Page 35«..1020..34353637..40..»

AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to Brazil’s CordVida

By raymumme

CAMBRIDGE, Mass.--(BUSINESS WIRE)--

Leading stem cell therapeutic and regenerative medicine company, AuxoCell Laboratories, Inc., today announced an agreement with CordVida, a Brazilian stem cell cryopreservation company, which will allow CordVida to expand its services. Families who select CordVida to store umbilical cord blood will now have the opportunity to bank stem cells from an additional source cord tissue. With this agreement, AuxoCell broadens its international reach to South America.

At AuxoCell, we are pleased by the opportunity to provide this groundbreaking technology to families around the globe, said Rouzbeh R. Taghizadeh, PhD, Chief Scientific Officer of AuxoCell Laboratories, Inc. CordVida is Brazils premier cord blood bank and adheres to the highest quality standards. It is for that reason that we have selected them as our exclusive partner in Brazil.

Cord tissue has an abundant source of mesenchymal stem cells (MSCs). Currently, there is a significant amount of research underway focused on mesenchymal stem cells extracted from cord tissue. MSCs are rapidly becoming the leading stem cell in regenerative medicine studies, and MSCs from a variety of sources are in use in over 150 clinical trials. The AuxoCell cord tissue technology represents the gold standard in the industry, as its technology prepares stem cells that are ready for immediate use, if needed.

CordVida is excited to be the first company in Brazil to offer storage of multiple kinds of stem cells, says Roberto Waddington, CEO for CordVida. Considering the enormous therapeutic prospects of cord tissue derived MSCs, our clients in the future will now rely on a much wider array of potential therapeutic applications.We are proud that AuxoCell selected CordVidaas its exclusive technology partner for all of Brazil.

Banking umbilical cord tissue stem cells offers clients a chance to reap the benefits of research that is being conducted on MSCs. Additionally, AuxoCells own studies have shown that a combination of cord tissue mesenchymal stem cells derived using AuxoCells validated processing SOPs and hematapoietic stem cells (HSCs) from the cord blood enhances the engraftment of the cord blood HSCs.

About AuxoCell

AuxoCell Laboratories, Inc. (AuxoCell) is a leading stem cell therapeutic and regenerative medicine company located in Massachusetts. AuxoCell's primary research focus is to develop the enormous therapeutic potential of the primitive stem cells found in the Wharton's Jelly of the human umbilical cord. With exclusive patent rights and proprietary processing protocols, AuxoCell is uniquely situated to offer the very best in cord tissue stem cell banking. Through strategic partnerships with both private and public cord blood banks, stem cell centers, and research laboratories around the world, AuxoCell strives every day to bring novel stem cell therapies from the bench to the bedside. Additional information is available through HYPERLINK http://www.auxocell.com or at (617) 610-9000.

About CordVida

Founded in 2004, CordVida is the premier stem cell cryopreservation company in Brazil with 10.000 umbilical cord blood units stored. It is the cord blood bank of choice for key doctors in Brazil. Committed to the highest global quality standards, CordVida has been AABB accredited since 2008. Half of the transplants made in Brazil using private cord blood units have been made with units stored in CordVida.

See original here:
AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to Brazil’s CordVida

To Read More: AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to Brazil’s CordVida
categoriaUncategorized commentoComments Off on AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to Brazil’s CordVida | dataJune 7th, 2012
Read All

Stem cells may preclude hip replacements

By raymumme

SOUTHAMPTON, England, June 3 (UPI) -- British physicians say some patients with osteonecrosis who need hip replacements could be treated with stem cells from their own bone marrow.

The procedure, developed by Doug Dunlop of Southampton General Hospital in England, involves mixing the stem cells with cleaned, crushed bone from another patient who has had his own hip replaced and using it to fill the hole made after damaged tissue removed from the joint, The Daily Telegraph reported.

The new stem cell therapy could prevent the need for hip replacements due to osteonecrosis, a condition where poor blood supply causes significant bone damage leading to severe arthritis, Dunlop said.

The stem cells send chemical signals to blood vessels and it's hoped the new vessels in the hip would supply nutrients to improve bone strength, Dunlop explained.

Oesteoarthrits, caused by wear and tear of the bone, results from the temporary or permanent loss of blood flow to bones.

This causes osteonecrosis -- or the bones to "die" -- and ultimately severe arthritis, but if osteonecrosis occurs at the bone joint, it can cause it to collapse and the only option is a hip replacement, Dunlop said.

The rest is here:
Stem cells may preclude hip replacements

To Read More: Stem cells may preclude hip replacements
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells may preclude hip replacements | dataJune 4th, 2012
Read All

Robot Therapy Helps Paralysed Rats to Walk Again

By raymumme

Scientists at the Swiss Federal Institute of Technology have brought back full movement of the rats paralyzed by spinal cord injuries in a study that might sooner or later be used in people with similar injuries.

Gregoire Courtine and his team at Ecole Polytechnique Federale de Lausanne saw rats with severe paralysis walking and running again after a couple of weeks following a combination of electrical and chemical stimulation of the spinal cord together with robotic support.

"Our rats are not only voluntarily initiating a walking gait, but they are soon sprinting, climbing up stairs and avoiding obstacles," said Courtine, whose results from the five-year study will be published in the journal Science on Friday.

Courtine is quick to point out that it remains unclear if a similar technique could help people with spinal cord damage but he adds the technique does hint at new ways of treating paralysis. Other scientists agree.

"This is ground-breaking research and offers great hope for the future of restoring function to spinal injured patients," said Elizabeth Bradbury, a Medical Research Council senior fellow at King's College London.

Follow us

But Bradbury notes that very few human spinal cord injuries are the result of a direct cut through the cord, which is what the rats had. Human injuries are most often the result of bruising or compression and it is unclear if the technique could be translated across to this type of injury.

It is also unclear if this kind of electro-chemical "kick-start" could help a spinal cord that has been damaged for a long time, with complications like scar tissue, holes and where a large number of nerve cells and fibres have died or degenerated.

Nevertheless, Courtine's work does demonstrate a way of encouraging and increasing the innate ability of the spinal cord to repair itself, a quality known as neuroplasticity.

Other attempts to repair spinal cords have focused on stem cell therapy, although Geron, the world's leading embryonic stem cell company, last year closed its pioneering work in the field.

Continued here:
Robot Therapy Helps Paralysed Rats to Walk Again

To Read More: Robot Therapy Helps Paralysed Rats to Walk Again
categoriaSpinal Cord Stem Cells commentoComments Off on Robot Therapy Helps Paralysed Rats to Walk Again | dataJune 2nd, 2012
Read All

NeoStem to Present at Six Conferences in June

By raymumme

NEW YORK, May 31, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE Amex:NBS) ("NeoStem" or the "Company"), an international biopharmaceutical company focused on cell based therapies, announced today that Company management will present at six conferences in June.

International Society for Cellular Therapy Annual Meeting

National Investment Banking Association Conference

International Society for Stem Cell Research 10th Annual Meeting

The Biotechnology Industry Organization (BIO) International Conference

Alliance for Regenerative Medicine -- Clinical Outlooks for Regenerative Medicine 2012

Marcum's Inaugural MicroCap Conference

About NeoStem, Inc.

NeoStem, Inc. ("NeoStem") is a leader in the development and manufacture of cell therapies. NeoStem has a strategic combination of revenues, including that which is derived from the contract manufacturing services performed by Progenitor Cell Therapy, LLC, a NeoStem company. That manufacturing base is one of the few cGMP facilities available for contracting in the burgeoning cell therapy industry, and it is the combination of PCT's core expertise in manufacturing and NeoStem's extensive research capabilities that positions the company as a leader in cell therapy development. Amorcyte, LLC, also a NeoStem company, is developing a cell therapy for the treatment of cardiovascular disease. Amorcyte's lead compound, AMR-001, represents NeoStem's most clinically advanced therapeutic and is enrolling patients in a Phase 2 trial for the preservation of heart function after a heart attack. Amorcyte expects to begin a Phase 1 clinical trial in 2012/2013 for AMR-001 for the treatment of patients with congestive heart failure. Athelos Corporation, also a NeoStem company, is developing a T-cell therapy for a range of autoimmune conditions with its partner Becton-Dickinson. NeoStem's pre-clinical assets include its VSEL(TM) Technology platform for regenerative medicine, which NeoStem believes to be an endogenous, pluripotent, non-embryonic stem cell that has the potential to change the paradigm of cell therapy as we know it today.

For more information on NeoStem, please visit http://www.neostem.com.

Read the rest here:
NeoStem to Present at Six Conferences in June

To Read More: NeoStem to Present at Six Conferences in June
categoriaUncategorized commentoComments Off on NeoStem to Present at Six Conferences in June | dataMay 31st, 2012
Read All

CHOC Children’s Research Project Awarded $5.5 Million Grant from the California Institute for Regenerative Medicine

By raymumme

ORANGE, Calif.--(BUSINESS WIRE)--

A CHOC Childrens research project, under the direction of Philip H. Schwartz, Ph.D., senior scientist at the CHOC Childrens Research Institute and managing director of the facilitys National Human Neural Stem Cell Resource, has been awarded a $5.5 million grant from the California Institute for Regenerative Medicine (CIRM). The grant will be used to develop a stem cell-based therapy for the treatment of mucopolysaccharidosis (MPS I), a fatal metabolic disease that causes neurodegeneration, as well as defects in other major organ systems.

Based on a number of medical and experimental observations, children with inherited degenerative diseases of the brain are expected to be among the first to benefit from novel approaches based on stem cell therapy (SCT).

Dr. Schwartz explains, While uncommon, pediatric genetic neurodegenerative diseases account for a large burden of mortality and morbidity in young children. Hematopoietic (bone marrow) stem cell transplant (HSCT) can improve some non-neural symptoms of these diseases, but does not treat the deadly neurodegenerative process. Our approach targeting the effects of the disease on organs besides the brain with HSCT and neurodegeneration with a second stem cell therapy specifically designed to treat the brain is a strategy for whole-body treatment of MPS I. Our approach is also designed to avoid the need for immunosuppressive drugs to prevent rejection of the transplanted cells.

This research is designed to lead to experimental therapy, based on stem cells, by addressing two critical issues: early intervention is required and possible in this patient population; and teaching the immune system not to reject the transplanted cells is required. This research also sets the stage for efficient translation of this technology into clinical practice, by adapting transplant techniques that are standard in clinical practice or in clinical trials, and using laboratory cell biology methods that are easily transferrable to clinical cell manufacturing.

Nationally recognized for his work in the stem cell field, Dr. Schwartz research focuses on the use of stem cells to understand the neurobiological causes of autism and other neurodevelopmental disorders.

Named one of the best childrens hospitals by U.S. News & World Report (2011-2012) and a 2011 Leapfrog Top Hospital, CHOC Children's is exclusively committed to the health and well-being of children through clinical expertise, advocacy, outreach and research that brings advanced treatment to pediatric patients.

View original post here:
CHOC Children’s Research Project Awarded $5.5 Million Grant from the California Institute for Regenerative Medicine

To Read More: CHOC Children’s Research Project Awarded $5.5 Million Grant from the California Institute for Regenerative Medicine
categoriaUncategorized commentoComments Off on CHOC Children’s Research Project Awarded $5.5 Million Grant from the California Institute for Regenerative Medicine | dataMay 31st, 2012
Read All

Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

By raymumme

CLEARWATER, FL--(Marketwire -05/29/12)- Biostem U.S., Corporation, (HAIR.PK) (HAIR.PK) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, today announced that Philip A. Lowry, MD, has been appointed as the Chairman of its Scientific and Medical Board of Advisors (SAMBA).

According to Biostem CEO, Dwight Brunoehler, "As Chairman, Dr. Lowry will work with a team drawn from a cross-section of medical specialties. His combination of research, academic and community practice experience make him the perfect individual to coordinate and lead the outstanding group of physicians that makes up our SAMBA. As a group, The SAMBA will guide the company to maintain the highest ethical standards in every effort, while seeking and developing new cutting edge technology based on stem cell use. I am privileged to work with Dr. Lowry, once again."

Dr. Lowry stated, "Dwight is an innovative businessman with an eye on cutting-edge stem cell technology. His history in the industry speaks for itself. I like the plan at Biostem and look forward to working with everyone involved."

Dr. Philip A. Lowry received his undergraduate degree from Harvard College before going on to the Yale University School of Medicine. His completed his internal medicine residency at the University of Virginia then pursued fellowship training in hematology and oncology there as well. During fellowship training and subsequently at the University of Massachusetts, he worked in the laboratory of Dr. Peter Quesenberry working on in vitro and in vivo studies of mouse and human stem cell biology.

Dr. Lowry twice served on the faculty at the University of Massachusetts Medical Center from 1992-1996 and from 2004-2009 as an assistant and then associate clinical professor of medicine establishing the bone marrow/stem cell transplantation program there, serving as medical director of the Cryopreservation Lab supporting the transplant program, helping to develop a cord blood banking program, and teaching and coordinating the second year medical school course in hematology and oncology. Dr. Lowry additionally has ten years experience in the community practice of hematology and oncology. In 2010, Dr. Lowry became chief of hematology/oncology for the Guthrie Health System, a three-hospital tertiary care system serving northern Pennsylvania and southern New York State. He is charged with developing a cutting-edge cancer program that can project into a traditionally rural health care delivery system.

Dr. Lowry has also maintained a career-long interest in regenerative medicine springing from his research and practice experience in stem cell biology. His new role positions him to foster further development of that field. As part of a horizontally and vertically integrated multi-specialty team, he is closely allied with colleagues in cardiology, neurology/neurosurgery, and orthopedics among others with whom he hopes to stimulate the expansion of regenerative techniques.

About Biostem U.S., Corporation

Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell-related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.

Continue reading here:
Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

To Read More: Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors
categoriaUncategorized commentoComments Off on Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors | dataMay 29th, 2012
Read All

Makati Medical Center now offering stem cell therapy

By raymumme

THE MAKATI Medical Centers Cancer Center celebrated its first year anniversary and marked the occasion with the launch of its Cellular Therapeutics Laboratory. Present at the ribbon-cutting ceremony were Dr. Eric Flores, head, Spine Clinic and Stem Cell Lab; Rosalie Montenegro, Makati Medical Center president and CEO; Dr. ManuelO. Fernandez Jr., executive vice president and director, Professional Services; Dr. Remedios G. Suntay, director and treasurer, MDI Board; Dr. Benjamin N. Alimurung, medical director; Dr. Francis Chung, scientific officer, Stem Cell Lab; and Augusto P. Palisoc Jr., executive director, president and CEO, MPIC Hospital Group.

MAKATIMEDS Cellular Therapeutics Laboratory is managed by experienced scientists with extensive training and is affiliated with the International Society for Cellular Therapy.

Stem cell therapy is now being offered at Makati Medical Center (MMC) as potential cure for a wide range of illnesses, from various types of cancer and heart ailments to incurable diseases such as multiple sclerosis, Parkinsons and Alzheimers.

Stem cell therapy is believed to be effective in bone marrow transplant for leukemia patients, and with early intervention, yields desirable results among renal and prostate cancer patients.

Launched in the first year anniversary of the hospitals cancer center, MMCs Cellular Therapeutics Laboratory is equipped with technology touted to be totally unmatched in our country, says Dr. Francis Chung, scientific officer of the lab. No system exists elsewhere.

Employing the strictest sterility standards at par with that of the US Food and Drug Administration, the lab has state-of-the-art facilities. The Clinimacs CD34 Reagent System is a machine that isolates specific cells needed for the procedure, while the Flow Cytomer ensures the purity of cultured cells.

Transplantation

Sourcing the stem cells, however, is what truly sets the Philippines premier health institution apart from chi-chi spas that also push stem cell therapy for beauty and anti-aging procedures.

At MMC, healthy stem cells are acquired from the patients themselves, a process known as autologous transplantation. For those suffering from an ailment, a parent, sibling or other close relative could be the donor. The hospital strives for utmost compatibility between patient and donor through a 10-point DNA matching system.

If a battery of tests finds a patient to be up to it, medication is given to prepare him for stem cell harvest.

Follow this link:
Makati Medical Center now offering stem cell therapy

To Read More: Makati Medical Center now offering stem cell therapy
categoriaUncategorized commentoComments Off on Makati Medical Center now offering stem cell therapy | dataMay 29th, 2012
Read All

Israeli Scientists Reprogram Skin Cells into Beating Heart Tissue: Stem Cell Research Pays Off – Video

By raymumme

24-05-2012 09:53 For the first time ever, scientists have transformed normal skin cells into healthy beating heart tissue. Researchers based in Haifa in Israel, say they hope that the breakthrough will one day lead to new treatments for patients suffering from heart failure. Head of Research Professor Lior Gepstein "We were able to demonstrate the ability to take skin cells from very sick patients with significant heart failure, heart disease, and show that cells, skin cells from these patients can be eventually differentiated to become healthy heart cells in the dish. So one can take skin cells from a very sick individual, who has very sick heart cells, to reprogram them to become induced pluripotent stem cells and then make heart cells that are healthy, that are young and resemble heart cells at the day that the patient was born." At the moment, people with severe heart failure have to rely on mechanical devices or hope for a transplant. However, by studying stem cells from various sources for more than a decade, researchers are hoping to capitalise on their ability to transform stem cells into a wide variety of other kinds of cell. Head of Research Professor Lior Gepstein "These cells can be transplanted into hearts of animals, survive and function in synchrony with existing heart tissue. This study open the road, hopefully, to future clinical trials, in a decade or so, that will test the ability of such heart cells to repair the patient's own heart," There may be a lot to do before ...

Read more:
Israeli Scientists Reprogram Skin Cells into Beating Heart Tissue: Stem Cell Research Pays Off - Video

To Read More: Israeli Scientists Reprogram Skin Cells into Beating Heart Tissue: Stem Cell Research Pays Off – Video
categoriaCardiac Stem Cells commentoComments Off on Israeli Scientists Reprogram Skin Cells into Beating Heart Tissue: Stem Cell Research Pays Off – Video | dataMay 26th, 2012
Read All

Scientists Turn Skin Cells into Healthy Heart Cells

By raymumme

Dr. John D. Cunningham / Getty Images

In a medical first, scientists in Haifa, Israel, took skin cells from two heart failure patients and reprogrammed them into stem cells that generated healthy, beating heart muscle cells in the lab. Though human testing is likely a decade off, the hope is that such cells can be used to help people with heart failure repair their damaged hearts with their own skin cells.

In the current study, scientists first mixed the newly developed heart cells with pre-existing heart tissue within days, the cells were beating together. The heart tissue was then transplanted into rats, where it integrated with the rats healthy heart cells.

What is new and exciting about our research is that we have shown that its possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born, says lead researcherDr. Lior Gepstein, a senior clinical electrophysiologist at Rambam Medical Center in Israel, said in a statement.

The researchers were pleased to find that the cells made from the two heart failure patients, ages 51 and 61, generated heart muscle cells that were just as effective as those developed from healthy, young controls.

(MORE: Study During Beijing Olympics Shows How Pollution Harms the Heart)

If the technology works in human hearts, it could potentially prevent problems of immune rejection, since the cells would be the patients own. It would also avoid the moral issues surrounding the use of embryonic stem cells, since such reprogrammed stem cells or human induced pluripotent stem (iPS) cells do not use embryos.

But its still too early to predict whether the procedure could be successful humans. The new study involved cells from only two patients and were transplanted only into healthy animals. The authors note that human clinical trials are likely at least five or 10 years away. Further, creating iPS cells is not an easy or efficient process; its not clear whether enough cells could be made quickly enough to repair the broad-scale damage that occurs after a heart attack.

Reprogramming skin cells to become stem cells also introduces the potential for the cells to grow out of control and become cancerous. The Israeli researchers took additional steps removing certain transcription factors and viral factors to reduce the risk of cancer. But these hurdles would have to be revisited if the technique is tested in human patients.

This is an interesting paper, but very early and its really important for patients that the promise of such a technique is not oversold, John Martin, a professor of cardiovascular medicine at University College London, told Reuters.The chances of translation are slim and if it does work it would take around 15 years to come to clinic.

Continued here:
Scientists Turn Skin Cells into Healthy Heart Cells

To Read More: Scientists Turn Skin Cells into Healthy Heart Cells
categoriaSkin Stem Cells commentoComments Off on Scientists Turn Skin Cells into Healthy Heart Cells | dataMay 24th, 2012
Read All

Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts

By raymumme

WEDNESDAY, May 23 (HealthDay News) -- In a medical science first, researchers turned skin cells from heart failure patients into heart muscle cells that may then be used to fix damaged cardiac tissue.

The researchers said the achievement -- done initially with rats -- opens up the prospect of using heart failure patients' own stem cells -- a form of cell called human-induced pluripotent stem cells (hiPSCs) -- to repair damaged hearts. And since the reprogrammed stem cells would originate with the patient, their immune systems would not reject the cells as foreign, the researchers explained.

They added, however, that many obstacles must be overcome before it would be possible to use hiPSCs in humans this way, and any clinical trial would be at least five to 10 years away.

"We have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young -- the equivalent to the stage of his heart cells when he was just born," study leader Lior Gepstein said in a European Heart Journal news release. The study's findings are scheduled for online publication in the journal May 23.

Gepstein is professor of medicine (cardiology) and physiology at the Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine at the Technion Israel Institute of Technology and Rambam Medical Center in Haifa, Israel.

One expert in the United States applauded the achievement.

"The ability to source a patient's own skin cells and transform them into heart muscle is truly revolutionary," said Dr. Gregory Fontana, chairman of cardiothoracic surgery at Lenox Hill Hospital in New York City.

The results are "another step toward the treatment of heart failure with stem cells," he said. "Although further work is needed, this work represents another step closer to the clinic."

In the study, the researchers retrieved skin cells from two male heart failure patients, ages 51 and 61, and then reprogrammed them in the lab to develop into heart muscle tissue, which was then blended with pre-existing heart tissue. Within 24 to 48 hours, the tissues were beating together.

The new tissue was transplanted into healthy rat hearts and started to establish connections with the cells of the rat hearts. Success in animal experiments does not necessarily translate to success in humans, however.

Link:
Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts

To Read More: Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts
categoriaSkin Stem Cells commentoComments Off on Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts | dataMay 24th, 2012
Read All

Family hangs hope for boy on unproven therapy in India

By raymumme

Indian clinic's stem cell therapy real?

STORY HIGHLIGHTS

For more of CNN correspondent Drew Griffin's investigation of India's experimental embryonic stem cell therapy, watch "CNN Presents: Selling a Miracle," at 8 and 11 p.m. ET Sunday on CNN.

New Delhi (CNN) -- Cash Burnaman, a 6-year-old South Carolina boy, has traveled with his parents to India seeking treatment for a rare genetic condition that has left him developmentally disabled. You might think this was a hopeful mission until you learn that an overwhelming number of medical experts insist the treatment will have zero effect.

Cash is mute. He walks with the aid of braces. To battle his incurable condition, which is so rare it doesn't have a name, Cash has had to take an artificial growth hormone for most of his life.

His divorced parents, Josh Burnaman and Stephanie Krolick, are so driven by their hope and desperation to help Cash they've journeyed to the other side of the globe and paid tens of thousands of dollars to have Cash undergo experimental injections of human embryonic stem cells.

The family is among a growing number of Americans seeking the treatment in India -- some at a clinic in the heart of New Delhi called NuTech Mediworld run by Dr. Geeta Shroff, a retired obstetrician and self-taught embryonic stem cell practitioner.

Shroff first treated Cash -- who presents symptoms similar to Down Syndrome -- in 2010. "I am helping improve their quality of life," Shroff told CNN.

After five weeks of treatment, Cash and his parents returned home to the U.S.

That's when Cash began walking with the aid of braces for the first time.

Excerpt from:
Family hangs hope for boy on unproven therapy in India

To Read More: Family hangs hope for boy on unproven therapy in India
categoriaUncategorized commentoComments Off on Family hangs hope for boy on unproven therapy in India | dataMay 21st, 2012
Read All

Canada approves stem cell therapy

By raymumme

Osiris Therapeutics Inc says Canadian health regulators have approved its treatment for acute graft-versus host disease in children, making it the first stem cell drug to be approved for a systemic disease anywhere in the world.

Osiris shares rose 14 percent to $6.00 in extended trading after the news was announced.

Graft versus host disease (GvHD) is a potentially deadly complication from a bone marrow transplant, when newly implanted cells attack the patient's body. Symptoms range from abdominal pain and skin rash to hair loss, hepatitis, lung and digestive tract disorders, jaundice and vomiting.

The disease kills up to 80 percent of children affected, Osiris said. To date there have been no approved treatments for the disease. Canadian authorities approved the therapy, Prochymal, for use in children who have failed to respond to steroids.

Prochymal was approved with the condition that Osiris carry out further testing after it reaches the market. C. Randal Mills, the company's chief executive, said in an interview that could take three to four years.

Some investment analysts have been skeptical about Prochymal's future. In 2009, two late-stage clinical trials failed to show the drug was more effective overall than a placebo in treating the disease, though it showed promise in certain subgroups of patients.

Since then, the company has mined data from all its clinical trials to show that in patients with severe refractory acute GvHD -- those who have more or less failed all other therapies -- Prochymal demonstrated a clinically meaningful response at 28 days after therapy began in 61-64 percent of patients.

In addition, treatment with Prochymal resulted in a statistically significant improvement in survival when compared with a historical control population of pediatric patients with refractory GvHD.

The Canadian authorities approved the drug on the basis of that data, the company said.

FDA SUBMISSION THIS YEAR

Link:
Canada approves stem cell therapy

To Read More: Canada approves stem cell therapy
categoriaUncategorized commentoComments Off on Canada approves stem cell therapy | dataMay 19th, 2012
Read All

In The Know: Stem cell therapy

By raymumme

Philippine Daily Inquirer

Former President and current Pampanga Rep. Gloria Macapagal-Arroyo, who was suffering from a mineral deficiency in her bones arising from two corrective surgeries last September, wanted to seek alternative stem cell therapy abroad.

However, she was barred from leaving the country last November after Justice Secretary Leila de Lima refused to honor the temporary restraining order issued by the high court on the inclusion of Arroyo and her husband Jose Miguel Mike Arroyo in the immigration bureaus watch list.

In the wake of Arroyos supposed plan to try the radical technology at stem cell centers abroad to cure what her doctors here described as a rare bone disease, a province mate and a colleague of the former President filed a bill to put up a stem cell center in the country.

Pampanga Rep. Carmelo F. Lazatin, a member of the minority bloc in Congress, has filed House Bill No. 5287 mandating the establishment of a research facility to explore the benefits of stem cell technology as a potential cure for incurable diseases.

Blank cells

Stem cells, the foundation of every organ, tissue and cell within the human body, are like blank cells that do not yet have a specific physiological function, according to Harvard Stem Cell Institute (HSCI).

But when proper conditions in the body or in the laboratory occur, stem cells develop into specialized tissues and organs, HSCI explains in its website, adding that there are two sources of stem cells used in research: the adult stem cells and embryonic stem cells.

Adult stem cells are found in differentiated tissues and organs throughout the body while embryonic stem cells are obtained from the inner cell mass of a blastocyst, the ball of cells formed when the fertilized egg or zygote divides and forms two cells, then again to form four and so on, HSCI said.

In 2008, the Vatican issued a sweeping document on bioethical issues titled Dignitas Personae or The Dignity of the Person, taking into account recent developments in biomedical technology and reinforcing the Churchs opposition to embryonic stem cell research, in vitro fertilization, human cloning and genetic testing on embryos before implantation.

Original post:
In The Know: Stem cell therapy

To Read More: In The Know: Stem cell therapy
categoriaUncategorized commentoComments Off on In The Know: Stem cell therapy | dataMay 13th, 2012
Read All

Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy

By raymumme

Public release date: 9-May-2012 [ | E-mail | Share ]

Contact: Dean Forbes dforbes@fhcrc.org 206-667-2896 Fred Hutchinson Cancer Research Center

SEATTLE For the first time, scientists at Fred Hutchinson Cancer Research Center have transplanted brain cancer patients' own gene-modified blood stem cells in order to protect their bone marrow against the toxic side effects of chemotherapy. Initial results of the ongoing, small clinical trial of three patients with glioblastoma showed that two patients survived longer than predicted if they had not been given the transplants, and a third patient remains alive with no disease progression almost three years after treatment.

"We found that patients were able to tolerate the chemotherapy better and without negative side effects after transplantation of the gene-modified stem cells than patients in previous studies who received the same type of chemotherapy without a transplant of gene-modified stem cells," said Hans-Peter Kiem, M.D., senior and corresponding author of the study published in the May 9 issue of Science Translational Medicine.

Kiem, a member of the Clinical Research Division at the Hutchinson Center, said that a major barrier to effective use of chemotherapy to treat cancers like glioblastoma has been the toxicity of chemotherapy drugs to other organs, primarily bone marrow. This results in decreased blood cell counts, increased susceptibility to infections and other side effects. Discontinuing or delaying treatment or reducing the chemotherapy dose is generally required, but that often results in less effective treatment.

In the current study, Kiem and colleagues focused on patients with glioblastoma, an invariably fatal cancer. Many of these patients have a gene called MGMT (O6-methylguanine-DNA-methyltransferase) that is turned on because the promoter for this gene is unmethylated. MGMT is a DNA repair enzyme that counteracts the toxic effect of some chemotherapy agents like temozolomide. Patients with such an unmethylated promoter status have a particularly poor prognosis.

A drug called benzylguanine can block the MGMT gene and make tumor cells sensitive to chemotherapy again, but when given with chemotherapy, the toxic effects of this combination are too much for bone marrow cells, which results in marrow suppression.

By giving bone marrow stem cells P140K, which is a modified version of MGMT, those cells are protected from the toxic effects of benzylguanine and chemotherapy, while the tumor cells are still sensitive to chemotherapy. "P140K can repair the damage caused by chemotherapy and is impervious to the effects of benzylguanine," Kiem said.

"This therapy is analogous to firing at both tumor cells and bone marrow cells, but giving the bone marrow cells protective shields while the tumor cells are unshielded," said Jennifer Adair, Ph.D., who shares first authorship of the study with Brian Beard, Ph.D., both members of Kiem's lab.

The three patients in this study survived an average of 22 months after receiving transplants of their own circulating blood stem cells. One, an Alaskan man, remains alive 34 months after treatment. Median survival for patients with this type of high-risk glioblastoma without a transplant is just over a year.

Read more:
Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy

To Read More: Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy
categoriaBone Marrow Stem Cells commentoComments Off on Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy | dataMay 10th, 2012
Read All

Researchers develop new muscular dystrophy treatment approach using human stem cells

By raymumme

Researchers from the University of Minnesota's Lillehei Heart Institute have effectively treated muscular dystrophy in mice using human stem cells derived from a new process that for the first time makes the production of human muscle cells from stem cells efficient and effective.

The research, published today in Cell Stem Cell, outlines the strategy for the development of a rapidly dividing population of skeletal myogenic progenitor cells (muscle-forming cells) derived from induced pluripotent (iPS) cells. iPS cells have all of the potential of embryonic stem (ES) cells, but are derived by reprogramming skin cells. They can be patient-specific, which renders them unlikely to be rejected, and do not involve the destruction of embryos.

This is the first time that human stem cells have been shown to be effective in the treatment of muscular dystrophy.

According to U of M researchers who were also the first to use ES cells from mice to treat muscular dystrophy there has been a significant lag in translating studies using mouse stem cells into therapeutically relevant studies involving human stem cells. This lag has dramatically limited the development of cell therapies or clinical trials for human patients.

The latest research from the U of M provides the proof-of-principle for treating muscular dystrophy with human iPS cells, setting the stage for future human clinical trials.

"One of the biggest barriers to the development of cell-based therapies for neuromuscular disorders like muscular dystrophy has been obtaining sufficient muscle progenitor cells to produce a therapeutically effective response," said principal investigator Rita Perlingeiro, Ph.D., associate professor of medicine in the Medical School's Division of Cardiology. "Up until now, deriving engraftable skeletal muscle stem cells from human pluripotent stem cells hasn't been possible. Our results demonstrate that it is indeed possible and sets the stage for the development of a clinically meaningful treatment approach."

Upon transplantation into mice suffering from muscular dystrophy, human skeletal myogenic progenitor cells provided both extensive and long-term muscle regeneration which resulted in improved muscle function.

To achieve their results, U of M researchers genetically modified two well-characterized human iPS cell lines and an existing human ES cell line with the PAX7 gene. This allowed them to regulate levels of the Pax7 protein, which is essential for the regeneration of skeletal muscle tissue after damage. The researchers found this regulation could prompt nave ES and iPS cells to differentiate into muscle-forming cells.

Up until this point, researchers had struggled to make muscle efficiently from ES and iPS cells. PAX7 induced at exactly the right time helped determine the fate of human ES and iPS cells, pushing them into becoming human muscle progenitor cells.

Once Dr. Perlingeiro's team was able to pinpoint the optimal timing of differentiation, the cells were well suited to the regrowth needed to treat conditions such as muscular dystrophy. In fact, Pax7-induced muscle progenitors were far more effective than human myoblasts at improving muscle function. Myoblasts, which are cell cultures derived from adult muscle biopsies, had previously been tested in clinical trials for muscular dystrophy, however the myoblasts did not persist after transplantation.

Read the original post:
Researchers develop new muscular dystrophy treatment approach using human stem cells

To Read More: Researchers develop new muscular dystrophy treatment approach using human stem cells
categoriaSkin Stem Cells commentoComments Off on Researchers develop new muscular dystrophy treatment approach using human stem cells | dataMay 6th, 2012
Read All

UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells

By raymumme

Public release date: 4-May-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

In an effort to identify the underlying causes of neurological disorders that impair motor functions such as walking and breathing, UCLA researchers have developed a novel system to measure the communication between stem cell-derived motor neurons and muscle cells in a Petri dish.

The study provides an important proof of principle that functional motor circuits can be created outside of the body using stem cell-derived neurons and muscle cells, and that the level of communication, or synaptic activity, between the cells could be accurately measured by stimulating motor neurons with an electrode and then measuring the transfer of electrical activity into the muscle cells to which the motor neurons are connected.

When motor neurons are stimulated, they release neurotransmitters that depolarize the membranes of muscle cells, allowing the entry of calcium and other ions that cause them to contract. By measuring the strength of this activity, one can get a good estimation of the overall health of motor neurons. That estimation could shed light on a variety of neurodegenerative diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis, or Lou Gehrig's disease, in which the communication between motor neurons and muscle cells is thought to unravel, said study senior author Bennett G. Novitch, an assistant professor of neurobiology and a scientist with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

The findings of the study appear May 4, 2012 in PLoS ONE, a peer-reviewed journal of the Public Library of Science.

"Now that we have this method to measure the strength of the communications between motor neurons and muscle cells, we may be able to begin exploring what happens in the earliest stages of motor neuron disease, before neuronal death becomes prevalent," Novitch said. "This can help us to pinpoint where things begin to go wrong and provide us with new clues into therapeutic interventions that could improve synaptic communication and promote neuronal survival."

Novitch said the synaptic communication activity his team was able to create and measure using mouse embryonic stem cell-derived motor neurons and muscle cells looks very similar what is seen in a mouse, validating that their model is a realistic representation of what is happening in a living organism.

"That gives us a good starting point to try to model what happens in cells that harbor genetic mutations that are associated with neurodegenerative diseases,. To do that, we had to first define an activity profile of normal synaptic communication," he said. "Some research suggests that a breakdown in this communication can be an early indication of disease progression or possibly an initiating event. Neurons that cannot effectively transmit information to muscle cells will eventually withdraw their contacts, causing both the neurons and muscle cells to degenerate over time. Hopefully, we can now create disease models that will allow us to study what is happening."

In this study, Novitch and his team, led by Joy Umbach, an associate professor of molecular and medical pharmacology, used mouse embryonic stem cells to create the motor neurons and previously established lines of muscle precursors to produce muscle fibers. They put both cells together in a Petri dish, and the cells were cultured in such a way to encourage communication. Novitch said the team wanted to see if they would naturally form synaptic contacts and whether or not there was neural transmission between them.

Read more:
UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells

To Read More: UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells
categoriaUncategorized commentoComments Off on UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells | dataMay 6th, 2012
Read All

Juvenile Parkinson’s – Stem cell therapy – Video

By raymumme

01-05-2012 12:12 This video, is a testimonial of a patient from Uruguay that went to Progencell, to get treatment Juvenile Parkinson's . Talks about his experience, the procedure, the outcome and some suggestions. Language spanish with English subtitles, 7:10 min duration aprox.

Read the original here:
Juvenile Parkinson's - Stem cell therapy - Video

To Read More: Juvenile Parkinson’s – Stem cell therapy – Video
categoriaUncategorized commentoComments Off on Juvenile Parkinson’s – Stem cell therapy – Video | dataMay 2nd, 2012
Read All

Scientists Have Found a Way to Regenerate Muscle Tissue After a Heart Attack [Medicine]

By raymumme

There could be a path to a simpler recovery after a heart attack. Duke University Medical Center scientists have discovered a way to turn the scar tissue that forms after cardiac arrest into healthy muscle tissue, which would make a stem cell transplant unnecessary.

To achieve this, researchers introduced microRNA to scar tissue cells in a living mouse. These hardened cells, called fibroblasts, develop as a result of a heart attack, and impede the organ's ability to pump blood. The microRNAs, which are molecules that govern the activity of several genes, were able to manipulate the fibroblasts to transform into cells that looked like cardiomyocytes, which comprise heart muscle.

The results of their study have been published in the journal Circulation Research. While further exploration is required, the find is promising for the millions of people in the U.S. that suffer from heart disease, the leading cause of death in this country. But it has application beyond that. If it works for the heart, theoretically it would help regenerate tissues in the brain, the kidneys, and other organs.

Now that this cell reversal technique has proven successful, researchers plan to test it with larger animals. If it works, they'll try it in humans, and hopefully have a practical application developed within the decade. [Science Dailyvia Reddit]

Read the original here:
Scientists Have Found a Way to Regenerate Muscle Tissue After a Heart Attack [Medicine]

To Read More: Scientists Have Found a Way to Regenerate Muscle Tissue After a Heart Attack [Medicine]
categoriaUncategorized commentoComments Off on Scientists Have Found a Way to Regenerate Muscle Tissue After a Heart Attack [Medicine] | dataApril 29th, 2012
Read All

Human neural stem cells with tumor targeting ability discovered

By raymumme

ScienceDaily (Apr. 20, 2012) Could engineered human stem cells hold the key to cancer survival? Scientists at the Institute of Bioengineering and Nanotechnology (IBN), the world's first bioengineering and nanotechnology research institute, have discovered that neural stem cells possess the innate ability to target tumor cells outside the central nervous system.

This finding, which was demonstrated successfully on breast cancer cells, was recently published in peer reviewed journal, Stem Cells.

Despite decades of cancer research, cancer remains a leading cause of death worldwide, accounting for 7.6 million deaths in 2008, and breast cancer is one of the most common causes of cancer deaths each year[1]. In Singapore, more than 1,400 women are diagnosed with breast cancer and more than 300 die as a result of breast cancer each year[2]. The high fatality rate of cancer is partially attributed to the invasive ability of malignant tumors to spread throughout the human body, and the ineffectiveness of conventional therapies to eradicate the cancer cells.

A team of researchers led by IBN Group Leader, Dr Shu Wang, has made a landmark discovery that neural stem cells (NSCs) derived from human induced pluripotent stem (iPS) cells could be used to treat breast cancer. The effectiveness of using NSCs, which originate from the central nervous system, to treat brain tumors has been investigated in previous studies. This is the first study that demonstrates that iPS cell-derived NSCs could also target tumors outside the central nervous system, to treat both primary and secondary tumors.

To test the efficiency of NSCs in targeting and treating breast cancer, the researchers injected NSCs loaded with a suicide gene (herpes simplex virus thymidine) into mice bearing breast tumors. They did this using baculoviral vectors or gene carriers engineered from an insect virus (baculovirus), which does not replicate in human cells, making the carriers less harmful for clinical use. A prodrug (ganciclovir), which would activate the suicide gene to kill the cancerous cells upon contact, was subsequently injected into the mice. A dual-colored whole body imaging technology was then used to track the distribution and migration of the iPS-NSCs.

The imaging results revealed that the iPS-NSCs homed in on the breast tumors in the mice, and also accumulated in various organs infiltrated by the cancer cells such as the lung, stomach and bone. The survival of the tumor-bearing mice was prolonged from 34 days to 39 days. This data supports and explains how engineered iPS-NSCs are able to effectively seek out and inhibit tumor growth and proliferation.

Dr Shu Wang shared, "We have demonstrated that tumor-targeting neural stem cells may be derived from human iPS cells, and that these cells may be used in combination with a therapeutic gene to cripple tumor growth. This is a significant finding for stem cell-based cancer therapy, and we will continue to improve and optimize our neural stem cell system by preventing any unwanted activation of the therapeutic gene in non-tumor regions and minimizing possible side effects."

"IBN's expertise in generating human stem cells from iPS cells and our novel use of insect virus carriers for gene delivery have paved the way for the development of innovative stem cell-based therapies. With their two-pronged attack on tumors using genetically engineered neural stem cells, our researchers have discovered a promising alternative to conventional cancer treatment," added Professor Jackie. Y. Ying, IBN Executive Director.

Compared to collecting and expanding primary cells from individual patients, IBN's approach of using iPS cells to derive NSCs is less laborious and suitable for large-scale manufacture of uniform batches of cellular products for repeated patient treatments. Importantly, this approach will help eliminate variability in the quality of the cellular products, thus facilitating reliable comparative analysis of clinical outcomes.

Additionally, these iPS cell-derived NSCs are derived from adult cells, which bypass the sensitive ethical issue surrounding the use of human embryos, and since iPS cells are developed from a patient's own cells, the likelihood of immune rejection would be reduced.

Continued here:
Human neural stem cells with tumor targeting ability discovered

To Read More: Human neural stem cells with tumor targeting ability discovered
categoriaIPS Cell Therapy commentoComments Off on Human neural stem cells with tumor targeting ability discovered | dataApril 22nd, 2012
Read All

Stanford Group Publishes Fluidigm-Based Method for Gene Expression Profiling of Single Stem Cells

By raymumme

By Ben Butkus

Stanford University researchers have published a method for using Fluidigm's digital PCR platform to conduct single-cell, real-time PCR to compare gene expression patterns of single cells.

The protocol is indicative of the increased use of Fluidigm's products for single-cell biology, an application area that the company has been heavily promoting over the past year.

In addition, the method may provide a powerful tool for understanding gene expression and differentiation in induced pluripotent stem cells and human embryonic stem cells for regenerative medicine, the researchers said.

In a paper published last week in Nature Protocols, researchers led by Joseph Wu, associate professor of medicine, cardiology, and radiology at Stanford University School of Medicine, described how they used Fluidigm's BioMark HD platform and Dynamic Array chips to analyze gene expression profiles of single iPSCs or hESCs approximately 11 hours after collection.

The team decided to publish the method after using it to conduct a study published last March in the Journal of Clinical Investigation that demonstrated how single-cell transcriptional profiling revealed heterogeneity in human iPSCs. "A lot of people asked us after that JCI paper how we exactly do this, so we decided to write a detailed protocol," Wu told PCR Insider.

Wu and colleagues began using Fluidigm's platform through the laboratory of fellow Stanford scientist Stephen Quake, a co-founder of the company and a co-author on the recent Nature Protocols paper.

According to Veronica Sanchez-Freire, a postdoc in Wu's lab and also a co-author on the paper, the group needed a tool to compare gene expression between individual cells in single colonies of iPSCs or hESCs with high sensitivity using a limiting amount of sample.

"We were interested in seeing how different gene expression could be in the cell depending on its position in the colony," Sanchez-Freire said. "We are looking at these iPS cells from different cell types and donors, and we always compare them to [human embryonic] stem cells, the gold standard but we also wanted to see how similar they are [to each other]."

Most traditional gene expression studies, using, for example, quantitative real-time PCR, extract RNA from a large population of cells for downstream expression analysis. "And we saw that when you do that, iPS cells and stem cells are very similar," Sanchez-Freire said. "But when you go to the single-cell level, we saw how the iPS cells are more heterogeneous than the ES cells."

Visit link:
Stanford Group Publishes Fluidigm-Based Method for Gene Expression Profiling of Single Stem Cells

To Read More: Stanford Group Publishes Fluidigm-Based Method for Gene Expression Profiling of Single Stem Cells
categoriaCardiac Stem Cells commentoComments Off on Stanford Group Publishes Fluidigm-Based Method for Gene Expression Profiling of Single Stem Cells | dataApril 14th, 2012
Read All

Page 35«..1020..34353637..40..»


Copyright :: 2024