BREAKTHROUGH: Her vision was getting worse, then animal research made things clear – Speaking of Research
By daniellenierenberg
By Justin A. Varholick, Ph.D.
As we grow older theres an impending fear that we will slowly, but surely, begin to lose our vision. This slow loss of vision is clinically dubbed low vision and impacts more than 39 million Americans, costs $68 billion annually in direct health care costs, and is only growing in our population as baby boomers enter the at-risk age of 65 and older. Magnifiers can often be used to help people with acute issues of low vision, but are often inconvenient and frustrating. More serious issues of low vision such as cataracts, age-related macular degeneration, glaucoma, and diabetic retinopathy require advanced treatment and surgery. For example, cataracts can be improved or reversed by removing the cloudy lens and replacing it with an artificial one. Such surgeries are not always ideal, or convenient, and further contribute to the already hefty direct health care costs. But, a recent breakthrough by Japanese scientists, in correcting blurry vision, might reverse this bleak future.
Old cells can become new againOur story begins around the mid-20th century, in 1958. A young and aspiring scientist, named John Gurdon, was studying frogs at the University of Oxford in England. Not everyone thought Gurdon would end up actually becoming a scientist. In his early days his school master thought such a career was far-fetched for Gurdon. Indeed, he ranked last in his Biology class out of 250 students. Yet despite such poor grades, Gurdon found himself studying frogs at Oxford and earning a doctoral degree in Biology. And his studies would surprisingly lead to a breakthrough in vision, and likely many other issues in human health, like Parkinsons Disease, heart disease, and spinal cord injury.
At the time Gurdon was trying to test an age-old theory on cell development. Many scientists before him discovered that cells the smallest unit of life begin without a clear fate in the early stages of an embryo. Then as the cell develops, their fate becomes more clear. They become cells of the heart, of the brain, the kidneys, the stomach, the spinal cord, or the eyes. But they cannot go back to a time when they had no fate, or specialization. The cells can only develop in one direction, from no destiny, to a clear path, then to a mature adult cell; like one found in the heart. But you just cant take a heart cell and start the process over, maybe turning it into a brain cell.
In disagreement with this theory, Gurdon did a simple experiment. He knew that a tadpole has more adult cells than a frog egg. A tadpole has gills, a heart, eyes, etc., while a frog egg simply does not. So, he cut open the tadpole and removed a single cell from the intestine; an intestinal cell. He then cut open the intestinal cell and removed its nucleus; the seed of the cell carrying all the DNA. Very carefully, he did the same with the frog egg, and finally replaced the nucleus of the frog egg with the nucleus of the intestinal cell. According to the age-old theory, the intestinal nucleus should stop normal development of the frog egg. But thats not what happened.
Instead, the new frog egg continued to develop normally, becoming a tadpole that later became an adult frog. Gurdon thought this was unbelievably odd, and so did everyone else in science. After many more experiments doing the exact same procedure (i.e., replication), it seemed that what he saw was a real, replicable fact. For some reason the nucleus of the intestinal cell was able to reverse itself to have no fate and slowly develop into any other adult cell. The seed from the intestine somehow could become the seed of a heart, brain, kidney, or even an eye cell and of course, an intestinal cell too.
After many more experiments testing the same theory, on many more animals, it seemed the theory was true, but it just didnt work for mammals. Given that the same effect could not be repeated in a mammal, some believed this discovery did not apply to humans. But they were wrong.
The discovery of induced pluripotent stem cellsAlmost 45 years later, around the start of the millennium, Shinya Yamanaka and Kazutoshi Takahashi began running experiments that would translate Gurdons findings to humans. Born after Gurdons findings were already published and well known, Yamanaka and Takahashi grew up in a world in which the fact that old cells can become new again was widely knowna solid foundation for further hypotheses, experiments, and discovery. So, the scientists set out to do what no one had before: turn adult skin cells of mice into new cells without a clear fate.
Yamanaka, the lead investigator of the study, shared a similar early history with Gurdon. He first became a medical doctor in Japan but was frustrated by his inability to quickly remove small human tumors taking over an hour rather than the typical 10 minutes. Senior doctors gave him the nickname Jamanaka, a Japanese pun for the word jama meaning obstacle. He then found himself earning a PhD in pharmacology and becoming a post-doctoral scientist, but spent more time caring for mice than doing actual research. Frustrated again, his wife suggested he just become a practicing physician. Despite her advice, Yamanaka applied to become an Assistant Professor at Nara Institute of Science and Technology, in Japan, and won everyone over with his fantastical ideas of investigating embryonic stem cells; the cells without a clear fate.
Then the persistence paid off when Yamanaka with his assistant, Takahashi discovered how to induce adult skin cells from mice to return to an embryonic, or stem cell, state without a clear fate. They began their experiments knowing that gene transcription factors proteins that turn genes on and off were responsible for keeping embryonic cells in a state without a clear fate. They thought that by turning specific genes on and off with these factors, they could turn back time and make an adult cell embryonic again. So, they tried many different combinations of gene transcription factors and ultimately discovered that 4 specific ones were enough to induce an adult skin cell to a mouse to become an embryonic cell. Because these re-newed embryonic cells, or stem cells, originally came from adult cells they came up with a new name, induced pluripotent stem cell. Broken down, induced pluripotent stem cells means that the cell was induced to become pluripotent pluri meaning several, like plural, and potent meaning very powerful (and stem meaning to have the ability to turn into any cell in the body).
These induced pluripotent cells were thought to be very powerful indeed and scientists across the globe were excited by this great discovery. They had visions of taking a persons skin or blood, forming them into induced pluripotent cells, and then using them to grow a new liver or new parts of the brain. Laboratories across the world confirmed the results by repeating the experiment.
Human stem cells Just repeating the experiments in mice, or frogs, was not enough. They needed to begin making induced pluripotent stem cells from humans. Enter scientists from the University of Wisconsin-Madison. The lead scientist, James Thomson was already well known for deriving primate embryonic cells from rhesus monkeys in 1995 and the first human embryonic cell line in 1998. In fact, Thomsons accomplishment of isolating embryonic cells from monkeys was the first sound evidence that it was possible to do the same for humans. Such discoveries placed him on the forefront in ethical considerations for research using human embryos and the most obvious scientist to lead the path toward making induced pluripotent stem cells from humans.
Thomsons team made the first human derived induced pluripotent stem cells from adult skin, with Yamanaka as a co-scientist. They followed the same general principles set by Yamanaka, who did the procedure with mouse skin cells. Importantly to Thomson, this discovery helped to relieve some ethical controversy with using human embryos to make human stem cells. By being able to induce adult human skin to become pluripotent stem cells, much research on human stem cells could be done without human embryos albeit research with human embryos remains necessary.
Yet more important to the discussion at hand, the ability to induce human skin to become pluripotent stem cells placed us on the edge of a breakthrough. With some clinical trials in humans, the fantasy of growing a new liver, heart, or eye was more a reality than ever before.
The start of human trials In 2012, around the time both Gurdon and Yamanaka were presented with the Nobel Prize in Physiology and Medicine for their work leading to induced pluripotent stem cells, human clinical trials were beginning in Japan. The first clinical trial was for age-related macular degeneration, an eye condition leading to blindness. Unfortunately, this trial was quickly terminated when Yamanaka and his team identified small gene mutations in the transplanted induced pluripotent stem cells from the first patient. Although the procedure did cure the patient of macular degeneration, these small gene mutations worried the scientists because they could lead to tumor development.
But recently with the introduction of an inducible suicide gene that can signal cells with abnormal growth to die, human trials are starting up again. In October of 2018, Japanese scientists began trials with Parkinsons disease, a brain disease related to a shortage of neurons producing dopamine. Scientists took cells from the patients, made them into induced pluripotent stem cells, guided them to develop into dopamine producing cells, and then deposited them in the dopamine centers of the brain through surgery. The outcome is promising since similar procedures in monkeys have been successful.
Other trials in Japan have also started, including spinal cord injury and one for replacing the cornea of the eye. Early results replacing damaged corneas with induced pluripotent stem cells, thereby correcting blurry vision, were just announced at the end of August. Although it will take more patients and safety checks before all humans can get induced pluripotent cells to correct their damaged eyes, malfunctioning brains, or broken spinal cords, Takahashi the post-doctoral scientist working with Yamanaka thinks it might happen as early as 2023. So, it looks like that in our lifetime we just might be able to stay young and enjoy retirement because of great breakthroughs in animal research.Note, EuroStemCell is a great resource for learning more about the ethics and research currently being done with stem cells derived from human embryos.
Like Loading...
Related
See the rest here:
BREAKTHROUGH: Her vision was getting worse, then animal research made things clear - Speaking of Research
- Are Plant-Based Stem Cells the New Botox? This Derm Thinks So - The Daily Beast - January 5th, 2025
- Skin science: Latest stories on cosmetics science and formulation - CosmeticsDesign-Asia.com - November 15th, 2024
- The Firsthand Results Of A Nanofat Treatment Using Stem Cells And PRP - Forbes - November 15th, 2024
- Boundary-Pushing Skin Care Company Exoceuticals Garners Beauty Innovation Award For 'Beauty Innovation Technology Of The Year - The Manila Times - November 15th, 2024
- New skin research could help slow signs of ageing - BBC.com - October 21st, 2024
- Human skin map gives 'recipe' to build skin and could help prevent scarring - Medical Xpress - October 21st, 2024
- A new cell therapy company takes its vision from four founders, and its skin from George Church - STAT - September 23rd, 2024
- Women 60+ love this hydrating stem cell-infused moisturizer that's $15 right now - Yahoo Life - September 23rd, 2024
- NKGen Biotech Publishes Phase 1 Interim Analysis Results of SNK02 Allogeneic NK Cell Therapy in Advanced Solid Tumors at the 2024 American Society of... - May 25th, 2024
- FibroGen Announces Presentation of Positive Interim Data from the Phase 1b Study of FG-3246 (FOR46) in Combination with Enzalutamide in Patients with... - May 25th, 2024
- Cogent Biosciences Appoints Cole Pinnow as Chief Commercial Officer - May 25th, 2024
- G1 Therapeutics Announces Upcoming Presentation at the 2024 American Society of Clinical Oncology (ASCO) Meeting - May 25th, 2024
- Updated Phase 1 Clinical Data for SYS-6002 (CRB-701) to be presented at 2024 ASCO Annual Meeting - May 25th, 2024
- Affimed Announces Positive Early Efficacy and Progression Free Survival Results of AFM24-102 Study in EGFR Wild-Type Non-Small Cell Lung Cancer at the... - May 25th, 2024
- SpringWorks Therapeutics Announces Data to be Presented at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Sensei Biotherapeutics Presents Promising Clinical Data from Phase 1 Dose Escalation Study of SNS-101 - May 25th, 2024
- Elicio Therapeutics Announces Preliminary Data from the Ongoing AMPLIFY-7P Phase 1a Study of ELI-002 7P in Patients with mKRAS-driven Solid Tumors at... - May 25th, 2024
- Kronos Bio to Present Clinical Update on Phase 1/2 Trial of KB-0742 at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Coherus Presents Preliminary Results from Phase I Dose Escalation Study of its Anti-chemokine receptor 8 (CCR8) Antibody, CHS-114, at the 2024... - May 25th, 2024
- 3Daughters to Participate in Women’s Health Panel During the 2024 BIO International Convention in San Diego, CA, June 3-6 - May 25th, 2024
- HUTCHMED Highlights Presentations at the 2024 ASCO Annual Meeting - May 25th, 2024
- Myriad Genetics Showcases New Research and Product Innovations Advancing Cancer Care at 2024 ASCO® Annual Meeting - May 25th, 2024
- Lift BioSciences Announces Abstract Publications at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Nicox: 2024 Ordinary Shareholder Meeting to be held on June 28th, 2024 - May 25th, 2024
- Adlai Nortye Ltd. to Present Encouraging Data of the Combination of AN0025 and Definitive Chemoradiotherapy (dCRT) at ASCO 2024 - May 25th, 2024
- Vitamin A could have a key role in both stem cell biology and wound healing: Study - Medical Dialogues - March 10th, 2024
- Cyclerion Strengthens Board of Directors with Experienced Company Builder and Cutting-edge Innovator - December 4th, 2023
- Aptose Appoints Fletcher Payne Chief Business Officer, Expanding his Executive Role - December 4th, 2023
- Opthea to Present at the FLORetina 2023 Congress - December 4th, 2023
- HUTCHMED Highlights Clinical Data to be Presented at 2023 ESMO Asia and ESMO Immuno-Oncology Congresses - December 4th, 2023
- AC Immune Strengthens Management, Appoints Madiha Derouazi as CSO and Christopher Roberts as CFO - December 4th, 2023
- Publication of a transparency notification received from Tolefi SA (Article 14 §1 of the Law of 2 May 2007) - December 4th, 2023
- Annovis Bio Appoints Andrew Walsh as Vice President Finance - December 4th, 2023
- Foghorn Therapeutics Announces Clinical Data from Phase 1 Study of FHD-286, a Novel BRG1/BRM Inhibitor, in Patients with Advanced Hematologic... - December 4th, 2023
- Akari Therapeutics Appoints Experienced Life Sciences Entrepreneur Samir R. Patel, M.D. to Board of Directors - December 4th, 2023
- Ovid Therapeutics to Present Five Abstracts Supporting its Epilepsy Programs at the 77th American Epilepsy Society Annual Meeting (2023) - December 4th, 2023
- Spectral Medical Announces CFO Departure - December 4th, 2023
- Are STEM CELL EXOSOMES the secret to a 'snatched' jawline? Discover the products that influencers are claiming - Daily Mail - November 18th, 2023
- Defence Mechanisms: Four ways your body is protecting you every time you fall sick - indulgexpress - May 16th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, 111SKIN, Nest & More - E! NEWS - May 16th, 2023
- INTERNATIONAL STEM CELL CORP MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - April 5th, 2023
- Skin Regeneration: The Science and How to Boost It - Healthline - March 9th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, U Beauty, Nest & More - E! NEWS - March 1st, 2023
- 7-year-old vows to find a cure for brother in need of bone marrow transplant - WJLA - February 21st, 2023
- World's most radioactive man 'cried blood' as his skin melted in 83-day nightmare - Times Now - February 4th, 2023
- How old are you, really? The answer is written on your face. - National Geographic UK - February 4th, 2023
- Skin: Layers, Structure and Function - Cleveland Clinic - January 27th, 2023
- Human skin | Definition, Layers, Types, & Facts | Britannica - January 27th, 2023
- Skin Disorders: Pictures, Causes, Symptoms, and Treatment - Healthline - January 27th, 2023
- Skin care: 5 tips for healthy skin - Mayo Clinic - January 27th, 2023
- Skin Care and Aging | National Institute on Aging - January 27th, 2023
- Wrinkles - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Dry skin - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Stem cells: a brief history and outlook - Science in the News - January 3rd, 2023
- Still Drinking Green Tea? Doctor Reveals A Healthier Drink With Proven Benefits For Diabetes, Aging, Oxidative Stress, And Cancer - Revyuh - January 3rd, 2023
- RUDN Physician And Russian Scientists Investigate Long-term Effects Of Treating Diabetic Ulcers With Stem Cells - India Education Diary - December 25th, 2022
- The Use of Stem Cells in Burn Wound Healing: A Review - Hindawi - December 1st, 2022
- FACTORFIVE Skincare The Power of Stem Cells for Skin - December 1st, 2022
- Embryonic Stem Cells - The Definitive Guide | Biology Dictionary - December 1st, 2022
- From pro soccer hopeful to hip hop artist with illness and addiction along the way, Tymaz Bagbani releases debut album - Toronto Star - December 1st, 2022
- Stem Cells | The ALS Association - November 22nd, 2022
- What is a stem cell? YourGenome - October 29th, 2022
- Skin Cell - The Definitive Guide | Biology Dictionary - October 29th, 2022
- Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend - Forbes - October 29th, 2022
- Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 - KXAN.com - October 21st, 2022
- Human skin color - Wikipedia - October 13th, 2022
- Mesenchymal Stem Cells | Properties, Process, Functions, & Therapies - October 13th, 2022
- Skin Grafting, Cryopreservation, and Diseases: A Review Article - Cureus - October 13th, 2022
- Anti-ageing cosmetics: Can they turn back the hands of the clock? - The Sunday Guardian Live - The Sunday Guardian - October 13th, 2022
- Brennand named Elizabeth Mears and House Jameson Professor of Psychiatry - Yale News - October 13th, 2022
- The Switch to Regenerative Medicine - Dermatology Times - October 13th, 2022
- Last Chance to Get The Collagen-Infused Massage Oil That Moisturizes Skin & Diminishes Cellulite For Less Than $20 - msnNOW - October 13th, 2022
- Addison's Disease Explained: Causes, Symptoms, And Treatments - Health Digest - October 13th, 2022
- Stem Cells Therapy for Autism: Does it Work? - October 5th, 2022
- Stem-like CD8 T cells mediate response of adoptive cell ... - PubMed - October 5th, 2022
- 6 Under Eye Products You Need To Have STAT - Grazia India - October 5th, 2022
- CellResearch Corporation (CRC) to present promising new stem cell products for the treatment of chronic diabetic foot ulcers at the world's premier... - September 27th, 2022
- Reprogramming pig cells leads way for new regenerative therapies - National Hog Farmer - September 27th, 2022
- A glimpse into Indian consumers expectations for cosmetic treatments and consumption insights - The Financial Express - September 27th, 2022
- Tajmeel redefines beauty to give its patients the best results - Gulf News - September 27th, 2022