could become to human embryos entities that have the capability to develop into babies.

"At the moment, we don't know. That's something that's very hot for us right now to try to understand," Simunovic says.

Simunovic argues the scientists are not "ethically limited to studying these cells and studying these structures" by the 14-day rule.

There's a debate about that, however.

"At what point is your model of an embryo basically an embryo?" asks Hyun, especially when the model seems to have "almost like this inner, budding life."

"Are we creating life that, in the right circumstances, if you were to transfer this to the womb it would continue its journey?" he asks.

Dr. George Daley, the dean of the Harvard Medical School and a leading stem cell researcher, says scientists have been preparing for the day when stem-cell research might raise such questions.

"I think what prospects people are concerned about are the kinds of dystopian worlds that were written about by Aldous Huxley in Brave New World," Daley says. "Where human reproduction is done on a highly mechanized scale in a petri dish."

Daley stresses scientists are nowhere near that, and may never get there. But science moves quickly. So Daley says it's important scientists move carefully with close ethical scrutiny.

The latest guidelines issued by the International Society for Stem Cell Research call for intensive ethical review, Daley notes.

Brivanlou acknowledges that some of his experiments have produced early signs of the primitive streak. But that's a very long way from being able to develop a spinal cord, or flesh and bones, let alone a brain. He dismisses the notion that the research on embryoids would ever lead to scientists creating humans in a lab dish.

"They will not get up start walking around. I can assure you that," he says, noting that full human embryonic development is a highly complex process that requires just the right mix of the biology, physics, geometry and other factors.

Nevertheless, Brivanlou says all of his experiments go through many layers of review. And he's convinced the research should continue.

"It would be a travesty," he says, "to decide that, somehow, ignorance is bliss."

Here is the original post:
Human 'Embryoids' And Other Embryo Research Raises Concern ... - NPR

To Read More: Human ‘Embryoids’ And Other Embryo Research Raises Concern … – NPR
categoriaSpinal Cord Stem Cells commentoComments Off on Human ‘Embryoids’ And Other Embryo Research Raises Concern … – NPR | dataMarch 2nd, 2017
Read All

ISSCR 2017 – Drug Target Review – Drug Target Review

By NEVAGiles23

event

Date: 14 June 2017 - 17 June 2017

Location: Boston Convention and Exhibition Center 415 Summer Street Boston 02210 United States

Website: ISSCR2017.org

Email: [emailprotected]

Telephone: +1 224-592-5700

The International Society for Stem Cell Research (ISSCR) 2017 annual meeting will be held 14-17 June in Boston, Mass., U.S., at the Boston Convention and Exhibition Center. The meeting brings together 4000 stem cell researchers and clinicians from around the world to share the latest developments in stem cell research and regenerative medicine. In a series of lectures, workshops, poster presentations, and a dynamic exhibition floor, researchers focus on recent findings, technological advances, trends, and innovations that are realizing progress in using stem cells in the discovery and validation of novel treatments.

In 2017, the ISSCR is expanding its translational and clinical programming with two half-day, pre-meeting educational sessions geared toward bringing new therapies to the clinic. The Workshop on Clinical Translation (WCT) and the Clinical Advances in Stem Cell Research (CASC) programs are designed for scientists and physicians interested in learning more about the process of developing stem cell-based therapies and advances in stem cell applications in the clinic.

The Presidential Symposium recognizes a decade of progress in iPS cell research and application with a distinguished lineup of speakers including Shinya Yamanaka, discoverer of iPSCs. Additional plenary presentations include distinguished speakers from around the world focusing on organoids and organogenesis, the making of tissues and organs; stem cells and cancer; chromatin and RNA biology; stress, senescence and aging; tissue regeneration and homeostasis; and the frontiers of cell therapy.

Concurrent sessions feature new and innovative developments across the breadth of the field, and incorporate more than 100 abstract-selected speakers. Disease modelling, tissue engineering, stem cell niches, epigenetics, hematopoietic stem cells, and gene modification and gene editing are just a few of the 28 topic areas presented.

Other meeting offerings include career development sessions and networking opportunities. A full listing of the ISSCR 2017 meeting programming can be found at ISSCR2017.org.

Map

42.3461949 -71.04563680000001

Go here to read the rest:
ISSCR 2017 - Drug Target Review - Drug Target Review

To Read More: ISSCR 2017 – Drug Target Review – Drug Target Review
categoriaIPS Cell Therapy commentoComments Off on ISSCR 2017 – Drug Target Review – Drug Target Review | dataMarch 2nd, 2017
Read All

Page 8«..78910..2030..»


Copyright :: 2024