Page 37«..1020..36373839..»

Eggs from Stem Cells excite the imagination

By raymumme

These human eggs (oocytes) can now be made from adult ovaries; Credit: Shutterstock

Yvonne A R White, Dori C Woods, Yasushi Takai, Hiroyuki Seki and Jonathan L Tilly worked hard in 2004. When this intrepid team revealed that some mammals (eg. mice) can produce eggs into their adult life, there was hope that stem cells could now become a staple of medical ideas. That hope has been fully justified. Published in the March issue of Nature Medicine, the same team have explored human female ovary capabilities and performed what was thought the impossible.

We may all know that female babies are born with their full and finite complement of oocytes or eggs, but we are only partly correct. Now the possibilities have enlarged. The proof that you could find egg-producing stem cells in the ovary of adult women was paramount for this team of scientists.

Dr. Jonathan Tilly directs the Vincent Center in Massachusetts General Hospital: "The discovery of oocyte precursor cells in adult human ovaries, coupled with the fact that these cells share the same characteristic features of their mouse counterparts that produce fully functional eggs, opens the door for development of unprecedented technologies to overcome infertility in women and perhaps even delay the timing of ovarian failure." Presumably, stem cell researchers will read much more into this.

Shanghai mouse research provided support with proof of egg-producing stem cells in 2009 and then the Vincent team developed a more precise green fluorescence-activated cell-sorting technique(GFP), whereby no possibility of contamination from other cells was possible. The verified eggs they produced could then be fertilised and developed into blastocysts. Now for human tissues. The resultant oocytes (eggs) not only looked like and grew like those in human ovaries, but some had the required haploid number of chromosomes, presumably after meiosis (all true eggs of course have to double up their DNA later, when fertilised.)

This cross-section of a human ovary shows potential areas for stem cells -which can now be converted to oocytes - even in adult women; Credit: Shutterstock

The final step, to date, involved using mouse recipients for the human tissue. Immature human follicles and oocytes were found after 7-14 days, and possibly were present before the mouse skin graft. Dr. Tilly and the team are now exploring the freezing of these cells in human OSC banks, as human eggs cannot be frozen and thawed without damage.

Likewise, factors such as hormones that influence the marvellous transformation from OSC to oocyte need to be identified with IVF and other infertility possibilities become let us say, "improved" spectacularly by these discoveries. Women's health generally could also be improved by maintaining some functions in the ovary throughout life. Let us be clear that with even more from these particular stem cells, a fascinating transformation of the whole of medicine lies ahead.

Read this article:
Eggs from Stem Cells excite the imagination

To Read More: Eggs from Stem Cells excite the imagination
categoriaSkin Stem Cells commentoComments Off on Eggs from Stem Cells excite the imagination | dataFebruary 29th, 2012
Read All

International Cellular Medicine Society Grants First Worldwide Accreditation to Tijuana Clinical Trial

By raymumme

Regenerative Medicine Institute, Mexico has been granted full accreditation for its clinical stem cell trials

Portland, Oregon (PRWEB) February 29, 2012

We are pleased that RMI undertook this process, says David Audley, executive director of the ICMS. The clinic understood that patient safety can only be assured through strict evaluation and rigorous oversight. From day one they have embraced the transparency that this program requires.

RMI is the first clinic to achieve this status under the ICMS Accreditation Program. The clinic has undergone two separate site audits as well as an institutional review board review evaluation. Most importantly, the clinic has placed in excess of 50 patients into the Treatment Registry for long-term outcome tracking. The safety profile has been excellent, continued Audley. We have tracked patients over at least two follow-ups and a minimum of six months and not seen a single cell-related adverse event.

The ICMS is currently evaluating nearly a dozen clinics worldwide. Accreditation is based upon the Guidelines for the Practice of Cell-Based Medicine developed and published by the ICMS. Key components of these guidelines are the ethical recruitment of patients, proper consent of patients and compliance with local laws and regulations in the treatment of patients.

###

Mr. David Audley International Cellular Medicine Society 503-884-6590 Email Information

Excerpt from:
International Cellular Medicine Society Grants First Worldwide Accreditation to Tijuana Clinical Trial

To Read More: International Cellular Medicine Society Grants First Worldwide Accreditation to Tijuana Clinical Trial
categoriaUncategorized commentoComments Off on International Cellular Medicine Society Grants First Worldwide Accreditation to Tijuana Clinical Trial | dataFebruary 29th, 2012
Read All

Iranian researcher discovers factor of stem cell disorder

By raymumme

Source: ISNA, Tehran

The researches have studied mesenchymal stem cells or MSCs derived from mice bone marrow in cell culture period and succeeded to identify new division in cell latency period which can lead to chromosomal disorders in the cells.

Phd student in Hematology at Tarbiat Modarres University in Tehran, Naser Ahmad Beigi told ISNA that mesenchymal stem cells are powerful tools in cell therapeutic and tissue engineering because of their special specifications. For the same reasons stem cells derived from them are used effectively in experiments.

He added during the procedure of separating mesenchymal stem cells from mice bone marrows, many researchers believe them to be dead and refuse to continue the procedure and this is because of changing form of the cells and a reduction in their propagation at the beginning level of the cell culture.

Beigi stressed these signs show latency period and that cells would be propagated without showing any signs for a long time if the culture continues. He noted an unknown division is the specification of the latency period which leads to chromosomal disorders.

He added the disorders can lead to the appearance of tumors inside the body and inefficiency of non-carcinogenic drugs and restraining mitosis is the only mechanism to prevent them.

"Identifying the mechanism of the new division can lead to producing new generation of non-carcinogenic medicines with high efficiency in the near future, "Beigi added.

... Payvand News - 02/28/12 ... --

Original post:
Iranian researcher discovers factor of stem cell disorder

To Read More: Iranian researcher discovers factor of stem cell disorder
categoriaBone Marrow Stem Cells commentoComments Off on Iranian researcher discovers factor of stem cell disorder | dataFebruary 28th, 2012
Read All

Dental pulp stem cells transformed by 'bad breath’ chemical

By raymumme

ScienceDaily (Feb. 26, 2012) — Japanese scientists have found that the odorous compound responsible for halitosis -- otherwise known as bad breath -- is ideal for harvesting stem cells taken from human dental pulp.

In a study published 27 February, in IOP Publishing's Journal of Breath Research, researchers showed that hydrogen sulphide (H2S) increased the ability of adult stem cells to differentiate into hepatic (liver) cells, furthering their reputation as a reliable source for future liver-cell therapy.

This is the first time that liver cells have been produced from human dental pulp and, even more impressively, have been produced in high numbers of high purity. "High purity means there are less 'wrong cells' that are being differentiated to other tissues, or remaining as stem cells. Moreover, these facts suggest that patients undergoing transplantation with the hepatic cells may have almost no possibility of developing teratomas or cancers, as can be the case when using bone marrow stem cells," said lead author of the study Dr. Ken Yaegaki.

The remarkable transforming ability of stem cells has led to significant focus from research groups around the world and given rise to expectations of cures for numerable diseases, including Parkinson's and Alzheimer's.

In this study, Dr. Ken Yaegaki and his group, from Nippon Dental University, Japan, used stem cells from dental pulp -- the central part of the tooth made up of connective tissue and cells -- which were obtained from the teeth of dental patients who were undergoing routine tooth extractions.

Once the cells were sufficiently prepared, they were separated into two batches (a test and a control) and the test cells incubated in a H2S chamber. They were harvested and analysed after 3, 6 and 9 days to see if the cells had successfully transformed into liver cells. To test if the cells successfully differentiated under the influence of H2S, the researchers carried out a series of tests looking at features that were characteristic of liver cells.

In addition to physical observations under the microscope, the researchers investigated the cell's ability to store glycogen and then recorded the amount of urea contained in the cell. "Until now, nobody has produced the protocol to regenerate such a huge number of hepatic cells for human transplantation. Compared to the traditional method of using fetal bovine serum to produce the cells, our method is productive and, most importantly, safe" continued Dr. Yaegaki.

Hydrogen sulphide (H2S) has the characteristic smell of rotten eggs and is produced throughout the body in the tissues. Although its exact function is unknown, researchers have been led to believe that it plays a key role in many physiological processes and disease states.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Institute of Physics (IOP), via AlphaGalileo.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Nikolay Ishkitiev, Bogdan Calenic, Izumi Aoyama, Hisataka Ii, Ken Yaegaki, Toshio Imai. Hydrogen sulfide increases hepatic differentiation in tooth-pulp stem cells. Journal of Breath Research, 2012; 6 (1): 017103 DOI: 10.1088/1752-7155/6/1/017103

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Here is the original post:
Dental pulp stem cells transformed by 'bad breath’ chemical

To Read More: Dental pulp stem cells transformed by 'bad breath’ chemical
categoriaBone Marrow Stem Cells commentoComments Off on Dental pulp stem cells transformed by 'bad breath’ chemical | dataFebruary 28th, 2012
Read All

Study: Stem cells in ovaries may grow new eggs

By raymumme

(CBS/AP) Stem cells in young women's ovaries are capable of producing new eggs, according to a new study. The findings challenge 60 years of dogma that women are born with all the eggs they'll ever have.

PICTURES: Human eggs: 9 fascinating facts

For the study, published in the Feb. 26 issue of Nature Medicine and led by Jonathan Tilly of Massachusetts General Hospital, researchers examined healthy human ovaries donated by 20-something Japanese women who were undergoing a sex-change operation. The researchers fished out stem cells by searching for a protein found only on the surface of stem cells. The researchers then injected those stem cells into pieces of human ovary, transplanting the tissue under the skin of mice, to provide the tissue with a nourishing blood supply.

What happened? New egg cells formed within two weeks.

That's still a long way from showing they'll mature into usable, quality eggs, David Albertini, director of the University of Kansas' Center for Reproductive Sciences, cautioned.

Still, these findings could lead to better treatments for women left infertile because of disease - or simply because they're getting older.

"Our current views of ovarian aging are incomplete. There's much more to the story than simply the trickling away of a fixed pool of eggs," Tilly, who has long hunted these cells in a series of controversial studies, said.

Tilly's previous work has drawn skepticism, and independent experts urged caution about the latest findings, so the next step is to see whether other laboratories can verify the work. If the findings are confirmed, then it would take years of additional research to learn how to use the cells, Teresa Woodruff, fertility preservation chief at Northwestern University's Feinberg School of Medicine, said.

"This is experimental," Dr. Avner Hershlag, chief of the Center for Human Reproduction at North Shore-LIJ Health System in Manhasset, N.Y., told HealthDay. He said the study is "exciting" but emphasized the work is still very preliminary. "This is a beginning of perhaps something that could bring in new opportunities, but it's going to be a long time in my estimation until clinically we'll be able to actually have human eggs created from stem cells that make babies."

Still, even a leading critic said such research may help dispel some of the enduring mystery surrounding how human eggs are born and mature.

"This is going to spark renewed interest, and more than anything else it's giving us some new directions to work in," Albertini said. While he has plenty of questions about the latest work, "I'm less skeptical," he said.

Scientists have long taught that all female mammals are born with a finite supply of egg cells, called ooctyes, that runs out in middle age. Tilly, Mass General's reproductive biology director, first challenged that notion in 2004, reporting that the ovaries of adult mice harbor some egg-producing stem cells. Recently, Tilly noted, a lab in China and another in the U.S. also have reported finding those rare cells in mice.

More work is needed to tell exactly what these cells are, cautioned reproductive biologist Kyle Orwig of the University of Pittsburgh Medical Center, who has watched Tilly's work with great interest.

But if they're really competent stem cells, Orwig asked, then why would women undergo menopause? Indeed, something so rare wouldn't contribute much to a woman's natural reproductive capacity, added Northwestern's Woodruff.

Tilly argues that using stem cells to grow eggs in lab dishes might one day help preserve cancer patients' fertility. Today, Woodruff's lab and others freeze pieces of girls' ovaries before they undergo fertility-destroying chemotherapy or radiation. They're studying how to coax the immature eggs inside to mature so they could be used for in vitro fertilization years later when the girls are grown. If that eventually works, Tilly says stem cells might offer a better egg supply.

Here is the original post:
Study: Stem cells in ovaries may grow new eggs

To Read More: Study: Stem cells in ovaries may grow new eggs
categoriaSkin Stem Cells commentoComments Off on Study: Stem cells in ovaries may grow new eggs | dataFebruary 28th, 2012
Read All

Stem cell fertility treatments could be risky for older women

By raymumme

Harvard scientists are challenging traditional medical logic that dictates that women are born with a finite amount of eggs.  The scientists said they have discovered the ovaries of young women harbor rare stem cells that are in fact capable of producing new eggs.

If properly harnessed, those stem cells may someday lead to new treatments for women suffering from infertility due to cancer or other diseases – or for those who are simply getting older, according to the researchers.  Lead researcher Jonathan Tilly of Harvard's Massachusetts General Hospital has co-founded a company, OvaScience Inc., to try to develop the findings into fertility treatments.

The idea that women are born with all the egg cells – called oocytes – they’ll ever have has been called into question by past research, which found egg-producing stem cells in adult mice.

In this latest study, Harvard researchers, in collaboration with Japanese scientists, used donated frozen ovaries from 20 year olds and ‘fished out’ the purported stem cells.  

The researchers inserted a gene into the stem cells, which caused them to glow green.  If the cells produced eggs, those would glow green, too.

The researchers first watched through a microscope as new eggs grew in a lab dish.  They then implanted the human tissue under the skin of mice to provide a nourishing blood supply.  Within two weeks, they observed green-tinged cells forming.

While the work of the Harvard scientists does show potential, there are still questions as to whether the cells are capable of growing into mature, usable eggs.

If so, researchers said, it might be possible one day to use the stem cells in order to grow eggs in lab dishes to help preserve cancer patients’ fertility, which can be harmed by chemotherapy.

Now, I just want to say, while this would be a remarkable discovery – if it pans out – I do have a few concerns. 

I think for specific patients in prime, childbearing ages, who are at risk of losing their fertility for one reason or another, this could be a fruitful discovery for them.

Be that as it may, I am totally against commercializing this technology to the point where women going through menopause look at this as another way of getting pregnant.  For many, this could create incredibly high-risk pregnancies, among other medical problems.

While science is capable of great discovery and innovation – particularly in the field of stem cells – I believe that with reproductive medicine, we should move forward with great caution to minimize any risk to mother and baby.

Follow this link:
Stem cell fertility treatments could be risky for older women

To Read More: Stem cell fertility treatments could be risky for older women
categoriaUncategorized commentoComments Off on Stem cell fertility treatments could be risky for older women | dataFebruary 28th, 2012
Read All

Dental pulp stem cells transformed by 'bad breath' chemical

By raymumme

Public release date: 26-Feb-2012
[ | E-mail | Share ]

Contact: Joe Winters
joseph.winters@iop.org
44-794-632-1473
Institute of Physics

Japanese scientists have found that the odorous compound responsible for halitosis ? otherwise known as bad breath ? is ideal for harvesting stem cells taken from human dental pulp.

In a study published today, Monday 27 February, in IOP Publishing's Journal of Breath Research, researchers showed that hydrogen sulphide (H2S) increased the ability of adult stem cells to differentiate into hepatic (liver) cells, furthering their reputation as a reliable source for future liver-cell therapy.

This is the first time that liver cells have been produced from human dental pulp and, even more impressively, have been produced in high numbers of high purity.

"High purity means there are less 'wrong cells' that are being differentiated to other tissues, or remaining as stem cells. Moreover, these facts suggest that patients undergoing transplantation with the hepatic cells may have almost no possibility of developing teratomas or cancers, as can be the case when using bone marrow stem cells," said lead author of the study Dr. Ken Yaegaki.

The remarkable transforming ability of stem cells has led to significant focus from research groups around the world and given rise to expectations of cures for numerable diseases, including Parkinson's and Alzheimer's.

In this study, Dr. Ken Yaegaki and his group, from Nippon Dental University, Japan, used stem cells from dental pulp ? the central part of the tooth made up of connective tissue and cells ? which were obtained from the teeth of dental patients who were undergoing routine tooth extractions.

Once the cells were sufficiently prepared, they were separated into two batches (a test and a control) and the test cells incubated in a H2S chamber. They were harvested and analysed after 3, 6 and 9 days to see if the cells had successfully transformed into liver cells.

To test if the cells successfully differentiated under the influence of H2S, the researchers carried out a series of tests looking at features that were characteristic of liver cells. In addition to physical observations under the microscope, the researchers investigated the cell's ability to store glycogen and then recorded the amount of urea contained in the cell.

"Until now, nobody has produced the protocol to regenerate such a huge number of hepatic cells for human transplantation. Compared to the traditional method of using fetal bovine serum to produce the cells, our method is productive and, most importantly, safe" continued Dr. Yaegaki.

Hydrogen sulphide (H2S) has the characteristic smell of rotten eggs and is produced throughout the body in the tissues. Although its exact function is unknown, researchers have been led to believe that it plays a key role in many physiological processes and disease states.

###

From Monday 27 February, this paper can be downloaded from http://iopscience.org/1752-7163/6/1/017103

[ | E-mail | Share ]

 

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Go here to read the rest:
Dental pulp stem cells transformed by 'bad breath' chemical

To Read More: Dental pulp stem cells transformed by 'bad breath' chemical
categoriaBone Marrow Stem Cells commentoComments Off on Dental pulp stem cells transformed by 'bad breath' chemical | dataFebruary 27th, 2012
Read All

Rare stem cells may produce new eggs, scientists say

By raymumme

1:00 AM
If confirmed, harnessing such cells may lead to better treatments for women left infertile by disease or age.

The Associated Press

WASHINGTON - For 60 years, doctors have believed that women were born with all the eggs they'll ever have. Now Harvard scientists say they've found that the ovaries of young women harbor rare stem cells capable of producing new eggs.

FOR MORE

READ A SUMMARY of the report on how women's stem cells can be turned into eggs: tinyurl.com/6w6kass

If Sunday's report is confirmed, harnessing those stem cells might one day lead to better treatments for women left infertile because of disease -- or simply because they're getting older.

"Our current views of ovarian aging are incomplete. There's much more to the story than simply the trickling away of a fixed pool of eggs," said lead researcher Jonathan Tilly of Harvard's Massachusetts General Hospital, who has long hunted these cells in a series of controversial studies.

A next step is to see whether other laboratories can verify the work. If so, then it would take years of further study to learn how to use the cells, said Teresa Woodruff, fertility preservation chief at Northwestern University's Feinberg School of Medicine.

Still, even a leading critic said such research may help dispel some of the enduring mystery surrounding how human eggs are born and mature.

"More than anything else, it's giving us some new directions to work in," said David Albertini, director of the University of Kansas' Center for Reproductive Sciences.

Scientists have long taught that all female mammals are born with a finite supply of egg cells, called ooctyes, that runs out in middle age. Tilly first challenged that notion in 2004, reporting that the ovaries of adult mice harbor some egg-producing stem cells.

But do they exist in women? Enter the new work, reported Sunday in the journal Nature Medicine.

Tilly collaborated with scientists at Japan's Saitama Medical University, who were freezing ovaries donated for study by healthy 20-somethings who underwent sex-change operations.

He had to figure out how to tell if he was finding true stem cells or just very immature eggs.

His team latched on to a protein believed to sit on the surface of only those purported stem cells and fished them out. To track what happened next, the researchers inserted a gene that makes some jellyfish glow green into those cells. If the cells made eggs, those would glow, too.

"Bang, it worked -- cells popped right out" of the human tissue, Tilly said.

Researchers watched through a microscope as new eggs grew in a lab dish. Then came the pivotal experiment: They injected the stem cells into pieces of human ovary. They transplanted the human tissue under the skin of mice, to provide it a nourishing blood supply. Within two weeks, they reported telltale green-tinged egg cells forming.

 

Read more:
Rare stem cells may produce new eggs, scientists say

To Read More: Rare stem cells may produce new eggs, scientists say
categoriaSkin Stem Cells commentoComments Off on Rare stem cells may produce new eggs, scientists say | dataFebruary 27th, 2012
Read All

Ovarian Stem Cells Make Human Eggs in Possible Aid to Fertility

By raymumme

February 27, 2012, 12:41 AM EST

By Ryan Flinn

Feb. 27 (Bloomberg) -- Stem cells taken from human ovaries were used to produce early-stage eggs by scientists in Boston who may have created a new method to help infertile women.

Females have a fixed number of eggs from birth that are depleted by the time of menopause. The finding, published today in the journal Nature Medicine, challenges the belief that their ovaries can’t make more. The research was led by Jonathan Tilly, the director of Massachusetts General Hospital’s Vincent Center for Reproductive Biology.

Tilly reported in 2004 that ovarian stem cells in mice create new eggs, or oocytes, in a way similar to how stem cells in male testes produce sperm throughout a man’s life. His latest work, if reproduced, would suggest the same is true for human ovaries, potentially pointing at new ways to aid fertility by delaying when the ovaries stop functioning.

“The 50-year-old belief in our field wasn’t actually based on data proving it was impossible, or not ongoing,” Tilly said in a telephone interview. “It was simply an assumption made because there was no evidence indicating otherwise. We have human cells that can produce new oocytes.”

In the study, healthy ovaries were obtained from consenting patients undergoing sex reassignment surgery. The researchers were able to identify ovarian stem cells because they express a rare protein that’s only seen in reproductive cells.

The stem cells from the ovaries were injected into human ovarian tissue that was then grafted under the skin of mice, which provided the blood supply that enabled growth. Within two weeks, early stage human follicles with oocytes had formed.

7-Million Eggs

A female is most endowed with oocytes, or eggs, as a fetus, when she has about 7 million. That number that drops to 1 million by birth, and around 300,000 by puberty. By menopause, the number is zero. Since the 1950’s, scientists thought that ovarian stem cells capable of producing new eggs are only active during fetal development.

“This paper essentially opens the door to the ability to control oocyte development in human ovaries,” Tilly said.

About 10 percent of women of child-bearing age in the U.S., or 6.1 million, have difficulty getting pregnant or staying pregnant, according to the Centers for Disease Control and Prevention. Most cases of female infertility are caused by problems with ovulation, hormone imbalance or age.

The study by Tilley and his colleagues offers “a new model system for understanding the human egg cell,” said David F. Albertini, director of the Center for Reproductive Services and professor in the department of molecular and integrative physiology at Kansas University, in a telephone interview.

‘Practical Applications”

Still, “there’s a long way to go before this has real practical applications. I’ve spent 35 years of my life studying egg cells and this is a cell that is at least as complicated as a neuron in the brain, if not more,” Albertini said.

The work needs to be reproduced and expanded by other scientists “to make it into something that will make us confident the cells are safe to use and we could actually use them to repopulate an egg-depleted ovary,” he said.

Tilly’s team is exploring the development of an ovarian stem-cell bank that can be cryogenically frozen and thawed without damage, unlike human eggs, he said. The researchers are also working to identify hormones and other growth factors for accelerating production of eggs from human ovarian stem cells and ways to improve in-vitro fertilization.

“The problem we face with IVF is we don’t have many eggs to work with,” he said. “These cells are renewable. If we are successful -- and it’s a big if -- in generating functioning eggs from these cells, we can generate as many eggs as we need to on a per patient basis.”

Tilly is also collaborating with researchers at the University of Edinburgh in the U.K. to determine whether the oocytes can be developed into fully mature human eggs for fertilizing. The U.S bans creating or fertilizing embryos for experimental purposes, he said.

A company Tilly co-founded, Boston-based OvaScience Inc., has licensed the technology for potential commercial applications.

--With assistance from Sarah Frier in New York. Editors: Angela Zimm, Andrew Pollack

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

To contact the editor responsible for this story: Reg Gale at rgale5@bloomberg.net

See the original post here:
Ovarian Stem Cells Make Human Eggs in Possible Aid to Fertility

To Read More: Ovarian Stem Cells Make Human Eggs in Possible Aid to Fertility
categoriaSkin Stem Cells commentoComments Off on Ovarian Stem Cells Make Human Eggs in Possible Aid to Fertility | dataFebruary 27th, 2012
Read All

Seminar to focus on stem cell research development

By raymumme

The latest discoveries and promises of stem cell research and the development of new therapeutic approaches for a variety of diseases will be in focus at the Qatar International Conference on Stem Cell Science and Policy 2012 which begins today.
The four-day event, being held at Qatar National Convention Centre, is a milestone in Qatar Foundation’s ongoing collaboration with the James A Baker III Institute for Public Policy at Rice University, Houston, Texas, US.
The aim of QF’s joint initiative with the Baker Institute’s International Programme on Stem Cell Science Policy is to develop stem cell research in Qatar as well as to find ways to address the shared challenges of community support for stem cell research in Doha and Houston.
To accomplish this goal, the programme has supported several events since its inception, including meetings, workshops, and training programmes in both cities.
The conference, which brings together eminent international as well as regional scientists, ethicists and policymakers, will also present the developed policy options that account for cultural, ethical and religious factors.
The event will draw attention to Qatar’s position in the development of stem cell research in the region and the world, given that research on stem cell as a national priority has already been initiated in the country’s best research institutions.
The conference objectives are to raise the awareness about Qatar’s initiative in promoting stem cell research, present the latest developments, and highlight the different religious views regarding stem cell research specifically the Islamic view.
The pros and cons of various options for regulating stem cell research and how scientists should address conflicting and confusing national policies and assess the different models of international collaboration will be discussed.
The conference also intends to interface with other institutions outside Qatar and contribute to the exchange of scientific knowledge to enhance the promotion of a scientific culture in the region and globally.
The keynote speakers are ambassador Edward P Djerejian (Baker Institute), Irving Weissman (Stanford University), Alan Trounson (president, California Institute for Regenerative Medicine), David Baltimore (president emeritus, Robert Andrews Millikan Professor of Biology, California Institute of Technology), Roger Pedersen (Department of Surgery, University of Cambridge) and Lawrence Corey (president and director, Fred Hutchinson Cancer Research Centre).
The conference, supported by Qatar Biomedical Research Institute, will also feature a number of invited speakers from across the world.

Link:
Seminar to focus on stem cell research development

To Read More: Seminar to focus on stem cell research development
categoriaUncategorized commentoComments Off on Seminar to focus on stem cell research development | dataFebruary 27th, 2012
Read All

Susan Samueli, PhD of the Susan Samueli Center for Integrative Medicine UC Irvine to Headline A2Z Health Expo in Los …

By raymumme

LOS ANGELES, CA--(Marketwire -02/24/12)- A2Z Health Expo today announced it will hold its 5th annual Health Expo at the Skirball Cultural Center in Los Angeles, CA on Thursday, March 22, 2012 from 4pm to 10pm. According to Dr. Ben Drillings, Director, the keynote speaker for the event will be the co-founder of the Samueli Foundation, Susan Samueli, PhD. Mrs. Samueli serves on the Board and Advisory Board of the Susan Samueli Center for Integrated Medicine (SSCIM) at UC Irvine. SSCIM promotes integrative medicine by providing education, scientific research and a model of clinical care that emphasizes healing of the whole person. Mrs. Samueli was honored with the UCI Medal in March 2000, the 2002 Ellen Cooperman Angel Award Recipient from the John Wayne Cancer Institute and the 2005 General William Lyon Crystal Vision Philanthropy Award from the Orangewood Children's Foundation. In 2006, Susan and Henry Samueli became the owners of the NHL franchise the Anaheim Ducks. The topic of Mrs. Samueli at the expo is: "Integrated Clinic in the 21st Century: Innovations, New Models & Challenges."

The A2Z Health Expo event is focusing on bringing together healthcare professionals, philanthropists, academicians, that are interested in learning more about the integrated clinic model. The expo aims to build a network relationship and sharing of ideas within the health community. Attendees include MDs, Chiropractors, Massage Therapists, Nutritionists, Schools & Spa owners, and general public.

Joining Mrs. Samueli are a bevy of prestigious speakers: Kerry Crofton, PhD., the author of the award-winning book, Wireless Radiation Rescue, and co-founder and executive Director of the International Advisory Board Doctors for Safer Schools; Dr. Nathan Newman, innovator of Stem Cell Lift -- cutting edge cosmetic surgery, without cutting;
And Ms. Alexa Zaledonis, who is the current chair of the National Certification Board for Therapeutic Massage & Bodywork as well as the owner of Even Keel Wellness Spa.

Dr. Drillings is urging the healthcare community to come and learn about the integrated clinic model. This is a must see expo!

The Skirball Cultural Center is located at 2701 N. Sepulveda Blvd., Los Angeles, CA 90049. To register to the event, please visit http://www.a2zhealthexpo.com or email us at expo@a2zhealthexpo.com or call (818) 700-0286.

Link:
Susan Samueli, PhD of the Susan Samueli Center for Integrative Medicine UC Irvine to Headline A2Z Health Expo in Los ...

To Read More: Susan Samueli, PhD of the Susan Samueli Center for Integrative Medicine UC Irvine to Headline A2Z Health Expo in Los …
categoriaUncategorized commentoComments Off on Susan Samueli, PhD of the Susan Samueli Center for Integrative Medicine UC Irvine to Headline A2Z Health Expo in Los … | dataFebruary 25th, 2012
Read All

Lineage trees reveal cells' histories

By raymumme

The method, developed over several years in the lab of Prof. Ehud Shapiro of the Institute's Biological Chemistry, and Computer Science and Applied Mathematics Departments, uses mutations in specific genetic markers to determine which cells are most closely related and how far back they share a common parent cell, to create a sort of family tree for cells. Shapiro and members of his lab, including Drs. Shalev Itzkovitz and Rivka Adar, together with Prof. Nava Dekel and research student Yitzhak Reizel of the Biological Regulation Department, used their method to see if ova could be descended from bone-marrow stem cells. Their findings indicated that any relationship between the two types was too distant for one to be an ancestor of the other.

These scientists also found, surprisingly, that the ova of older mice had undergone more cell divisions than those of younger mice. This could be the result of replenishment during adulthood, but an alternate theory holds that all eggs are created before birth, and those that undergo fewer divisions are simply selected earlier on for ovulation. Further experimentation, says Shapiro, will resolve the issue.

Cell lineage trees are similar to modern evolutionary and taxonomic trees based on genome comparisons between organisms. Shapiro and his team used mutations in cells that are passed on to daughter cells over an organism's lifetime (though not on to the next generation). By comparing a number of genetic sequences called microsatellites – areas where mutations occur like clockwork – they can place cells on trees to reveal their developmental history.

A number of papers published by Shapiro, his team and collaborators in recent months have demonstrated the power and versatility of this method. One study, for instance, lent support to the notion that the adult stem cells residing in tiny crypts in the lining of the colon do not harbor, as thought, "immortal DNA strands." Immortal strands may be retained by dividing stem cells if they always relegate the newly-synthesized DNA to the differentiating daughter cell and keep the original stand in the one that remains a stem cell.

A second study addressed an open question about developing muscle cells. Here they found that two kinds of progenitor cell - myogenic cells, which eventually give rise to muscle fiber, and non-myogenic cells – found within the same muscle are more closely related than similar cells in different muscles.

One immediate advantage of the cell lineage analysis method developed by Shapiro's team is that it is non-invasive and retrospective, and as such can be applied to the study of human cell lineages. Most other studies of development rely on genetically engineered lab animals in which the stem cells are tagged with fluorescent markers. In addition to providing a powerful new research method that does not rely on such markers, Shapiro believes that it could one day be adapted as a diagnostic tool that might, for instance, reveal the history of an individual's cancer and help doctors determine the best course of treatment.

Provided by Weizmann Institute of Science (news : web)

Visit link:
Lineage trees reveal cells' histories

To Read More: Lineage trees reveal cells' histories
categoriaBone Marrow Stem Cells commentoComments Off on Lineage trees reveal cells' histories | dataFebruary 24th, 2012
Read All

VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

By raymumme

ATLANTA, GA--(Marketwire -02/21/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, has retained MissionIR, a national investor relations consulting firm, to develop and implement a strategic investor relations campaign. Through a network of investor-oriented online websites and full suite of investor awareness services, MissionIR broadens the influence of publicly traded companies and enhances their ability to attract growth capital and improve shareholder value.

"VistaGen's work with human stem cell technology is groundbreaking," said Sherri Snyder, Director of Marketing at MissionIR. "The company's versatile platform, Human Clinical Trials in a Test Tube™, provides clinically relevant predictions of potential heart toxicity of new drug candidates long before they are ever tested on humans. Guided by a management team with decades of experience, VistaGen's stem cell technology can potentially save billions of dollars in the healthcare industry while recapturing prior R&D investment in once-promising new drug candidates."

"We are pleased to bring MissionIR on board as our external investor relations partner," said Shawn Singh, VistaGen's Chief Executive Officer. "The crucial work our company is doing can fundamentally change the way medicine is developed. Paired with MissionIR's global presence and sound investor relations programs, we can further grow our shareholder base and accelerate internal initiatives already in place to bring our stem cell technology platform to the forefront of drug development."

About MissionIR

MissionIR is committed to connecting the investment community with companies that have great potential and a strong dedication to building shareholder value. Through a full suite of investor relations and consultancy services, we help public companies develop and execute a strategic investor awareness plan as we've done for hundreds of others. Whether it's capital raising, increasing awareness among the financial community, or enhancing corporate communications, we offer a variety of solutions to meet the objectives of our clients.

For more information, visit http://www.MissionIR.com

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube™, with modern medicinal chemistry to generate new chemical variants of once-promising small-molecule drug candidates. These are once-promising drug candidates discontinued by pharmaceutical companies during development due to heart toxicity, despite positive efficacy data demonstrating their potential therapeutic and commercial benefits. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen plans to initiate Phase 2 clinical development of AV-101 in the fourth quarter of 2012. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101.

Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen.

Read the original post:
VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

To Read More: VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor
categoriaUncategorized commentoComments Off on VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor | dataFebruary 21st, 2012
Read All

4. Bioengineering Cardiovascular Tools | Mini Med School – Video

By raymumme

08-02-2012 18:45 (October 18, 2011) Associate Professor of Mechanical Engineering Beth Pruitt discusses his work in human embryonic stem-cell-derived cardiac myosites and future opportunities to use heart cells for regenerative therapy. This course is a single-quarter, focused follow-up to the the yearlong Mini Med School that occurred in 2009-10. The course focuses on diseases of the heart and cardiovascular system. The course is sponsored by Stanford Continuing Studies and the Stanford Medical School. Stanford University http://www.stanford.edu Stanford Continuing Studies http://www.continuingstudies.stanford.edu Stanford University School of Medicine http://www.med.stanford.edu Stanford University Channel on YouTube: http://www.youtube.com

Read more:
4. Bioengineering Cardiovascular Tools | Mini Med School - Video

To Read More: 4. Bioengineering Cardiovascular Tools | Mini Med School – Video
categoriaCardiac Stem Cells commentoComments Off on 4. Bioengineering Cardiovascular Tools | Mini Med School – Video | dataFebruary 21st, 2012
Read All

PBSC vs. BONE MARROW DONATION – Video

By raymumme

10-01-2012 19:46 If you match a patient you will be asked to donate stem cells from either your bloodstream or bone marrow. Learn how it's done by watching this video.

Read the original here:
PBSC vs. BONE MARROW DONATION - Video

To Read More: PBSC vs. BONE MARROW DONATION – Video
categoriaBone Marrow Stem Cells commentoComments Off on PBSC vs. BONE MARROW DONATION – Video | dataFebruary 21st, 2012
Read All

Bone marrow drive hopes to help student and save lives

By raymumme

When LSA senior Daniel Lee returned to the United States in December from a family trip to Italy feeling ill, he was rushed to the hospital where he received a life-threatening diagnosis — he had aplastic anemia, a disease that prevents bone marrow from producing red and white blood cells.

Upon hearing news of Lee’s dire need for a bone marrow transplant, students mobilized to encourage members of the campus community to donate marrow and raise awareness about the importance of joining the National Marrow Donor Registry.

As part of this effort, Sigma Kappa sorority members will work with DKMS Americas, a donor recruitment center, helping students, faculty and staff members register for the Be The Match Registry today from 10 a.m. to 4 p.m. in the Anderson AB Room in the Union.

LSA senior Samira Monavvari, Lee’s friend, has been working to promote today’s event via Facebook and has received more than 1,000 confirmed attendees. Monavvari said she hopes to be able to help someone else in need of a transplant, even if she doesn't find a match for Lee.

“The fact that Dan is going through this makes us want to donate to people who we don’t even know because it’s so hard seeing what he’s going through,” Monavvari said.

According to Monavvari, Lee is known jokingly by his friends as “the next Steve Jobs,” adding that he is extremely smart, driven and friendly.

“If you ask him what he wants to do, he’ll always say he wants to be known for something,” Monavvari said. “He is the kind of kid who gets along with everyone … that’s why (his diagnosis) has touched everyone so much.”

LSA junior Jessica Kaltz, a member of Sigma Kappa, started organizing the drive prior to Lee’s diagnosis. Kaltz worked with Christian Montgomery, a University alum and DKMS Americas employee, over the past few months to organize the registry at the University.

She wrote in an e-mail interview that she hopes that Lee’s story will inspire people to attend today’s event.

“When people hear about Dan’s story, I think they will see that by simply taking five minutes of their time by signing up to become a donor, they could possibly be the life-saving difference that Dan needs,” Kaltz wrote.

Montgomery explained that the process for joining the registry involves having potential donors fill out a short form and then submit a cheek swab to determine their tissue type.
Potential donors will then be added to the Be The Match Registry, a national list of potential bone marrow donors.

If the donor is contacted as a match and decides to continue with the process, he or she will be required to take a blood test in order to obtain the best match for the patient in need.

Between four and six weeks later, the donor will undergo a marrow extraction procedure or peripheral blood stem cell donation, depending on the patient’s condition. Contrary to popular belief, the donor typically does not experience significant pain, a common misconception about the two procedures, Montgomery said.

Montgomery is not only a DKMS employee, but also a bone marrow donor himself. In 2007, he registered at an event in the Diag, and in January 2008 he was contacted as a potential match for a 22-year-old female in New Jersey suffering from paroxysmal nocturnal hemoglobinuria, a rare blood disease.

Nicole Mausteller, the patient to whom Montgomery made his donation, said her disorder was discovered through blood work that was required as part of the process of becoming a dental assistant.

Montgomery donated through marrow extraction in May 2008, a procedure that he said left him a bit stiff and sore for a few days. After receiving a one-month, six-month and one-year update, Montgomery and Mausteller agreed to exchange contact information. They have been in contact since February 2010 and remain good friends.

“He’s my hero,” Mausteller said.

Excerpt from:
Bone marrow drive hopes to help student and save lives

To Read More: Bone marrow drive hopes to help student and save lives
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow drive hopes to help student and save lives | dataFebruary 16th, 2012
Read All

Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings

By raymumme

GAITHERSBURG, MD--(Marketwire -02/16/12)- Cytomedix, Inc. (OTC.BB: CMXI.OB - News) (the "Company"), a leading developer of biologically active regenerative therapies for wound care, inflammation and angiogenesis, today announced that Chief Operating Officer Edward L. Field will present a clinical overview of Aldagen's autologous cell therapy technology at two upcoming meetings: The Cell Society's 2nd Annual Clinical Meeting being held February 17-18 at the Coronado Marriott Resort in San Diego; and the 7th Annual New York Stem Cell Summit being held on February 21 at Bridgewaters New York in New York City.

Mr. Field will present during the session, "Commercialization Opportunities with Adult Stem Cell Therapies," on Friday, February 17 from 8:00 a.m. to 10:00 a.m. Pacific time at the Cell Society meeting.

Cell Society International is a non-profit organization dedicated to advancing the clinical application of adult stem cell therapies worldwide. Cell Society's 2nd Annual Clinical Meeting will continue in the tradition established at the 1st Annual Meeting and will offer a unique opportunity for multidisciplinary, international clinical collaboration designed to enhance understanding and thought-provoking insight into treatments and cures for disease and agonizing medical conditions. This year's clinical focus will center on therapies particularly relevant to cardiology, neurology, and orthopedic and plastic surgery.

At the Stem Cell Summit, Mr. Field will present at 2:35 p.m. Eastern time. This meeting showcases more than 30 of the world's leaders in this rapidly evolving industry. The New York Stem Cell Summit brings the future of this dynamic industry to life for investors, industry, practitioners and analysts so they can learn about the investment opportunities in the stem cell marketplace, groundbreaking stem cell products that physicians use today and the growing market potential in terms of revenues.

About Cytomedix, Inc.

Cytomedix, Inc. develops, sells and licenses regenerative biological therapies primarily for wound care, inflammation and angiogenesis. The Company markets the AutoloGel™ System, a device for the production of autologous platelet rich plasma ("PRP") gel for use on a variety of exuding wounds; the Angel® Whole Blood Separation System, a blood processing device and disposable products used for the separation of whole blood into red cells, platelet poor plasma ("PPP") and PRP in surgical settings; and the activAT® Autologous Thrombin Processing Kit, which produces autologous thrombin serum from PPP. The activAT® kit is sold exclusively in Europe and Canada, where it provides a completely autologous, safe alternative to bovine-derived products. On February 8, 2012 Cytomedix announced the acquisition of Aldagen, a biopharmaceutical company developing regenerative cell therapies based on its proprietary ALDH bright cell ("ALDHbr") technology, currently in a Phase 2 trial for the treatment of ischemic stroke. For additional information please visit http://www.cytomedix.com

Safe Harbor Statement
Statements contained in this communication not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including many among others, risks and uncertainties related to the Company's ability to successfully integrate this acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and intergrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel™ System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes," "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report for the year ended December 31, 2010, filed with the SEC and other subsequent filings. These filings are available at http://www.sec.gov.

Follow this link:
Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings

To Read More: Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings
categoriaUncategorized commentoComments Off on Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings | dataFebruary 16th, 2012
Read All

Stem Cell Stocks Skyrocket in 2012 — Cytori Therapeutics and Cord Blood America on the Upswing

By raymumme

NEW YORK, NY--(Marketwire -02/15/12)- Stem cell stocks have performed well of late, outperforming the S&P 500 by a large margin over the last three months. Since mid-November, TickerSpy's Stem Cell Stocks index (RXSTM) has returned more than 20 percent, as favorable news from some of stem cell industry heavyweights has boosted investor optimism in the sector. The Paragon Report examines investing opportunities in the Biotechnology Industry and provides equity research on Cytori Therapeutics, Inc. (NASDAQ: CYTX - News) and Cord Blood America, Inc. (OTC.BB: CBAI.OB - News). Access to the full company reports can be found at:

http://www.paragonreport.com/CYTX

http://www.paragonreport.com/CBAI

Shares of Cytori Therapeutics have skyrocketed nearly 70 percent year-to-date. The company develops, manufactures, and sells medical products and devices to enable the practice of regenerative medicine. The Company's technology is the Celuion family of products, which processes patients' adipose-derived stem and regenerative cells (ADRCs) at the point of care.

In late January, Cytori received an Investigational Device Exemption (IDE) approval from the U.S. FDA to begin the "ATHENA" trial. ATHENA will investigate the use of the Celution System to treat a form of coronary heart disease, chronic myocardial ischemia (CMI).

The Paragon Report provides investors with an excellent first step in their due diligence by providing daily trading ideas, and consolidating the public information available on them. For more investment research on the biotechnology industry register with us free at http://www.paragonreport.com and get exclusive access to our numerous stock reports and industry newsletters.

Cord Blood America, Inc. is a holding company that, through its subsidiaries, is engaged in the business of collecting, testing, processing and preserving umbilical cord blood, thereby allowing families to preserve cord blood at the birth of a child for potential use in stem cell therapy.

USA Today recently reported that umbilical cord blood stem cells have been successfully used to treat individuals with type 1 diabetes, highlighting the importance of storing stem cells at birth. The USA Today article says that stem cells from cord blood have been used to "reeducate" the immune system T cells of people with type 1 diabetes so their pancreas started producing insulin again - thereby reducing the amount of insulin they needed to inject.

The Paragon Report has not been compensated by any of the above-mentioned publicly traded companies. Paragon Report is compensated by other third party organizations for advertising services. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at http://www.paragonreport.com/disclaimer

See original here:
Stem Cell Stocks Skyrocket in 2012 -- Cytori Therapeutics and Cord Blood America on the Upswing

To Read More: Stem Cell Stocks Skyrocket in 2012 — Cytori Therapeutics and Cord Blood America on the Upswing
categoriaUncategorized commentoComments Off on Stem Cell Stocks Skyrocket in 2012 — Cytori Therapeutics and Cord Blood America on the Upswing | dataFebruary 15th, 2012
Read All

Bone Marrow Stem Cells Help Heal Heart Attack Damage

By raymumme

Featured Article
Academic Journal
Main Category: Stem Cell Research
Also Included In: Cardiovascular / Cardiology
Article Date: 15 Feb 2012 - 2:00 PST

email to a friend   printer friendly   opinions  

Current Article Ratings:

Patient / Public: Healthcare Prof:
A systematic review of the evidence so far suggests stem cells derived from bone marrow moderately improves heart function after a heart attack. But the authors say larger trials are needed before we can devise guidelines for therapy practice, or draw conclusions about the long-term benefit of the treatment, such as whether it extends life.

The review, about to be published in the Cochrane Library, updates one done in 2008 that reviewed 13 trials; the new one takes into account another 20 more recent trials. Even though these later trials had longer follow ups, it was still not possible to draw firm conclusions about the long term benefits.

Lead author Enca Martin-Rendon, of the Stem Cell Research laboratory, NHS Blood and Transplant at the John Radcliffe Hospital in Oxford, UK, told the press that they found it hard to compare the 33 studies because they used so many different approaches:

"Larger trials with standardised treatment procedures would help us to know whether this treatment is really effective," said Martin-Rendon.

In order to pump blood around the body, the heart also needs its own constant supply of blood. If this supply is cut off by a blocked artery, it can cause a heart attack and damage the muscle tissue in the affected part of the heart, causing the cells to start dying, a process known as necrosis.

In the days and weeks after a heart attack, the necrosis can spread, eventually leaving a large part of the heart muscle unable to perform the job of contracting and pumping as well as it ought to. This increases the risk of further heart problems.

Stem cells are precursor cells that have the potential to mature into any cell in the body, including heart muscle cells. For this review, the researchers looked only at treatments that use stem cells derived from bone marrow. At present, such treatments are only available at centres that do research.

Another recently published study described a treatment that used stem cells derived from the patient's own heart tissue to repair heart attack damage.

For the review, Martin-Rendon and colleagues pooled data on a total of 1,765 patients from 33 trials. All the patients had already undergone the conventional treatment, angioplasty, where a balloon is inflated in the blocked artery to open it up and restore blood flow.

They concluded that stem cell therapy using bone marrow-derived stem cells (BMSCs) can result in a moderate long-term improvement in heart function, that lasts for up to 5 years. But there was not enough data to enable them to say anything firm about the effect on survival rates.

Martin-Rendon said:

"This new treatment may lead to moderate improvement in heart function over standard treatments," adding that:

"Stem cell therapy may also reduce the number of patients who later die or suffer from heart failure, but currently there is a lack of statistically significant evidence based on the small number of patients treated so far."

The authors said it was still to early to compile guidelines for standard practice, and further work would be needed before anyone can do this. For instance, more information is needed to establish cell dosage, the timing of transplantation and how best to measure heart function.

One large trial, called BAMI, is already under way. The European Society of Cardiology for Stem Cells and Cardiac Repair is conducting the trial, which is funded by the European Union Seventh Framework Programme for Research and Innovation (EU FP7-BAMI).

Anthony Mathur, a co-author of this latest Cochrane review, and principal investigator of the BAMI trial, said:

''The BAMI trial will be the largest stem cell therapy trial in patients who have suffered heart attacks and will test whether this treatment prolongs the life of these patients."

Written by Catharine Paddock PhD
Copyright: Medical News Today
Not to be reproduced without permission of Medical News Today

Visit our stem cell research section for the latest news on this subject. Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Catharine Paddock PhD. "Bone Marrow Stem Cells Help Heal Heart Attack Damage." Medical News Today. MediLexicon, Intl., 15 Feb. 2012. Web.
15 Feb. 2012. <http://www.medicalnewstoday.com/articles/241658.php&gt;

APA

Please note: If no author information is provided, the source is cited instead.


Rate this article:
(Hover over the stars then click to rate) Patient / Public:
or Health Professional:

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.


View post:
Bone Marrow Stem Cells Help Heal Heart Attack Damage

To Read More: Bone Marrow Stem Cells Help Heal Heart Attack Damage
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Stem Cells Help Heal Heart Attack Damage | dataFebruary 15th, 2012
Read All

VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates

By raymumme

SOUTH SAN FRANCISCO, CA--(Marketwire -02/14/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, has identified its initial Top 10 drug rescue candidates and plans to launch two formal drug rescue programs by the end of next quarter.

VistaGen's goal for each of its stem cell technology-based drug rescue programs is to generate and license a new, safer variant of a once-promising large market drug candidate previously discontinued by a pharmaceutical company no earlier than late-preclinical development.

"We are now at an advanced stage in our business model," said Shawn Singh, VistaGen's Chief Executive Officer. "After more than a decade of focused investment in pluripotent stem cell research and development, we are now at the threshold where game-changing science becomes therapeutically relevant to patients and commercially relevant to our shareholders. We have positioned our company and our stem cell technology platform to pursue multiple large market opportunities. We plan to launch two drug rescue programs by the end of the next quarter."

Over the past year, VistaGen, working with its network of strategic partners, identified over 525 once-promising new drug candidates that meet the Company's preliminary screening criteria for heart toxicity-focused drug rescue using CardioSafe 3D™, its human heart cell-based bioassay system. After internally narrowing the field to 35 compounds, VistaGen, working together with its external drug rescue advisors, including former senior pharmaceutical industry executives with drug safety and medicinal chemistry expertise, analyzed and carefully narrowed the group of 35 to the current Top 10.

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube™, with modern medicinal chemistry to generate new chemical variants of once-promising small-molecule drug candidates. These are once-promising drug candidates discontinued by pharmaceutical companies during development due to heart toxicity, despite positive efficacy data demonstrating their potential therapeutic and commercial benefits. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans.

Additionally, VistaGen's oral small molecule prodrug candidate, AV-101 (4-Cl-KYN), is in Phase 1b development for treatment of neuropathic pain. Unlike other NMDA receptor antagonists developed previously, AV-101 readily crosses the blood-brain barrier and is then efficiently converted into 7-chlorokynurenic acid (7-Cl-KYNA), one of the most potent and specific glycineB site antagonists currently known, and has been shown to reduce seizures and excitotoxic neuronal death. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101. The Company anticipates pursuing Phase 2 development for neuropathic pain and other neurological indications, including depression, epilepsy, and/or Parkinson's disease in the event it receives additional non-dilutive development grant funding from the NIH or private foundations.

Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen.

Cautionary Statement Regarding Forward Looking Statements

The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the success of VistaGen's stem cell technology-based drug rescue activities, ongoing AV-101 clinical studies, its ability to enter into drug rescue collaborations and/or licensing arrangements with respect to one or more drug rescue variants, risks and uncertainties relating to the availability of substantial additional capital to support VistaGen's research, drug rescue, development and commercialization activities, and the success of its research and development plans and strategies, including those plans and strategies related to AV-101 and any drug rescue variant identified and developed by VistaGen. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

More:
VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates

To Read More: VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates
categoriaUncategorized commentoComments Off on VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates | dataFebruary 15th, 2012
Read All

Page 37«..1020..36373839..»


Copyright :: 2024