Biomarkers Help Predict the Role of Chemotherapy in Biologic Aging – OncLive
By daniellenierenberg
Biologic aging is a complex process. There are several theories on why and how we age, and it is probable that none of them account for all the aspects. We are constantly exposed to both internal and external stimuli that, over time, facilitate the aging process. These stimuli include ionizing radiation, ultraviolet light, diet, exercise, oxidative stresses, and perhaps, worst of all, smoking. All of these can trigger intracellular processes, including DNA methylation, or epigenetic change, telomere shortening and damage, DNA damage, and mitochondrial dysfunction. These factors accelerate cellular senescencewhat is thought to be the critical factor in aging and has been shown to increase with age.1,2
Cellular senescence is a condition in which a cell has lost the ability to proliferate, and senescent cells increase in almost all organs and tissues as we age. Over time, these changes ultimately lead to the development of significant comorbidities and the cumulative functional deficits we acquire during aging. However, senescent cells are metabolically active and can produce cytokines and inflammatory proteinsthe senescence-associated secretory phenotypefurther accelerating aging and promoting malignancy. FIGURE 1 illustrates the effect of age and insults on senescence.
Accumulation of senescent cells is implicated as a cause of tissue reprogramming, osteoporosis, glaucoma, neurodegeneration, type 2 diabetes, changes in the microbiome, immune system dysfunction, dysfunctional tissue repair and fibrosis, and cancer.3 Recent data have shown the potential role of chemotherapy and radiation therapy in accelerating aging. Nowhere is chemotherapys effect in accelerating aging more apparent than in children and adolescents treated successfully for childhood malignancy.4 In these patients, by the time they reach aged 35 years, approximately 30% have the clinical phenotype of a person aged 65 years, as evidenced by dramatic increases in cardiac disease and new second malignancies.
At the University of North Carolina Lineberger Comprehensive Cancer Center, we have focused on the effects of chemotherapy and accelerated aging in cancer. To date, we have studied the effects of chemotherapy on childhood cancer, early breast cancer, and bone marrow transplantation. Our research has explored the role of p16INK4a expression, a robust marker of biologic aging, following on the work of Norman E. Ned Sharpless, MD, director of the National Cancer Institute. p16INK4a encodes for a protein that blocks cyclin-dependent kinase, analogous to the cyclin-dependent kinase inhibitors now used in breast cancer, including palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio), that prevent cells from entering the cell cycle.5 This leads to cellular senescence. In murine models, aging is associated with dramatic changes in p16INK4a expression in almost all organs over the animals lifespan.6 In human studies, p16INK4a expression is measured in T lymphocytes using a reverse transcription-polymerase chain reaction as a surrogate for aging in other tissues. Studies of p16INK4a expression using other immunohistochemistry methods suggest changes in T cells represent mirror changes in other tissue, and further research in this area is underway.
The change in p16INK4a with aging is not linear, and after 60 years, it appears to plateau for unclear reasons.7 It is possible that those older persons who would have had high levels of p16INK4a expression have already died of age-related illness such as cardiovascular disease, and current studies are addressing this issue.
The large dynamic range of p16INK4a expressionapproximately 10-fold over the human lifespanmakes it an ideal biomarker for study. In healthy children and adolescents, p16INK4a expression is low to undetectable, with high levels appearing in older persons. FIGURE 2 shows the effect of age on p16INK4a expression in 594 patients. These data give p16INK4a expression the potential to be an accurate predictor of cell senescence in an individual patient.
For example, if one hypothesizes that senescent cells are less likely to replicate to ameliorate the adverse effects of chemotherapy (ie, myelosuppression or mucositis), then investigators might be able to accurately predict between 2 patients of the same ageone with high p16INK4a expression and one with lowthat the patient with higher expression would have less cellular reserve and be more vulnerable to adverse effects. Studies are underway to determine if p16INK4a expression measured before treatment will prove to be a predictive marker of toxicity for currently used adjuvant chemotherapy regimens.
Investigators have examined several hundred patients with early breast cancer and a smaller number with childhood cancer and after bone marrow transplantation, and they have found that most chemotherapy regimens cause rapid and sustained increases in p16INK4a expression. Changes are seen shortly and dramatically after beginning chemotherapy, persist over time, and are irreversible.5,8,9 In adolescents and young adults treated with chemotherapy, significant increases in p16INK4a expression were associated with frailty and represented a 35-year acceleration in age among frail young adult cancer survivors. These data mimic what has been clinically noted in large study of adults who had childhood cancer: Approximately one-third of young adults and childhood cancer survivors aged 35 years have a disease phenotype of a person aged 65 years.4 Our group has also found that p16INK4a expression rose markedly in patients treated with allogeneic or autologous stem cell transplants for hematologic malignancies. These patients had a 2- to 3-fold increase in p16INK4a expression corresponding to 16 to 28 years of accelerated aging.10
We have noted similar findings in women with early-stage breast cancer. In patients treated with adjuvant or neoadjuvant chemotherapy, especially with anthracycline-based regimens (doxorubicin, cyclophosphamide, and taxanes with or without carboplatin), p16INK4a expression rose dramatically during chemotherapy and persisted during follow-up. On average, chemotherapy accelerated aging by approximately 17 years of life span, with acceleration of 23 to 27 years for those treated with anthracycline-based treatment.
Of note, docetaxel/cyclophosphamide regimens were associated with only 11 years of aging, and we found no evidence that anti-HER2 therapy affected p16INK4a expression. In these studies, accelerated aging due to chemotherapy represents estimates based on the trajectory of p16INK4a expression in normal patients over their lifespan. We are uncertain of the long-term implications of these changes. In our breast cancer studies, baseline p16INK4a expression was also associated with fatigue. In a recent unpublished analysis (Mitin N, et al), the difference between a patients baseline p16INK4a expression and a normal value for a patient of the same agethe p16 gapwas highly predictive of chemotherapy-induced peripheral neuropathy with taxane chemotherapy. We also found that baseline p16INK4a expression is a significant predictor of a p16 change, independent of age or chemotherapy type, with those patients having lower baseline p16INK4a expression being more likely to have greater changes with any chemotherapy regimen. The reasons for this are unclear, but patients of similar age with higher p16INK4a less ability to overcome tissue and organ damage. Not all chemotherapeutic agentsfor example, taxanes used as a single agentmay be associated with accelerated aging.11 More detailed studies of patients treated with different agents, including immunotherapeutic and other biologic therapies, and for different types of cancer are needed.
The long-term implications of changes in p16INK4a expression with chemotherapy are unknown, but our data suggest that higher levels may be indicators of frailty, a syndrome associate with increased comorbidity, poor quality of life, and shortened survival. p16INK4a expression has been associated with other diseases of aging, including cardiovascular disease, osteoporosis, and other common illnesses, and our chemotherapy-treated patients with accelerated aging may experience major problems 10 to 20 years after treatment, similar to young adults with cancer, and at a time when they are not likely to be followed by their oncologists.
However, these concerns should not mitigate the use of what has proven to be markedly effective treatment regimens that have dramatically improved overall survival in childhood cancer and breast cancer. It is too early to speculate, especially in breast cancer, whether nonanthracycline regimens with similar effectiveness to anthracyclines may be worth considering for patients with long life expectancy. The use of biomarkers in aging research, geroscience, is an exciting area of exploration, and p16INK4a expression is just one of the markers currently being studied.12 The implications of accelerated aging are being studied in other scenarios, and a broad range of studies are exploring interventions to ameliorate biological changes suggesting accelerated aging.
An excellent review of these issues and potential interventions is available13 and describes studies of exercise, diet and nutrition strategies, and senolytics. Learning about the effects of cancer treatment on aging is of major importance, as the clinical scenario of cancer is dominated by older adults who already may have a substantial comorbid illness at the time of diagnosis that might be accelerated by treatment. In children and young adults with cancer, learning how to assess and, in the future, intervene to prevent treatment-related accelerated aging is also a major need.
Follow this link:
Biomarkers Help Predict the Role of Chemotherapy in Biologic Aging - OncLive
- Can The Heart Heal Itself? Expert Explains Breakthroughs In Cardiac Regeneration - Onlymyhealth - January 14th, 2025
- Science fiction turned reality? Stem cell therapy set to repair child's heart - Ynetnews - January 5th, 2025
- Cardiac stem cell biology: a glimpse of the past, present, and future - PMC - December 27th, 2024
- Secretome Therapeutics Closes $20.4 Million Financing Round to Advance Cardiomyopathy and Heart Failure Therapies - Business Wire - November 29th, 2024
- Developing the Cell-Based Therapies of the Future - University of Miami - November 15th, 2024
- Advancing heart stem cell therapy - UHN Foundation - November 15th, 2024
- Heart defects affect 40,000 US babies every year but cutting edge AI and stem cell tech will save lives and even cure them in the womb - New York... - November 15th, 2024
- Science Is Finding Ways to Regenerate Your Heart - The Wall Street Journal - November 6th, 2024
- AIIMS Bathinda Makes Breakthrough in Stem Cell Therapy Research for Heart Ailments - Elets - October 21st, 2024
- USC launches collaboration with StemCardia to advance heart regeneration therapies - University of Southern California - October 13th, 2024
- The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish - Nature.com - September 3rd, 2024
- Opthea Announces Results of the A$55.9m (US$36.9m¹) Retail Entitlement Offer - July 16th, 2024
- Benitec Biopharma Reports Continued Durable Improvements in the Radiographic Assessments of Swallowing Efficiency and the Subject-Reported Outcome... - July 16th, 2024
- AstraZeneca Closes Acquisition of Amolyt Pharma - July 16th, 2024
- Addex Presents Positive Results from GABAB PAM Cough Program at the Thirteenth London International Cough Symposium (13th LICS) - July 16th, 2024
- Lexeo Therapeutics Announces Positive Interim Phase 1/2 Clinical Data of LX2006 for the Treatment of Friedreich Ataxia Cardiomyopathy - July 16th, 2024
- ANI Pharmaceuticals Announces the FDA Approval and Launch of L-Glutamine Oral Powder - July 16th, 2024
- MediWound Announces $25 Million Strategic Private Placement Financing - July 16th, 2024
- Atsena Therapeutics Appoints Joseph S. Zakrzewski as Board Chair - July 16th, 2024
- ASLAN Pharmaceuticals Announces Receipt of Nasdaq Delisting Determination; Has Determined Not to Appeal - July 16th, 2024
- Kraig Biocraft Laboratories Completes Phase One of its Spider Silk Production Facility Expansion - July 16th, 2024
- Pliant Therapeutics Announces Positive Long-Term Data from the INTEGRIS-PSC Phase 2a Trial Demonstrating Bexotegrast was Well Tolerated at 320 mg with... - July 16th, 2024
- Oncternal Announces Enrollment Completed and Dosing Initiated for Sixth Dose Cohort of Phase 1/2 Study of ONCT-534 for the Treatment of R/R Metastatic... - July 16th, 2024
- Rectify Pharmaceuticals Appoints Bharat Reddy as Chief Business Officer - July 16th, 2024
- Spectral AI Continues Support of Naked Short Selling Inquiry - July 16th, 2024
- Milestone Pharmaceuticals Refreshes Board of Directors - July 16th, 2024
- New Published Data Highlights Potential Cost-Savings of INPEFA® (sotagliflozin) for Heart Failure - July 16th, 2024
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 21st, 2023
- Cardiac stem cells: Current knowledge and future prospects - April 13th, 2023
- Stem cell therapies in cardiac diseases: Current status and future ... - April 13th, 2023
- Stem Cell and Regenerative Biology | Johns Hopkins Heart and Vascular ... - April 13th, 2023
- Center for Regenerative Biotherapeutics - Cardiac Regeneration - April 13th, 2023
- MAGENTA THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 25th, 2023
- CAREDX, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 1st, 2023
- A Possible Connection between Mild Allergic Airway Responses and Cardiovascular Risk Featured in Toxicological Sciences - Newswise - February 4th, 2023
- Baby's life saved by surgeon who carried out world's first surgery ... - December 25th, 2022
- An organoid model of colorectal circulating tumor cells with stem cell ... - December 25th, 2022
- Skeletal Muscle Cell Induction from Pluripotent Stem Cells - December 1st, 2022
- Stem-cell niche - Wikipedia - December 1st, 2022
- Scientists Discover Protein Partners that Could Heal Heart Muscle | Newsroom - UNC Health and UNC School of Medicine - October 13th, 2022
- Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 - Yahoo Finance - October 13th, 2022
- Scientists Spliced Human Brain Tissue Into The Brains of Baby Rats - ScienceAlert - October 13th, 2022
- Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution | Communications Biology - Nature.com - October 13th, 2022
- Global Synthetic Stem Cells Market Is Expected To Reach Around USD 42 Million By 2025 - openPR - October 13th, 2022
- Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -... - October 13th, 2022
- Regenerative Medicine For Heart Diseases: How It Is Better Than Conventional Treatments | TheHealthSite.co - TheHealthSite - October 5th, 2022
- 'Love hormone' oxytocin could help reverse damage from heart attacks via cell regeneration - Study Finds - October 5th, 2022
- Recapitulating Inflammation: How to Use the Colon Intestine-Chip to Study Complex Mechanisms of IBD - Pharmaceutical Executive - September 27th, 2022
- Adult Stem Cells // Center for Stem Cells and Regenerative Medicine ... - September 19th, 2022
- CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease - Cardiovascular Diabetology - Cardiovascular... - September 19th, 2022
- Kite's CAR T-cell Therapy Yescarta First in Europe to Receive Positive CHMP Opinion for Use in Second-line Diffuse Large B-cell Lymphoma and... - September 19th, 2022
- Neural crest - Wikipedia - September 3rd, 2022
- Rise In Number Of CROS In Various Regions Such As Europe Is Expected To Fuel The Growth Of Induced Pluripotent Stem Cell Market At An Impressive CAGR... - September 3rd, 2022
- Discover the Mental and Physical Health Benefits of Fasting - Intelligent Living - September 3rd, 2022
- Heart Association fellowship to support research - Binghamton - August 26th, 2022
- Repeated intravenous administration of hiPSC-MSCs enhance the efficacy of cell-based therapy in tissue regeneration | Communications Biology -... - August 26th, 2022
- High intensity interval training protects the heart against acute myocardial infarction through SDF-1a, CXCR4 receptors and c-kit levels - Newswise - August 26th, 2022
- Yale University: Uncovering New Approaches to a Common Inherited Heart Disorder | India Education - India Education Diary - August 10th, 2022
- Heart failure in obesity: insights from proteomics in patients treated with or without weight-loss surgery | International Journal of Obesity -... - August 10th, 2022
- Pigs died after heart attacks. Scientists brought their cells back to life. - Popular Science - August 10th, 2022
- Protocol for a Nested, Retrospective Study of the Australian Placental Transfusion Study Cohort - Cureus - August 10th, 2022
- Autologous Cell Therapy Market Size to Grow by USD 4.11 billion, Bayer AG and Brainstorm Cell Therapeutics Inc. Among Key Vendors - Technavio - PR... - August 2nd, 2022
- UTSW researcher part of team awarded $36 million heart research grant - The Dallas Morning News - August 2nd, 2022
- Buffalo center fuels research that can save your life from heart disease and stroke - Buffalo News - August 2nd, 2022
- Hyperglycaemia-Induced Impairment of the Autorhythmicity and Gap Junction Activity of Mouse Embryonic Stem Cell-Derived Cardiomyocyte-Like Cells -... - July 25th, 2022
- NASA's Solution to Stem Cell Production is Out of this World - BioSpace - July 25th, 2022
- Inhibition of pancreatic EZH2 restores progenitor insulin in T1D donor | Signal Transduction and Targeted Therapy - Nature.com - July 25th, 2022
- 'My Teen Sweetheart And I Drifted Apart. 30 Years Later I Made a Shocking Discovery' - Newsweek - July 25th, 2022
- EU: New Blood? Proposed Revisions to the EUs Blood, Tissues and Cells Rules - GlobalComplianceNews - July 25th, 2022
- Stem Cells Market to Expand at a CAGR of 10.4% from 2021 to 2028 Travel Adventure Cinema - Travel Adventure Cinema - July 25th, 2022
- Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study - GlobeNewswire - July 25th, 2022
- Dental Membrane and Bone Graft Substitutes Market to Exceed Value of US$ 1,337 Mn by 2031 - PR Newswire UK - July 25th, 2022
- Stem Cells Used to Repair Heart Defects in Children - NBC 5 Dallas-Fort Worth - July 16th, 2022
- Pneumonia and Heart Disease: What You Should Know - Healthline - July 16th, 2022
- Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate - Nevada Today - July 16th, 2022
- Current and advanced therapies for chronic wound infection - The Pharmaceutical Journal - July 16th, 2022
- Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don't - Lookout Santa Cruz - July 16th, 2022
- Mesenchymal stem cells: from roots to boost - PMC - July 8th, 2022
- New study allows researchers to more efficiently form human heart cells from stem cells - University of Wisconsin-Madison - July 8th, 2022
- Dr Victor Chang saved hundreds of lives. 31 years ago today, he was murdered. - Mamamia - July 8th, 2022