Stem cell transplant complication gains attention at UW Health
By raymumme
MADISON--After Susan Derse Phillips had chemotherapy for leukemia, she received a stem cell transplant, getting blood-forming cells from a donor to restore her immune system and attack any remaining leukemia cells.
The procedure apparently cured her leukemia, a type of blood cancer. But her skin turned red, her mouth and eyes became dry and she developed diarrhea, fatigue, bronchitis and pneumonia.
She had graft-versus-host disease, or GVHD, a life-threatening complication of the transplant. Her donors cells the graft werent attacking just her leukemia. They were attacking her skin, her gut, her lungs and other organs essentially, her body, the host.
It got pretty scary pretty quickly, said Phillips, 66, of Madison, who continues to struggle with the condition two years after the transplant.
More than half of patients who get donor stem cell transplants develop GVHD, and at least 20 percent of them die from it, said Dr. Mark Juckett, a hematologist at UW Health. But the complication, which likely is under-reported, receives relatively little attention.
Phillips, former president and CEO of Agrace HospiceCare in Fitchburg, set out to change that in Wisconsin. With $500,000 from two donors as seed money, she persuaded UW Health to launch a program to focus on the condition.
UW Carbone Cancer Centers new GVHD program aims to provide better treatment for the 250 or so UW Health patients with the condition and up to 1,000 such patients in Wisconsin and parts of neighboring states, said Juckett, one of the programs two leaders. The program will also study ways to prevent GVHD.
Too often, when doctors give donor stem cell transplants, were trading one disease for another, said Juckett, Phillips doctor. Theres been a lot of focus on how best to do the transplant ... but theres never been a real recognition of dealing with GHVD as a real problem.
Nationwide, about 18,500 stem cell or bone marrow transplants were performed in 2011, according to the Center for International Blood and Marrow Transplant Research in Milwaukee.
At UW Hospital, about 150 patients receive the transplants each year. Roughly 100 of them get infusions of their own stem cells, after high-dose chemotherapy or radiation, for conditions such as multiple myeloma and non-Hodgkins lymphoma. They are not at risk for GVHD.
Read the original:
Stem cell transplant complication gains attention at UW Health
German scientists develop artificial bone marrow
By raymumme
Berlin, Jan 3 : German scientists have developed a prototype of artificial bone marrow, which can simplify the treatment of leukemia in a few years, Karlsruhe Institute of Technology (KIT) announced Friday.
Scientists from KIT, Max Planck Institute for Intelligent Systems in Stuttgart and the University of Tubingen have artificially recreated basic properties of the natural bone marrow in a laboratory, Xinhua reported.
The haematopoietic stem cells provide replenishment of red blood cells or immune cells, so they can be used for the treatment of leukemia, in a way that the diseased cells of the patient are replaced with healthy haematopoietic stem cells from a matched donor.
However, at present not every leukemia patient can find a matchable donor, so a simple solution to this problem would be to increase hematopoietic stem cells.
As the hematopoietic stem cells retain their stem cell properties only in their natural environment, the scientists need to create an environment that resembles the stem cell niche in the bone marrow.
To accomplish this goal, the German scientists created with synthetic polymer a porous structure that mimics the structure of the spongy bone in the area of the hematopoietic bone marrow.
In the artificial bone marrow, the researchers directed isolated hematopoietic stem cells freshly from umbilical cord blood and incubated them for several days.
Analyses with different methods showed that the cells actually proliferate in the newly developed artificial bone marrow.
Now the scientists can study the interactions between materials and stem cells in detail in the laboratory to find out how the behaviour of stem cell is influenced and controlled by synthetic materials.
This knowledge could help to realise an artificial stem cell niche for the targeted increase of stem cells to treat leukemia patients in 10 to 15 years.
See original here:
German scientists develop artificial bone marrow
Public Opinion Generally Supports Stem Cell Research
By raymumme
January 3, 2014
Rebekah Eliason for redOrbit.com Your Universe Online
Early reports indicate that lay opinions regarding stem cell research with stem cells made from skin or other tissues, known as induced pluripotent stem cells (iPSCs), are generally positive, despite several ethical concerns.
Regardless of personal benefit, most patients indicated during focus group discussions that they would be will to participate in iPSC. When considering donating tissue, patients raised concern regarding consent, privacy and transparency. Jeremy Sugarman, senior author and the Harvey M. Meyerhoff Professor of Bioethics and Medicine at the John Hopkins Berman Institute of Bioethics, said, Bioethicists, as well as stem cell researchers and policy-makers, have discussed the ethical issues of induced pluripotent stem cells at length, but we didnt have any systematic information about what patients think about these issues, and that is a huge part of the equation if the potential of this research is to be fully realized.
Somewhat taking the edge off of the controversy is the fact that iPSCs do not require the destruction of a human embryo. Using iPSCs in research is extremely valuable in the development of new drugs, disease study and may help develop medical treatments. Although still far off, Sugarman explained that there is hope that iPSCs could eventually be used in the development of organs for transplantation that the bodys immune system will not attack since they can be formed from the persons own cells.
In all five of the focus groups, consent for iPSC research by the patient was highly important. Several of the patients believed that properly informed consent could alleviate other concerns about privacy, the immortalization of cells, and the commercialization of stem cells.
The report noted a strong desire among participants to have full disclosure of the anticipated uses. Some of the participants expressed a desire to be able to veto some of the uses of their cells. Although the authors recognize the practical difficulties of this request, they hope their study will help to prompt investigation into creative approaches to meeting these desires.
The study exposed an additional side to some patients selfless motivations in research participation in relation to eventual commercialization. One participant from the report is quoted as saying, It wont be just taken to become a money maker and the very people who need it the most will no longer be able to benefit from it and another, it was a donation. Its a humanitarian effort.
Unique characteristics of the small study that could influence results were noted by the authors. For example, since the study was conducted in Baltimore, Maryland with patients who have received care at Johns Hopkins, which is home to the first immortal cell line produced from tumor cells that were taken from cancer patient Henrietta Lacks in 1951, related stem cell issues are at the forefront of various focus groups. The report stated, The idea that donated cells would potentially liveforever was unnerving to some participants. In particular, the story about the creation of the HeLa cell line from Henrietta Lacks cervical cancer tissue, taken without consent, was raised in four out of the five focus groups.
In addition, the report suggested that a patients opinion may be affected by their own health and whether they had any personal experience with a debilitating illness. It seems fair to say that everyone experiences serious illness in their lives, whether themselves or through someone they know and care about, and this influences their opinions of healthcare and research, Sugarman says. This study is a first step in getting crucial information about what values are factored into a decision to participate in iPSC research, and what those participants expect from the experience. This study was reported in the journal Stem Cells.
Original post:
Public Opinion Generally Supports Stem Cell Research
Embryonic stem cell rejection problem fixed, study says
By raymumme
One of the toughest problems facing embryonic stem cell therapy, immune rejection of transplanted cells, may have been solved, according to a UC San Diego-led research team.
The cells can be made invisible to the immune system by genetically engineering them to make two immune-suppressing molecules, according to the study. Researchers tested the approach in mice given a human immune system. Immune functioning in the rest of the animal remained active.
If the approach works in people, patients receiving transplanted tissue or organs made from embryonic stem cells wouldnt have to take harsh immune-suppressing drugs, said study leader Yang Xu, a UC San Diego professor of biology.
Human embryonic stem cells. The green markers indicate the presence of a protein expressed only in these cells. / Samantha Zeitlin, 2006 CIRM fellow
Researchers placed genes in the stem cells to produce the two molecules, called CTLA4-lg and PD-L1, naturally made in the body. The mice accepted transplants of heart and skin cells derived from the engineered stem cells. They rejected transplants derived from regular embryonic stem cells.
The study was published online Thursday in the journal Cell Stem Cell. Its findings will have to be confirmed for safety and effectiveness before human trials can be considered, which will take years.
Three scientists given the paper for comment had mixed reactions. While they praised the works scientific prowess, two said genetically engineering the transplanted cells could cause serious side effects that might preclude their use.
The researchers employed a clever strategy to use the immune systems natural regulatory systems, said Mitchell Kronenberg, president of the La Jolla Institute for Allergy & Immunology.
This is an especially promising approach, because it avoids the toxic side effects of the drugs now used to suppress the rejection response, and therefore this is an important step forward in showing the feasibility of using human embryonic stem cells from unrelated donors, Kronenberg said.
More skeptical were Jeanne Loring, a stem cell researcher at The Scripps Research Institute, and Craig M. Walsh, associate director of the Institute for Immunology at UC Irvine.
See the original post here:
Embryonic stem cell rejection problem fixed, study says
stem cell therapy treatment for beckers muscular dystrophy by dr alok sharma, mumbai, india – Video
By raymumme
stem cell therapy treatment for beckers muscular dystrophy by dr alok sharma, mumbai, india
[gujarati] improvement seen in just 5 days after stem cell therapy treatment for beckers muscular dystrophy by dr alok sharma, mumbai, india. Stem Cell Thera...
By: Neurogen Brain and Spine Institute
See the rest here:
stem cell therapy treatment for beckers muscular dystrophy by dr alok sharma, mumbai, india - Video
Stem-cell transplant needed for 4-year-old Hannah Day: How to help
By raymumme
Four year old Hannah Day has spent most of her young life in and out of hospital.
She has Leukemia and its the second time in as many years that she is battling cancer.
She underwent 15 months of chemotherapy for a tumour in her stomach, but weeks later was diagnosed with Leukemia. Hannahs family says her only hope for survival is a stem-cell transplant, but neither her sister nor her parents are a perfect match, so theyre hoping a donor will be found. They set up a web page called Angels for Hannah to try and find a donor.
A stem-cell transplant is her last chance.
To become a stem-cell donor you can fill out a questionnaire online if youre between the ages of 17 and 35, and youll be sent a kit in the mail. A swab of your cheeks will reveal if youre a suitable donor. Once identified as a match, donors will undergo one of two procedures. Stem cells can be harvested from bone marrow under general anesthetic, or throughperipheral blood stem cell donation.
The donor does not experience pain during either procedure.
Our age criteria is 17 to 35 to register, saysMary Lynn Pride from Canadian Blood Services. So were really looking to those young people to step forward to provide an opportunity to help patients like Hannah who are in need. Were also asking young men to step forward because we do have a particular need for young men to register as they have been deemed as the optimal donor patients in need of transplant.
Pride says generally men produce a higher volume of stem cells for donation but also post-transplant there is better recovery for patients with a male donor over a female donor.
We do know that younger donors provide better post-transplant recovery for patients as well as the longevity of ensuring that they are on the registry longer to support patients in need, she says.
Canada currently has 326,000 people who are already registered as potential stem-cell donors. Hannah is one of 750 Canadians who are currently awaiting a stem-cell transplant.
See the article here:
Stem-cell transplant needed for 4-year-old Hannah Day: How to help
New pen-like device to repair broken bone
By raymumme
MELBOURNE: Doctors may soon be able to draw new bone, skin and muscle on to patients, after scientists created a pen-like device that can apply human cells directly on to seriously injured people.
The device contains stem cells and growth factors and will give surgeons greater control over where the materials are deposited.
It will also reduce the time the patient is in surgery by delivering live cells and growth factors directly to the site of injury, accelerating the regeneration of functional bone and cartilage, scientists said.
The device developed at the University of Wollongong (UOW) will eliminate the need to harvest cartilage and grow it for weeks in a lab.
The Bio Pen works similar to 3D printing methods by delivering cell material inside a bio-polymer such as alginate, a seaweed extract, protected by a second, outer layer of gel material.
The two layers of gel are combined in the pen head as it is extruded onto the bone surface and the surgeon draws with the ink to fill in the damaged bone section.
A low powered ultra-violet light source is fixed to the device that solidifies the inks during dispensing, providing protection for the embedded cells while they are built up layer-by-layer to construct a 3D scaffold in the wound site.
Once the cells are drawn onto the surgery site they will multiply, become differentiated into nerve cells, muscle cells or bone cells and will eventually turn from individual cells into a thriving community of cells in the form of a functioning a tissue, such as nerves, or a muscle.
The device can also be seeded with growth factors or other drugs to assist regrowth and recovery, while the hand-held design allows for precision in theatre and ease of transportation.
The BioPen prototype was designed and built using the 3D printing equipment in the labs at Wollongong and was handed over to clinical partners at St Vincents Hospital Melbourne, led by Professor Peter Choong, who will work on optimising the cell material for use in clinical trials.
See the rest here:
New pen-like device to repair broken bone
Bone marrow or peripheral blood stem cell transplant for non …
By raymumme
Stem cell transplants are sometimes used to treat lymphoma patients who are in remission (that is, they seem to be disease-free after treatment) or who have had the cancer come back (relapse) during or after treatment.
In a stem cell transplant, doctors give higher doses of chemotherapy (chemo) than would normally be safe. Giving high-dose chemo destroys the bone marrow, which prevents new blood cells from being made. This could normally lead to life-threatening infections, bleeding, and other problems due to low blood cell counts. To get around this problem, after chemo (and sometimes radiation treatment) is finished, the patient gets an infusion of blood-forming stem cells to restore the bone marrow. Blood-forming stem cells are very early cells that can make new blood cells. They are different from embryonic stem cells.
There are 2 main types of stem cell transplants. The difference is the source of the blood-forming stem cells.
Autologous stem cell transplant: For this type of transplant, blood-forming stem cells from the patient's own blood or, less often, from the bone marrow, are removed, frozen, and stored until after treatment. Then the stored stem cells are thawed and given back to the patient through a vein. The cells enter the bloodstream and return to the bone, replacing the marrow and making new blood cells.
This is the most common type of transplant used to treat lymphoma, but it generally isn't an option if the lymphoma has spread to the bone marrow or blood. If that happens, it may be hard to get a stem cell sample with no lymphoma cells in it.
Donor (allogeneic) stem cell transplant: In this approach, the stem cells come from someone else usually a matched donor whose tissue type is very close to the patient's. The donor may be a brother or sister or someone not related to the patient. Sometimes umbilical cord stem cells are used.
This type of transplant is not used a lot in treating non-Hodgkin lymphoma (NHL) because it can have severe side effects that are especially hard for patients who are older or who have other medical problems. And it is often hard to find a matched donor.
"Mini transplant": Many older patients can't have a regular allogeneic transplant that uses high doses of chemo. But some may be able to have what is called a "mini transplant" (or a non-myeloablative transplant or reduced-intensity transplant). For this type of allogeneic transplant, lower doses of chemo and radiation are used so they do not destroy all the stem cells in the bone marrow. The patient is then given the donor stem cells. These cells enter the body and form a new immune system, which sees the cancer cells as foreign and attacks them (called a "graft-versus-lymphoma" effect).
Patients can often do a mini transplant as an outpatient. But this is not yet a standard part of the treatment for most types of lymphoma.
Stem cell transplant is a complex treatment, so it is important to have it done at a hospital where the staff has experience with the procedure. Some transplant programs may not have experience in certain transplants, especially those from unrelated donors.
Read this article:
Bone marrow or peripheral blood stem cell transplant for non ...
Stem cell therapy in India for Avascular Necrosis – Video
By raymumme
Stem cell therapy in India for Avascular Necrosis
By: StemRx BioScience
More here:
Stem cell therapy in India for Avascular Necrosis - Video
Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell …
By raymumme
(PRWEB) December 20, 2013
Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute announced the first patient, a 59 year old Clearwater man, has been treated as part of the ATHENA clinical trial. The trial, sponsored by San Diego-based Cytori Therapeutics, derives stem cells from the patients own fat tissue and injects extracted cells into damaged parts of the heart. The ATHENA trial is a treatment for chronic heart failure due to coronary heart disease. Dr. Charles Lambert, Medical Director of Florida Hospital Pepin Heart Institute, is leading the way for the first U.S. FDA approved clinical trial using adipose-derived regenerative cells, known as ADRCs, in chronic heart failure patients. I am pleased to report that all procedures went well. The patient is doing well, he was released and is recovering at home. We look forward to following his progress over the coming months, said Dr. Charles Lambert.
Heart failure (HF) can occur when the muscles of the heart become weakened and cannot pump blood sufficiently throughout the body. The injury is most often caused by inadequate blood flow to the heart resulting from chronic or acute cardiovascular disease, including heart attacks. The ATHENA clinical trial procedure is a three step process. First, the trial involves the collection of fat from the patients body by liposuction. Then the fat sample is filtered through a machine that extracts out the stem cells. Finally, the stem cells are injected into the damaged part of the patients heart. During this first case at Florida Hospital Pepin Heart Institute, Dr. Paul Smith performed the liposuction to obtain the fat sample, a team at the Dr. Kiran C. Patel Research Institute isolated stem cells from the fat sample and then Dr. Charles Lambert performed the cell therapy by direct injection into the patients heart. Pepin Heart and Dr. Kiran C. Patel Research Institute is exploring and conducting leading-edge research to develop break-through treatments long before they are even available in other facilities. Stem cells have the unique ability to develop into many different cell types, and in many tissues serve as an internal repair system, dividing essentially without limit to replenish other cells, said Dr. Lambert. The Pepin Heart Institute has a history of cardiovascular stem cell research as part of the NIH sponsored Cardiac Cell Therapy Research Network (CCTRN) as well as other active cell therapy trials. The trial is a double blind, randomized, placebo controlled study designed to study the use of a patients own Adipose-Derived Regenerative Cells (ADRCs) to treat chronic heart failure from coronary heart disease in patients who are on maximal therapy and still have heart failure symptoms. All trial participants undergo a minor liposuction procedure to remove fat (adipose) tissue. Following the liposuction, trial participants may have their tissue processed with Cytoris proprietary Celution System to separate and concentrate cells, and prepare them for therapeutic use. Trial participants will then have either their own cells or a placebo injected back into their damaged heart tissue. To test whether ADRCs will improve heart function, several measurements will be made, including peak oxygen consumption (VO2max), which measures how much physical exercise (gentle walking on a treadmill) a patient can perform, blood flow to the heart (perfusion), the amount of blood in the left ventricle at the end of contraction and relaxation (end-systolic and end-diastolic volumes), and the fraction of blood that is pumped during each contraction (ejection fraction). After the injection procedure, patients are seen in the clinic for follow-up visits over the first 12 months; they are then contacted by phone once a year for up to five years after the procedure. There are approximately 5.1 million Americans currently living with heart failure, according to the American Heart Association. Chronic heart failure due to coronary heart disease is a severe, debilitating condition caused by restriction of blood flow to the heart muscle, reducing the hearts oxygen supply and limiting its pumping function. Individuals interested in participating in the ATHENA clinical research trial or learning more can visit http://www.theathenatrial.com or call Brian Nordgren, Florida Hospital Pepin Heart Institute Physician Assistant & Stem Cell Program Lead at (813) 615-7527.
About Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute Florida Hospital Pepin Heart Institute, located at Florida Hospital Tampa, is a free-standing cardiovascular institute providing comprehensive cardiovascular care with over 76,000 angioplasty procedures and 11,000 open-heart surgeries in the Tampa Bay region. Leading the way with the first accredited chest pain emergency room in Tampa Bay, the institute is among an elite few in the state of Florida chosen to perform the ground breaking Transcatheter Aortic Valve Replacement (TAVR) procedure. It is also a HeartCaring designated provider and a Larry King Cardiac Foundation Hospital. Florida Hospital Pepin Heart Institute and the Dr. Kiran C. Patel Research Institute, affiliated with the University of South Florida (USF), are exploring and conducting leading-edge research to develop break-through treatments long before they are available in most other hospitals. To learn more, visit http://www.FHPepin.org
About Cytori Therapeutics Cytori Therapeutics, Inc. is developing cell therapies based on autologous adipose-derived regenerative cells (ADRCs) to treat cardiovascular disease and repair soft tissue defects. Our scientific data suggest ADRCs improve blood flow, moderate the immune response and keep tissue at risk of dying alive. As a result, we believe these cells can be applied across multiple "ischemic" conditions. These therapies are made available to the physician and patient at the point-of-care by Cytori's proprietary technologies and products, including the Celution system product family. http://www.cytori.com
Original post:
Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell ...
Researchers Generate Kidney Tubular Cells From Stem Cells
By raymumme
Contact Information
Available for logged-in reporters only
Highlights Investigators have discovered a cocktail of chemicals which, when added to stem cells in a precise order, turns on genes found in kidney cells in the same order that they turn on during embryonic kidney development. The kidney cells continued to behave like kidney cells when transplanted into adult or embryonic mouse kidneys.
Newswise Washington, DC (December 19, 2013) Researchers have successfully coaxed stem cells to become kidney tubular cells, a significant advance toward one day using regenerative medicine, rather than dialysis and transplantation, to treat kidney failure. The findings are published in the Journal of the American Society of Nephrology (JASN).
Chronic kidney disease is a major global public health problem, and when patients progress to kidney failure, their treatment options are limited to dialysis and kidney transplantation. Regenerative medicinewhich involves rebuilding or repairing tissues and organsmay offer a promising alternative.
Albert Lam, MD, Benjamin Freedman, PhD, Ryuji Morizane, MD, PhD (Brigham and Womens Hospital), and their colleagues have been working for the past five years to develop strategies to coax human pluripotent stem cellsparticularly human embryonic stem (ES) cells and human induced pluripotent stem (iPS) cellinto kidney cells for the purposes of kidney regeneration.
Our goal was to develop a simple, efficient, and reproducible method of differentiating human pluripotent stem cells into cells of the intermediate mesoderm, the earliest tissue in the developing embryo that is fated to give rise to the kidneys, said Dr. Lam. He noted that these cells would be the starting blocks for deriving more specific kidney cells.
The researchers discovered a cocktail of chemicals which, when added to stem cells in a precise order, causes them to turn off genes found in ES cells and turn on genes found in kidney cells, in the same order that they turn on during embryonic kidney development. The investigators were able to differentiate both human ES cells and human iPS cells into cells expressing PAX2 and LHX1, two key markers of the intermediate mesoderm. The iPS cells were derived by transforming fibroblasts obtained from adult skin biopsies to pluripotent cells, making the techniques applicable to personalized approaches where the starting cells can be derived from skin cells of a patient. The differentiated cells expressed multiple genes expressed in intermediate mesoderm and could spontaneously give rise to tubular structures that expressed markers of mature kidney tubules. The researchers could then differentiate them further into cells expressing SIX2, SALL1, and WT1, important markers of the metanephric cap mesenchyme, a critical stage of kidney differentiation. In kidney development, the metanephric cap mesenchyme contains a population of progenitor cells that give rise to nearly all of the epithelial cells of the kidney.
The cells also continued to behave like kidney cells when transplanted into adult or embryonic mouse kidneys, giving hope that investigators might one day be able to create kidney tissues that could function in a patient and would be 100% immunocompatible.
We believe that the successful derivation of kidney progenitor cells or functional kidney cells from human pluripotent stem cells will have an enormous impact on a variety of clinical and translational applications, including kidney tissue bioengineering, renal assist devices to treat acute and chronic kidney injury, drug toxicity screening, screening for novel therapeutics, and human kidney disease modeling, said Dr. Lam.
Go here to read the rest:
Researchers Generate Kidney Tubular Cells From Stem Cells
Study Shows Therapeutic Potential of Fat-derived Stem Cells Declines As Donor’s Age Rises
By raymumme
Durham, NC (PRWEB) December 18, 2013
A new study released today in STEM CELLS Translational Medicine demonstrates that the therapeutic value of stem cells collected from fat declines when the cells come from older patients.
This could restrict the effectiveness of autologous cell therapy using fat, or adipose-derived mesenchymal stromal cells (ADSCs), and require that we test cell material before use and develop ways to pretreat ADSCs from aged patients to enhance their therapeutic potential, said Anastasia Efimenko, M.D., Ph.D. She and Nina Dzhoyashvili, M.D., were first authors of the study led by Yelena Parfyonova, M.D., D.Sc., at Lomonosov Moscow State University, Moscow.
Cardiovascular disease remains the most common cause of death in most countries. Mesenchymal stromal cells (MSCs), stem cells collected from either bone marrow or adipose tissue, are considered one of the most promising therapeutic agents for regenerating damaged tissue because of their proliferation potential and ability to be coaxed into different cell types. Importantly, they also have the ability to stimulate the growth of new blood vessels, a process known as angiogenesis.
Adipose tissue in particular is considered an ideal source for MSCs because it is largely dispensable and the stem cells are easily accessible in large amounts using a minimally invasive procedure. ADSCs have been used in several clinical trials looking at cell therapy for heart conditions, but most of the studies employed cells taken from relatively healthy young donors rather than sick, older ones the typical patient when it comes to heart disease.
We knew that aging and disease itself may negatively affect MSC activities, Dr. Dzhoyashvili said. So the aim of our study was to investigate how patient age affects the properties of ADSCs, with special emphasis on their ability to stimulate angiogenesis.
The team analyzed age-associated changes in ADSCs collected from patients of different age groups, including some with coronary artery disease and some without. The results showed that ADSCs from the older patients in both groups expressed various age markers, including shorter telomeres, and, thus, confirmed that ADSCs did age. Telomeres, the regions of repetitive DNA at the end of a chromosome, protect it from deterioration.
We showed that ADSCs from older patients both with and without coronary artery disease produced significantly less amounts of angiogenesis-stimulating factors compared with the younger patients in the study and their angiogenic capabilities lessened, Dr. Efimenko concluded. The results provide new insight into molecular mechanisms underlying the age-related decline of stem cells therapeutic potential.
These findings are significant because the successful development of cell therapies depends on a thorough understanding of how age may affect the regenerative potential of autologous cells, said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.
###
Read more from the original source:
Study Shows Therapeutic Potential of Fat-derived Stem Cells Declines As Donor’s Age Rises
Preferable treatment for MS found in allogenic bone marrow stem cells
By raymumme
PUBLIC RELEASE DATE:
18-Dec-2013
Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair
Putnam Valley, NY. (Dec. 18, 2013) Multiple sclerosis (MS), an inflammatory autoimmune disease affecting more than one million people worldwide, is caused by an immune reaction to myelin proteins, the proteins that help form the myelin insulating substance around nerves. Demyelination and MS are a consequence of this immune reaction. Bone marrow mesenchymal stem cells (MSCs) have been considered as an important source for cell therapy for autoimmune diseases such as MS because of their immunosuppressive properties.
Now, a research team in Brazil has compared MSCs isolated from MS patients and from healthy donors to determine if the MSCs from MS patients are normal or defective. The study will be published in a future issue of Cell Transplantation but is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-ct1131.
"The ability of MSCs to modulate the immune response suggests a possible role of these cells in tolerance induction in patients with autoimmune diseases, and also supports the rationale for MSC application in the treatment of MS," said study corresponding author Dr. Gislane Lelis Vilela de Oliveira of the Center for Cell-Based Research at the University of Sao Paulo. "We found that MS patient-derived MSCs present higher senescence, or biological aging, and decreased expression of important immune system markers as well as a different transcriptional profile when compared to their healthy counterparts."
The researchers suggested that further clinical studies should be conducted using transplanted allogenic (other-donated) MSCs derived from healthy donors to determine if the MSCs have a therapeutic effect over transplanted autologous (self-donated) MSCs from patients.
"Several reports have shown that bone marrow-derived MSCs are able to modulate innate and adaptive immunity cell responses and induce tolerance, thus supporting the rationale for their application in treating autoimmune diseases, " said the researchers.
They also noted that studies have shown that transplanted MSCs migrate to demyelinated areas as well as induce generation and expansion of regulatory T cells, important in immunity.
"We found that the transcriptional profile of patient MSCs after transplantation was closer to that of their pre-transplant MSC samples than those from their healthy counterparts, suggesting that treatment with patient self-donated MSCs does not reverse the alterations we observed in MSCs from MS patients," they concluded.
Follow this link:
Preferable treatment for MS found in allogenic bone marrow stem cells
Kidney grown from stem cells by Australian scientists
By raymumme
Scientists are hoping to increase the size of future kidneys and believe the resulting organs will boost research and allow cheaper, faster testing of drugs. Within the next three to five years, the artificial organs could be used to allow doctors to repair damaged kidneys within the body, rather than letting diseases develop before proceeding with a transplant.
The engineered kidney was developed by a team of Australian scientists led by the University of Queensland's Institute for Molecular Bioscience.
Professor Wainwright said the process for developing the kidney was "like a scientific approach to cooking". The scientists methodically examined which genes were switched on and off during kidney development and then manipulated the skin cells into embryonic stem cells which could "self-organise" and form complex human structures.
"The [researchers] spent years looking at what happens if you turn this gene off and this one on," he said. "You can eventually coax these stem cells through a journey they [the cells] go through various stages and then think about being a kidney cell and eventually pop together to form a little piece of kidney."
The research could eventually help address the demand for transplant organs and improve medical testing of new drugs for patients with kidney disease.
Human kidneys are particularly susceptible to damage during trials, which makes finding effective medicines costly and time-consuming.
Professor Melissa Little, from the University of Queensland, said scientists could try to grow full-grown kidneys for transplants or even "clusters of mini kidneys" that could be transplanted to boost patients' renal functions. But she told The Australian she believed such developments were still more than a decade away.
Visit link:
Kidney grown from stem cells by Australian scientists
Stem Cell Therapy for Traumatic Brain Injury – Video
By raymumme
Stem Cell Therapy for Traumatic Brain Injury
Oswaldo Tapenes received multiple injections of human umbilical cord-derived mesenchymal stem cells and his own bone marrow-derived stem cells over the cours...
By: http://www.cellmedicine.com
Read more from the original source:
Stem Cell Therapy for Traumatic Brain Injury - Video
Top Science Stories of 2013
By raymumme
Top Science Stories of 2013
From the first vat-grown hamburger to the discovery of the world's largest volcano, scientists pushed back the limits of human knowledge in 2013 and developed technologies that could radically change how we live our lives.
The Science Media Centre team, in conjunction with our colleagues at the AusSMC, have assembled the top 10 picks for the most significant international science stories of the year. Contact the SMC if you would like more information about any of these stories, including copies of the research papers associated with them.
It was also a big year for New Zealand science with researchers publishing studies in some of the world's most influential journals. See below for our Top 10 list of New Zealand science stories that captured the public's attention in 2013.
Top 10 international science stories
1. Space sounds revealed Voyager 1 had boldly gone: In September, NASA's Voyager 1 spacecraft became the first man-made object to leave our solar system and venture into interstellar space. The probe, launched in 1977 with the aim of reaching Jupiter and Saturn, is now over 19 billion kilometres from the sun. Scientists listened in to vibrations in the plasma surrounding Voyager - the sound of interstellar space - after it was hit by a massive solar wave in April. The vibrations allowed them to calculate the plasma's density, which differs between our solar system and interstellar space, confirming Voyager was no longer in our solar system.
2. Carbon dioxide hit a new peak and human influence on the climate was clearer than ever:In May, levels of carbon dioxide in the Earth's atmosphere reached a symbolic milestone, passing 400ppm (parts per million) for the first time in human history. Just a few months later in September, the leading international body for the assessment of climate change, the Intergovernmental Panel on Climate Change (IPCC), found that human influence on the climate system is clearer than ever -we are now 95 percent certain that humans are the cause of global warming. Climate scientists from New Zealand were among the more than 600 scientists and researchers who worked on the IPCC report. 3. Scientists created human stem cells using cloning techniques: In May, researchers used therapeutic cloning to create human embryonic stem cells for the first time. The process involved taking the nucleus - which contains the genetic material - from a normal cell and transferring it into an unfertilised egg with its own genetic material removed. While this approach had previously been used in monkeys and mice, it had never succeeded using human cells. This discovery, described by Australian scientists as "a major breakthrough in regenerative medicine", could help develop personalised therapies for a range of currently untreatable diseases. However, the process requires human donor eggs, which are not easy to obtain, and raises a number of ethical issues.
4. Do you want fries with that? The world's most expensive burger was grown in the lab: The world's first lab-grown burger was cooked and eaten at a news conference in London in August this year - generating headlines around the world. The burger patty - which one food critic described as 'close to meat' - was developed by scientists from Maastricht University in the Netherlands through research funded by Google co-founder Sergey Brin. Starting with stem cells from a biopsy of two cows (a Belgian Blue and a Blonde d'Aquitaine), the scientists grew muscle fibres in the lab. The fibres were pressed together with breadcrumbs and binding ingredients, then coloured with beetroot juice and saffron, resulting in the most expensive hamburger in history at a cost of around NZ$400,000.
5. Doctors stopped HIV in its tracks in the "Mississippi baby": A child born with HIV and treated with a series of antiviral drugs for the first 18 months of its life was found to be free of the virus more than 12 months after treatment ended. When the infant was 30 months of age, HIV-1 antibodies remained completely undetectable. However, the big question of whether this child, known as the "Mississippi baby", has truly been cured of HIV remains unanswered. "The best answer at the moment is a definitive maybe", HIV expert Scott Hammer, wrote in a New England Journal of Medicineeditorial which accompanied the research.
6. Redefining mental illness: In May, the new version of the diagnostic reference manual used by clinicians in the U.S. and around the world to diagnose mental disorders was released. The fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) is the first update in nearly 20 years and followed a decade of review and consultation. It's publication met with widespread controversy. One of its major changes is to introduce a graded scale known as Autism Spectrum Disorder combining the former four autism-related disorders: autistic, Asperger's, childhood disintegrative, and pervasive developmental disorder. Elsewhere, several new disorders were added, new suicide risk assessment scales were introduced and the threshold for diagnosing Post Traumatic Stress Disorder (PTSD) was lowered. Critics of DSM-5, including New Zealand experts, argue that it will lead to the over-diagnosis of mental disorders, stigmatising millions of people who are essentially normal.
Follow this link:
Top Science Stories of 2013
Parkinson’s stem cell project aims for 2014 approval
By raymumme
Parkinson's patient Ed Fitzpatrick speaks about stem cell research for his disease. Fitzpatrick talked on a Dec. 7 panel at the World Stem Cell Summit in San Diego. Bradley J. Fikes
Parkinson's patient Ed Fitzpatrick speaks about stem cell research for his disease. Fitzpatrick talked on a Dec. 7 panel at the World Stem Cell Summit in San Diego.
For eight local Parkinsons patients seeking treatment with stem cell technology, 2014 could bring the milestone theyve been anticipating.
If all goes well, the U.S. Food and Drug Administration will approve an attempt to replace the brain cells destroyed in Parkinsons. The new cells, grown from each patients own skin cells, are expected to restore normal movement in the patients.
Because the new brain cells are made from the patients own cells, immunosuppressive drugs shouldnt be needed. Ideally, patients could stop taking their medications and resume normal activities for many years, or even the rest of their lives.
The project, Summit4StemCell.org, is a collaboration between three nonprofits. The Scripps Research Institute handles the science; Scripps Clinic takes care of the medical side; and the Parkinsons Association of San Diego helps to raise money for the self-funded project.
Since 2011, the focus has been at the institute, where scientists led by Jeanne Loring have made the artificial embryonic stem cells, called induced pluripotent stem cells, and turned them into the needed brain cells. Now Scripps Clinic is assuming a more prominent role to prepare for treating the patients.
A study in rats began in early December; results are expected by April. The animal study is meant to assess safety, although researchers will also look for signs of effectiveness.
In January, scientists will visit the FDA to lay the groundwork for a formal application, said Scripps Clinic neurologist Melissa Houser, who treats all eight patients.
Success in the animal study will likely result in a go-ahead, Houser said. If the animal trial fails, its back to the drawing board.
Follow this link:
Parkinson’s stem cell project aims for 2014 approval
UCLA stem cell scientists first to track joint cartilage development in humans
By raymumme
PUBLIC RELEASE DATE:
12-Dec-2013
Contact: Shaun Mason smason@mednet.ucla.edu 310-206-2805 University of California - Los Angeles
Stem cell researchers from UCLA have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what could be a new cell source and biological roadmap for therapies to repair cartilage defects and damage from osteoarthritis.
Such transformative therapies could reach clinical trials within three years, said the scientists from UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.
The study, led by Dr. Denis Evseenko, an assistant professor of orthopedic surgery and head of UCLA's Laboratory of Connective Tissue Regeneration, was published online Dec. 12 in the journal Stem Cell Reports and will appear in a forthcoming print edition.
Articular cartilage, a highly specialized tissue formed from cells called chondrocytes, protects the bones of joints from forces associated with load-bearing and impact and allows nearly frictionless motion between the articular surfaces the areas where bone connects with other bones in a joint.
Cartilage injury and a lack of cartilage regeneration often lead to osteoarthritis, which involves the degradation of joints, including cartilage and bone. Osteoarthritis currently affects more than 20 million people in the U.S., making joint-surface restoration a major priority in modern medicine.
While scientists have studied the ability of different cell types to generate articular cartilage, none of the current cell-based repair strategies including expanded articular chondrocytes or mesenchymal stromal cells from adult bone marrow, adipose tissue, sinovium or amniotic fluid have generated long-lasting articular cartilage tissue in the laboratory.
For the current study, Evseenko and his colleagues used complex molecular biology techniques to determine which cells grown from embryonic stem cells, which can become any cell type in the body, were the progenitors of cartilage cells, or chondrocytes. They then tested and confirmed the growth of these progenitor cells into cartilage cells and monitored their growth progress, observing and recording important genetic features, or landmarks, that indicated the growth stages of these cells as they developed into the cartilage cells.
Read more from the original source:
UCLA stem cell scientists first to track joint cartilage development in humans
AIDS virus comes back in men who hoped for cure
By raymumme
Dec. 9, 2013 at 10:17 AM ET
Two men who had hoped they might be cured of an HIV infection after getting bone marrow transplants for cancer got some bad news, doctors said Monday. The virus has come back.
The intense and life-threatening treatments for cancer appeared to have wiped the virus out, and the two men took a chance and, earlier this year, stopped taking the HIV drugs that were keeping the virus under control.
At first, no signs of the virus could be found. But their doctors, cautious after decades of fighting a tricky virus, didnt declare a cure.
Its disappointing, said Dr. Daniel Kuritzkes of Brigham and Womens Hospital in Boston, who worked with Dr. Timothy Henrich to treat and study the two men.
But its still taught us a great deal.
The case of the two men shows that even if you make HIV seemingly disappear, it can be hiding out in the body and can re-activate. It might be somewhere other than in blood cells, Henrich said. Other scientists suspect HIV might be able to hole up in organs or inside the intestines.
Through this research we have discovered the HIV reservoir is deeper and more persistent than previously known and that our current standards of probing for HIV may not be sufficient to inform us if long-term HIV remission is possible if antiretroviral therapy is stopped, Henrich said.
Both patients have resumed therapy and are currently doing well. Neither man wants to be named.
Henrich, Kuritzkes and colleagues had actively looked for HIV patients with leukemia or lymphoma who had received bone marrow stem cell transplants.
See more here:
AIDS virus comes back in men who hoped for cure
Skin’s own cells offer hope for new ways to repair wounds and reduce impact of aging on the skin
By raymumme
PUBLIC RELEASE DATE:
11-Dec-2013
Contact: Katya Nasim katya.nasim@kcl.ac.uk 44-207-848-3840 King's College London
Scientists at King's College London have, for the first time, identified the unique properties of two different types of cells, known as fibroblasts, in the skin one required for hair growth and the other responsible for repairing skin wounds. The research could pave the way for treatments aimed at repairing injured skin and reducing the impact of ageing on skin function.
Fibroblasts are a type of cell found in the connective tissue of the body's organs, where they produce proteins such as collagen. It is widely believed that all fibroblasts are the same cell type. However, a study on mice by researchers at King's, published today in Nature, indicates that there are at least two distinct types of fibroblasts in the skin: those in the upper layer of connective tissue, which are required for the formation of hair follicles and those in the lower layer, which are responsible for making most of the skin's collagen fibres and for the initial wave of repair of damaged skin.
The study found that the quantity of these fibroblasts can be increased by signals from the overlying epidermis and that an increase in fibroblasts in the upper layer of the skin results in hair follicles forming during wound healing. This could potentially lead to treatments aimed at reducing scarring.
Professor Fiona Watt, lead author and Director of the Centre for Stem Cells and Regenerative Medicine at King's College London, said: 'Changes to the thickness and compostion of the skin as we age mean that older skin is more prone to injury and takes longer to heal. It is possible that this reflects a loss of upper dermal fibroblasts and therefore it may be possible to restore the skin's elasticity by finding ways to stimulate those cells to grow. Such an approach might also stimulate hair growth and reduce scarring.
'Although an early study, our research sheds further light on the complex architecture of the skin and the mechanisms triggered in response to skin wounds. The potential to enhance the skin's response to injury and ageing is hugely exciting. However, clinical trials are required to examine the effectiveness of injecting different types of fibroblasts into the skin of humans.'
Dr Paul Colville-Nash, Programme Manager for Regenerative Medicine at the MRC, said: 'These findings are an important step in our understanding of how the skin repairs itself following injury and how that process becomes less efficient as we age. The insights gleaned from this work will have wide-reaching implications in the area of tissue regeneration and have the potential to transform the lives patients who have suffered major burns and trauma.'
###
Read the original here:
Skin's own cells offer hope for new ways to repair wounds and reduce impact of aging on the skin