Page 12«..11121314..2030..»

What Is AlphaGEMS Amniotic Tissue Product And How Does It Augment Bone Marrow Stem Cell Therapy? – Video

By raymumme


What Is AlphaGEMS Amniotic Tissue Product And How Does It Augment Bone Marrow Stem Cell Therapy?
Board-Certified Orthopedic Surgeon, Wade McKenna, DO, explains how AlphaGEMS amniotic tissue product can actually enhance the cellular activity of a patient #39;s own bone marrow stem cells.

By: Riordan-McKenna Institute

Read more:
What Is AlphaGEMS Amniotic Tissue Product And How Does It Augment Bone Marrow Stem Cell Therapy? - Video

To Read More: What Is AlphaGEMS Amniotic Tissue Product And How Does It Augment Bone Marrow Stem Cell Therapy? – Video
categoriaUncategorized commentoComments Off on What Is AlphaGEMS Amniotic Tissue Product And How Does It Augment Bone Marrow Stem Cell Therapy? – Video | dataMarch 7th, 2015
Read All

What Is Stemnexa Stem Cell Therapy For Orthopedics And Is It Safe? – Video

By raymumme


What Is Stemnexa Stem Cell Therapy For Orthopedics And Is It Safe?
Dr. McKenna explains how AlphaGEMS amniotic tissue product is used to augment the metabolic activity of a patient #39;s own bone marrow stem cells. He talks about how Stemnexa bone marrow harvest.

By: Riordan-McKenna Institute

See the original post here:
What Is Stemnexa Stem Cell Therapy For Orthopedics And Is It Safe? - Video

To Read More: What Is Stemnexa Stem Cell Therapy For Orthopedics And Is It Safe? – Video
categoriaUncategorized commentoComments Off on What Is Stemnexa Stem Cell Therapy For Orthopedics And Is It Safe? – Video | dataMarch 7th, 2015
Read All

Activating genes on demand: Possible?

By raymumme

When it comes to gene expression -- the process by which our DNA provides the recipe used to direct the synthesis of proteins and other molecules that we need for development and survival -- scientists have so far studied one single gene at a time. A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.

The findings, reported by Church and his team of researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard Medical School in Nature Methods, show promise that precision gene therapies could be developed to prevent and treat disease on a highly customizable, personalized level, which is crucial given the fact that diseases develop among diverse pathways among genetically-varied individuals. Wyss Core Faculty member Jim Collins, Ph.D., was also a co-author on the paper. Collins is also the Henri Termeer Professor of Medical Engineering & Science and Professor in the Department of Biological Engineering at the Massachusetts Institute of Technology.

The approach leverages the Cas9 protein, which has already been employed as a Swiss Army knife for genome engineering, in a novel way. The Cas9 protein can be programmed to bind and cleave any desired section of DNA -- but now Church's new approach activates the genes Cas9 binds to rather than cleaving them, triggering them to activate transcription to express or repress desired genetic traits. And by engineering the Cas9 to be fused to a triple-pronged transcription factor, Church and his team can robustly manipulate single or multiple genes to control gene expression.

"In terms of genetic engineering, the more knobs you can twist to exert control over the expression of genetic traits, the better," said Church, a Wyss Core Faculty member who is also Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and MIT. "This new work represents a major, entirely new class of knobs that we could use to control multiple genes and therefore influence whether or not specific genetics traits are expressed and to what extent -- we could essentially dial gene expression up or down with great precision."

Such a capability could lead to gene therapies that would mitigate age-related degeneration and the onset of disease; in the study, Church and his team demonstrated the ability to manipulate gene expression in yeast, flies, mouse and human cell cultures.

"We envision using this approach to investigate and create comprehensive libraries that document which gene circuits control a wide range of gene expression," said one of the study's lead authors Alejandro Chavez, Ph.D., Postdoctoral Fellow at the Wyss Institute. Jonathan Schieman, Ph.D, of the Wyss Institute and Harvard Medical School, and Suhani Vora, of the Wyss Institute, Massachusetts Institute of Technology, and Harvard Medical School, are also lead co-authors on the study.

The new Cas9 approach could also potentially target and activate sections of the genome made up of genes that are not directly responsible for transcription, and which previously were poorly understood. These sections, which comprise up to 90% of the genome in humans, have previously been considered to be useless DNA "dark matter" by geneticists. In contrast to translated DNA, which contains recipes of genetic information used to express traits, this DNA dark matter contains transcribed genes which act in mysterious ways, with several of these genes often having influence in tandem.

But now, that DNA dark matter could be accessed using Cas9, allowing scientists to document which non-translated genes can be activated in tandem to influence gene expression. Furthermore, these non-translated genes could also be turned into a docking station of sorts. By using Cas9 to target and bind gene circuits to these sections, scientists could introduce synthetic loops of genes to a genome, therefore triggering entirely new or altered gene expressions.

The ability to manipulate multiple genes in tandem so precisely also has big implications for advancing stem cell engineering for development of transplant organs and regenerative therapies.

"In order to grow organs from stem cells, our understanding of developmental biology needs to increase rapidly," said Church. "This multivariate approach allows us to quickly churn through and analyze large numbers of gene combinations to identify developmental pathways much faster than has been previously capable."

See more here:
Activating genes on demand: Possible?

To Read More: Activating genes on demand: Possible?
categoriaUncategorized commentoComments Off on Activating genes on demand: Possible? | dataMarch 6th, 2015
Read All

Stem Cell Therapy for Bone Fractures – Board-Certified Orhopedic Surgeon, Wade McKenna DO – Video

By raymumme


Stem Cell Therapy for Bone Fractures - Board-Certified Orhopedic Surgeon, Wade McKenna DO
Dr. McKenna discusses how bone fractures, including non-union fractures can be treated non-surgically with a the patient #39;s own bone marrow stem cells augmented with AlphaGEMS amniotic tissue...

By: Riordan-McKenna Institute

More:
Stem Cell Therapy for Bone Fractures - Board-Certified Orhopedic Surgeon, Wade McKenna DO - Video

To Read More: Stem Cell Therapy for Bone Fractures – Board-Certified Orhopedic Surgeon, Wade McKenna DO – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy for Bone Fractures – Board-Certified Orhopedic Surgeon, Wade McKenna DO – Video | dataMarch 6th, 2015
Read All

Stem Cell Therapy | Simple way to regrow cartilage – Video

By raymumme


Stem Cell Therapy | Simple way to regrow cartilage
http://www.arthritistreatmentcenter.com Pioneering simple new technique to re-grow damaged cartilage Jo Willey writing in the UK Express reported researchers from the University of Texas Health...

By: Nathan Wei

View post:
Stem Cell Therapy | Simple way to regrow cartilage - Video

To Read More: Stem Cell Therapy | Simple way to regrow cartilage – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy | Simple way to regrow cartilage – Video | dataMarch 6th, 2015
Read All

Riordan-McKenna Institute of Regenerative Orthopedics and Stem Cell Therapy Announces Open House in Southlake, Texas …

By raymumme

This article was originally distributed via PRWeb. PRWeb, WorldNow and this Site make no warranties or representations in connection therewith.

We cordially invite everyone to attend a special open house event at the Riordan-McKenna Institute of Regenerative Orthopedics and Stem Cell Therapy (RMI) at 801 E. Southlake Blvd. in Southlake, Texas 76092 on Friday, March 6th from 5:30 pm to 7:30 pm. There will be plenty of food, drink and engaging conversation with world-renowned stem cell scientist, Neil H.Riordan, PhD and board-certified orthopedic surgeon, R. Wade McKenna, DO.

Southlake, Texas (PRWEB) March 05, 2015

RMI specializes in Stemnexa non-surgical treatment of acute and chronic orthopedic conditions such as meniscal tears, ACL injuries, rotator cuff injuries, runners knee, tennis elbow, and joint pain due to degenerative conditions like osteoarthritis. Stemnexa may also be administered during orthopedic surgeries to promote better post-surgical outcomes.

Stemnexa combines the latest, patented scientific advances in nearly pain-free bone marrow harvesting with two complimentary cellular technologies: Bone Marrow Aspirate Concentrate (BMAC) and *AlphaGEMS amniotic tissue product.

BMAC contains a patients own mesenchymal stem cells (MSC,) hematopoietic stem cells (CD34+), growth factors and other progenitor cells. AlphaGEMS is composed of collagens and other structural proteins, which provide a biologic matrix that supports angiogenesis, tissue growth and new collagen during tissue regeneration and repair.

*AlphaGEMS product is harvested from donated amniotic sac tissue after normal healthy births. For more information about AlphaGEMS, please visit: http://www.rmiclinic.com/non-surgical-stem-cell-injections-joint-pain/stemnexa-protocol/

Find out more about RMI in the February edition of Society Life Magazine.

Riordan-McKenna Institute

Home

Continue reading here:
Riordan-McKenna Institute of Regenerative Orthopedics and Stem Cell Therapy Announces Open House in Southlake, Texas ...

To Read More: Riordan-McKenna Institute of Regenerative Orthopedics and Stem Cell Therapy Announces Open House in Southlake, Texas …
categoriaUncategorized commentoComments Off on Riordan-McKenna Institute of Regenerative Orthopedics and Stem Cell Therapy Announces Open House in Southlake, Texas … | dataMarch 6th, 2015
Read All

Procedure Overview – The STEM CELL ORTHOPEDIC INSTITUTE of Texas – Video

By raymumme


Procedure Overview - The STEM CELL ORTHOPEDIC INSTITUTE of Texas
Offering new hope for those in pain, Dr. David Hirsch, D.O., and Dr. John Hall, D. O., of The STEM CELL ORTHOPEDIC INSTITUTE of Texas present an overview of ADULT STEM CELL THERAPY from ...

By: David Hirsch

View post:
Procedure Overview - The STEM CELL ORTHOPEDIC INSTITUTE of Texas - Video

To Read More: Procedure Overview – The STEM CELL ORTHOPEDIC INSTITUTE of Texas – Video
categoriaUncategorized commentoComments Off on Procedure Overview – The STEM CELL ORTHOPEDIC INSTITUTE of Texas – Video | dataMarch 4th, 2015
Read All

Stem cell therapy a boon to Parkinson's patients

By raymumme

Bengaluru:Feb 27, 2015, DHNS

Two courses of stem cell therapy have helped Ashok Kumar, 59, who suffered from tremors and rigidity due to Parkinsons disease, recover completely, much to the joy of his family. The man was brought inside my cabin in a wheelchair. He was unable to even sit on the chair without support. Today, he walks independently. Stem cell therapy has made it possible for him, said Dr Naseem Sadiq, Director, Plexus Neuro and Stem Cell Research Centre, who began treating Kumar in October, last year.

Previously, medication and surgical procedure were the only treatment option for Parkinsons disease. Medication in the long-term often lacks effectiveness and may cause side effects, while surgery is not always feasible. Lately, stem cell therapy has turned out to be a boon for patients with Parkinsons, Dr Sadiq said.

Kumar is among the few who have benefited from stem cell therapy. However, though the State has been reporting an increase in the number of registered stem cell donors, it is far behind sufficient as the genetic match between donor and recipient could be anywhere between one in 10,000 and one in two million, according to experts.

Speaking to Deccan Herald, Raghu Rajgopal, co-founder, Datri, a registry for stem cell donation, said, The response we get from Karnataka when we conduct stem cell camps is great. We see a lot of people and registering with us.

As many as 6,000 people have registered from the State under the Datri registry. A total of 72,000 people have registered across the country. In Kerala, 11,000 have signed up, the highest so far, he said.

Among the common myths are that by donating stem cells one turns infertile and weak, have increased chances of cancer and also that there would be excess loss of blood, he said.

According to studies, over one lakh people are diagnosed with Leukemia (blood cancer) and other blood disorders every year in India. The Indian Council of Medical Research has predicted that by the end of 2015, Leukemia cases will reach an estimated 1,17,649 and 1,32,574 by 2020. Stem cell therapy is a widely used treatment mechanism for Leukemia.

Go to Top

Read this article:
Stem cell therapy a boon to Parkinson's patients

To Read More: Stem cell therapy a boon to Parkinson's patients
categoriaUncategorized commentoComments Off on Stem cell therapy a boon to Parkinson's patients | dataFebruary 27th, 2015
Read All

The Reason Same-Sex Couples May One Day Have Biological Kids

By raymumme

null World News Videos | US News VideosCopy

A stem cell research breakthrough might someday allow same-sex couples to have their own biological children.

Researchers at Cambridge University in England have taken the first steps towards creating artificial sperm and eggs by reprogramming skin cells from adults and converting them into embryonic-like stem cells. The team then compared the engineered stem cells with human cells from fetuses to confirm they were in fact, identical.

The researchers published their findings in the journal Cell earlier this week, stressing that its early days for this type of research.

We have succeeded in the first and most important step of the process, Dr. Jacob Hanna, an investigator with the Weizmann Institute of Science in Israel, told ABC News.

Hanna said the team will now attempt to complete the process by creating fully developed artificial sperm and eggs, either in a dish or by implanting them in a rodent. Once this is achieved, the technique could become useful for any individual with fertility problems, he said, including couples of the same sex.

"It has already caused interest from gay groups because of the possibility of making egg and sperm cells from parents of the same sex," Hanna said.

However, the prospect of creating a baby by these artificial means alone is probably a long way off, Hanna said.

It is really important to emphasize that while this scenario might be technically possible and feasible, it is remote at this stage and many challenges need to be overcome, he said. Further, there are very serious ethical and safety issues to be considered when and if such scenarios become considered in the distant future.

The research was funded by the Wellcome Trust and the Britain Israel Research and Academic Exchange Partnership.

Read this article:
The Reason Same-Sex Couples May One Day Have Biological Kids

To Read More: The Reason Same-Sex Couples May One Day Have Biological Kids
categoriaSkin Stem Cells commentoComments Off on The Reason Same-Sex Couples May One Day Have Biological Kids | dataFebruary 25th, 2015
Read All

Europe Approves Holoclar, the First Stem Cell-Based Medicinal Product

By raymumme

PARMA and MODENA, Italy, February 23, 2015 /PRNewswire/ --

The collaborationbetween a public excellent researchcenteranda solidprivate pharmaceuticalcompany allowed toachievean extraordinary result, entirely "made in Italy":the first medicinal productcontainingstem cellsapproved in the Western world

The European Commission has granted a conditional marketing authorization, under Regulation (EC) No 726/2004, to Holoclar, an advanced therapy based on autologous stem cells and capable to restore the eyesight of patients with severe cornea damage. Holoclar is manufactured by Holostem Terapie Avanzate (HolostemAdvanced Therapies) - a spin-off of the University of Modena and Reggio Emilia - at the Centre for Regenerative Medicine "Stefano Ferrari" (CMR) of the same University.

(Logo: http://photos.prnewswire.com/prnh/20150223/731609-a )

(Logo: http://photos.prnewswire.com/prnh/20150223/731609-b )

(Logo: http://photos.prnewswire.com/prnh/20150223/731609-c )

"Holoclaris theveryfirstmedicinalproductbased onstem cellsto beapproved andformallyregisteredin the Western world," states AndreaChiesi, Director of R&D Portfolio Management of Chiesi Farmaceutici S.p.A. and CEO of Holostem Terapie Avanzate. "This record," continues AndreaChiesi,"shows that thepartnershipbetween the public and privatesectorsis not only possible,butisprobably the best strategy for the development of stem cell-based regenerative medicine, particularly when autologous cells are used.Holostemisnowconsideredasabusiness modeltotranslate into clinicstheresultsobtained byscientific researchin this field." Underlying Holoclar are more than 20 years of excellence in research, conducted by a team of internationally renowned scientists in the field of epithelial stem cell biology aimed at clinical translation. European Directive 1394/2007 substantially equalizes advanced cell therapies to medicines and imposes, among other things, that cell cultures has to be manufactured only in GMP-certified facilities (GMP: Good Manufacturing Practice). Thanks to the investments of Chiesi Farmaceutici, the Centre for Regenerative Medicine in Modena - where Holostem operates - was certified as GMP compliant and continue to follow the path towards the registration of this newly developed advanced therapy.

"The authorization processhas been long andcomplex, butthe resultachievedtodayshows thatcellscan beculturedaccording topharmaceutical standardsappropriateto guaranteesafety and efficacy," adds Professor MicheleDeLuca, Scientific Director and co-founder of Holostem, as well as Director of the CMR of the University of Modena. "In addition,ina periodof great confusionabout the realtherapeutic possibilitiesof stem cells,such as the onewe are living in, being ableto demonstratethatstem cells can be definitely safe and successful in a controlled clinical settingismore important than ever." To explain how Holoclar works is Professor GraziellaPellegrini, Coordinator of cell therapy at CMR, as well as director of R&D and co-founder of Holostem, who authored, together with Professor De Luca, the research and designed the product development: "Afterdevelopingcell culturesbased onepithelial stem cellsfor the treatmentofvariousdisorders ofthestratifiedepithelia-from the skinfor full-thicknessburnsto the reconstructionof the urethra-wediscoveredthatthe stem cellsthat allowthe regenerationof the cornearesidein asmall areaatthe borderbetween the cornea(the transparent partat thecenter of the eye)andthe conjunctiva(the contiguous white part),which is called'the limbus'.Whenthermal or chemicalburnsof theocular surfacedamageirreversiblythisstemcellreserve,thecorneal surface-whichin ahealthy eyecompletely renews itself approximatelyeverysix/ninemonths-stopsregeneratingand the conjunctivagraduallybegins tocover thecorneawithawhite coating,thatprevents visionand causes chronicpainandinflammation.Ifinat leastone of the eyes of the patientevenasmallresidueofundamaged limbus is left,we areable to reconstructin a laboratorythe epitheliumthat covers thecorneal surface,thanks to thestem cells harvestedthrough a 1-2mmbiopsy.Thisgraftofepithelium-Holoclar, precisely-that looks likea kind ofcontactlens,is thentransplantedinto the patientandallows to obtain along-termtransparent corneaanda full recoveryof visual acuity,without causing anyrejection reaction,because itconsists of cellsof the patient him/herself."

This therapy, experimentally applied for the first time in humans in the nineties, and designated as orphan drug in 2008, thanks to the registration obtained today, in the near future will be available to all European patients who have suffered workplace injuries (caused, for example, by burnt lime, solvents or acids), domestic accidents (for example eye burns caused in adults and children by detergents or abrasive agents) or - as unfortunately reported by the press in the past few months - in the cases of assault with chemical agents.

Meanwhile, the research in Modena does not stop. The next goal of the team of Emilian researchers and entrepreneurs is to develop new advanced therapy products, such as the gene therapy for the treatment of epidermolysis bullosa, or "Butterfly disease", to date used successfully in the first two patients ever. And to develop new experimental and clinical protocols using different stem cells of stratified epithelia, such as conjunctiva, urethra, oral mucosa and respiratory epithelia.

See more here:
Europe Approves Holoclar, the First Stem Cell-Based Medicinal Product

To Read More: Europe Approves Holoclar, the First Stem Cell-Based Medicinal Product
categoriaUncategorized commentoComments Off on Europe Approves Holoclar, the First Stem Cell-Based Medicinal Product | dataFebruary 23rd, 2015
Read All

What is Bone Marrow Aspirate Concentrate (BMAC) in Stem Cell Therapy? – Video

By raymumme


What is Bone Marrow Aspirate Concentrate (BMAC) in Stem Cell Therapy?
Dr. McKenna explains bone marrow aspirate concentrate (BMAC). BMAC contains stem cells and growth factors that can build blood supply and heal tissue. For more information: http://www.rmiclinic.com...

By: Riordan-McKenna Institute

Continue reading here:
What is Bone Marrow Aspirate Concentrate (BMAC) in Stem Cell Therapy? - Video

To Read More: What is Bone Marrow Aspirate Concentrate (BMAC) in Stem Cell Therapy? – Video
categoriaUncategorized commentoComments Off on What is Bone Marrow Aspirate Concentrate (BMAC) in Stem Cell Therapy? – Video | dataFebruary 21st, 2015
Read All

Luis and Kian King: Juvenile Krabbe Disease victims' mum in plea to help save her twin boys

By raymumme

A devoted mum whose sick twins desperately need a double bone marrow transplant has begged the nation: Please save my boys.

Luis and Kian King, seven, have Juvenile Krabbe Disease, which quickly ravages the nervous system and the youngsters are getting worse by the week.

Parents Laura, 36, and Dean, 38, know the odds are stacked against the boys, as doctors battle to find donors for the UKs first twin transplant, before they become too weak to survive treatment.

The average life expectancy of a child with the rare disease is just 12.

Laura pleaded: If you are not on the donor register you could be the match who can give my boys back their lives and their futures and you dont even realise it.

All of us are giant medicine bottles walking around with the ability to help others in their hour of need. It only takes 10 minutes to join the register and you can change a familys life forever.

Juvenile Krabbe Disease which affects fewer than one in a million children has left the boys, who also have cerebral palsy, unable to walk unaided.

Experts have warned that without a stem cell transplant they only have three years left with any real quality of life.

The disease will rob them of their sight and ability to feed themselves, causing them to suffer more and more pain until they can no longer breathe unaided.

With the boys just five years off the average life expectancy of 12, Laura admits their illness haunts her.

Read more here:
Luis and Kian King: Juvenile Krabbe Disease victims' mum in plea to help save her twin boys

To Read More: Luis and Kian King: Juvenile Krabbe Disease victims' mum in plea to help save her twin boys
categoriaBone Marrow Stem Cells commentoComments Off on Luis and Kian King: Juvenile Krabbe Disease victims' mum in plea to help save her twin boys | dataFebruary 19th, 2015
Read All

Global Stem Cells Group Announces Alliance with Advancells

By raymumme

MIAMI (PRWEB) February 16, 2015

Global Stem Cells Group, Inc. announced an alliance with India-based stem cells company Advancells.com, to share protocols and expand GSCG operations in the India subcontinent with stem cell training and a new treatment center.

Advancells, a pioneer stem cell company with some of the most advanced protocols in the world, focuses on therapeutic applications of regenerative medicine primarily used in stem cells generated from the patients own body. Advancells delivers technologies for safe and effective treatments using their flagship technologies including autologous stem cell therapy from bone marrow and adipose tissue to patients worldwide; Global Stem Cells Group will implement some Advancells technologies in the Regenestem Netowork of worldwide clinics.

Since 2005, Advancells has safely treated thousands of patients for a range of diseases and medical conditions in its various clinics around the globe. Advancells is supported by physicians, stem cell experts and clinical research scientists to continually monitor and improve the effectiveness of its quality management system with excellence and innovation.

"We are pleased to partner with Global Stem Cells Group, to combine our knowledge and expand our ability to bring stem cell medicine to patients worldwide, says Advancells CEO Vipul Jain. I am looking forward to a long and productive alliance.

For more information, visit the Global Stem Cells Group website, email bnovas(AT)stemcellsgroup.com, or call 305-224-1858.

About the Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions. With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

About the Regenestem Network:

Read more:
Global Stem Cells Group Announces Alliance with Advancells

To Read More: Global Stem Cells Group Announces Alliance with Advancells
categoriaUncategorized commentoComments Off on Global Stem Cells Group Announces Alliance with Advancells | dataFebruary 16th, 2015
Read All

Stem cells offer promising key to new malaria drugs: US research

By raymumme

NEW YORK (Thomson Reuters Foundation) - Human stem cells engineered to produce renewable sources of mature, liver-like cells can be grown and infected with malaria to test potentially life-saving new drugs, according to researchers at the Massachusetts Institute of Technology.

The advance comes at a time when the parasitic mosquito-borne disease, which kills nearly 600,000 people every year, is showing increased resistance to current treatment, especially in Southeast Asia, according to the World Health Organization.

The liver-like cells, or hepatocytes, in the MIT study were manufactured from stem cells derived from donated skin and blood samples.

The resulting cells provide a potentially replenishable platform for testing drugs that target the early stage of malaria, when parasites may linger and multiply in the liver for weeks before spreading into the bloodstream.

Sangeeta Bhatia, a biomedical engineer and senior author of the MIT report, told the Thomson Reuters Foundation that the breakthrough study not only showed that these liver-like cells could host a malaria infection but also described a way to mature the young cells so that an adult-like metabolism, necessary for drug development, could be established.

The study is published in the Feb. 5 online issue of Stem Cell Reports.

Stem cells retain the genetic makeup of their donors, affording researchers the potential to test drugs against a large variety of genetic types and a variety of diseases.

"This allows us to explore in depth how different diseases affect different people, in this case malaria," Bob Palay, chairman and CEO of Cellular Dynamics International (CDI), told the Thomson Reuters Foundation.

"This allows you to study it in a dish and find new drugs," he added, noting that CDI uses blood samples for its stem cells.

Before this development, researchers tested new drugs using human liver cells from cadavers and cancerous liver cells.

See the original post:
Stem cells offer promising key to new malaria drugs: US research

To Read More: Stem cells offer promising key to new malaria drugs: US research
categoriaSkin Stem Cells commentoComments Off on Stem cells offer promising key to new malaria drugs: US research | dataFebruary 14th, 2015
Read All

Creation Of Rejuvenated Cell By Stem Cell Therapy – The Line Clinic – Video

By raymumme


Creation Of Rejuvenated Cell By Stem Cell Therapy - The Line Clinic
Stem cell therapy has become reality which was just possibilities and thoughts of science few days before. This amazing innovation makes life more secured an...

By: Nicky Lee

View post:
Creation Of Rejuvenated Cell By Stem Cell Therapy - The Line Clinic - Video

To Read More: Creation Of Rejuvenated Cell By Stem Cell Therapy – The Line Clinic – Video
categoriaUncategorized commentoComments Off on Creation Of Rejuvenated Cell By Stem Cell Therapy – The Line Clinic – Video | dataFebruary 12th, 2015
Read All

The stem-cell miracle is anecdotal

By raymumme

On the weekend, a whos who of hockey legends gathered to pay tribute to Gordie Howe in his hometown of Saskatoon.

In addition to sharing memories about Mr. Hockey, a constant theme of the festivities was his miracle recovery from stroke.

Mr. Howe, 86, suffered two strokes last year and, according to his family, was near death before he travelled to Clinica Santa Clarita in Tijuana, Mexico, in December for experimental stem-cell treatment.

Afterward, Mr. Howe was able to walk again. He regained a lot of weight and he began to resemble his old self. (Most of this is second-hand; Mr. Howe also suffers from dementia and has not or cannot speak of his symptoms or treatment first-hand.)

After his stem-cell treatment, the doctor told us it was kind of an awakening of the body, his son, Marty Howe, told The Canadian Press. They call it the miracle of stem cells and it was nothing less than a miracle.

Mr. Howes Lazarus-like recovery makes for a great tug-at-the-heartstrings narrative for a man whose career has been the embodiment of perseverance and longevity. But if you step back a moment and examine the science, all sorts of alarm bells should go off.

Stem cells, which were discovered in the early 1960s, have the remarkable potential to develop into many different cells, at least in the embryonic stage. They also serve as the bodys internal repair system.

The notion that spinal cords and limbs and heart muscle and brain cells could be regenerated holds a magical appeal.

But, so far, stem-cell therapies have been used effectively to treat only a small number of blood disorders, such as leukemia. (Canada has a public bank that collects stem cells from umbilical-cord blood and a program to match stem-cell donors with needy patients.)

Stem cells also show promise in the treatment of conditions such as spinal-cord injuries, Parkinsons and multiple sclerosis, but those hopes have not yet moved from the realm of science-fiction into clinical medicine.

Read this article:
The stem-cell miracle is anecdotal

To Read More: The stem-cell miracle is anecdotal
categoriaSpinal Cord Stem Cells commentoComments Off on The stem-cell miracle is anecdotal | dataFebruary 10th, 2015
Read All

Hospital pioneers Magneto-style stem cell surgery

By raymumme

HIROSHIMA In a world first, a team at Hiroshima University Hospital on Friday conducted regenerative knee surgery using a technique that employs magnets to concentrate iron-laced stem cells around damaged cartilage, it said.

The endoscopic surgery is less arduous for the patient, said the team led by Mitsuo Ochi, a professor at the hospital. Conventional treatment requires two operations to repair cartilage.

It will take at least a year to determine the effectiveness of the regenerative technique, though previous tests on animals have proven successful, it said.

The team plans to conduct further operations to reaffirm the regenerative surgerys safety in clinical research.

In the operation, the team extracted mesenchymal stem cells from bone marrow of an 18-year-old female high school student and cultivated them with a dash of iron powder to create magnetic stem cells that can develop into various tissues.

The team injected the iron-laced stem cells into the patients right knee joint and used the magnet to concentrate them in areas where cartilage was lost. The stem cells are expected to develop into cartilage.

Cartilage absorbs shock and reduces friction between bones so everything moves smoothly, but its regenerative abilities are limited.

View post:
Hospital pioneers Magneto-style stem cell surgery

To Read More: Hospital pioneers Magneto-style stem cell surgery
categoriaBone Marrow Stem Cells commentoComments Off on Hospital pioneers Magneto-style stem cell surgery | dataFebruary 7th, 2015
Read All

A few cells could prevent bone marrow transplant infections

By raymumme

Bone marrow transplantation is a life-saving therapy for patients with blood cancers like leukemia or lymphoma. However, the depletion of the patient's immune system prior to transplantation can put patients at risk of for an infection by a virus called cytomegalovirus (CMV) that can be life threatening in these immune-compromised individuals. Now, researchers have found that a very small subset of anti-viral immune cells, transplanted along with a donor's blood stem cells, could be enough to fight and even prevent the disease caused by CMV, in research conducted in mice and published Jan 16th in the Journal of Immunology.

Anywhere between 50-80 percent of adults in the United States are infected with CMV, although the virus is kept under control by a healthy immune system. In patients with weakened immune systems, however, CMV can become reactivated and can cause life-threatening pneumonia, among other symptoms. Current treatment includes antiviral medication, but these are not always well tolerated by patients and they also harm the very cells that bone marrow transplantation aims to replenish.

"We know that re-establishment of anti-viral immunity in these patients is critical to fully control cytomegalovirus in bone marrow transplant recipients," says senior author Christopher Snyder, Ph.D., an Assistant Professor of Microbiology and Immunology at Thomas Jefferson University. "Our study suggests that, in addition to infusing stem cells that restore the bone marrow, life-long anti-CMV immunity may be rapidly restored by also infusing a subset of anti-viral immune cells that have stem cell-like properties."

Currently, investigators around the world are experimenting with restoring the immune cells responsible for keeping CMV in check by transplanting those specific anti-viral cells from healthy donors -- a type of immunotherapy. "The problem," says Dr. Snyder, "is that current methods for selecting anti-viral immune cells may inadvertently limit the ability of those cells to restore life-long immunity."

To date, researchers have focused on developing anti-CMV immunotherapy around the "fighter" cells -- called CD8 T effector cells -- that attack and kill virally-infected host cells. These cells are selected and expanded in the lab to increase their numbers, but this process may limit their life-span and ability to divide.

Dr. Snyder and colleagues found that CMV-specific fighter T cells divided poorly in response to CMV infection or reactivation in mouse models. They hypothesized that a different type of CD8 T cells -- one that acts more like a stem cell -- could help control the infection long term. His group showed that a small number of stem-cell like CD8 T cells -called "memory" cells -were enough to produce and repeatedly replenish all of the T-effector cells needed to fight the disease. The infused memory cells became major contributors to the recipient anti-viral immune response, persisting for at least 3 months of time and producing the "fighter" cells at a steady stream.

In order to survey whether these cells have counterparts in humans, the researchers compared the genomic fingerprint -- the profile of genes that were turned up or down -- of mouse and human memory T cells that were specific for CMV and found that the two had similar profiles. "This suggested that human and mouse CMV-specific memory T cells are very similar populations. Therefore infusing similar cells into humans could improve on immunotherapeutic methods for controlling CMV infection," said first author Michael Quinn MD/PhD student in the Department of Microbiology and Immunology at Thomas Jefferson University. "This may be a valuable approach to keep the disease from emerging in people."

"Our data argue for developing new clinical trials focused specifically on using these T memory cells, in order to determine if it would indeed be better than current therapeutic options," said Dr. Snyder.

Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.

Read more:
A few cells could prevent bone marrow transplant infections

To Read More: A few cells could prevent bone marrow transplant infections
categoriaBone Marrow Stem Cells commentoComments Off on A few cells could prevent bone marrow transplant infections | dataFebruary 3rd, 2015
Read All

The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in The Villages, Florida

By raymumme

The Villages, Florida (PRWEB) February 03, 2015

In honor of our new location in The Villages, the Miami Stem Cell Treatment Center announces a series of free public seminars on the use of adult autologous stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief and Dr. Nia Smyrniotis, Medical Director and Surgeon.

The seminars will be held on Tuesday, February 17, 2015, at 10:00am at the La Hacienda Regional Recreation Center, 1200 Avenida Central, The Villages, FL 32159, and at 1:00pm and 3:00pm on February 17th and 1:00pm, 3:00pm and 5:00pm on March 3rd at the Holiday Inn Express and Suites, The Villages, 1205 Avenida Central, The Villages, FL 32159. There will also be a Social Hour with the Doctors at 7:00pm on February 17th and March 3rd at the City Fire American Oven & Lounge at Brownwood (Paddock Square), 2716 Brownwood Blvd., The Villages, FL 32163. Please RSVP for ALL events is mandatory at (561) 331-2999.

Dr. Gionis has been graciously invited to speak to the local MS support group at the 10:00am seminar on February 17 which will be held at the La Hacienda Regional Recreation Center.

The Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages), along with sister affiliates, the Irvine Stem Cell Treatment Center (Irvine; Westlake Villages, California) and the Manhattan Regenerative Medicine Medical Group (Manhattan, New York), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the bodys natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Miami Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and degenerative orthopedic joint conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Miami Stem Cell Treatment Center, they may contact Dr. Gionis or Dr. Smyrniotis directly at (561) 331-2999, or see a complete list of the Centers study areas at: http://www.MiamiStemCellsUSA.com.

About the Miami Stem Cell Treatment Center: The Miami Stem Cell Treatment Center, along with sister affiliates, the Irvine Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Boca Raton, Orlando, Miami and our new office in The Villages, Florida. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.MiamiStemCellsUSA.com, http://www.IrvineStemCellsUSA.com , or http://www.NYStemCellsUSA.com.

Go here to read the rest:
The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in The Villages, Florida

To Read More: The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in The Villages, Florida
categoriaBone Marrow Stem Cells commentoComments Off on The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in The Villages, Florida | dataFebruary 3rd, 2015
Read All

Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research

By raymumme

The Hormel Institute has announced Rebecca Morris, leader of the Stem Cells and Cancer research section, has received a one-year, $100,000 grant from the Minnesota Chemoprevention Consortium to study bone marrow-derived cells as potential new targets for preventing skin cancer.

The consortium includes the University of Minnesota's Hormel Institute, Mayo Clinic, the U of M's Masonic Cancer Center and Hormel Foods Consortium. The consortium goes by the moniker "MC^2."

An online service is needed to view this article in its entirety. You need an online service to view this article in its entirety.

Need an account? Create one now.

kAmQ%96 |r/a C6D62C49 C6=2E6D E@ 2?@E96C AC@;64E =65 3J sC] |@CC:D E92E 92D 366? ECJ:?8 E@ 56E6C>:?6 H96E96C 3@?6 >2CC@H56C:G65 46==D A=2J 2 C@=6 😕 3C62DE 42?46Cj E92E H@C< 92D 366? 7F?565 3J 5@?2E:@?D C2:D65 E9C@F89 pFDE:?VD 2??F2= V!2:?E E96 %@H? !:?6= x?DE:EFE6 AC6DD C6=62D6]k^Am

kAmw@C>6= x?DE:EFE6 H2D 7@F?565 😕 `hca 3J y2J r] w@C>6= 2D A2CE @7 E96 & @7 | 8C25F2E6 D49@@=]k^Am

kAmxE 92D 364@>6 2 =625:?8 42?46CAC6G6?E:@?[ @C 496>@AC6G6?E:@?[ C6D62C49 724:=:EJ[ H:E9 >F=E:A=6 6IA2?D:@? 2E :ED pFDE:? =@42E:@?[ g_` `eE9 pG6] }t] #6D62C49 DEF5:6D 92G6 AC@5F465 52E2 762EFC65 😕 >2;@C D4:6?E:7:4 ;@FC?2=D[ DF49 2D r2?46C !C6G6?E:@? #6D62C49[ r6== #6A@CED[ tq:@|65:4:?6[ ~?4@D4:6?46 2?5 }2EFC6]k^Am

kAm%96 AC@;64ED F?56CE2<6? 3J |@CC:D 2C6 4@?D:56C65 3J w@C>6= x?DE:EFE6 2D 2 DE6A E@H2C5 2AA=J:?8 7@C 255:E:@?2= >2;@C 7656C2= C6D62C49 8C2?5D[ E96 AC6DD C6=62D6 D2JD] k6>my677 w2?D6=k^6>mk^Am

More:
Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research

To Read More: Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research
categoriaSkin Stem Cells commentoComments Off on Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research | dataFebruary 2nd, 2015
Read All

Page 12«..11121314..2030..»


Copyright :: 2025