Stem cell source found in tissue discarded in hip replacements
By Dr. Matthew Watson
Current ratings for: Stem cell source found in tissue discarded in hip replacements
Public / Patient:
0 (0 votes)
Health Professionals:
3 (1 vote)
Tissue that is typically discarded in routine hip replacement operations may offer a rich untapped source of stem cells that could be banked for later use in regenerative medicine, where patients' own cells are used to treat disease or repair failing organs.
This was the implication of a new study led by the University of New South Wales (UNSW) in Australia, published online recently in the journal Stem Cells Translational Medicine.
Study leader Prof. Melissa Knothe Tate and colleagues say, given the tens of thousands of hip replacements performed every year, their findings could have "profound implications" for clinical use.
Currently, to grow new bone or tissue after an infection, injury or the removal of a tumor, if the patient has not preserved stem cells in a cell bank (which is the case for the vast majority of older adults), the stem cells have to come from a donor, or the patient has to undergo surgery to have them harvested from their own bone marrow.
Prof. Knothe Tate explains how their study findings, which now need to be tested clinically, could offer a new source of stem cells for older patients:
Read more:
Stem cell source found in tissue discarded in hip replacements
New Weapon Fights Drug-Resistant Tumors
By Dr. Matthew Watson
Contact Information
Available for logged-in reporters only
Newswise Cancer drugs that recruit antibodies from the bodys own immune system to help kill tumors have shown much promise in treating several types of cancer. However, after initial success, the tumors often return.
A new study from MIT reveals a way to combat these recurrent tumors with a drug that makes them more vulnerable to the antibody treatment. This drug, known as cyclophosphamide, is already approved by the Food and Drug Administration (FDA) to treat some cancers.
Antibody drugs work by marking tumor cells for destruction by the bodys immune system, but they have little effect on tumor cells that hide out in the bone marrow. Cyclophosphamide stimulates the immune response in bone marrow, eliminating the reservoir of cancer cells that can produce new tumors after treatment.
Were not talking about the development of a new drug, were talking about the altered use of an existing therapy, says Michael Hemann, the Eisen and Chang Career Development Associate Professor of Biology, a member of MITs Koch Institute for Integrative Cancer Research, and one of the senior authors of the study. We can operate within the context of existing treatment regimens but hopefully achieve drastic improvement in the efficacy of those regimens.
Jianzhu Chen, the Ivan R. Cottrell Professor of Immunology and a member of the Koch Institute, is also a senior author of the paper, which appears in the Jan. 30 issue of the journal Cell. The lead author is former Koch Institute postdoc Christian Pallasch, now at the University of Cologne in Germany.
Finding cancers hiding spots
Antibody-based cancer drugs are designed to bind to proteins found on the surfaces of tumor cells. Once the antibodies flag the tumor cells, immune cells called macrophages destroy them. While many antibody drugs have already been approved to treat human cancers, little is known about the best ways to deploy them, and what drugs might boost their effects, Hemann says.
Antibodies are very species-specific, so for this study, the researchers developed a strain of mice that can develop human lymphomas (cancers of white blood cells) by implanting them with human blood stem cells that are genetically programmed to become cancerous. Because these mice have a human version of cancer, they can be used to test drugs that target human tumor cells.
Read more:
New Weapon Fights Drug-Resistant Tumors
It's good to the bone: hip surgery 'waste' could become healing cells
By LizaAVILA
By Amy CorderoyJan. 30, 2014, 3 a.m.
People who need hip replacements could be able to use cells taken during the procedure to help heal their damaged bones, researchers say.
People who need hip replacements could be able to use cells taken during the procedure to help heal their damaged bones, researchers say.
A ground-breaking study has found that parts usually discarded when people with arthritis have hip replacements can actually be used to collect stem cells that could help regrow bone, cartilage and fat.
Tens of thousands of Australians have hip replacements each year, with numbers rising by more than 37 per cent over the past 10 years to more than 36,500 last year.
Melissa Knothe Tate, the Paul Trainor chair of biomedical engineering at the University of NSW, said her team had shown for the first time that the previously discarded tissue has the potential to be put to good use.
"There is a lot of potential for stem cells to be used to harness the body's own healing capacity for all sorts of illnesses," she said. "Arthritis is the leading cause of disability in ageing adults and the increasing number of hip replacements opens up a new, easy way of getting stem cells."
Her international research team collected samples from the periosteum, connective tissue in the ball at the very top of the thigh bone, of four people with arthritis who had hip replacement.
"These patients are aged and they have disease, so this study was quite out of the box," Professor Knothe Tate said.
But on comparing the stem cells they derived with commercial cells taken from bone marrow they found "remarkable similarities". The cells were similar to bone marrow in terms of their ability to develop into other cells in the lab, according to the research published in Stem Cells Translational Medicine. Professor Knothe Tate said patients could potentially bank their cells for future use, to help heal bones seriously damaged by things like car accidents or cancer surgery, by wrapping them in a cover that could deliver the cells to the injured area.
Original post:
It's good to the bone: hip surgery 'waste' could become healing cells
Acid bath turns cells from any tissue into stem cells
By raymumme
The development of human embryonic stem cells, which have the ability to form any cell in the body, may enable us to repair tissues damaged by injury or disease. Initially, these cells could only be obtained through methods that some deemed ethically unacceptable, but researchers eventually developed a combination of genes that could reprogram most cells into an embryonic-like state. That worked great for studies, but wasn't going to work for medical uses, since one of the genes involved has been associated with cancer.
Researchers have since been focusing on whittling down the requirements needed for getting a cell to behave like a stem cell. Now, researchers have figured out a radically simplified process: expose the cells to acidic conditions, then put them in conditions that stem cells grow well in. After a week, it's possible to direct these cells into a state that's even more flexible than embryonic stem cells.
The catalyst for this work is rather unusual. The researchers were motivated by something that works in plants: expose individual plant cells to acidic conditions, grow them in hormones that normally direct plant development, and you can get a whole plant back out. But we're talking about plants here, which evolved with multicellularity and with specialized tissues in a lineage that's completely separate from that of animals. So there's absolutely no reason to suspect that animal cells would react in a similar way to acid treatmentand a number of reasons to expect they wouldn't.
And yet the researchers went ahead and tried anyway. And, amazingly, it worked.
The treatments weren't especially harshonly a half-hour in a pH of 5.45.8. Afterward, the cells were placed in the same culture medium that stem cells are grown in. Many of the cells died, and the ones that were left didn't proliferate like stem cells do. But, over the course of a week, the surviving cells began to activate the genes that are normally expressed by stem cells. This was initially tried with precursors to blood cells, but it turned out to work with a huge variety of tissues: brain, skin, muscle, fat, bone marrow, lung, and liver (all of them obtained from micethis hasn't been tried with human cells yet).
While these cells didn't divide like stem cells, they did behave like them. Injecting them into embryos showed that they were incorporated into every tissue in the body, meaning they had the potential to form any cell. That suggests they are a distinct class of cell from the other ones we're aware of (the researchers call them STAP cells).
But, if they don't grow in culture, it's hard to use or study them. So, the authors tried various combinations of hormones and growth factors that stem cells like. One combination got some of the STAP cells to grow, after which they behaved very much like embryonic stem cells. But a second combination of growth factors got the cells to contribute to non-embryonic tissues, like the placenta, as well. So, in this sense, they seem to be even more flexible than embryonic stem cells, and seem more akin to one of the first cells formed after fertilization.
The people behind this development have done a tremendous amount of work, so much that it was spread across two papers. Still, like many good results, it raises lots of other questions. Many cells in our bodies get exposed to acidic conditions every daywhy do those manage to stably maintain their identity? A related question is what goes on at a molecular level inside the cell after acid treatment. Understanding that will help us learn more about the stem cell fate itself.
And then there are the practical questions. How close are these STAP cells to an actual embryonic cell, in terms of the state of its DNA and gene expression? And, if there are differences, are they significant enough to prevent these cells from being used in safe and efficient medical treatments?
January 30, 2014. DOI: 10.1038/nature12968, 10.1038/nature12969 (About DOIs).
Here is the original post:
Acid bath turns cells from any tissue into stem cells
Researchers turn adult cells back into stem cells
By daniellenierenberg
In a step that has implications for stem cell research, human biology and the treatment of disease, researchers in Japan and at Harvard University have managed to turn adult cells back into flexible stem cells without changing their DNA.
The researchers discovered that they could put cells in various challenging circumstances ?? including in acidic solutions and under physical pressure ?? and turn mature blood cells into cells that were capable of turning into virtually any cell in the body.
The research, published today in the journal Nature, was in mice. If it can be repeated in people, it has the potential to transform research using stem cells to treat disease, and it may lead to a new understanding of how the body heals from injury, said Charles Vacanti, the Harvard Medical School stem cell and tissue engineering biologist who led the research.
Biology textbooks say that once a cell matures to serve a specific role, like, say a red blood cell, it can never go back into a less mature state. Vacanti and his colleagues say their new research upends that dogma.
"This study demonstrates that any mature cell when placed in the right environment can go back, become a stem cell, which then has the potential to become any cell needed by that tissue," said Vacanti, also of Brigham and Women's Hospital in Boston.
He believes that that process happens naturally in the body after injury, and the more significant the injury, the farther back these cells will revert. "With a very significant injury, you will cause it to revert clear back to what is basically an embryonic stem cell," he said.
In an early embryo, all cells are stem cells, capable of turning into any cell in the body. As the fetus develops, those cells differentiate into cells with specific functions in muscles, blood, organs, etc. Some of those mature cells develop diseases and injuries. The promise of stem cells ?? as yet largely unrealized ?? is to provide patients with healthy versions of their own cells that can then repair damage and reverse disease.
Most people are familiar with stem cell research because until 2006, embryos had to be destroyed to study them.
Then, Japanese researcher Shinya Yamanaka developed a strategy for tinkering with adult cells, reverting them to stem cells. This has led to dramatic advances in the field, but because his approach required changes to the genetic material in a cell's nucleus, researchers have been anxious about using these cells in patients.
If stem cells can be created simply by bathing adult cells in a low-pH solution or putting them under physical pressure, that would make research simpler and more applicable to the real world, according to several researchers not involved in the new work.
See the rest here:
Researchers turn adult cells back into stem cells
Stem cells could offer alternative treatment for patients with resistant tuberculosis
By NEVAGiles23
A team of international researchers has turned to stem cells in a quest to find an a more effective treatment for patients with drug-resistant tuberculosis (TB). The new method being investigated involves using the patients own bone marrow mesenchymal stromal cells (MSCs) to boost immune response and heal damaged tissue.
Multi-drug resistant TB effects around 450,000 in Eastern Europe, Asia, and South Africa according to the World Health Organization, and conventional treatments have a low rate of success.
Currently in its preliminary stages, the study is designed to investigate the possibility that MSCs can help organs to regulate themselves and repair damaged or traumatized tissues. Specifically in this case, the stem cells migrate to the lung with TB bacteria inflammation and improve the immune response to help the body get rid of the bacteria.
Between September 2009 and June 2011, the study looked at 30 patients from a specialist center in Minsk, Belarus, whose age varied from 21 to 65 years old, and who were resistant to TB drugs. They chose Belarus because of the high rate of resistant tuberculosis (76 percent) among treated patients in that region. They also observed 30 patients who met the inclusion criteria and who opted not to have MSC therapy.
Besides giving patients the anti-TB antibiotics, the researchers collected cells from their own bone marrow, cultured them and introduced them back into the patient within four weeks of the start of the anti-TB drug treatment. Eighteen months later, the rate of cure for patients who received MSC therapy was more than three times higher compared with those who didnt get treated with the cells.
MSC therapy produced a few side effects, which the researchers considered mild. Fourteen patients had high cholesterol, 11 patients suffered from nausea while 10 others had lymphopenia (low level of lymphocytes in the blood) or diarrhoea.
The researchers noted MSC cells harvested from TB patients did not present any aberrant features in comparison with those extracted from healthy donors. Neither did the anti-TB drugs seem to have a negative impact on the harvest. Concerns over the risk of suppressing an immune response, leading to the worsening of tuberculosis, did not materialize. However, they highlight that future studies would need to assess whether certain anti-M tuberculosis drug combinations or concomitant M. tuberculosis infection (a type of TB infection) could have an impact.
The results of this novel and exciting study show that the current challenges and difficulties of treating multi-drug resistant TB are not insurmountable, and they bring a unique opportunity with a fresh solution to treat hundreds of thousands of people who die unnecessarily of drug-resistant TB," says co-author Professor Alimuddin Zumla. "Further evaluation in phase 2 trials is now urgently required to ascertain efficacy and further safety in different geographical regions such as South Africa where multi-drug resistant and extensively-drug resistant TB are rife.
Details of the study are published in The Lancet Respiratory Medicine.
Source: UCL
Continued here:
Stem cells could offer alternative treatment for patients with resistant tuberculosis
Belgian clinic repairs bones with new ground-breaking stem cell technique
By NEVAGiles23
BRUSSELS (Reuters) - Belgian medical researchers have succeeded in repairing bones using stem cells from fatty tissue, with a new technique they believe could become a benchmark for treating a range of bone disorders.
The team at the Saint Luc university clinic hospital in Brussels have treated 11 patients, eight of them children, with fractures or bone defects that their bodies could not repair, and a spin-off is seeking investors to commercialize the discovery.
Doctors have for years harvested stem cells from bone marrow at the top of the pelvis and injected them back into the body to repair bone.
The ground-breaking stem cell technique of Saint Luc's centre for tissue and cellular therapy is to remove a sugar cube sized piece of fatty tissue from the patient, a less invasive process than pushing a needle into the pelvis and with a stem cell concentration they say is some 500 times higher.
The stem cells are then isolated and used to grow bone in the laboratory. Unlike some technologies, they are also not attached to a solid and separate 'scaffold'.
"Normally you transplant only cells and you cross your fingers that it functions," the centre's coordinator Denis Dufrane told Reuters television.
His work has been published in Biomaterials journal and was presented at an annual meeting of the International Federation for Adipose Therapeutics and Science (IFATS) in New York in November.
BONE FORMATION
"It is complete bone tissue that we recreate in the bottle and therefore when we do transplants in a bone defect or a bone hole...you have a higher chance of bone formation."
The new material in a lab dish resembles more plasticine than bone, but can be molded to fill a fracture, rather like a dentist's filling in a tooth, hardening in the body.
Read more from the original source:
Belgian clinic repairs bones with new ground-breaking stem cell technique
Belgian scientists repair bones with new stem cell technique
By Sykes24Tracey
A piece of a three-dimensional bone structure obtained from the own adipose stem cells of a patient is seen at Brussels' Saint Luc Hospital January 14, 2014. Belgian medical researchers have succeeded in repairing bones using stem cells from fatty tissue, with a new technique they believe could become a benchmark for treating a range of bone disorders. REUTERS
BRUSSELS -- Belgian medical researchers have succeeded in repairing bones using stem cells from fatty tissue, with a new technique they believe could become a benchmark for treating a range of bone disorders.
The team at the Saint Luc university clinic hospital in Brussels have treated 11 patients, eight of them children, with fractures or bone defects that their bodies could not repair, and a spin-off is seeking investors to commercialize the discovery.
Doctors have for years harvested stem cells from bone marrow at the top of the pelvis and injected them back into the body to repair bone.
The ground-breaking technique of Saint Luc's centre for tissue and cellular therapy is to remove a sugar cube sized piece of fatty tissue from the patient, a less invasive process than pushing a needle into the pelvis and with a stem cell concentration they say is some 500 times higher.
The stem cells are then isolated and used to grow bone in the laboratory. Unlike some technologies, they are also not attached to a solid and separate 'scaffold'.
"Normally you transplant only cells and you cross your fingers that it functions," the centre's coordinator Denis Dufrane told Reuters television.
His work has been published in Biomaterials journal and was presented at an annual meeting of the International Federation for Adipose Therapeutics and Science (IFATS) in New York in November.
Belgian Professor Denis Defrane, coordinator of the centre of tissue and cellular therapy of Brussels' Saint Luc Hospital, shows how a hole in the tibia of a patient suffering from a disease was treated on an x-ray, in Belgium January 14, 2014.
Read the original post:
Belgian scientists repair bones with new stem cell technique
Stem cells from fatty tissue show potential for bone repair
By raymumme
BRUSSELS - Belgian medical researchers have succeeded in repairing bones using stem cells from fatty tissue, with a new technique they believe could become a benchmark for treating a range of bone disorders.
The team at the Saint Luc university clinic hospital in Brussels have treated 11 patients, eight of them children, with fractures or bone defects that their bodies could not repair, and a spin-off is seeking investors to commercialise the discovery.
Doctors have for years harvested stem cells from bone marrow at the top of the pelvis and injected them back into the body to repair bone.
The ground-breaking technique of Saint Luc's centre for tissue and cellular therapy is to remove a sugar cube sized piece of fatty tissue from the patient, a less invasive process than pushing a needle into the pelvis and with a stem cell concentration they say is some 500 times higher.
The stem cells are then isolated and used to grow bone in the laboratory. Unlike some technologies, they are also not attached to a solid and separate 'scaffold'.
Read the original post:
Stem cells from fatty tissue show potential for bone repair
Belgian researchers use groundbreaking surgery to repair bones
By Sykes24Tracey
Belgian medical researchers have succeeded in repairing bones using stem cells from fatty tissue, with a new technique they believe could become a benchmark for treating a range of bone disorders.
The team at the Saint Luc university clinic hospital in Brussels have treated 11 patients, eight of them children, with fractures or bone defects that their bodies could not repair, and a spin-off is seeking investors to commercialize the discovery.
Doctors have for years harvested stem cells from bone marrow at the top of the pelvis and injected them back into the body to repair bone.
The ground-breaking technique of Saint Luc's centre for tissue and cellular therapy is to remove a sugar cube sized piece of fatty tissue from the patient, a less invasive process than pushing a needle into the pelvis and with a stem cell concentration they say is some 500 times higher.
The stem cells are then isolated and used to grow bone in the laboratory. Unlike some technologies, they are also not attached to a solid and separate 'scaffold'.
"Normally you transplant only cells and you cross your fingers that it functions," the centre's coordinator Denis Dufrane told Reuters television.
His work has been published in Biomaterials journal and was presented at an annual meeting of the International Federation for Adipose Therapeutics and Science (IFATS) in New York in November.
BONE FORMATION
"It is complete bone tissue that we recreate in the bottle and therefore when we do transplants in a bone defect or a bone hole...you have a higher chance of bone formation."
The new material in a lab dish resembles more plasticine than bone, but can be molded to fill a fracture, rather like a dentist's filling in a tooth, hardening in the body.
Continue reading here:
Belgian researchers use groundbreaking surgery to repair bones
Artificial Bone Marrow Created
By LizaAVILA
Category: Science & Technology Posted: January 14, 2014 08:02AM Author: Guest_Jim_*
Our bones play a larger role in our bodies than simply creating a rigid structure as they also hold other cells and tissues, such as bone marrow. Within sponge-like bone marrow are special niches where hematopoietic stem cells reside and produce necessary immune cells. These stem cells can only exist in those niches as they change their properties when moved to a new environment. However, researchers at the Karlsruhe Institute of Technology, Max Planck Institute for Intelligent Systems, and Tbingen University have successfully created artificial bone marrow.
Diseases such as leukemia cause the body to incorrectly produce immune cells, which obviously puts the body at risk. A bone marrow transplant can treat the disease, but it is very hard to find matches for all of the patients out there, which is why artificial bone marrow could be invaluable. To create their artificial bone marrow, the researchers used synthetic polymers to form a properly porous structure and added protein building blocks to it. These blocks are important as they replicate those found in natural bone marrow, which the stem cells attach to. Additional cell types were also added to the niche, to mimic the natural environment as much as possible.
With artificial bone marrow, it may be possible for researchers to better study and understand how stem cells interact with different materials. Potentially ten to fifteen years from now that research could lead to treatments for leukemia, and other diseases.
Source: Karlsruhe Institute of Technology
See the original post here:
Artificial Bone Marrow Created
Lukemia treatment given shot in the arm by artificial bone marrow development
By Sykes24Tracey
European researchers have announced a breakthrough in the development of artificial bone marrow which expands the ability of scientists to reproduce stem cells in the lab and could lead to increased availability of treatment for leukemia sufferers.
One of the main treatments for the blood cancer is the injection of hematopoietic stem cells (HSCs). These HSCs can either be harvested from a compatible donor or cultivated from the patients own bone marrow in the lab.
The greatest challenges in producing HSCs in the lab has been their limited longevity outside of the bone marrow environment. This problem may soon be circumvented with the creation of an artificial bone marrow by the Young Investigators Group for Stem Cell Material Interactions.
Headed by Dr. Cornelia Lee-Thedieck the group consists of scientists from the KIT Institute of Functional Interfaces (IFG), the Max Planck Institute for Intelligent Systems, Stuttgart, and Tbingen University.
The cultivation of HSCs with current methods is limited as they quickly change into mature blood cells in culture in a process known as differentiation. HSCs are capable of developing into one of 10 different cell types. These mature cells are short lived and are not capable of self-renewal. HSCs, however, can continuously self-renew in healthy bone marrow. So the challenge facing researchers has been creating a surrogate for bone marrow in the lab which allows for the cultivation of HSCs.
Using macroporous hydrogel scaffolds the Young Investigators Group produced a substance that mimics the spongy structure of trabecular bone, the material within bone where bone marrow is held. To this hydrogel architecture a number of proteins found in bone marrow were added for the HSCs to bind to. Other conditions important for HSC self-renewal in trabecular bone were also created by adding mesenchymal stem cells (MSCs) from bone marrow and umbilical cord.
When tested by adding HSCs from umbilical cord blood to the artificial bone marrow it was found that the cells were both able to self-renew and retain their ability to differentiate. The next step for the research is to identify how the behavior of stem cells can be manipulated by synthetic materials.
The team hopes within the next ten to fifteen years this research could lead to the development of an artificial environment for the reproduction of stem cells and the treatment of leukemia.
The research was recently published in the journal Biomaterials.
Source: Karlsruhe Institute of Technology
See the original post here:
Lukemia treatment given shot in the arm by artificial bone marrow development
New Treatment For Blood Diseases Using Artificial Bone Marrow
By LizaAVILA
January 12, 2014
Image Caption: Scanning electron microscopy of stem cells (yellow / green) in a scaffold structure (blue) serving as a basis for the artificial bone marrow. Credit: C. Lee-Thedieck/KIT
Rebekah Eliason for redOrbit.com Your Universe Online
An exciting breakthrough is offering hope for the treatment of blood diseases such as leukemia using artificial bone marrow.
Specialized cells, known as hematopoietic stem cells, located within bone marrow, continuously replace and supply new blood cells such as red blood cells and white blood cells. Traditionally a blood disease like leukemia is treated with bone marrow transplants that supply the patient with new hematopoietic stem cells. Researchers have now discovered a way to artificially reproduce hematopoietic stem cells.
Since not every leukemia patient can find a suitable transplant, there is a need for other forms of treatment. The lack of appropriate transplants could be solved by artificial reproduction of hematopoietic stem cells. Previously, reproduction of the cells has been impossible due to their inability to survive anywhere but in their natural environment. Hematopoietic stem cells are found in a special niche of the bone marrow. If the cells reside out of the bone marrow, the specialized properties are modified. Consequently, to effectively reproduce the cells, the stem cell niche environment must also be created.
In the microscopic environment of the stem cell niche, there are several specific properties of importance. Areas in the bone that house the stem cells are extremely porous like a sponge. Making things even more complex, the spongy tissue is also home to other cell types which exchange signal substances with the stem cells. Also, the space among the cells creates an environment ensuring stability along with a place for the cells to anchor. Furthermore, the stem cell niche supplies the cells with nutrients and oxygen.
Dr. Cornelia Lee-Thedieck is head of the Young Investigators Group Stem Cell-Material Interactions, which consists of scientitsts from the KIT Institute of Functional Interfaces (IFG), the Max Planck Institute for Intelligent Systems, Stuttgart and Tbingen University. The team was successful at artificially reproducing major properties of bone marrow at the laboratory.
Using synthetic polymers, the researchers were able to create a porous structure that simulated the spongy environment of the blood-forming bone marrow. Also, they were able to add protein building blocks which are similar to those found naturally in the environment of the bone marrow that enable cells to anchor. Finally, they added the other types of cells needed for exchanging signaling substances.
After the artificial bone marrow was created, the scientists placed hematopoietic stem cells that had been isolated from cord blood into it. For several days the cells were bred. Various analytical methods were then used to determine that cells were able to reproduce in the artificial bone marrow. When compared with standard cell cultivation methods, a larger number of stem cells in the artificial bone marrow retained their specific properties.
Read more here:
New Treatment For Blood Diseases Using Artificial Bone Marrow
Study: potentially life-saving blood stem cells regenerate in artificial bone marrow
By JoanneRUSSELL25
A team of biochemists has engineered artificial bone marrow capable of hosting hematopoietic stem cells -- the potentially life-saving cells used in the treatment of leukemia -- for regeneration.
The work was carried out at the KIT Institute of Functional Interfaces (IFG), the Max Planck Institute for Intelligent Systems, Stuttgart and Tbingen University in Germany, where Cornelia Lee-Thedieck led a team in building a scaffold for stem cell regeneration.
Hematopoietic stem cells, which are derived from both blood and bone marrow, are known for their extraordinary regenerative properties -- they can differentiate into a whole series of specialised cells in the body and travel into the blood from the bone marrow. This makes it an excellent treatment for cancers of the blood, including leukemia and lymphoma where underdeveloped white blood cells multiply out of control. In these cases the patient's own supply of hematopoietic cells is destroyed and they are replenished via a bone marrow transplant from a matched donor. These are not in plentiful supply, so for years artificial bone marrow has been in development to help fill the need -- existing hematopoietic stem cells only replenish and thrive within the complex, porous structure of bone marrow and do not survive without it. If researchers could develop a suitable host, they could continually transplant cells onto that host to regenerate cells and meet demand.
"Multiplication of hematopoietic stem cells in vitro with current standard methods is limited and mostly insufficient for clinical applications of these cells," write the team in the journal Biomaterials. "They quickly lose their multipotency in culture because of the fast onset of differentiation. In contrast, HSCs efficiently self-renew in their natural microenvironment (their niche) in the bone marrow."
The team believes it has now created a potentially game-changing host that mimics that niche. They used synthetic polymers to build macroporous hydrogel scaffolds that mimic the spongy texture of bone marrow. Protein building blocks were then introduced, which would encourage introduced stem cells to stick to the scaffold. They had to introduce a number of other cells which importantly also thrive within bone marrow to exchange nutrients and oxygen.
To test the scaffold, stem cells from bone marrow and umbilical cord blood were introduced. It took a few days, but those from the cord blood began to multiply.
The authors concluded: "Co-culture in the pores of the three-dimensional hydrogel scaffold showed that the positive effect of MSCs on preservation of HSPC stemness was more pronounced in 3D than in standard 2D cell culture systems."
This is not the first time that artificial bone marrow has been attempted, however. Back in 2008 a team from the University of Michigan maintained that it had created a replica that could make red and white blood cells, and within which blood stem cells could replicate and produce B cells (important immune cells). In this instance, scaffolds were made from a transparent polymer using tiny spheres that were then dissolved to create pores the nutrients could pass through. It's unclear for how long the stem cells thrived, and Wired.co.uk has contacted the team to try and find out how the research has progressed and if the engineered bone marrow has continued to be effective.
If the research is successful going forward, it could mean the beginning of "blood farming", where artificial bone marrow is used to produce red and white blood cells and platelets to be banked for transfusions.
More here:
Study: potentially life-saving blood stem cells regenerate in artificial bone marrow
Researchers develop artificial bone marrow; May be used to reproduce hematopoietic stem cells
By Dr. Matthew Watson
Jan. 10, 2014 Artificial bone marrow may be used to reproduce hematopoietic stem cells. A prototype has now been developed by scientists of KIT, the Max Planck Institute for Intelligent Systems, Stuttgart, and Tbingen University. The porous structure possesses essential properties of natural bone marrow and can be used for the reproduction of stem cells at the laboratory. This might facilitate the treatment of leukemia in a few years.
The researchers are now presenting their work in the journal Biomaterials.
Blood cells, such as erythrocytes or immune cells, are continuously replaced by new ones supplied by hematopoietic stem cells located in a specialized niche of the bone marrow. Hematopoietic stem cells can be used for the treatment of blood diseases, such as leukemia. The affected cells of the patient are replaced by healthy hematopoietic stem cells of an eligible donor.
However, not every leukemia patient can be treated in this way, as the number of appropriate transplants is not sufficient. This problem might be solved by the reproduction of hematopoietic stem cells. So far, this has been impossible, as these cells retain their stem cell properties in their natural environment only, i.e. in their niche of the bone marrow. Outside of this niche, the properties are modified. Stem cell reproduction therefore requires an environment similar to the stem cell niche in the bone marrow.
The stem cell niche is a complex microscopic environment having specific properties. The relevant areas in the bone are highly porous and similar to a sponge. This three-dimensional environment does not only accommodate bone cells and hematopoietic stem cells but also various other cell types with which signal substances are exchanged. Moreover, the space among the cells has a matrix that ensures a certain stability and provides the cells with points to anchor. In the stem cell niche, the cells are also supplied with nutrients and oxygen.
The Young Investigators Group "Stem Cell-Material Interactions" headed by Dr. Cornelia Lee-Thedieck consists of scientists of the KIT Institute of Functional Interfaces (IFG), the Max Planck Institute for Intelligent Systems, Stuttgart, and Tbingen University. It artificially reproduced major properties of natural bone marrow at the laboratory. With the help of synthetic polymers, the scientists created a porous structure simulating the sponge-like structure of the bone in the area of the blood-forming bone marrow. In addition, they added protein building blocks similar to those existing in the matrix of the bone marrow for the cells to anchor. The scientists also inserted other cell types from the stem cell niche into the structure in order to ensure substance exchange.
Then, the researchers introduced hematopoietic stem cells isolated from cord blood into this artificial bone marrow. Subsequent breeding of the cells took several days. Analyses with various methods revealed that the cells really reproduce in the newly developed artificial bone marrow. Compared to standard cell cultivation methods, more stem cells retain their specific properties in the artificial bone marrow.
The newly developed artificial bone marrow that possesses major properties of natural bone marrow can now be used by the scientists to study the interactions between materials and stem cells in detail at the laboratory. This will help to find out how the behavior of stem cells can be influenced and controlled by synthetic materials. This knowledge might contribute to producing an artificial stem cell niche for the specific reproduction of stem cells and the treatment of leukemia in ten to fifteen years from now.
Continue reading here:
Researchers develop artificial bone marrow; May be used to reproduce hematopoietic stem cells
Scientists create artificial bone marrow that helps stem cells thrive
By raymumme
Blood stem cells can only thrive in the bone marrow, from which they turn into different kinds of blood cells that are needed in the body, including red and white blood cells, which transport oxygen and fight disease. For years, researchers around the world have been trying to find a way to replicate the bone marrow so that they are able to harvest blood stem cells in the laboratory because stem cells cease to be what they are once they are removed from the body.
Now researchers at Karlsruhe Institute of Technology, the Max Planck Institute for Intelligent Systems and the University of Tbingen say that they have designed porous material in which blood stem cells can multiply for as long as four days.
A bath sponge with cells inside
Natural bone marrow is a very complex structure, making it difficult to imitate. Its three-dimensional porous architecture resembles a bath sponge and contains bridging proteins that the stem cells can dock on.
Precisely-sized pores host many cell types that interact with each other and produce chemical messages, allowing the blood stem cells to multiply.
Researchers put a porous polymer into a nutrient solution to cultivate stem cells inside
"We assume that stem cells [do] not only notice the chemical composition of their surroundings. They can probably also feel if their environment is soft or hard, rough or smooth," Cornelia Lee-Thedieck, a researcher at the Karlsruhe Institute of Technology tells DW.
She and her colleagues put everything together that researchers already know about bone marrow and their preferred environment. They replicated the sponge-like structure of bone marrow using a simple polymer. They linked proteins to it and added other cell types.
Treating leukemia
The researchers would like to see the artificial bone marrow help cure leukemia one day. Since new, healthy blood stem cells are needed to treat leukemia, stem cells could be harvested in the lab and transplanted into patients. Currently, the stem cells are isolated from the blood or the bone marrow of a suitable donor.
The rest is here:
Scientists create artificial bone marrow that helps stem cells thrive
Bone marrow stem cells could defeat drug-resistant TB
By NEVAGiles23
PATIENTS with potentially fatal superbug forms of tuberculosis (TB) could in future be treated using stem cells taken from their own bone marrow, according to the results of an early-stage trial of the technique. The finding, made by British and Swedish scientists, could pave the way for the development of a new treatment for the estimated 450,000 people worldwide who have multi drug-resistant (MDR) or extensively drug-resistant (XDR) TB. In a study in The Lancet Respiratory Medicine journal on Thursday, researchers said more than half of 30 drug-resistant TB patients treated with a transfusion of their own bone marrow stem cells were cured of the disease after six months. The results ... show that the current challenges and difficulties of treating MDR-TB are not insurmountable, and they bring a unique opportunity with a fresh solution to treat hundreds of thousands of people who die unnecessarily, said TB expert Alimuddin Zumla at University College London, who co-led the study. TB, which infects the lungs and can spread from one person to another through coughing and sneezing, is often falsely thought of as a disease of the past. In recent years, drug-resistant strains of the disease have spread around the world, batting off standard antibiotic drug treatments. The World Health Organization (WHO) estimates that in Eastern Europe, Asia and South Africa 450,000 people have MDR-TB, and around half of these will fail to respond to existing treatments. TB bacteria trigger an inflammatory response in immune cells and surrounding lung tissue that can cause immune dysfunction and tissue damage. Bone-marrow stem cells are known to migrate to areas of lung injury and inflammation and repair damaged tissue. Since they also modify the bodys immune response and could boost the clearance of TB bacteria, Zumla and his colleague, Markus Maeurer from Stockholms Karolinska University Hospital, wanted to test them in patients with the disease. In a phase 1 trial, 30 patients with either MDR or XDR TB aged between 21 and 65 who were receiving standard TB antibiotic treatment were also given an infusion of around 10 million of their own stem cells. The cells were obtained from the patients own bone marrow, then grown into large numbers in the laboratory before being re-transfused into the same patient, the researchers explained. During six months of follow-up, the researchers found that the infusion treatment was generally safe and well tolerated, with no serious side effects recorded. The most common non-serious side effects were high cholesterol levels, nausea, low white blood cell counts and diarrhea. Although a phase 1 trial is primarily designed only to test a treatments safety, the scientists said further analyzes of the results showed that 16 patients treated with stem cells were deemed cured at 18 months compared with only five of 30 TB patients not treated with stem cells. Maeurer stressed that further trials with more patients and longer follow-up were needed to better establish how safe and effective the stem cell treatment was. But if future tests were successful, he said, it could become a viable extra new treatment for patients with MDR-TB who do not respond to conventional drug treatment or those with severe lung damage.
Read this article:
Bone marrow stem cells could defeat drug-resistant TB
Artificial bone marrow development brings leukemia treatment closer to reality
By Dr. Matthew Watson
Washington, Jan. 11 : Researchers have developed a prototype of artificial bone marrow that may be used to reproduce hematopoietic stem cells.
The porous structure developed by the scientists of KIT, the Max Planck Institute for Intelligent Systems, Stuttgart, and Tubingen University, possesses essential properties of natural bone marrow and can be used for the reproduction of stem cells at the laboratory.
This might facilitate the treatment of leukemia in a few years.
Blood cells, such as erythrocytes or immune cells, are continuously replaced by new ones supplied by hematopoietic stem cells located in a specialized niche of the bone marrow.
Hematopoietic stem cells can be used for the treatment of blood diseases, such as leukemia. The affected cells of the patient are replaced by healthy hematopoietic stem cells of an eligible donor.
However, not every leukemia patient can be treated in this way, as the number of appropriate transplants is not sufficient. This problem might be solved by the reproduction of hematopoietic stem cells.
The stem cell niche is a complex microscopic environment having specific properties. The relevant areas in the bone are highly porous and similar to a sponge.
This three-dimensional environment does not only accommodate bone cells and hematopoietic stem cells but also various other cell types with which signal substances are exchanged. Moreover, the space among the cells has a matrix that ensures certain stability and provides the cells with points to anchor. In the stem cell niche, the cells are also supplied with nutrients and oxygen.
The newly developed artificial bone marrow that possesses major properties of natural bone marrow can now be used by the scientists to study the interactions between materials and stem cells in detail at the laboratory.
The study was published in the Biomaterials journal.
Read more:
Artificial bone marrow development brings leukemia treatment closer to reality
Could Stem Cells Cure Drug-Resistant Tuberculosis?
By NEVAGiles23
Posted: Thursday, January 9, 2014, 9:00 AM
THURSDAY, Jan. 9, 2014 (HealthDay News) -- A patient's own bone marrow stem cells might someday be used to treat multidrug-resistant tuberculosis, a new study suggests.
The phase 1 study to assess the safety of the treatment included 30 patients, aged 21 to 65, with multidrug-resistant tuberculosis or the even more dangerous extensively drug-resistant tuberculosis. They received standard tuberculosis antibiotic treatment and an infusion of about 10 million of their own bone marrow stem cells.
A comparison group of 30 patients with either type of tuberculosis received standard treatment only.
After 18 months, 16 patients treated with bone marrow stem cells were cured, compared with five patients in the standard group, the study authors said. The most common side effects in the stem cell group were high cholesterol (14 patients), nausea (11), and lymphopenia (low white blood cell count) or diarrhea (10).
There were no serious side effects, according to the study, which was published Jan. 8 in The Lancet Respiratory Medicine.
Conventional treatment for multidrug-resistant tuberculosis uses a combination of antibiotics that can cause harmful side effects in patients, study leader Markus Maeurer, a professor at Karolinska University Hospital in Sweden, said in a journal news release.
"Our new approach, using the patients' own bone marrow stromal cells, is safe and could help overcome the body's excessive inflammatory response, repair and regenerate inflammation-induced damage to lung tissue, and lead to improved cure rates," Maeurer said in the news release.
Longer follow-up with more patients is needed to confirm the safety and effectiveness of the stem cell therapy, he said.
Here is the original post:
Could Stem Cells Cure Drug-Resistant Tuberculosis?
Bone marrow stem cells could defeat drug-resistant TB, trial study finds
By raymumme
24OrasGMA January 10, 2014, 7:34 pm Friday Bawal na bawal ang magsakay sa motorsiklo ng batang 8 taong gulang pababa, may helmet
24OrasGMA January 10, 2014, 7:30 pm Friday Sen. Jinggoy Estrada, nagsumite na rin ng counter-affidavit kaugnay ng pork barrel scam. #BantayKaban
24OrasGMA January 10, 2014, 7:29 pm Friday China, ipinagtanggol ang bagong patakaran ng Hainan province sa pangingisda sa pinag-aagawang teritoryo.
24OrasGMA January 10, 2014, 7:23 pm Friday Ngayon nga, may halos 3,000 container ng mga bigas sa Manila Port, na hinihinalang ipinuslit
24OrasGMA January 10, 2014, 7:23 pm Friday Mainit ngayon ang mata ng BOC sa pagpupuslit ng bigas sa bansa pero mayroon pa
24OrasGMA January 10, 2014, 7:21 pm Friday #ChikaMinute: Laking pasalamat ni Geoff Eigenmann dahil sa mga bago niyang projects kasunod ng pagbabawas
24OrasGMA January 10, 2014, 7:20 pm Friday Mga prepaid card ang gagamitin sa pagbabayad ng pasahe sa COMET.
24OrasGMA January 10, 2014, 7:20 pm Friday Mainam daw ito sa kalikasan dahil 'di nagbubuga ng maitim na usok.
24OrasGMA January 10, 2014, 7:19 pm Friday City Optimized Managed Environmental Transport o COMET, mas pina-high tech daw na e-jeepney. Nakatutok si
24OrasGMA January 10, 2014, 7:18 pm Friday Nasa okasyon din sina Sarangani Representative @MannyPacquiao at BIR Commissioner Kim Henares na nakita pang
More here:
Bone marrow stem cells could defeat drug-resistant TB, trial study finds