Brain Spheroids Hatch Mature Astrocytes – Alzforum
By NEVAGiles23
18 Aug 2017
Astrocytes are more than bystanders in neurotransmissionthey take an active role in synaptic activity. However, their functions are hard to study because the cells are difficult to grow in vitro and its hard to coax them to mature from progenitors. Now, researchers from the labs of Sergiu Paca and Ben Barres, both at Stanford University School of Medicine, California, report that astrocytes come of age in spherical balls of human brain cells cultured in a dish for almost two years. As reported in the August 16 Neuron, these astrocytes develop much like those from real brains, undergoing similar transcriptomic, morphologic, and functional changes. Studying the processes involved in this astrocyte maturation will help researchers understand neurodevelopmental disorders such as autism and schizophrenia, researchers say, and might even shed light on problems in adultbrains.
That these 3D cultures can be maintained for such a long time allows us to capture an interesting transition in astrocytes, said Paca. We are starting to appreciate aspects of human brain development to which we would not otherwise haveaccess.
The breakthrough is that they can develop human astrocytes very close to maturity in their 3D culture models, said Doo Yeon Kim, Massachusetts General Hospital, Charlestown, who uses 3D culture models to study pathological process that occur in Alzheimers disease. Some researchers are using 3D cultures to model other neurodegenerative disorders, such as ALS, and still others are planning to use cultured astrocytes for cell therapy. If astrocytes are not mature enough in culture, patterns [we see] may not be the same as in the diseased brain, saidKim.
This developing human astrocyte (red), which comes from a 350-day-old cortical spheroid, is taking shape as a mature cell. [Image courtesy of Sloan et al.Neuron]
A few years back, Pacas group developed a method for differentiating human induced pluripotent stem cells (hiPSCs) into a 3D culture of brain cells. They used special dishes that the cells could not easily attach to, coaxing them to stick to each other instead. Under these conditions the iPSCs balled up into neural spheroids that grew to about 4 mm in diameter. A cocktail of growth factors early on encouraged them to form excitatory pyramidal cells like those in the cortex, and the cells spontaneously organized into layers. These cortical spheroids survived a year or more and spontaneously grew astrocytes in addition to neurons (Paca et al., 2015). Not long after, the Barres lab reported that astrocytes in the adult human brain look different from those isolated from fetuses. They called the latter astrocyte progenitor cells (APCs). Each had their own transcriptional patterns and functions (Jan 2016 news). Together, Barres and Paca wondered if it was possible to see the APCs morph into mature astrocytes in these long-lived corticalspheroids.
To find out, first author Steven Sloan and colleagues examined spheroids generated from iPSCs derived from healthy human fibroblasts. Sloan grew the spheroids for about 20 months. Along the way, he took samples, isolated the astrocytes, and compared them to those isolated from fetal and postnatal humanbrain.
At about 100 days in culture, astrocytes began to sprout spontaneously from within the mostly neuronal milieu of the cortical spheroids. At first, these cells were simple, adorned by few branches and expressing genes akin to those active in APCs. But as the spheroids reached about 250 days, the astrocytes therein looked more mature, having numerous processes. After this point, APC gene expression tapered off and the astrocytes started producing proteins typical of matureastrocytes.
Astrocytes also underwent functional changes as they matured. Early versions divided in fast and furious fashion, much like their counterparts from the fetal tissue. That division slowed as the spheroids aged. Dividing APCs dropped from 35 percent of all astrocytes at day 167 to 3 percent at day 590. Taken from the spheroids at day 150 and cultured in a 2D layer, immature astrocytes also harbored a voracious appetite for added synaptosomes, much like immature astrocytes recently characterized in mice (see image below; Dec 2013 conference news on Chung et al., 2013). However, that hunger waned as astrocytes approached the 590-daymark.
At the older end of the spectrum, mature astrocytes seemed to take on a supportive role, strengthening calcium signaling in nearbyneurons.
Studying the neurons and astrocytes in these cortical spheroids could be useful for addressing certain unanswered questions about human biology, said other researchers. This could be a very strong opportunity to understand what goes wrong in human genetic disorders that affect astrocyte function, said M. Kerry OBanion, University of Rochester Medical Center, New York. Its also possible that such cultures could reveal as yet unknown facets of familial mutations that cause Alzheimers disease, he suggested. However, given that these cultures take a long time to grow and develop, they are unlikely to completely supplant other types of cultures or faster-maturing animal models, hesaid.
Kim agreed, saying, The results are very exciting, but not practical yet for disease modeling." However, Kim hopes that researchers will make progress on accelerating the maturationprocess.
The Barres and Paca labs are trying just that with the spheroid. They will also analyze what they secrete to support neuronal signaling. In addition, they are exploring how to make the astrocytes reactive, as they often are in neurodegenerative diseases, such as Alzheimers. Doing so might reveal how such astrocytes interact withneurons.
An immature astrocyte taken from a 150-day-old spheroid gobbles up added synaptosomes (red). [Neuron, Sloan et al.2017]
To Pacas knowledge, these cortical spheroids are some of the longest human cell cultures ever reported. His group has continued to cultivate these clumps, with the oldest still going strong at day 850. Granted, these systems are missing many cell types: endothelial cells, oligodendrocytes, and microglia to name a few, he said. However, his lab has introduced new ways to add in other cells. Earlier this year, he reported 3D cultures of cortical glutamatergic neurons and GABAergic interneurons that fused together when they were placed side-by-side (Birey et al., 2017).
Clive Svendsen, Cedars-Sinai Medical Center in Los Angeles, California, saw clinical implications for this paper. It shows iPSC derived astrocytes can mature to an adult phenotype, he said. This further supports their use in clinical transplantation, as we are planning to do. His group has begun a Phase 1 clinical trial that implants human fetal astrocytes into the spinal cords of ALS patients.Gwyneth DickeyZakaib
Read the original here:
Brain Spheroids Hatch Mature Astrocytes - Alzforum
- Exploring the Regenerative Mechanisms Behind Spinal Cord Injury Repair - Genetic Engineering & Biotechnology News - January 14th, 2025
- Electrically Active Transplantable Material Could Treat Brain and Spinal Cord Injuries - HospiMedica - January 14th, 2025
- Unlocking Spinal Cord Regeneration: Astrocytes Lead the Way - Neuroscience News - January 14th, 2025
- Bone marrow mesenchymal stem cells modulate miR-202-3p to suppress neuronal apoptosis following spinal cord injury through autophagy activation via... - December 9th, 2024
- Stem Cells Reveal Secret to Beneficial Proteins for mRNA Therapy - An Interview with Neuroscientist Prof. Dr. Antal Ngrdi - Szegedi Tudomnyegyetem - December 9th, 2024
- Much-anticipated human trial aiming to repair spinal cord damage about to begin - ABC News - October 21st, 2024
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Evaluating the Growth Prospects of the Global Nerve Repair & Regeneration Market at a CAGR of 6.5% | Emergen - EIN News - April 21st, 2023
- Regenerative Therapies Market is Set to Grow at a CAGR of 8.7% by 2033, Propelled by Advancements in - EIN News - March 17th, 2023
- Kadimastem Submits IND Application to the FDA for its Phase IIa Clinical Trial with AstroRx for the Treatment of ALS - Marketscreener.com - February 21st, 2023
- My Back Is All F*cked Up 55-Year-Old Joe Rogan Curses at Worst Jiu-Jitsu for Painful Health Condition - EssentiallySports - February 21st, 2023
- Brain and Spinal Cord Tumors: Hope Through Research - January 3rd, 2023
- 14.3 The Brain and Spinal Cord Anatomy & Physiology - January 3rd, 2023
- Stem Cell Therapy for Spinal Cord Injury - PubMed - January 3rd, 2023
- Spinal cord injury - Diagnosis and treatment - Mayo Clinic - December 25th, 2022
- Spinal Cord Injury: Hope Through Research | National Institute of ... - December 1st, 2022
- Stem cell controversy - Wikipedia - October 13th, 2022
- Stem Cells Australia | Australian research, stem cell treatments and ... - October 13th, 2022
- The eye and stem cells: the path to treating blindness - October 13th, 2022
- World's first stem cell treatment for spina bifida delivered during fetal surgery - UC Davis Health - October 13th, 2022
- Fighting One Disease or Condition per Day - Daily Kos - October 13th, 2022
- UPDATE: NurExone Signs Letter of Intent with Nanometrix for Its Exosome and Cargo Molecular Profiling AI-Driven Technology - Yahoo Finance - October 13th, 2022
- Global Cell Therapy Market Report (2022 to 2028) - Featuring Thermo Fisher Scientific, MaxCyte, Danaher and Avantor Among Others -... - October 13th, 2022
- Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS... - October 13th, 2022
- Physiology, Spinal Cord - StatPearls - NCBI Bookshelf - October 5th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 ... - October 5th, 2022
- Revolutionary Jab that Could Repair Spinal Cord Injuries Developed by Scientists - Good News Network - October 5th, 2022
- How the 'Love Hormone' Oxytocin May Help Heal Heart Muscles - Healthline - October 5th, 2022
- Unlocking the Mysteries of Brain Regeneration Groundbreaking Study Offers New Insight - SciTechDaily - October 5th, 2022
- In Conversation: How to understand chronic pain - Medical News Today - October 5th, 2022
- New drug could cure aggressive brain cancer stopping tumours in their tracks... - The US Sun - September 27th, 2022
- Rehabilitating spinal cord injury and stroke with graphene and gaming - Nanowerk - September 19th, 2022
- Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace - September 19th, 2022
- Axolotls can regenerate their brains - Big Think - September 19th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 Clinical Study of Umbilical Cord-Derived Mesenchymal Stem Cells for the... - September 11th, 2022
- Spinal Muscular Atrophy: Causes and importance of early diagnosis for proactive management - Firstpost - September 11th, 2022
- Increasing Road Accidents and Fall Injuries among Aged Population Primarily Driving Need for Orthopedic Navigation Systems: Fact.MR Analysis - Yahoo... - September 3rd, 2022
- Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise - August 10th, 2022
- Curious kids: what is inside teeth? - The Conversation - August 10th, 2022
- Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration... - August 2nd, 2022
- How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News - August 2nd, 2022
- New TSXV listing looks to address the $3B spinal cord injury treatment market (NRX.V) - FXStreet - July 25th, 2022
- Human iPSC co-culture model to investigate the interaction between microglia and motor neurons | Scientific Reports - Nature.com - July 25th, 2022
- Negligence in treatment of diseases like glioblastoma can be fatal, seminar told - The News International - July 25th, 2022
- What lab-grown cerebral organoids are revealing about the brain - New Scientist - July 25th, 2022
- Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology - July 16th, 2022
- Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal - July 16th, 2022
- Stem Cell Therapy Market Is Expected To Reach USD 455.61 Billion By 2027 At A CAGR Of 16 percent By Forecast 2027 Says Maximize Market Research (MMR)... - June 30th, 2022
- This startup wants you to have a personal stem cell stash - Freethink - June 30th, 2022
- Parents of 12-Year-Old Boy Praying for a Miracle, Appealing UK Judge's Decision to Remove Life Support - CBN.com - June 30th, 2022
- The end of Roe v. Wade affects more than just abortion - Vox.com - June 30th, 2022
- Horizon Therapeutics plc Submits Regulatory Filing for UPLIZNA (inebilizumab) in Brazil - Business Wire - June 20th, 2022
- Effect of Electrical Stimulation on Spinal Cord Injury: In Vitro and In Vivo Analysis - Newswise - June 11th, 2022
- First-of-its-Kind Stem Cell and Gene Therapy Highlighted at Annual Stem Cell Meeting - Newswise - June 11th, 2022
- UK Judge to Decide if 12-Year-Old Will Be Removed from Life Support, Parents Beg for More Time to Heal - CBN.com - June 11th, 2022
- 'This is my life, and I'll try anything to save it': Woman with MS raising funds for treatment - The Brandon Sun - May 29th, 2022
- Racing Thoughts: Quadriplegic Man Drives Race Car With His Brain - Newsy - May 29th, 2022
- Physical therapy for vertigo: Exercises, benefits, and more - Medical News Today - May 29th, 2022
- Researchers find new function performed by almost half of brain cells - Medical News Today - May 13th, 2022
- Texas Family Fights to Access $2.1 Million Treatment for Baby - NBC 5 Dallas-Fort Worth - May 13th, 2022
- Severe COVID-19 may cause cognitive deficits equivalent to 20 years of aging - Medical News Today - May 13th, 2022
- Stem Cell Magic: 5 Promising Treatments For Major Medical Conditions - Study Finds - April 29th, 2022
- Neural Stem Cell Therapy For Spinal Cord Injury To Tap Into The Potential Of Stem Cells - Optic Flux - April 15th, 2022
- Still Blooming: Sams mission to raise money for spinal cord injury research - 7NEWS - April 15th, 2022
- Lineage and Cancer Research UK Announce Completion of Patient Enrollment in Phase 1 Clinical Study of VAC2 for the Treatment of Non-small Cell Lung... - April 15th, 2022
- Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss - Galveston County Daily News - March 22nd, 2022
- COVID-19: Even mild to moderate infection may cause brain anomalies - Medical News Today - March 22nd, 2022
- Scots mum with MS says 50k treatment abroad is 'last hope' of halting disease - Daily Record - January 18th, 2022
- Mending the gap: U of T's Molly Shoichet joins team developing new treatments for spinal cord injuries - News@UofT - January 18th, 2022
- Spinal Cord Injury Information Page | National Institute ... - January 3rd, 2022
- Dancing molecules successfully repair severe spinal cord ... - January 3rd, 2022
- Best 2021 Medical Breakthroughs And Treatments to Beat Cancer, Alzheimer's, Diabetes & More - Good News Network - January 3rd, 2022
- Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -... - December 23rd, 2021
- Scientists unravel a gene function that helps the genesis of neurons - Research Matters - December 23rd, 2021
- The 10 Most Compelling Research Stories of 2021 PharmaLive - PharmaLive - December 23rd, 2021
- 2021: The year in review | YaleNews - Yale News - December 23rd, 2021
- Polymyositis Pipeline to Progress with New and Emerging Drugs for Treatment, Analyzes DelveInsight - GlobeNewswire - December 10th, 2021
- Cell and Gene Therapy Market to reach US$ 47,095.2 Mn by end of 2028, Says Coherent Market Insights - PRNewswire - November 22nd, 2021
- From asthma to cancer to infertility, the new treatments, jabs and meds making us healthier... - The Sun - November 22nd, 2021
- Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen... - November 8th, 2021