Page 18«..10..17181920..3040..»

Stem Cell Beauty: The Online Shop Revolutionizing the Beauty Industry

By raymumme

Los Angeles, California (PRWEB) September 03, 2014

Stem Cell technology is the future; looking younger and better without plastic surgery is here now. Stem Cell Beautys debut product line StemLife is spearheading the current beauty renaissance. Among websites that provide stem cell beauty products, Stem Cell Beauty is in a league of its own.

Science is always advancing, why shouldn't your beauty products? questions Albert Faleski, Director of Operations at StemCellBeauty.com.

Most products on the shelves are outdated, whereas we take a different approach to find a formula that works with your body, reinvigorating your own stem cells to provide actual results.

The science behind StemLife is nothing short of groundbreaking. Its trademarked FixT Technology was achieved through reverse engineering to understand how the body maintains and heals itself with our own endogenous combinations of adult stem cells. With this knowledge they developed a means to mimic the natural stem cell processes in our body. Unlike other beauty brands, StemLife uses specific combinations of stem cell types, each cultured under specific state-dependent conditions, using cell types and states that are ideal for the particular tissue. It then creates a set of molecules from multiple stem cell types that is complete and fully formed, rendering maximum benefit and efficiency. This approach of stem cell skin care is extremely unique.

Other leading stem cell-based beauty companies use simpler technology where one stem cell type is chosen to make their molecules. This one-size fits all approach is not efficient and lacks the complexity of StemLifes FixT technology. Some companies mash the cells without allowing their molecules to fully process, which again leads to underachieving results. Many of the largest companies have made no attempt to use new science to formulate better products, providing their customers with over-priced serums proven to be archaic.

StemLifes cutting edge formula is shaping the future of hair regrowth as well, providing an ultramodern solution to those looking to slow the hands of time. Their most popular product, The Advanced Hair Treatment for Women, is essentially the hidden gem the world has been waiting for.

Its popularity stems back to the fact that it actually works. Faleski explained.

Were not big on gimmicks. We prefer showing our customer actual people who have had actual results with our products. After seeing life-changing hair growth with their own eyes, we are confident new customers will try it and have amazing results of their own. The Advanced Hair Treatment for Women is an incredible product that sells itself.

StemLifes most interesting product to date is the Natural Lash & Brow Lash Extend. This product boasts ingredients that are formulated to generate eyelash growth. In a market where eyelash extensions have been the go-to fix for longer lashes, being able to naturally grow them is a revolutionary concept.

Read this article:
Stem Cell Beauty: The Online Shop Revolutionizing the Beauty Industry

To Read More: Stem Cell Beauty: The Online Shop Revolutionizing the Beauty Industry
categoriaSkin Stem Cells commentoComments Off on Stem Cell Beauty: The Online Shop Revolutionizing the Beauty Industry | dataSeptember 3rd, 2014
Read All

Latest Study on Stem Cell Therapy Shows Promising Signs of Recovery for Stroke Patients and Support for StemGenex …

By raymumme

La Jolla, CA (PRWEB) September 03, 2014

A new study, published on Aug. 8th, 2014 in Stem Cells Translational Medicine, has shown the positive effect stem cell therapy has had on a group of patients only 6 months after their treatment. Researchers observed significant improvements in disease-related complications in each of the 5 patients included in the study. Post-treatment brain scans of each patient revealed that stroke-related damage was reduced over time. Further, at six-month follow-ups patients demonstrated improvements in standard measures of stroke-related disability and impairment.

Researchers are being cautiously optimistic when considering these results. Similar improvements are often seen in stroke patients as part of the normal recovery process and state that more thorough studies will need to be completed. Nonetheless, the findings are absolutely astounding as the five patients included in this study suffered severe strokes. Four out of five of the patients had the most serious type of stroke. Normally only 4% of these patients survive and are able to live independently after six months of a stroke occurrence.

Clinical studies for stem cell treatment are currently being offered by StemGenex to patients diagnosed with Stroke and other degenerative neurological diseases. Innovation is truly a driving force for StemGenex. Stroke Patients who receive stem cell treatment through StemGenex receive multiple therapeutic modalities they simply cannot find elsewhere under one roof, said Jeremiah McDole, Director of Scientific Research and Development at StemGenex. Offering targeted therapies that deliver stem cells past the blood brain barrier is essential to providing effective treatment for patients with neurological disorders.

StemGenex takes a unique approach of compassion and empowerment while providing access to the latest stem cell therapies for degenerative neurological diseases including Multiple Sclerosis, Parkinsons Alzheimers disease, and others. Rita Alexander, founder of StemGenex and the companys first stem cell patient, insists that all patients be treated like they are one of our loved ones. Hope, compassion, and the relentless pursuit for an end to these diseases are the primary focus.

To find out more about stem cell therapy, contact StemGenex either by phone at (800) 609-7795 or email Contact@stemgenex.com

See the rest here:
Latest Study on Stem Cell Therapy Shows Promising Signs of Recovery for Stroke Patients and Support for StemGenex ...

To Read More: Latest Study on Stem Cell Therapy Shows Promising Signs of Recovery for Stroke Patients and Support for StemGenex …
categoriaUncategorized commentoComments Off on Latest Study on Stem Cell Therapy Shows Promising Signs of Recovery for Stroke Patients and Support for StemGenex … | dataSeptember 3rd, 2014
Read All

Stem Cell Therapy || Spinal Cord Injury || Investigational …

By raymumme

Spinal Cord Injury

Damage to the spinal cord usually results in impairments or loss of muscle movement, muscle control, sensation and body system control.

Presently, post-accident care for those who suffer spinal cord injuries focuses on extensive physical therapy, occupational therapy, and other rehabilitation therapies; teaching the injured person how to cope with their disability.

A number of published papers and case studies support the feasibility of treating spinal cord injury with allogeneic human umbilical cord tissue-derived stem cells and autologous bone marrow-derived stem cells.

Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report co-authored by Stem Cell Institute Founder Dr. Neil Riordan references many of them. Published improvements include improved ASIA scores, improved bladder and/or bowel function, recovered sexual function, and increased muscle control.

The adult stem cells used in spinal cord injury investigational treatments at the Stem Cell Institute come from two sources: the subjects own bone marrow (autologous mesenchymal and CD34+) and human umbilical cord tissue (allogeneic mesenchymal).

A licensed anesthesiologist harvests bone marrow from both hips under light general anesthesia in a hospital operating room. This procedure takes about 1 1/2 2 hours. Before they are administered to the subject, these bone marrow-derived stem cells must pass testing for quality, bacterial contamination (aerobic and anaerobic) and endotoxin.

All donated umbilical cords are screened for viruses and bacteria to International Blood Bank Standards.

Our stem cell clinical protocol for spinal cord injury calls for a total of 16 injections over the course of 4 weeks.

View original post here:
Stem Cell Therapy || Spinal Cord Injury || Investigational ...

To Read More: Stem Cell Therapy || Spinal Cord Injury || Investigational …
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Therapy || Spinal Cord Injury || Investigational … | dataSeptember 2nd, 2014
Read All

A new term for teachers sparks interest in tooth stem cell banking — Source:BioEden

By raymumme

(PRWEB UK) 2 September 2014

Schools in the UK are preparing to become actively involved in helping to educate parents and children on the health benefits of stem cell banking.

BioEden the specialist tooth stem cell bank are producing educational materials for schools which includes a delightfully illustrated book Nothing but the Tooth which is available from today.

The book although a fun fictional piece starring a 21st Century Super Tooth Fairy and a small boy called Nigel, is based on fact and educates both children and adults alike on stem cell banking from teeth. The book follows Nigel as he visits the BioEden stem cell laboratory and brings home to the reader why stem cell banking today is a simple yet invaluable way of storing good health for the future.

It is now known that naturally shed milk teeth in young children contain a vital source of mesenchymal stem cells. These cells have the ability to morph into other types of cells and can create cartilage, tissue, skin and bone.

As the teeth fall out naturally, the process of harvesting cells is non-invasive and many parents choose this method for this very reason. Stem cell banking from teeth is also the least expensive form of banking and parents can now pay a low monthly fee, instead of a single sum.

As there is no telling exactly when a tooth will fall, despite the tell-tale wobble, a spare tooth collection capsule is provided for the school so that if the tooth falls out in the classroom or playground, the tooth can be safely collected and stored without delay.

The BioEden process is so simple that the teacher is merely required to place the tooth into the capsule with some fresh cows milk, place in a refrigerator, and then notify the parent or guardian.

BioEden have been invited into schools from late September and will be supported by TV Celebrity Cook Sally Bee, whose own children have their stem cells stored with the bank. Sally has a rare heart condition, and it was her personal experience that led her to bank her childrens stem cells.

View post:
A new term for teachers sparks interest in tooth stem cell banking -- Source:BioEden

To Read More: A new term for teachers sparks interest in tooth stem cell banking — Source:BioEden
categoriaSkin Stem Cells commentoComments Off on A new term for teachers sparks interest in tooth stem cell banking — Source:BioEden | dataSeptember 2nd, 2014
Read All

Cardiac stem cells have been discovered | Voxxi

By raymumme

The medical community has long thought the heart muscle had zero regenerative ability; once it was damaged or otherwise made ineffective, there was no chance of the body making new cells to replace the old ones. That way of thinking is about to change, however, thanks to a new study from Vanderbilt University.

Cardiac stem cells, cells that can create new heart muscle, have been identified inside arteries. The discovery came about as scientists closely examined endothelial cells that line the inner surface of blood vessels. These cells have been known to generate other cells types during mammalian development.

SEE ALSO: Heart attack signs and symptoms in women

People thought that the same heart you had as a young child, you had as an old man or woman as well, said researcher Antonis Hatzopoulos in a press release. Our study suggests that coronary artery disease could lead to heart failure not only by blocking the arteries and causing heart attacks, but also by affecting the way the heart is maintained and regenerated.

What Hatzopoulos and his team suggest is that while the body is healthy and the heart is functioning at a normal level, the cardiac stem cells in the arteries maintain the heart muscle, regenerating cells as needed. When illness like coronary artery disease or a medical emergency like a heart attack occur, these stem cells stop making healthy muscle tissue and start making scar tissue instead. This switch can further complicate heart failure by creating another way arteries become blocked.

It looks like the same endothelial system generates myocytes (muscle cells) during homeostasis and then switches to generate scar tissue after a myocardial infarction. After injury, regeneration turns to fibrosis, said Hatzopoulos. If we can understand the molecular mechanisms that regulate the fate switch that happens after injury, perhaps we can use some sort of chemical or drug to restore regeneration and make muscle instead of scar. We think there is an opportunity here to improve the way we treat people who come into the clinic after myocardial infarction (heart attack).

SEE ALSO: Heart attacks increase health issues in partners, spouses

The key in future research will be to uncover why the cardiac stem cells in the arteries switch from making healthy cells to making scar tissue cells. By learning to control this switch, experts may be able to one day encourage the body to make new heart tissue after a heart attack or to combat age and other disease issues.

See original here:
Cardiac stem cells have been discovered | Voxxi

To Read More: Cardiac stem cells have been discovered | Voxxi
categoriaCardiac Stem Cells commentoComments Off on Cardiac stem cells have been discovered | Voxxi | dataAugust 29th, 2014
Read All

IPS Cell Therapy | Stem Cells Research

By raymumme

A lot of individuals are regularly making an effort to find the best medications available today because of the presence of a lot of illnesses in the world. New treatments and variations of old ones are hitting the market because of this growing need of people and one of the newest alternatives to medication that experts have come up with is referred to as induced Pluripotent Stem Cell Therapy, also called iPS Cell Therapy or iPSC Therapy. What is Induced Pluripotent Stem Cell therapy?

Regardless if the entire thing is controversial, a ton of experts continue to show interest when it comes to stem cell therapy. Grown inside the laboratory, people are injected with transmuted cells to replace cells that are unhealthy. This is what science fiction is made of, but now almost a reality.

The thing about stem cell therapy is that it garnered and continues to garner a lot of bad publicity in line with moral and ethical concerns. Several years ago, people saw to it that no further research was done on embryonic stem cells but in 2006, studies were conducted by the Japanese but this time, they used mouse cells. More and more people became mindful of and interested in iPSC because of this shift in events.

About 5 years ago, the University of Wisconsin found a way to study iPSC with the help of adult human cells. The thing about iPSC is that people only had problems with the studies when embryonic stem cells were utilized. Because of such an event, efforts have been made to include iPSC processes in Regenerative or Reparative Medicine.

Various illnesses can affect daily living from arthritis to diabetes to burns and iPSC therapies can be a solution to these provided that adequate research is conducted. What you have here can also be utilized for diseases that are genetic in nature like cancer for example. Aside from dealing with spinal cord issues, there is also a chance that iPSC can be used to cure Parkinsons and Alzheimers disease.

There is so much potential in stem cell therapy. Imagine how much good it will do to mankind if healthy cells may scientifically be produced in laboratories and injected into patients. For people with cancer, the cancerous cells can easily be replaced with the ones that are healthy.

What you have here can change the way people look at disease and pain.. Not having to rely on the human body for cell regeneration is something that can lead to thousands of opportunities in health. There is still a need to perfect current research efforts on the matter but this is surely beyond science fiction.

Other than yet merely in experimental stage, the therapies are also very costly. These therapies need more time for experimentation and more years are necessary if you want to lower the costs of the therapies. But scientists remain hopeful.

One of the most popular therapies in line with stem cells these days is bone marrow transplantation. There are various patients that have different cancers related to the bone marrow or blood and this is what this transplantation serves to treat. It is a risky procedure, however, and may have several complications.

In various countries, scientists get support for this type of research. It may take years before people can rely on iPS Cell therapy on a regular basis but even if this is so, all the hard work will surely be well worth it because of the countless benefits that this form of therapy can bring. Pain and disease will be no match for science once this form of therapy is completed.

Originally posted here:
IPS Cell Therapy | Stem Cells Research

To Read More: IPS Cell Therapy | Stem Cells Research
categoriaIPS Cell Therapy commentoComments Off on IPS Cell Therapy | Stem Cells Research | dataAugust 29th, 2014
Read All

Stem cell treatment helps arthritic dogs

By raymumme

Stem cells heal pooches in pain MIKE MATHER

NICK REED/Fairfax NZ

HAPPY HOUND: Shiloh with owner Adele Holland. She is a different dog since having stem cell injections to relieve arthritis pain, Holland says.

Three years ago australian shepherd dog Shiloh was diagnosed with a severe case of degenerative arthritis that left her limping slowly towards her deathbed.

As time went on, and to the dismay of her Horotiu family, Shiloh became increasingly stiff, was soon no longer able to jump, could barely walk without pain, and eventually had to be carried outside to the toilet.

But, remarkably, the 10-year-old pet is not only still alive today, she is walking and jumping without a trace of pain.

It's a physical improvement her owner Adele Holland describes as "nothing short of a miracle".

Shiloh's recovery is something dozens of arthritic Waikato dogs have now experienced after stem cell injections, a treatment technique adopted by Hamilton veterinarian practice CareVets.

Veterinarian Ivan Aleksic said Shiloh was the first dog to receive stem cells. His practice had successfully repeated the $2600 treatment on more than 40 dogs with arthritis. He described stem cells as "the body's own repair cells".

"They have the ability to divide and differentiate into many different types of cells based on where they are needed throughout the body. They can divide and turn into tissues such as skin, fat, muscle, bone, cartilage and nerve to name a few.

The rest is here:
Stem cell treatment helps arthritic dogs

To Read More: Stem cell treatment helps arthritic dogs
categoriaSkin Stem Cells commentoComments Off on Stem cell treatment helps arthritic dogs | dataAugust 27th, 2014
Read All

AFL approves stem-cell treatment

By raymumme

An Australian-based biomedical company has been given approval from the AFL to use stem-cell therapy on players recovering from injury.

Sydney-based Regeneus has revealed it was recently given permission for its HiQCell treatment on players suffering from such issues as osteoarthritis and tendinopathy.

The treatment is banned by the World Anti-Doping Agency if it is performance-enhancing but allowed if it is solely to treat injuries.

Regeneus commercial development director Steven Barberasaid the regenerative medicine company had sought approval from the AFL for what the company says is "innovative but not experimental" treatment.

Advertisement

"In 2013, Regeneus sought and received clearance from ASADA [Australian Sports Anti-Doping Authority] for its proprietary HiQCell therapy for use with athletes who participate in sporting competitions subject to the WADA Anti-Doping Code. The AFL is one of many professional sports bodies which applies the WADA Anti-Doping Code within its regulations for players," he said.

"In March this year, the AFL introduced a Prohibited Treatments List as an additional level of scrutiny over and above the WADA code for player treatments. In light of this, Regeneus made a submission to the AFL to confirm that our specific treatment is not prohibited under that list. Subsequently, the chief medical officer of the AFL has recently communicated with our primary Melbourne-based HiQCell medical practitioner that the treatment is not prohibited and can be administered on a case-by-case basis to players.

"We anticipate documented confirmation of this outcome in the near future from the AFL.

"To our knowledge, the permission is specific to HiQCell and not necessarily to cell-based therapies in general."

The AFL confirmed it had given approval on a "case-by-case" basis.

Follow this link:
AFL approves stem-cell treatment

To Read More: AFL approves stem-cell treatment
categoriaUncategorized commentoComments Off on AFL approves stem-cell treatment | dataAugust 24th, 2014
Read All

Wisconsin girl meets marrow donor who saved her life

By raymumme

HOWARD, Wis. -- A northeastern Wisconsin girl, who would have died without a bone marrow transplant, has finally met the man whose donation saved her life.

About three years ago, Mira Erdmann was diagnosed with an auto-immune disease that affects about one in a million people. Doctors said a bone marrow transplant was the Howard girl's only chance of survival.

Christian Werth of Germany found out he was Mira's match just three months after he became a donor, WBAY-TV reported.

"That brought me tears. I sat at home. I called my wife. She was at work, and I told her, I said 'It was for a little girl,' " Werth said.

His stem cells were harvested and sent to Mira's doctors in the U.S. Mira received the transplant and pulled through despite several complications and a tentative outcome.

"My part was the smallest one, but it's cool to see that she's now so happy and healthy after all that," Werth said.

The Werths and the Erdmanns initially communicated through letters because registry rules require anonymity for two years.

"When we received letters, there was something blacked out or it was something made to where we couldn't read it," Werth said. "We took a flashlight behind to find some information!"

Werth and his wife flew to Wisconsin to meet with the Erdmanns this week.

"It was almost surreal, because we had been chatting with him on Skype since December, so to see him in person, I thought I would never let him go," Mira's mother, Tania Erdmann, said. "We cried and we hugged, and it was just really emotional."

Original post:
Wisconsin girl meets marrow donor who saved her life

To Read More: Wisconsin girl meets marrow donor who saved her life
categoriaBone Marrow Stem Cells commentoComments Off on Wisconsin girl meets marrow donor who saved her life | dataAugust 23rd, 2014
Read All

Anti-Abortion Activists Are Doing Their Own Ice Bucket Challenges

By raymumme

Because the ALS Association supports stem-cell research.

The Ice Bucket Challenge has been the biggest viral-charity sensation of the year, and maybe ever reaching its cold, wet arms all the way to George W. Bush and Anna Wintour, and raising millions of dollars for ALS research along with providing an immaculate blooper reel.

But one group is not pleased by all your Facebook videos: anti-abortion activists, who are mad that the ALS Association gives money to a group that supports stem-cell research.

"Attention pro-lifers: be careful where you send your ALS Ice Bucket Challenge donation," blared a headline on LifeNews.com earlier this week. The article explained that the ALS Association, one of the charities receiving ice-bucket donations, gave $500,000 last year to the Northeast ALS Consortium, which in turn had been affiliated with a clinical trial that used "stem cells ... engineered from the spinal cord of a single fetus electively aborted after eight weeks of gestation. The tissue was obtained with the mothers consent."

"Of course the fetus, from whom the 'tissue' was taken, did not 'give consent,'" LifeNews.com wrote. "So if you give to the ALS Association your money may end up supporting clinical trials that use aborted fetal cells."

Following the report, the Cincinnati Archdiocese warned Catholic school principals not to send donations to the ALS Association, andsome anti-abortion activists have begun making their own "pro-life Ice Bucket Challenge" videos.

CBN News, the Christian TV channel that broadcasts Pat Robertson's 700 Club, put a video of its Ice Bucket Challenge on Facebook, but not without informing its audience that the donations from the challenge would go to "an organization that does not support or use embryonic stem cell research."

Meanwhile, a 2013 FDA-approved study using human stem cells resulted in slowing the progression of ALS to an "extraordinary" degree.

See the original post here:
Anti-Abortion Activists Are Doing Their Own Ice Bucket Challenges

To Read More: Anti-Abortion Activists Are Doing Their Own Ice Bucket Challenges
categoriaSpinal Cord Stem Cells commentoComments Off on Anti-Abortion Activists Are Doing Their Own Ice Bucket Challenges | dataAugust 22nd, 2014
Read All

Biologists Reprogram Skin Cells to Mimic Rare Disease

By raymumme

Released: 19-Aug-2014 11:30 AM EDT Embargo expired: 21-Aug-2014 12:00 PM EDT Source Newsroom: Johns Hopkins Medicine Contact Information

Available for logged-in reporters only

Newswise Johns Hopkins stem cell biologists have found a way to reprogram a patients skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. The process requires growing the skin cells in a bath of proteins and chemical additives while turning on a gene to produce neural crest cells, which give rise to several adult cell types. The researchers say their work substantially expedites the creation of neural crest cells from any patient with a neural crest-related disorder, a tool that lets physicians and scientists study each patients disorder at the cellular level.

Previously, the same research team produced customized neural crest cells by first reprogramming patient skin cells into induced pluripotent stem (iPS) cells, which are similar to embryonic stem cells in their ability to become any of a broad array of cell types.

Now we can circumvent the iPS cells step, saving seven to nine months of time and labor and producing neural crest cells that are more similar to the familial dysautonomia patients cells, says Gabsang Lee, Ph.D., an assistant professor of neurology at the Institute for Cell Engineering and the studys senior author. A summary of the study will be published online in the journal Cell Stem Cell on Aug. 21.

Neural crest cells appear early in human and other animal prenatal development, and they give rise to many important structures, including most of the nervous system (apart from the brain and spinal cord), the bones of the skull and jaws, and pigment-producing skin cells. Dysfunctional neural crest cells cause familial dysautonomia, which is incurable and can affect nerves ability to regulate emotions, blood pressure and bowel movements. Less than 500 patients worldwide suffer from familial dysautonomia, but dysfunctional neural crest cells can cause other disorders, such as facial malformations and an inability to feel pain.

The challenge for scientists has been the fact that by the time a person is born, very few neural crest cells remain, making it hard to study how they cause the various disorders.

To make patient-specific neural crest cells, the team began with laboratory-grown skin cells that had been genetically modified to respond to the presence of the chemical doxycycline by glowing green and turning on the gene Sox10, which guides cells toward maturation as a neural crest cell.

Testing various combinations of molecular signals and watching for telltale green cells, the team found a regimen that turned 2 percent of the cells green. That combination involved turning on Sox10 while growing the cells on a layer of two different proteins and giving them three chemical additives to rewind their genetic memory and stimulate a protein network important for development.

Analyzing the green cells at the single cell level, the researchers found that they showed gene activity similar to that of other neural crest cells. Moreover, they discovered that 40 percent were quad-potent, or able to become the four cell types typically derived from neural crest cells, while 35 percent were tri-potent and could become three of the four. The cells also migrated to the appropriate locations in chick embryos when implanted early in development.

Originally posted here:
Biologists Reprogram Skin Cells to Mimic Rare Disease

To Read More: Biologists Reprogram Skin Cells to Mimic Rare Disease
categoriaSkin Stem Cells commentoComments Off on Biologists Reprogram Skin Cells to Mimic Rare Disease | dataAugust 22nd, 2014
Read All

MIT scientists use polymer scaffold to stimulate bone growth

By raymumme

A team of chemical engineers from MIT has developed a new method of stimulating bone growth, by utilizing the same chemical processes that occur naturally in the human body following an injury such as a broken or fractured bone. The technique involves the insertion of a porous scaffold coated with growth factors that prompt the body's own cells to naturally mend the damaged or deformed bone.

Current techniques for replacing or mending damaged bone often include a bone transplant from another area of the patient's body. This is an expensive, painful, and often inadequate option for treatment, as it is difficult to harvest enough bone to successfully treat the wound. Due to the inadequacies of the current forms of bone replacement treatment, a number of scaffold-based approaches are in development, however few are as promising as the tissue scaffold presented by the team from MIT.

The new method would seek to mimic the natural steps taken by the human body to encourage bone growth without the unpleasant necessity of extracting further bone from the patient's body. After a break or fracture, the body releases both platelet-derived growth factors, (PDGF) and bone morphogenetic protein 2 (BMP-2), in order to stimulate natural bone regeneration. These factors essentially recruit other immature cells, coaxing them to become osteoblasts, a cell type with the capacity to create new bone. At the same time, the PDFG and BMP-2 provide a supporting structure around which the bone can be rebuilt.

The 0.1 mm-thick polymer scaffold sheet developed by the scientists from MIT would appear to successfully mimic this biological process, releasing the growth factors in the correct order and quantity, essentially tricking the body into thinking it had initiated the healing process itself. Previous attempts at biomimicry in this area have failed due to an inability to release the growth factors in a natural and controlled fashion, causing the body to clear the factors away from the wound before they could have any substantial healing effect.

The scaffold has the potential to do away with the painful, invasive procedures currently used to repair/replace bone (Image: MIT)

"You want the growth factor to be released very slowly and with nanogram or microgram quantities, not milligram quantities," States Paula Hammond, member of MIT's Koch Institute for Integrative Cancer Research and Department of Engineering, and senior author on the paper outlining the results of the study. "You want to recruit these native adult stem cells we have in our bone marrow to go to the site of injury and then generate bone around the scaffold, and you want to generate a vascular system to go with it."

The measured release of growth factors is achieved by layering the porous scaffold with around 40 layers of BMP-2, followed by another 40 layers of PDGF. Once the layering process is complete, medical practitioners can cut out segments of the scaffold, tailoring the treatment to fit any size of wound. Furthermore, once the treatment has run its course and the bone has been regrown, the biodegradable scaffold is safely adsorbed into the body, leaving no harmful traces as a by-product of the procedure.

The scaffold has been tested in the lab by administering the treatment to rats with skull deficiencies too large to be healed without the aid of outside stimuli. It was found that the initial release of the PDGF created a healing cascade, mobilizing cells important to the rebuilding process to move to the site of the deformity. The BMP-2 then went to work inducing a number of the cells to become osteoblasts, which would go on to create the new bone.

Only two weeks after the initial transplant, it was found that fresh bone had been created that was indistinguishable in nature from the natural bone found in the surrounding areas of the skull. Looking to the future, the team hopes to test the technique on larger animals, with the long-term goal of advancing to clinical trials.

A paper covering the research carried out by the team from MIT has been published in the journal Proceedings of the National Academy of Sciences of the United States of America.

Read the original post:
MIT scientists use polymer scaffold to stimulate bone growth

To Read More: MIT scientists use polymer scaffold to stimulate bone growth
categoriaBone Marrow Stem Cells commentoComments Off on MIT scientists use polymer scaffold to stimulate bone growth | dataAugust 21st, 2014
Read All

Stem Cells Reveal How Illness-Linked Genetic Variation Affects Neurons

By raymumme

Contact Information

Available for logged-in reporters only

Newswise A genetic variation linked to schizophrenia, bipolar disorder and severe depression wreaks havoc on connections among neurons in the developing brain, a team of researchers reports. The study, led by Guo-li Ming, M.D., Ph.D., and Hongjun Song, Ph.D., of the Johns Hopkins University School of Medicine and described online Aug. 17 in the journal Nature, used stem cells generated from people with and without mental illness to observe the effects of a rare and pernicious genetic variation on young brain cells. The results add to evidence that several major mental illnesses have common roots in faulty wiring during early brain development.

This was the next best thing to going back in time to see what happened while a person was in the womb to later cause mental illness, says Ming. We found the most convincing evidence yet that the answer lies in the synapses that connect brain cells to one another.

Previous evidence for the relationship came from autopsies and from studies suggesting that some genetic variants that affect synapses also increase the chance of mental illness. But those studies could not show a direct cause-and-effect relationship, Ming says.

One difficulty in studying the genetics of common mental illnesses is that they are generally caused by environmental factors in combination with multiple gene variants, any one of which usually could not by itself cause disease. A rare exception is the gene known as disrupted in schizophrenia 1 (DISC1), in which some mutations have a strong effect. Two families have been found in which many members with the DISC1 mutations have mental illness.

To find out how a DISC1 variation with a few deleted DNA letters affects the developing brain, the research team collected skin cells from a mother and daughter in one of these families who have neither the variation nor mental illness, as well as the father, who has the variation and severe depression, and another daughter, who carries the variation and has schizophrenia. For comparison, they also collected samples from an unrelated healthy person. Postdoctoral fellow Zhexing Wen, Ph.D., coaxed the skin cells to form five lines of stem cells and to mature into very pure populations of synapse-forming neurons.

After growing the neurons in a dish for six weeks, collaborators at Pennsylvania State University measured their electrical activity and found that neurons with the DISC1 variation had about half the number of synapses as those without the variation. To make sure that the differences were really due to the DISC1 variation and not to other genetic differences, graduate student Ha Nam Nguyen spent two years making targeted genetic changes to three of the stem cell lines.

In one of the cell lines with the variation, he swapped out the DISC1 gene for a healthy version. He also inserted the disease-causing variation into one healthy cell line from a family member, as well as the cell line from the unrelated control. Sure enough, the researchers report, the cells without the variation now grew the normal amount of synapses, while those with the inserted mutation had half as many.

We had our definitive answer to whether this DISC1 variation is responsible for the reduced synapse growth, Ming says.

Original post:
Stem Cells Reveal How Illness-Linked Genetic Variation Affects Neurons

To Read More: Stem Cells Reveal How Illness-Linked Genetic Variation Affects Neurons
categoriaSkin Stem Cells commentoComments Off on Stem Cells Reveal How Illness-Linked Genetic Variation Affects Neurons | dataAugust 16th, 2014
Read All

Tissue development 'roadmap' created to guide stem cell medicine

By raymumme

In a boon to stem cell research and regenerative medicine, scientists at Boston Children's Hospital, the Wyss Institute for Biologically Inspired Engineering at Harvard University and Boston University have created a computer algorithm called CellNet as a "roadmap" for cell and tissue engineering, to ensure that cells engineered in the lab have the same favorable properties as cells in our own bodies. CellNet and its application to stem cell engineering are described in two back-to-back papers in the August 14 issue of the journal Cell.

Scientists around the world are engaged in culturing pluripotent stem cells (capable of forming all the body's tissues) and transforming them into specialized cell types for use in research and regenerative medicine. Available as an Internet resource for any scientist to use, CellNet provides a much needed "quality assurance" measure for this work.

The two papers also clarify uncertainty around which methods are best for stem cell engineering, and should advance the use of cells derived from patient tissues to model disease, test potential drugs and use as treatments. For example, using CellNet, one of the studies unexpectedly found that skin cells can be converted into intestinal cells that were able to reverse colitis in a mouse model.

"To date, there has been no systematic means of assessing the fidelity of cellular engineering -- to determine how closely cells made in a petri dish approximate natural tissues in the body," says George Q. Daley, MD, PhD, Director of the Stem Cell Transplantation Program at Boston Children's and senior investigator on both studies. "CellNet was developed to assess the quality of engineered cells and to identify ways to improve their performance."

Gene Signatures

CellNet applies network biology to discover the complex network of genes that are turned on or off in an engineered cell, known as the cell's Gene Regulatory Network or GRN. It then compares that network to the cell's real-life counterpart in the body, as determined from public genome databases. Through this comparison, researchers can rigorously and reliably assess:

"CellNet will also be a powerful tool to advance synthetic biology -- to engineer cells for specific medical applications," says James Collins, PhD, Core Faculty member at the Wyss Institute and the William F. Warren Distinguished Professor at Boston University, co-senior investigator on one of the studies.

Putting CellNet to the Test

The researchers -- including co-first authors Patrick Cahan, PhD and Samantha Morris, PhD, of Boston Children's, and Hu Li, PhD, of the Mayo Clinic, first used CellNet to assess the quality of eight kinds of cells created in 56 published studies.

In a second study, they applied CellNet's teachings to a recurring question in stem cell biology: Is it feasible to directly convert one specialized cell type to another, bypassing the laborious process of first creating an iPS cell? This study looked at two kinds of directly converted cells: liver cells made from skin cells, and macrophages made from B cells.

Read more from the original source:
Tissue development 'roadmap' created to guide stem cell medicine

To Read More: Tissue development 'roadmap' created to guide stem cell medicine
categoriaUncategorized commentoComments Off on Tissue development 'roadmap' created to guide stem cell medicine | dataAugust 15th, 2014
Read All

Cell discovery brings blood disorder cure closer

By raymumme

A cure for a range of blood disorders and immune diseases is in sight, according to scientists who have unravelled the mystery of stem cell generation.

The Australian study, led by researchers at the Australian Regenerative Medicine Institute (ARMI) at Monash University and the Garvan Institute of Medical Research, is published today in Nature. It identifies for the first time mechanisms in the body that trigger hematopoietic stem cell (HSC) production.

Found in the bone marrow and in umbilical cord blood, HSCs are critically important because they can replenish the body's supply of blood cells. Leukemia patients have been successfully treated using HSC transplants, but medical experts believe blood stem cells have the potential to be used more widely.

Lead researcher Professor Peter Currie, from ARMI explained that understanding how HSCs self-renew to replenish blood cells is a "Holy Grail" of stem cell biology.

"HSCs are one of the best therapeutic tools at our disposal because they can make any blood cell in the body. Potentially we could use these cells in many more ways than current transplantation strategies to treat serious blood disorders and diseases, but only if we can figure out how they are generated in the first place. Our study brings this possibility a step closer," he said.

A key stumbling block to using HSCs more widely has been an inability to produce them in the laboratory setting. The reason for this, suggested from previous research, is that a molecular 'switch' may also be necessary for HSC formation, though the mechanism responsible has remained a mystery, until now.

In this latest study, ARMI researchers observed cells in the developing zebra fish -- a tropical freshwater fish known for its regenerative abilities and optically clear embryos -- to gather new information on the signalling process responsible for HSC generation.

Using high-resolution microscopy researchers made a film of how these stem cells form inside the embryo, which captured the process of their formation in dramatic detail.

Professor Currie said when playing back these films they noticed that HSCs require a "buddy" cell type to help them form. These "buddies," known as endotome cells, have stem cell inducing properties,

"Endotome cells act like a comfy sofa for pre HSCs to snuggle into, helping them progress to become fully fledged stem cells. Not only did we identify some of the cells and signals required for HSC formation, we also pinpointed the genes required for endotome formation in the first place," Professor Currie said.

Link:
Cell discovery brings blood disorder cure closer

To Read More: Cell discovery brings blood disorder cure closer
categoriaUncategorized commentoComments Off on Cell discovery brings blood disorder cure closer | dataAugust 14th, 2014
Read All

Matrix stiffness is an essential tool in stem cell differentiation, bioengineers report

By raymumme

4 hours ago Cells grown on hydrogels of the same stiffness all display fat cell markers and deform the underlying matrix material the same way. Credit: Adam Engler, UC San Diego Jacobs School of Engineering

Bioengineers at the University of California, San Diego have proven that when it comes to guiding stem cells into a specific cell type, the stiffness of the extracellular matrix used to culture them really does matter. When placed in a dish of a very stiff material, or hydrogel, most stem cells become bone-like cells. By comparison, soft materials tend to steer stem cells into soft tissues such as neurons and fat cells. The research team, led by bioengineering professor Adam Engler, also found that a protein binding the stem cell to the hydrogel is not a factor in the differentiation of the stem cell as previously suggested. The protein layer is merely an adhesive, the team reported Aug. 10 in the advance online edition of the journal Nature Materials.

Their findings affirm Engler's prior work on the relationship between matrix stiffness and stem cell differentiations.

"What's remarkable is that you can see that the cells have made the first decisions to become bone cells, with just this one cue. That's why this is important for tissue engineering," said Engler, a professor at the UC San Diego Jacobs School of Engineering.

Engler's team, which includes bioengineering graduate student researchers Ludovic Vincent and Jessica Wen, found that the stem cell differentiation is a response to the mechanical deformation of the hydrogel from the force exerted by the cell. In a series of experiments, the team found that this happens whether the protein tethering the cell to the matrix is tight, loose or nonexistent. To illustrate the concept, Vincent described the pores in the matrix as holes in a sponge covered with ropes of protein fibers. Imagine that a rope is draped over a number of these holes, tethered loosely with only a few anchors or tightly with many anchors. Across multiple samples using a stiff matrix, while varying the degree of tethering, the researchers found no difference in the rate at which stem cells showed signs of turning into bone-like cells. The team also found that the size of the pores in the matrix also had no effect on the differentiation of the stem cells as long as the stiffness of the hydrogel remained the same.

"We made the stiffness the same and changed how the protein is presented to the cells (by varying the size of the pores and tethering) and ask whether or not the cells change their behavior," Vincent said. "Do they respond only to the stiffness? Neither the tethering nor the pore size changed the cells."

"We're only giving them one cue out of dozens that are important in stem cell differentiation," said Engler. "That doesn't mean the other cues are irrelevant; they may still push the cells into a specific cell type. We have just ruled out porosity and tethering, and further emphasized stiffness in this process."

Explore further: Researchers find stem cells remember prior substrates

More information: Interplay of matrix stiffness and protein tethering in stem cell differentiation, Nature Materials, DOI: 10.1038/nmat4051

(Phys.org) A team of researchers working at the University of Colorado has found that human stem cells appear to remember the physical nature of the structure they were grown on, after being moved to a ...

View post:
Matrix stiffness is an essential tool in stem cell differentiation, bioengineers report

To Read More: Matrix stiffness is an essential tool in stem cell differentiation, bioengineers report
categoriaCardiac Stem Cells commentoComments Off on Matrix stiffness is an essential tool in stem cell differentiation, bioengineers report | dataAugust 10th, 2014
Read All

Global Stem Cells Group and Regenestem Announce Launch of Stem Cell Treatment Center in Cozumel, Mexico

By raymumme

Miami (PRWEB) August 10, 2014

Regenestem, a division of the Global Stem Cells Group, Inc., has announced the launch of a new stem cell treatment center in Cozumel, Mexico, offering the most advanced protocols and techniques in cellular medicine to patients from around the world.

A team of stem cell medical professionals led by Rafael Moguel, M.D., an advocate and pioneer in the use of stem cell therapies to treat a range of medical conditions, will provide cutting edge therapies and follow-up treatment under the Regenestem brand.

In June, Global Stem Cells Group opened the Regenestem Asia Clinic in Manila, Philippines, adding a new state-of-the-art regenerative medicine facility to the company's growing global presence that includes clinics in Miami, New York, Los Angeles, and Dubai. Regenestem Asia facility marks the first Regenestem brand clinic in the Philippines.

Regenestem provides stem cell treatments for a variety of diseases and conditions, including arthritis, autism, chronic obstructive pulmonary disease (COPD), diabetes, and multiple sclerosis at various facilities worldwide. Regenestem Mexico will have an international staff experienced in administering the leading cellular therapies available.

Regenestem Mexico is certified for the medical tourism market, and staff physicians are board-certified or board-eligible. Regenestem clinics provide services in more than 10 specialties, attracting patients from the United States and around the world.

The Global Stem Cells Group and Regenestem are committed to the highest of standards in service and technology, expert and compassionate care, and a philosophy of exceeding the expectations of their international patients.

For more information, visit the Regenestem website, email info(at)regenstem(dot)com, or call 305-224-1858.

About Regenestem:

Regenestem, a division of the Global Stem Cells Group, Inc., is an international medical practice association committed to researching and producing comprehensive stem cell treatments for patients worldwide. Having assembled a highly qualified staff of medical specialistsprofessionals trained in the latest cutting-edge techniques in cellular medicineRegenestem continues to be a leader in delivering the latest protocols in the adult stem cell arena.

Follow this link:
Global Stem Cells Group and Regenestem Announce Launch of Stem Cell Treatment Center in Cozumel, Mexico

To Read More: Global Stem Cells Group and Regenestem Announce Launch of Stem Cell Treatment Center in Cozumel, Mexico
categoriaUncategorized commentoComments Off on Global Stem Cells Group and Regenestem Announce Launch of Stem Cell Treatment Center in Cozumel, Mexico | dataAugust 10th, 2014
Read All

Hope for stroke victims after radical stem cell treatment enables patients to move and talk again

By raymumme

5 stroke victims were treated with stem cells extracted from bone marrow Treatment triggers rapid regeneration of damaged brain cells Patients regained power of speech and use of their arms and legs More than 150,000 people have a stroke in England every year Treatment is at early stage and needs years of testing Imperial College London scientists says it shows 'great potential'

By Ben Spencer

Published: 09:25 EST, 8 August 2014 | Updated: 19:30 EST, 8 August 2014

561 shares

19

View comments

Five people who had suffered severe strokes (illustrated) regained the power of speech and mobility thanks to a radical new treatment

Stroke patients have shown remarkable signs of recovery after they were given a radical new treatment.

Five people who had suffered severe strokes regained the power of speech, use of their arms and legs and improved cognition after just six months, according to British research published today.

The three men and two women, aged between 45 and 75, were treated with stem cells extracted from their own bone marrow in the first experiment of its kind.

Link:
Hope for stroke victims after radical stem cell treatment enables patients to move and talk again

To Read More: Hope for stroke victims after radical stem cell treatment enables patients to move and talk again
categoriaBone Marrow Stem Cells commentoComments Off on Hope for stroke victims after radical stem cell treatment enables patients to move and talk again | dataAugust 9th, 2014
Read All

Lorna Tolentino reveals the secret to her youthful looks

By raymumme

Kasi kaka-quit ko lang ng smoking, Lorna Tolentino proudly announces.

The 52-year-old actress also adds, Mag-wa-one month na sa August 14.

Asked whether shes having a hard time adjusting her lifestyle, she says, Ay no, hindi naman talaga ako ganun Im not really talaga sobrang sobrang smoker.

Right now, Lorna is taking supplements such as vitamin B1, B complex, glutathione, and mangosteen and malunggay capsules.

Siyempre nung nag-50 ako, mas iniisip ko na mas tumagal pa.

Kasi siyempre, 'di ba, gone too soon si Rudy [Fernandez], kaya siyempre kailangan mas mahaba pa, lalo na because of my apo, yun ang nag-i-inspire sa akin, she confesses.

When asked whether shes ok with Lyla Victoria, Raphael's (Lorna's eldest son) daughter, entering showbiz, Lorna answers, Commercial kung meron, oo tatangapin ko.

Lorna enthusiastically talks about her two-year-old apo, whom she refers to as still being in her makulit stage, Shes ok, actually yung kanya intellectual [maturity] ano, something na pinapaano sa mga doctor, for four years old na.

She also complements Leana, Lylas mother, for teaching her grandchild, Talagang kinu-congratulate ko si Leana, because shes a teacher, talagang mas kaya niya i-guide.

STEM CELL THERAPY.Lorna Tolentino, who has undergone stem cell therapy, narrates how the procedure helped her health concerns.

Read more:
Lorna Tolentino reveals the secret to her youthful looks

To Read More: Lorna Tolentino reveals the secret to her youthful looks
categoriaUncategorized commentoComments Off on Lorna Tolentino reveals the secret to her youthful looks | dataAugust 9th, 2014
Read All

Transplanting neural progenitors to build a neuronal relay across the injured spinal cord

By raymumme

PUBLIC RELEASE DATE:

5-Aug-2014

Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research

Cellular transplantation for repair of spinal cord injury is a promising therapeutic strategy that includes the use of a variety of neural and non-neural cells isolated or derived from embryonic and adult tissue as well as embryonic stem cells and induced pluripotent stem cells. In particular, transplants of neural progenitor cells (NPCs) have been shown to limit secondary injury and scar formation and create a permissive environment in the injured spinal cord through the provision of neurotrophic molecules and growth supporting matrices that promote growth of injured host axons. Importantly, transplants of NPC are unique in their potential to replace lost neural cells including neurons, astrocytes, and oligodendrocytes critical for reconstruction of the normal microenvironment of the spinal cord and restoration of connectivity and function. The model that Prof. Itzhak Fischer comes from Drexel University in USA has proposed focuses on the formation of a functional relay to reconnect the injured spinal cord and requires the formation of two synaptic connections, one between host axons and graft-derived neurons, and the other between graft axons and target sites within the host (Figure 1). The design of such a relay requires specific steps that assure: 1) graft survival and generation of neurons, 2) axon growth into and out of the graft by host axons and graft-derived neurons, respectively and 3) formation of physiologically active synaptic connections and restoration of function. The relevant study has been published in the Neural Regeneration Research (Vol. 9, No. 12, 2014).

###

Article: " Transplanting neural progenitors to build a neuronal relay across the injured spinal cord." by Christopher Haas, Itzhak Fischer (Drexel University College of Medicine, Department of Neurobiology & Anatomy, Philadelphia, PA, USA)

Haas C, Fischer I. Transplanting neural progenitors to build a neuronal relay across the injured spinal cord. Neural Regen Res. 2014;9(12): 1173-1176.

Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research http://www.nrronline.org/

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Read the original post:
Transplanting neural progenitors to build a neuronal relay across the injured spinal cord

To Read More: Transplanting neural progenitors to build a neuronal relay across the injured spinal cord
categoriaSpinal Cord Stem Cells commentoComments Off on Transplanting neural progenitors to build a neuronal relay across the injured spinal cord | dataAugust 7th, 2014
Read All

Page 18«..10..17181920..3040..»


Copyright :: 2024