G1 Therapeutics Announces Acceptance and Priority Review of NDA for Trilaciclib for Patients with Small Cell Lung Cancer – GlobeNewswire
By daniellenierenberg
- PDUFA action date of February 15, 2021 assigned by U.S. Food and Drug Administration- Priority Review for trilaciclib is based on positive data from three randomized clinical trials showing robust myelopreservation benefits- G1 launching expanded access program (EAP) for patients with small cell lung cancer in the U.S.
RESEARCH TRIANGLE PARK, N.C., Aug. 17, 2020 (GLOBE NEWSWIRE) -- G1 Therapeutics, Inc. (Nasdaq: GTHX), a clinical-stage oncology company, today announced that the U.S. Food and Drug Administration (FDA) has accepted the New Drug Application (NDA) for trilaciclib for small cell lung cancer (SCLC) patients being treated with chemotherapy and granted Priority Review with a Prescription Drug User Fee Act (PDUFA) action date of February 15, 2021. Trilaciclib is a first-in-class investigational therapy designed to preserve bone marrow and immune system function during chemotherapy and improve patient outcomes.
There are currently no available therapies to protect patients from chemotherapy-induced toxicities before they occur, said Raj Malik, M.D., Chief Medical Officer and Senior Vice President, R&D. If approved, trilaciclib would be the first proactively administered myelopreservation therapy that is intended to make chemotherapy safer and reduce the need for rescue interventions, such as growth factor administrations and blood transfusions.
The FDA grants Priority Review to applications for potential therapies that, if approved, would be significant improvements in the safety or effectiveness of the treatment, diagnosis, or prevention of serious conditions when compared to standard applications.The trilaciclib NDA was supported by compelling myelopreservation data from three randomized, double-blind, placebo-controlled clinical trials in which trilaciclib was administered prior to chemotherapy treatment in patients with SCLC. Trilaciclibhas been granted Breakthrough Therapy Designation by the FDA.In the NDA acceptance letter, the FDA also stated that it is currently not planning to hold an advisory committee meeting to discuss this application.
While undergoing chemotherapy, many patients experience significant myelosuppression, become fatigued and susceptible to infection, and often require transfusions and growth factor administrations, said Jared Weiss, M.D., Lineberger Comprehensive Cancer Center,University of North Carolina Chapel Hill, NC. Preventing bone marrow damage proactively is an opportunity to improve the quality of life of patients receiving chemotherapy for small cell lung cancer and reduce costly rescue interventions.
Myelosuppression is the result of damage to bone marrow stem cells and is one of the most common side effects of chemotherapy. Myelosuppression can lead to serious conditions such as anemia, neutropenia or thrombocytopenia, which have broad ranging clinical, patient experience and economic impacts on ongoing cancer treatment and overall outcomes. In clinical trials, trilaciclib significantly reduced chemotherapy-induced myelosuppression, and patients receiving trilaciclib experienced fewer dose delays/reductions, infections, hospitalizations, and need for rescue therapies compared to patients receiving chemotherapy alone.
Expanded Access ProgramG1 is making trilaciclib available to SCLC patients in the U.S., who are unable to enter clinical trials and for whom there are no appropriate alternative treatments while the trilaciclib NDA is under regulatory review, pursuant to FDAs expanded access program (EAP). To facilitate needed access through the EAP, G1 is collaborating with Bionical Emas, a global specialist clinical research organization (CRO). For more information about the EAP access to trilaciclib, email patient.access.us@Bionical-emas.com.
Complications from myelosuppression have been a long-standing challenge when treating patients with SCLC, said Dr. Malik. Establishing an expanded access program provides qualified patients in serious need with access to trilaciclib while the NDA is under review.
Trilaciclib in Small Cell Lung CancerTrilaciclib is a first-in-class investigational therapy designed to improve outcomes for people with cancer treated with chemotherapy. In 2019, trilaciclib received FDA Breakthrough Therapy Designation, and, in June 2020, G1 submitted the NDA based on myelopreservation data from three randomized, double-blind, placebo-controlled clinical trials in which trilaciclib was administered prior to chemotherapy in patients with small cell lung cancer (SCLC). In August 2020, G1 received FDA Priority Review with the Prescription Drug User Fee Act (PDUFA) date of February 15, 2021.
In June 2020, G1 announced a co-promotion agreement with Boehringer Ingelheim for trilaciclib in small cell lung cancer in the U.S. and Puerto Rico. If approved, G1 will lead marketing, market access and medical engagement initiatives for trilaciclib. The Boehringer Ingelheim oncology commercial team, well-established in lung cancer, will lead sales force engagement initiatives.G1 will book revenue and retain development and commercialization rights to trilaciclib and pay Boehringer Ingelheim a promotional fee based on net sales. The three-year agreement does not extend to additional indications that G1 is evaluating for trilaciclib. Press release details of the G1/ Boehringer Ingelheim agreement can be found here.
Evaluating Trilaciclib in Other CancersIn a randomized trial of women with metastatic triple-negative breast cancer, preliminary data showed that trilaciclib improved overall survival when administered in combination with chemotherapy compared with chemotherapy alone. The company plans to present final overall survival data from this trial in the fourth quarter of 2020. Trilaciclib is being evaluated in neoadjuvant breast cancer as part of the I-SPY 2 TRIAL, and the company expects to initiate a Phase 3 trial in patients treated with chemotherapy for colorectal cancer in the fourth quarter of 2020.
About G1 TherapeuticsG1 Therapeutics, Inc. is a clinical-stage biopharmaceutical company focused on the discovery, development and delivery of next generation therapies that improve the lives of those affected by cancer. The company is developing and advancing two novel therapies: trilaciclib is a first-in-class therapy designed to improve outcomes for patients being treated with chemotherapy; rintodestrant is a potential best-in-class oral selective estrogen receptor degrader (SERD) for the treatment of ER+ breast cancer. In 2020, the company out-licensed global development and commercialization rights to its differentiated oral CDK4/6 inhibitor, lerociclib.
G1 Therapeutics is based in Research Triangle Park, N.C. For additional information, please visit http://www.g1therapeutics.com and follow us on Twitter @G1Therapeutics.
Forward-Looking StatementsThis press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as "may," "will," "expect," "plan," "anticipate," "estimate," "intend" and similar expressions (as well as other words or expressions referencing future events, conditions or circumstances) are intended to identify forward-looking statements. Forward-looking statements in this press release include, but are not limited to, those relating to the therapeutic potential of trilaciclib, rintodestrant and lerociclib, the timing of marketing applications in the U.S. and Europe for trilaciclib in SCLC, trilaciclibs possibility to improve patient outcomes across multiple indications, rintodestrants potential to be best-in-class oral SERD, lerociclibs differentiated safety and tolerability profile over other marketed CDK4/6 inhibitors, our reliance on partners to develop and commercial licensed products, and the impact of pandemics such as COVID-19 (coronavirus), are based on the companys expectations and assumptions as of the date of this press release. Each of these forward-looking statements involves risks and uncertainties. Factors that may cause the companys actual results to differ from those expressed or implied in the forward-looking statements in this press release are discussed in the companys filings with the U.S. Securities and Exchange Commission, including the "Risk Factors" sections contained therein and include, but are not limited to, the companys ability to complete clinical trials for, obtain approvals for and commercialize any of its product candidates; the companys initial success in ongoing clinical trials may not be indicative of results obtained when these trials are completed or in later stage trials; the inherent uncertainties associated with developing new products or technologies and operating as a development-stage company; and market conditions. Except as required by law, the company assumes no obligation to update any forward-looking statements contained herein to reflect any change in expectations, even as new information becomes available.
Contacts:Investors:Jeff MacdonaldG1 Therapeutics, Inc.Senior Director, Investor Relations & Corporate Communications919-907-1944jmacdonald@g1therapeutics.comMedia:Christine RogersG1 Therapeutics, Inc.Associate Director, Corporate Communications984-365-2819crogers@g1therapeutics.com
Go here to see the original:
G1 Therapeutics Announces Acceptance and Priority Review of NDA for Trilaciclib for Patients with Small Cell Lung Cancer - GlobeNewswire
Researchers find method to regrow cartilage in the joints – Stanford Medical Center Report
By daniellenierenberg
Damaged cartilage can be treated through a technique called microfracture, in which tiny holes are drilled in the surface of a joint. The microfracture technique prompts the body to create new tissue in the joint, but the new tissue is not much like cartilage.
Microfracture results in what is called fibrocartilage, which is really more like scar tissue than natural cartilage, said Chan. It covers the bone and is better than nothing, but it doesnt have the bounce and elasticity of natural cartilage, and it tends to degrade relatively quickly.
The most recent research arose, in part, through the work of surgeon Matthew Murphy, PhD, a visiting researcher at Stanford who is now at the University of Manchester. I never felt anyone really understood how microfracture really worked, Murphy said. I realized the only way to understand the process was to look at what stem cells are doing after microfracture. Murphy is the lead author on the paper. Chan and Longaker are co-senior authors.
For a long time, Chan said, people assumed that adult cartilage did not regenerate after injury because the tissue did not have many skeletal stem cells that could be activated. Working in a mouse model, the team documented that microfracture did activate skeletal stem cells. Left to their own devices, however, those activated skeletal stem cells regenerated fibrocartilage in the joint.
But what if the healing process after microfracture could be steered toward development of cartilage and away from fibrocartilage? The researchers knew that as bone develops, cells must first go through a cartilage stage before turning into bone. They had the idea that they might encourage the skeletal stem cells in the joint to start along a path toward becoming bone, but stop the process at the cartilage stage.
The researchers used a powerful molecule called bone morphogenetic protein 2 (BMP2) to initiate bone formation after microfracture, but then stopped the process midway with a molecule that blocked another signaling molecule important in bone formation, called vascular endothelial growth factor (VEGF).
What we ended up with was cartilage that is made of the same sort of cells as natural cartilage with comparable mechanical properties, unlike the fibrocartilage that we usually get, Chan said. It also restored mobility to osteoarthritic mice and significantly reduced their pain.
As a proof of principle that this might also work in humans, the researchers transferred human tissue into mice that were bred to not reject the tissue, and were able to show that human skeletal stem cells could be steered toward bone development but stopped at the cartilage stage.
The next stage of research is to conduct similar experiments in larger animals before starting human clinical trials. Murphy points out that because of the difficulty in working with very small mouse joints, there might be some improvements to the system they could make as they move into relatively larger joints.
The first human clinical trials might be for people who have arthritis in their fingers and toes. We might start with small joints, and if that works we would move up to larger joints like knees, Murphy says. Right now, one of the most common surgeries for arthritis in the fingers is to have the bone at the base of the thumb taken out. In such cases we might try this to save the joint, and if it doesnt work we just take out the bone as we would have anyway. Theres a big potential for improvement, and the downside is that we would be back to where we were before.
Longaker points out that one advantage of their discovery is that the main components of a potential therapy are approved as safe and effective by the FDA. BMP2 has already been approved for helping bone heal, and VEGF inhibitors are already used as anti-cancer therapies, Longaker said. This would help speed the approval of any therapy we develop.
Joint replacement surgery has revolutionized how doctors treat arthritis and is very common: By age 80, 1 in 10 people will have a hip replacement and 1 in 20 will have a knee replaced. But such joint replacement is extremely invasive, has a limited lifespan and is performed only after arthritis hits and patients endure lasting pain. The researchers say they can envision a time when people are able to avoid getting arthritis in the first place by rejuvenating their cartilage in their joints before it is badly degraded.
One idea is to follow a Jiffy Lube model of cartilage replenishment, Longaker said. You dont wait for damage to accumulate you go in periodically and use this technique to boost your articular cartilage before you have a problem.
Longaker is the Deane P. and Louise Mitchell Professor in the School of Medicine and co-director of the Institute for Stem Cell Biology and Regenerative Medicine. Chan is a member of the Institute for Stem Cell Biology and Regenerative Medicine and Stanford Immunology.
Other Stanford scientist taking part in the research were professor of pathology Irving Weissman, MD, the Virginia and D. K. Ludwig Professor in Clinical Investigation in Cancer Research; professor of surgery Stuart B. Goodman, MD, the Robert L. and Mary Ellenburg Professor in Surgery; associate professor of orthopaedic surgery Fan Yang, PhD; professor of surgery Derrick C. Wan, MD; instructor in orthopaedic surgery Xinming Tong, PhD; postdoctoral research fellow Thomas H. Ambrosi, PhD; visiting postdoctoral scholar Liming Zhao, MD; life science research professionals Lauren S. Koepke and Holly Steininger; MD/PhD student Gunsagar S. Gulati, PhD; graduate student Malachia Y. Hoover; former student Owen Marecic; former medical student Yuting Wang, MD; and scanning probe microscopy laboratory manager Marcin P. Walkiewicz, PhD.
The research was supported by the National Institutes of Health (grants R00AG049958, R01 DE027323, R56 DE025597, R01 DE026730, R01 DE021683, R21 DE024230, U01HL099776, U24DE026914, R21 DE019274, NIGMS K08GM109105, NIH R01GM123069 and NIH1R01AR071379), the California Institute for Regenerative Medicine, the Oak Foundation, the Pitch Johnson Fund, the Gunn/Olivier Research Fund, the Stinehart/Reed Foundation, The Siebel Foundation, the Howard Hughes Medical Institute, the German Research Foundation, the PSRF National Endowment, National Center for Research Resources, the Prostate Cancer Research Foundation, the American Federation of Aging Research and the Arthritis National Research Foundation.
The rest is here:
Researchers find method to regrow cartilage in the joints - Stanford Medical Center Report
CytoDyn Will Attempt to Duplicate Berlin and London Patients’ HIV Cure by Using Leronlimab During Bone Marrow Transplant for 5 HIV Patients Who also…
By daniellenierenberg
HIV monotherapy trials update: 215 patients completed almost one year of monotherapy. Only some were allowed to continue in extension arm; five patients reached almost 6 years. Twenty-five reached 2 to 4 years and 20 patients are 1 to 2 years
VANCOUVER, Washington, Aug. 17, 2020 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn or the Company"), a late-stage biotechnology company gives full update on all of its HIV programs.
HIV CureThe HIV co-receptor CCR5 has proven to be a key molecule in mediating HIV remission. The only two individuals functionally cured of HIV, one from London and the other from Berlin, received allogeneic stem cell transplantations from CCR5-deficient donors. However, because it is extremely rare to find a stem cell donor who lacks CCR5 and meets stringent MHC matching criteria, such an approach is unfeasible to cure HIV on a larger scale. CytoDyn believes its CCR5 blocking antibody, leronlimab, could be used in the setting of allogeneic stem cell transplantation to functionally convert a stem cell graft from a wildtype CCR5 stem cell donor into one from a CCR5 deficient donor, and thereby functionally cure the recipient of HIV.
CytoDyn plans to test this theory in a pilot clinical trial of five HIV patients with cancer who require bone marrow transplantation. Leronlimab will be used during the peri-transplant period to mimic a CCR5 deficient donor in order to achieve HIV cure.
HIV PrEPAs presented at the AIDS 2020 Virtual Conference, a pre-clinical study in the macaque model of HIV sexual transmission demonstrated leronlimab can prevent infection by blocking HIVs access to the CCR5 co-receptor. This protection is similar to that seen in individuals naturally CCR5 deficient and forms the rationale for use in HIV cure. CytoDyn believes leronlimab could be a once-a-month self-injectable, subcutaneous treatment for HIV PrEP and is in discussions with potential organizations to fund its next trial in HIV PrEP.
MonotherapySignificantly, for the first time documented, of the 49 HIV patients who stopped their HIV medications and used leronlimab as a monotherapy, 25 have been in monotherapy trial for two to four years and five patients for nearly or over six years. Monotherapy was successful for some of these patients by switching from 350 mg to a higher dose of 525 mg or 700 mg. The number of participants in the extension groups was limited due to costs.
The Company will submit manuscripts for two publications in regards to its findings.
Nader Pourhassan, Ph.D., President and Chief Executive Officer of CytoDyn, stated, We now have four paths forward for use of leronlimab in the HIV indication for different populations. The first path is a combination therapy where we successfully completed a Phase 3 trial with statistically significant p value for our primary endpoint. CytoDyn is awaiting a Type A meeting with the FDA for this treatment. Second is our monotherapy; we will discuss the potential approval path for label expansion at the time of our Type A meeting. Third is our PrEP study to examine the use of leronlimab for once-a-month self-injection for HIV prevention. Our fourth path is an HIV-Cure, where 5 patients will be put to test to duplicate the Berlin and London patients HIV functional cure.
About Leronlimab (PRO 140)The FDA has granted a Fast Track designation to CytoDyn for two potential indications of leronlimab for critical illnesses.
The first as a combination therapy with HAART for HIV-infected patients and the second is for metastatic triple-negative breast cancer.Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases, including NASH.Leronlimab has completed nine clinical trials in over 800 people and met its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients).
In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab could significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.
In the setting of cancer, research has shown that CCR5 may play a role in tumor invasion, metastases, and tumor microenvironment control. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98% in a murine xenograft model. CytoDyn is, therefore, conducting aPhase 1b/2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019.
The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation. It may be crucial in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells. CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to support further the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD, blocking the CCR5 receptor from recognizing specific immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of GvHD.
About CytoDynCytoDyn is a late-stage biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a critical role in the ability of HIV to enter and infect healthy T-cells.The CCR5 receptor also appears to be implicated in tumor metastasis and immune-mediated illnesses, such as GvHD and NASH.
CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients. The Company has requested a Type A meeting with the FDA to discuss the FDAs request for additional information in order to resubmit its Biologics License Application for this HIV combination therapy.
CytoDyn is also conducting a Phase 3 investigative trial with leronlimab as a once-weekly monotherapy for HIV-infected patients. CytoDyn plans to initiate a registration-directed study of leronlimab monotherapy indication. If successful, it could support a label extension. Clinical results to date from multiple trials have shown that leronlimab can significantly reduce viral burden in people infected with HIV. No drug-related serious site injection reactions reported in about 800 patients treated with leronlimab and no drug-related SAEs reported in patients treated with 700 mg dose of leronlimab. Moreover, a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients; some patients on leronlimab monotherapy have remained virally suppressed for more than five years.
CytoDyn is also conducting a Phase 2 trial to evaluate leronlimab for the prevention of GvHD and a Phase 1b/2 clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is atwww.cytodyn.com.
Forward-Looking StatementsThis press releasecontains certain forward-looking statements that involve risks, uncertainties and assumptions that are difficult to predict. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as believes, hopes, intends, estimates, expects, projects, plans, anticipates and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. Forward-looking statements specifically include statements about leronlimab, its ability to have positive health outcomes, the possible results of clinical trials, studies or other programs or ability to continue those programs, the ability to obtain regulatory approval for commercial sales, and the market for actual commercial sales. The Companys forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i)the sufficiency of the Companys cash position, (ii)the Companys ability to raise additional capital to fund its operations, (iii) the Companys ability to meet its debt obligations, if any, (iv)the Companys ability to enter into partnership or licensing arrangements with third parties, (v)the Companys ability to identify patients to enroll in its clinical trials in a timely fashion, (vi)the Companys ability to achieve approval of a marketable product, (vii)the design, implementation and conduct of the Companys clinical trials, (viii)the results of the Companys clinical trials, including the possibility of unfavorable clinical trial results, (ix)the market for, and marketability of, any product that is approved, (x)the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Companys products, (xi)regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii)general economic and business conditions, (xiii)changes in foreign, political, and social conditions, and (xiv)various other matters, many of which are beyond the Companys control. The Company urges investors to consider specifically the various risk factors identified in its most recent Form10-K, and any risk factors or cautionary statements included in any subsequent Form10-Q or Form8-K, filed with the Securities and Exchange Commission. Except as required by law, the Company does not undertake any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.
CYTODYN CONTACTSInvestors:Michael MulhollandOffice: 360.980.8524, ext. 102Mobile: 503.341.3514mmulholland@cytodyn.com
Go here to read the rest:
CytoDyn Will Attempt to Duplicate Berlin and London Patients' HIV Cure by Using Leronlimab During Bone Marrow Transplant for 5 HIV Patients Who also...
Global Autologous Cell Therapy Market Outlook to 2025 by Therapy, Application, Source, End User and Geography – Yahoo Finance
By daniellenierenberg
DUBLIN, Aug. 17, 2020 /PRNewswire/ -- The "Global Autologous Cell Therapy Market: Growth, Trends and Forecasts (2020-2025)" report has been added to ResearchAndMarkets.com's offering.
The Global Autologous Cell Therapy market is anticipated to grow at a CAGR of 15.9% during the forecast period.
The major factors attributing to the growth of the autologous cell therapy market are the rising incidence of chronic diseases such as autoimmune diseases, cancer, blood disorder, and others.
A rise in the population suffering from chronic diseases is also propelling the demand for market growth. In 2018, as per the AARDA (American Autoimmune Related Diseases Association) statistics, around 50 million Americans have an autoimmune disease, and this number is expected to rise in the future.
As per the CDC (Centers for Disease Control and Prevention) estimates Sickel Cell Disease (SCD) affects around 100,000 Americans annually - and there are few more factors which are playing crucial roles in taking the autologous cell therapy market to the next level, among them one is on-going drug developments for new applications which are expected to further propel the growth of the autologous cell therapy market.
Key Market Trends
Bone Marrow Segment Expected to Hold the Largest Market ShareBone marrow transplant is a technique for replacing damaged and destroyed cells with new stem cells in the bone marrow. Bone marrow is the most commonly used for autologous cell therapy as it can benefit individuals with a range of cancer (malignant) and non-cancer (benign) diseases and will drive the market during the forecast period.
As per the statistics from Globocan 2018, worldwide 18,078,957 individuals have cancer. Asia remains the leading contributor in the rising incidence of cancer with a reported share of 48.4% followed by Europe, North and Latin America, Africa, and Oceania with a share of 23.4%, 13.2% and 7.8%, 5.8%, and 1.4% respectively.
North America Dominates the Market and is Expected to do Same Over the Forecast Period
North America is expected to dominate the overall autologous cell therapy market, throughout the forecast period. This is owing to factors such as the rising incidence of chronic diseases such as cancer, blood disorder, autoimmune diseases, and other diseases and the availability of advanced healthcare infrastructure among the major factors.
In North America, the United States holds the largest market share owing to the factors such as increasing number of population suffering from cancer and other chronic diseases, along with the rising geriatric population and developments related to stem cell therapy and rising demand for biotechnological practices in the country, is anticipated to further drive the demand in this region.
Competitive Landscape
The autologous cell therapy market is moderately competitive and consists of several major players. In terms of market share, few of the major players are currently dominating the market. And some prominent players are vigorously making acquisitions and joint ventures with the other companies to consolidate their market positions across the globe.
Some of the companies which are currently dominating the market are Vericel Corporation, Pharmicell Co. Inc., Holostem Terapie Avanzate S.r.l., Lineage Cell Therapeutics Inc., and Opexa Therapeutics.
Key Topics Covered
1 INTRODUCTION1.1 Study Deliverables1.2 Study Assumptions1.3 Scope of the Study
2 RESEARCH METHODOLOGY
3 EXECUTIVE SUMMARY
4 MARKET DYNAMICS4.1 Market Overview4.2 Market Drivers4.2.1 Rising Incidence of Chronic Diseases4.2.2 Emphasis Increasingly on Drug Development for New Applications4.3 Market Restraints4.3.1 Systemic Immunological Reactions Possibility4.3.2 Expensive Practise, Product and High Capital Investment4.4 Porter's Five Force Analysis
5 MARKET SEGMENTATION5.1 By Therapy5.1.1 Autologous Stem Cell Therapy5.1.2 Autologous Cellular Immunotherapies5.2 By Application5.2.1 Oncology5.2.2 Musculoskeletal Disorder5.2.3 Blood Disorder5.2.4 Autoimmune Disease5.2.5 Others5.3 By Source5.3.1 Bone Marrow5.3.2 Epidermis5.3.3 Others5.4 By End User5.4.1 Hospitals5.4.2 Research Centers5.4.3 Others5.5 Geography5.5.1 North America5.5.2 Europe5.5.3 Asia-Pacific5.5.4 Middle-East and Africa5.5.5 South America
6 COMPETITIVE LANDSCAPE6.1 Company Profiles6.1.1 Vericel Corporation6.1.2 Pharmicell Co. Inc.6.1.3 Holostem Terapie Avanzate S.r.l.6.1.4 Lineage Cell Therapeutics, Inc.6.1.5 Opexa Therapeutics6.1.6 BrainStorm Cell Therapeutics6.1.7 Sangamo Therapeutics
7 MARKET OPPORTUNITIES AND FUTURE TRENDS
For more information about this report visit https://www.researchandmarkets.com/r/22argo
Story continues
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Media Contact:
Research and Markets Laura Wood, Senior Manager press@researchandmarkets.com
For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900
U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716
View original content:http://www.prnewswire.com/news-releases/global-autologous-cell-therapy-market-outlook-to-2025-by-therapy-application-source-end-user-and-geography-301113154.html
SOURCE Research and Markets
See the article here:
Global Autologous Cell Therapy Market Outlook to 2025 by Therapy, Application, Source, End User and Geography - Yahoo Finance
Uncles incredible tribute to niece who died from the good cancer’ – Yahoo News Australia
By daniellenierenberg
An uncles poignant and loving tribute to his niece after she died following a seven-year battle with Hodgkin Lymphoma has led to life-saving stem cell and bone marrow donations.
Dr Melissa Baker, a single mum of two and forensic pathologist from Melbourne, died on January 16 - just two days after her 45th birthday.
In her memory, Melissas beloved uncle Max Tomlinson placed her photo and information about how to become a stem cell donor on his rear window in the hope of carrying on her hard work.
In memory of my beautiful niece Dr Melissa Baker. You can save a life, dont let Melissas be in vain. Order your swab kit now. Ideally men aged 18 to 45 with diverse backgrounds needed urgently. Order your kit now urthecure.com.au, it reads in white marker pen.
Melissas beloved uncle, Max Tomlinson, placed her photo and information about how to become a stem cell donor on his car's rear window. Source: Facebook
Melissas sister, Jenni Baker, recently posted a picture of Mr Tomlinsons car on Facebook while thanking a member of the public who tucked a yellow flower under his windshield wiper.
Melissa, whos kids are 13 and 8, waited for a bone marrow match for years after an initial six-month round of chemotherapy didnt work, Jenni, a Melbourne police officer, told Yahoo News Australia on Friday.
She underwent a bone marrow transplant using her own stem cells but it almost killed her when she developed a lung infection, her sister said.
Doctors told the 45-year-old, who had since developed cancer of the bone marrow as a result of the chemotherapy, she desperately needed a donor and so she began advocating for UR The Cure.
The volunteer-run charity works with the Australian Bone Marrow Donor Registry (ABMDR) to increase the number of donors especially middle-aged people of diverse backgrounds.
Melissa, whos kids are 13 and 8, waited for a bone marrow match for years after an initial six-month round of chemotherapy didnt work. Source: Facebook
Reluctantly, in November 2019, she underwent a more risky half-match stem cell transplant where I was her donor, Jenni said.
The odds werent great but she had no choice.
Tragically, after 58 days in the hospital, most of which she spent on a ventilator, Melissa died on January 16.
Jennis Facebook post about her uncles tribute has garnered more than 2,500 likes and hundreds of comments, many of which are people who said they had since signed up to be a stem cell donor.
I was a bone marrow donor for my dad. Unfortunately he passed just four months after the donation. I would do it again in a heartbeat for anyone who needed it, one woman wrote.
Beautiful! Tell your uncle I just ordered my kit! another said.
A woman named Amanda also commented, revealing she had been one of Melissas nurses.
I dont know if you remember me. I am one of the nurses who took care of your sister in the ICU. I always admired how much support Melissa had from you and your sister. Her life is definitely not in vain and the love she had from you all was so strong, she wrote.
Melissa Baker underwent a bone marrow transplant using her own stem cells but it almost killed her when she developed a lung infection. Source: Facebook
Story continues
Jenni said Melissa never thought in her wildest dreams this would happen and had at one point thought the cancer would be a battle she would have to fight throughout her life.
The 47-year-old police officer told Yahoo News Australia Melissa became upset when she was often told she had the good cancer because of Hodgkins higher success rate.
She was so mad about it she even made a blog called I Got the Good Cancer documenting her struggles and treatments.
And then everything bad that could have happened, happened, Jenni said.
Jenni (right) and Melissa (left) are pictured together in front of Parliament House. Source: Facebook
The mum-of-two spent last Christmas intubated and sedated in hospital but was able to squeeze her childrens hands when they came to visit.
When the tubes came out on Boxing Day, Melissa mumbled to Jenni, Im scared. This is really scary.
They were the last words Melissa said.
Just two days later Melissa was ventilated again until the tubes were removed on January 14 - her birthday - after deciding it was too cruel.
Fifty-two hours later she passed surrounded by her parents, siblings and children.
Do you have a story tip? Email:newsroomau@yahoonews.com.
You can also follow us onFacebook,InstagramandTwitterand download the Yahoo News app from theApp StoreorGoogle Play.
See the rest here:
Uncles incredible tribute to niece who died from the good cancer' - Yahoo News Australia
Stem Cell Therapy Market Size and Growth By Leading Vendors, By Types and Application, By End Users and Forecast to 2027 – Bulletin Line
By daniellenierenberg
New Jersey, United States,- This detailed market research covers the growth potential of the Stem Cell Therapy Market, which can help stakeholders understand the key trends and prospects of the Stem Cell Therapy market and identify growth opportunities and competitive scenarios. The report also focuses on data from other primary and secondary sources and is analyzed using a variety of tools. This will help investors better understand the growth potential of the market and help investors identify scope and opportunities. This analysis also provides details for each segment of the global Stem Cell Therapy market.
The report was touted as the most recent event hitting the market due to the COVID-19 outbreak. This outbreak brought about a dynamic change in the industry and the overall economic scenario. This report covers the analysis of the impact of the COVID-19 pandemic on market growth and revenue. The report also provides an in-depth analysis of the current and future impacts of the pandemic and post-COVID-19 scenario analysis.
The report covers extensive analysis of the key market players in the market, along with their business overview, expansion plans, and strategies. The key players studied in the report include:
The market is further segmented on the basis of types and end-user applications. The report also provides an estimation of the segment expected to lead the market in the forecast years. Detailed segmentation of the market based on types and applications along with historical data and forecast estimation is offered in the report.
Furthermore, the report provides an extensive analysis of the regional segmentation of the market. The regional analysis covers product development, sales, consumption trends, regional market share, and size in each region. The market analysis segment covers forecast estimation of the market share and size in the key geographical regions.
The report further studies the segmentation of the market based on product types offered in the market and their end-use/applications.
1.Stem Cell Therapy Market, By Cell Source:
Adipose Tissue-Derived Mesenchymal Stem Cells Bone Marrow-Derived Mesenchymal Stem Cells Cord Blood/Embryonic Stem Cells Other Cell Sources
2.Stem Cell Therapy Market, By Therapeutic Application:
Musculoskeletal Disorders Wounds and Injuries Cardiovascular Diseases Surgeries Gastrointestinal Diseases Other Applications
3.Stem Cell Therapy Market, By Type:
Allogeneic Stem Cell Therapy Market, By Application Musculoskeletal Disorders Wounds and Injuries Surgeries Acute Graft-Versus-Host Disease (AGVHD) Other Applications Autologous Stem Cell Therapy Market, By Application Cardiovascular Diseases Wounds and Injuries Gastrointestinal Diseases Other Applications
On the basis of regional segmentation, the market is bifurcated into major regions ofNorth America, Europe, Asia-Pacific, Latin America, and the Middle East & Africa.The regional analysis further covers country-wise bifurcation of the market and key players.
The research report offered by Verified Market Research provides an updated insight into the global Stem Cell Therapy market. The report covers an in-depth analysis of the key trends and emerging drivers of the market likely to influence industry growth. Additionally, the report covers market characteristics, competitive landscape, market size and growth, regional breakdown, and strategies for this market.
Highlights of the TOC of the Stem Cell Therapy Report:
Overview of the Global Stem Cell Therapy Market
Market competition by Players and Manufacturers
Competitive landscape
Production, revenue estimation by types and applications
Regional analysis
Industry chain analysis
Global Stem Cell Therapy market forecast estimation
This Stem Cell Therapy report umbrellas vital elements such as market trends, share, size, and aspects that facilitate the growth of the companies operating in the market to help readers implement profitable strategies to boost the growth of their business. This report also analyses the expansion, market size, key segments, market share, application, key drivers, and restraints.
Key Questions Addressed in the Report:
What are the key driving and restraining factors of the global Stem Cell Therapy market?
What is the concentration of the market, and is it fragmented or highly concentrated?
What are the major challenges and risks the companies will have to face in the market?
Which segment and region are expected to dominate the market in the forecast period?
What are the latest and emerging trends of the Stem Cell Therapy market?
What is the expected growth rate of the Stem Cell Therapy market in the forecast period?
What are the strategic business plans and steps were taken by key competitors?
Which product type or application segment is expected to grow at a significant rate during the forecast period?
What are the factors restraining the growth of the Stem Cell Therapy market?
Thank you for reading our report. The report is available for customization based on chapters or regions. Please get in touch with us to know more about customization options, and our team will ensure you get the report tailored according to your requirements.
About us:
Verified Market Research is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.
Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.
Contact us:
Mr. Edwyne Fernandes
US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll-Free: +1 (800)-7821768
Email: [emailprotected]
Originally posted here:
Stem Cell Therapy Market Size and Growth By Leading Vendors, By Types and Application, By End Users and Forecast to 2027 - Bulletin Line
Hackensack University Medical Center Has the Best Cancer Center in New Jersey John Theurer Cancer Center recognized by U.S. News & World Report -…
By daniellenierenberg
Newswise HACKENSACK, N.J.,AUGUST 17, 2020 U.S. News & World Report has recognized John Theurer Cancer Center at Hackensack University Medical Center as the best cancer center in New Jersey. The recognition reflects the extraordinary strength of its comprehensive patient care, research and education programs.
In 2019, John Theurer Cancer Center became a member of the National Cancer Institute-approved Georgetown Lombardi Comprehensive Cancer Center Consortium, making the Cancer Center a member of one of just 16 cancer consortia based at the nation's most prestigious institutions. The NCI endorses such consortia to bring together accomplished institutionswith independently proven records of excellence to join forces in pursuit of the NCI's original mission: improving cancer outcomes through scientific discovery, reducing the impact of cancer on individuals and communities and diminishing cancer disparities, and developing the next generation of cancer scientists, clinicians and educators.
John Theurer Cancer Center is organized into 16 specialized divisions, each led by a recognized expert in the field. With a strong focus on clinical science and innovation, John Theurer Cancer Center investigators were directly involved in the development of more than 40 new anticancer agents approved by the U.S. Food and Drug Administration over the last three yearsparticularly for blood cancers such as leukemia, lymphoma, and multiple myeloma, as well as solid tumors through Phase I first-in-human clinical trials.
"Our multidisciplinary team cares for patients with cancers of every type and stage in a highly subspecialized environment," said Robert C. Garrett, FACHE, CEO, Hackensack Meridian Health. "Our commitment to cancer is reflective of our approach to everything we do: to provide the most advanced health care services based on the latest findings of medical research in a compassionate, culturally sensitive setting. It is an honor for us to be recognized as the top cancer center in our state."
"Our exceptional team is proud to be recognized as the top cancer program in New Jersey. The scope and depth of expertise, together with our focus on clinical science and innovation, are what make our Cancer Center a destination program, explained Andre Goy, M.D., M.S., chair and chief physician of John Theurer Cancer Center, Lymphoma Division chief, physician-in-chief of the Hackensack Meridian Health Oncology Care Transformation Service, and a renowned lymphoma expert who led the Cancer Center's participation in the pioneering ZUMA-2 study. "Understandably, every person who receives a diagnosis of cancer seeks the center with the most experience and the best innovation. This is why patients come to John Theurer Cancer Center. We take care of each patient in a compassionate and friendly environment, and that's what makes our patients smile.
A number of metrics support that successful track record:
This recognition as the state's best cancer center reflects the strength of our research, the dedication of our multidisciplinary team, and the expertise of our physicians," said Ihor Sawczuk, MD, FACS, Hackensack Meridian Health regional president, Northern Market and chief research officer. We are grateful to our patients who have trusted us with their care and who continually inspire us to provide the best possible experience.
For more information, please contact Katherine Emmanouilidis, Director, Communications & Public Relations, 551-996-3764.
About Hackensack Meridian Health Hackensack University Medical Center
Hackensack Meridian Health Hackensack University Medical Center, a 781-bed nonprofit teaching and research hospital located in Bergen County, NJ, is the largest provider of inpatient and outpatient services in the state. Founded in 1888 as the countys first hospital, it is now part of the largest, most comprehensive and truly integrated health care network in New Jersey, offering a complete range of medical services, innovative research and life-enhancing care, which is comprised of 35,000 team members and more than 7,000 physicians. Hackensack University Medical Center is ranked #2 in New Jersey and #59 in the country in U.S. News & World Reports 2019-20 Best Hospital rankings and is ranked high-performing in the U.S. in colon cancer surgery,lung cancersurgery,COPD, heart failure, heart bypass surgery, aortic valve surgery,abdominal aortic aneurysm repair, knee replacement and hip replacement. Out of 4,500 hospitals evaluated, Hackensack is one of only 57 that received a top rating in all nine procedures and conditions. Hackensack University Medical Center is one of only five major academic medical centers in the nation to receive Healthgrades Americas 50 Best Hospitals Award for five or more years in a row. Beckers Hospital Review recognized Hackensack University Medical Center as one of the 100 Great Hospitals in America 2018. The medical center is one of the top 25 green hospitals in the country according to Practice Greenhealth, and received 28 Gold Seals of Approval by The Joint Commission more than any other hospital in the country. It was the first hospital in New Jersey and second in the nation to become a Magnet recognized hospital for nursing excellence; receiving its sixth consecutive designation in 2019. Hackensack University Medical Center has created an entire campus of award-winning care, including: John Theurer Cancer Center, a consortium member of the NCI-designated Georgetown Lombardi Comprehensive Cancer Center; the Heart & Vascular Hospital; and the Sarkis and Siran Gabrellian Womens and Childrens Pavilion, which houses the Joseph M. Sanzari Childrens Hospital and Donna A. Sanzari Womens Hospital, which was designed with The Deirdre Imus Environmental Health Center and listed on the Green Guides list of Top 10 Green Hospitals in the U.S. Hackensack University Medical Center is the Hometown Hospital of the New York Giants and the New York Red Bulls and is Official Medical Services Provider to THE NORTHERN TRUST PGA Golf Tournament. It remains committed to its community through fundraising and community events especially the Tackle Kids Cancer Campaign providing much needed research at the Childrens Cancer Institute housed at the Joseph M. Sanzari Childrens Hospital. To learn more, visit http://www.HackensackUMC.org.
About John Theurer Cancer Center atHackensack University Medical Center
John Theurer Cancer Center at Hackensack University Medical Center is New Jerseys largest and most comprehensive center dedicated to the diagnosis, treatment, management, research, screenings, and preventive care as well as survivorship of patients with all types of cancers. The 16 specialized divisions covering the complete spectrum of cancer care have developed a close-knit team of medical, research, nursing, and support staff with specialized expertise that translates into more advanced, focused care for all patients. Each year, more people in the New Jersey/New York metropolitan area turn to John Theurer Cancer Center for cancer care than to any other facility in New Jersey.John Theurer Cancer Center is amember of the Georgetown Lombardi Comprehensive Cancer Center Consortium,one of just 16 NCI-approved cancer research consortiabased at the nations most prestigious institutions. Housed within a 775-bed not-for-profit teaching, tertiary care, and research hospital, John Theurer Cancer Center provides state-of-the-art technological advances, compassionate care, research innovations, medical expertise, and a full range of aftercare services that distinguish John Theurer Cancer Center from other facilities.For additional information, please visitwww.jtcancercenter.org
ABOUTHACKENSACKMERIDIAN HEALTH
Hackensack Meridian Health is a leading not-for-profit health care organization that is the largest, most comprehensive and truly integrated health care network in New Jersey, offering a complete range of medical services, innovative research and life-enhancing care.
Hackensack Meridian Health comprises 17 hospitals from Bergen to Ocean counties, which includes three academic medical centers Hackensack University Medical Center in Hackensack, Jersey Shore University Medical Center in Neptune, JFK Medical Center in Edison; two childrens hospitals - Joseph M. Sanzari Childrens Hospital in Hackensack, K. Hovnanian Childrens Hospital in Neptune; nine community hospitals Bayshore Medical Center in Holmdel, Mountainside Medical Center in Montclair, Ocean Medical Center in Brick, Palisades Medical Center in North Bergen, Pascack Valley Medical Center in Westwood, Raritan Bay Medical Center in Old Bridge, Raritan Bay Medical Center in Perth Amboy, Riverview Medical Center in Red Bank, and Southern Ocean Medical Center in Manahawkin; a behavioral health hospital Carrier Clinic in Belle Mead; and two rehabilitation hospitals - JFK Johnson Rehabilitation Institute in Edison and Shore Rehabilitation Institute in Brick.
Additionally, the network has more than 500 patient care locations throughout the state which include ambulatory care centers, surgery centers, home health services, long-term care and assisted living communities, ambulance services, lifesaving air medical transportation, fitness and wellness centers, rehabilitation centers, urgent care centers and physician practice locations. Hackensack Meridian Health has more than 36,000 team members, and 7,000 physicians and is a distinguished leader in health care philanthropy, committed to the health and well-being of the communities it serves.
The networks notable distinctions include having four of its hospitals are among the top hospitals in New Jersey for 2020-21, according toU.S. News & World Report. Additionally, the health system has more top-ranked hospitals than any system in New Jersey. Childrens Health is again ranked a top provider of pediatric health care in the United States and earned top 50 rankings in the annual U.S. News 2020-21 Best Childrens Hospitals report. Other honors include consistently achieving Magnet recognition for nursing excellence from the American Nurses Credentialing Center and being named to Beckers Healthcares 150 Top Places to Work in Healthcare/2019 list.
The Hackensack Meridian School of Medicine, the first private medical school in New Jersey in more than 50 years, welcomed its first class of students in 2018 to its On3 campus in Nutley and Clifton. The Hackensack Meridian Center for Discovery and Innovation (CDI), housed in a fully renovated state-of-the-art facility, seeks to translate current innovations in science to improve clinical outcomes for patients with cancer, infectious diseases and other life-threatening and disabling conditions.
Additionally, the network partnered with Memorial Sloan Kettering Cancer Center to find more cures for cancer faster while ensuring that patients have access to the highest quality, most individualized cancer care when and where they need it.
Hackensack Meridian Health is a member of AllSpire Health Partners, an interstate consortium of leading health systems, to focus on the sharing of best practices in clinical care and achieving efficiencies.
To learn more, visit http://www.hackensackmeridianhealth.org.
Scientists See Signs of Lasting Immunity to Covid-19, Even After Mild Infections – The New York Times
By daniellenierenberg
Notably, several of the new studies are finding these powerful responses in people who did not develop severe cases of Covid-19, Dr. Iyer added. Some researchers have worried that infections that take a smaller toll on the body are less memorable to the immune systems studious cells, which may prefer to invest their resources in more serious assaults. In some cases, the body could even jettison the viruses so quickly that it fails to catalog them. This paper suggests this is not true, Dr. Iyer said. You can still get durable immunity without suffering the consequences of infection.
Updated August 17, 2020
What has been observed in people who fought off mild cases of Covid-19 might not hold true for hospitalized patients, whose bodies struggle to marshal a balanced immune response to the virus, or those who were infected but had no symptoms at all. Research groups around the world are continuing to study the entire range of responses. But the vast majority of the cases are these mild infections, said Jason Netland, an immunologist at the University of Washington and an author on the paper under review at Nature. If those people are going to be protected, thats still good.
This new spate of studies could also further assuage fears about how and when the pandemic will end. On Friday, updated guidance released by the Centers for Disease Control and Prevention was misinterpreted by several news reports that suggested immunity against the coronavirus might last only a few months. Experts quickly responded, noting the dangers of propagating such statements and pointing to the wealth of evidence that people who previously had the virus are probably at least partly protected from reinfection for at least three months, if not much longer.
Considered with other recent reports, the new data reinforce the idea that, Yes, you do develop immunity to this virus, and good immunity to this virus, said Dr. Eun-Hyung Lee, an immunologist at Emory University who was not involved in the studies. Thats the message we want to get out there.
Some illnesses, like the flu, can plague populations repeatedly. But that is at least partly attributable to the high mutation rates of influenza viruses, which can quickly make the pathogens unrecognizable to the immune system. Coronaviruses, in contrast, tend to change their appearance less readily from year to year.
Still, much remains unknown. Although these studies hint at the potential for protectiveness, they do not demonstrate protection in action, said Cheong-Hee Chang, an immunologist at the University of Michigan who was not involved in the new studies. Its hard to predict whats going to happen, Dr. Chang said. Humans are so heterogeneous. There are so many factors coming into play.
Research in animals could help fill a few gaps. Small studies have shown that one bout of the coronavirus seems to protect rhesus macaques from contracting it again.
See the original post:
Scientists See Signs of Lasting Immunity to Covid-19, Even After Mild Infections - The New York Times
Wave of New Therapies Improve Outcomes for Patients with Multiple Myeloma – Cancer Health Treatment News
By daniellenierenberg
For many patients with multiple myeloma, a new generation of drugs and drug combinations is producing better outcomes and fewer side effects. In recent months, several novel therapies studied and tested by Dana-Farber scientists have gained approval from the U.S. Food and Drug Administration (FDA) or taken a step toward approval after posting solid results in clinical trials.
The drugs are the fruit of years of research into improving treatment for multiple myeloma, a cancer of white blood cells known as plasma cells in the bone marrow. Many of the new agents are biologically derived made from substances such as proteins and antibodies found in living things and target biological mechanisms in a very specific, targeted fashion. Dana-Farber researchers have played a key role in these efforts.
These are each powerful examples of how next-generation novel therapies translated here at Dana-Farber from bench to bedside are further improving outcomes for our patients, and at a remarkable pace, says Paul G. Richardson, MD, clinical program leader and director of clinical research at the Jerome Lipper Multiple Myeloma Center at Dana-Farber.
Option for relapsed or refractory (non-responsive) myeloma
Following a Dana-Farber-led clinical trial, the FDA recently approved the novel drug isatuximab in combination with pomalidomide and dexamethasone for adults with relapsed or refractory (non-responsive) myeloma who have received at least two prior therapies, including lenalidomide and drugs known as proteasome inhibitors. The drug went into trials after laboratory work by Dana-Farbers Yu-Tzu Tai, PhD, and Kenneth Anderson, MD, showed it was active against myeloma cells. In the clinical trial, the three-drug combination lowered the risk that the disease would progress by 40%, compared to pomalidome and dexamethasone alone.
A drug that doesnt cause hair loss
Dana-Farber investigators conducted laboratory research and led the first clinical trial of the drug melflufen plus dexamethasone in patients with relapsed or refractory myeloma. Melflufen is a peptide conjugate drug made of a stub of protein, or peptide, joined to a chemotherapy agent and delivers a toxic payload directly to myeloma cells in a selective, time-sparing approach.
Results from an early-phase clinical trial published in Lancet Oncology showed the drug is active in patients with myeloma and is safe at recommended doses. Unlike the previously used standard drug melphalan, it doesnt cause mucositis inflammation of membranes within the digestive tract or hair loss. The results prompted investigators to launch two larger trials, some of whose results are being processed and are due to be published soon.
Drug for patients eligible for stem cell transplant
In a major study published in Blood, Dana-Farber researchers and their associates found that in patients newly diagnosed with myeloma who are eligible for a stem cell transplant, adding the drug daratumumab to the standard three-drug regimen produced more responses, and deeper responses, than in patients receiving the three-drug therapy alone.
Targeting myeloma cells and cell division
Dana-Farber researchers were involved in the development and initial testing of the drug belantamab mafodotin, which has shown considerable promise in clinical trials and has been granted priority review for approval by the FDA.
An antibody conjugate drug consisting of an antibody that specifically targets myeloma cells and an agent that disrupts cell division, its use was informed by a preclinical trial at Dana-Farber involving Yu-Tzu Tai, PhD, and Kenneth Anderson, MD. Balantamab mafodotin was tested in studies led by Paul Richardson, MD, in patients with relapsed or refractory multiple myeloma whose disease continued to worsen after a stem cell transplant, chemotherapy, or other treatment. In the DREAMM-1 and -2 trials, the drug showed strong anti-myeloma activity with manageable side effects.
This article was originally published on August 4, 2020, by Dana-Farber Cancer Institute. It is republished with permission.
Read more from the original source:
Wave of New Therapies Improve Outcomes for Patients with Multiple Myeloma - Cancer Health Treatment News
Cell Isolation/Cell Separation Market Research Report by Product, by Cell Type, by Cell Source, by Technique, by Application, by End User – Global…
By daniellenierenberg
New York, Aug. 13, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Cell Isolation/Cell Separation Market Research Report by Product, by Cell Type, by Cell Source, by Technique, by Application, by End User - Global Forecast to 2025 - Cumulative Impact of COVID-19" - https://www.reportlinker.com/p05913776/?utm_source=GNW
The Global Cell Isolation/Cell Separation Market is expected to grow from USD 6,356.88 Million in 2019 to USD 14,485.68 Million by the end of 2025 at a Compound Annual Growth Rate (CAGR) of 14.71%.
Market Segmentation & Coverage:This research report categorizes the Cell Isolation/Cell Separation to forecast the revenues and analyze the trends in each of the following sub-markets:
Based on Product, the Cell Isolation/Cell Separation Market studied across Consumables and Instruments. The Consumables further studied across Beads, Disposables, and Reagents, Kits, Media, and Sera. The Instruments further studied across Centrifuges, Filtration Systems, Flow Cytometers, and Magnetic-Activated Cell Separator Systems.
Based on Cell Type, the Cell Isolation/Cell Separation Market studied across Animal Cells and Human Cells. The Human Cells further studied across Differentiated Cells and Stem Cells.
Based on Cell Source, the Cell Isolation/Cell Separation Market studied across Adipose Tissue, Bone Marrow, and Cord Blood/Embryonic Stem Cells.
Based on Technique, the Cell Isolation/Cell Separation Market studied across Centrifugation-Based Cell Isolation, Filtration-Based Cell Isolation, and Surface Marker-Based Cell Isolation.
Based on Application, the Cell Isolation/Cell Separation Market studied across Biomolecule Isolation, Cancer Research, In Vitro Diagnostics, Stem Cell Research, and Tissue Regeneration & Regenerative Medicine.
Based on End User, the Cell Isolation/Cell Separation Market studied across Biotechnology & Biopharmaceutical Companies, Hospitals & Diagnostic Laboratories, and Research Laboratories & Institutes.
Based on Geography, the Cell Isolation/Cell Separation Market studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas region surveyed across Argentina, Brazil, Canada, Mexico, and United States. The Asia-Pacific region surveyed across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, South Korea, and Thailand. The Europe, Middle East & Africa region surveyed across France, Germany, Italy, Netherlands, Qatar, Russia, Saudi Arabia, South Africa, Spain, United Arab Emirates, and United Kingdom.
Company Usability Profiles:The report deeply explores the recent significant developments by the leading vendors and innovation profiles in the Global Cell Isolation/Cell Separation Market including Beckman Coulter Inc. (Subsidiary of Danaher Corporation), Becton, Dickinson and Company, Bio-Rad Laboratories, Inc., GE Healthcare, Merck KGaA, Miltenyi Biotec, Pluriselect Life Science Ug (Haftungsbeschrnkt) & Co. Kg, Stemcell Technologies, Inc., Terumo Bct, and Thermo Fisher Scientific, Inc..
FPNV Positioning Matrix:The FPNV Positioning Matrix evaluates and categorizes the vendors in the Cell Isolation/Cell Separation Market on the basis of Business Strategy (Business Growth, Industry Coverage, Financial Viability, and Channel Support) and Product Satisfaction (Value for Money, Ease of Use, Product Features, and Customer Support) that aids businesses in better decision making and understanding the competitive landscape.
Competitive Strategic Window:The Competitive Strategic Window analyses the competitive landscape in terms of markets, applications, and geographies. The Competitive Strategic Window helps the vendor define an alignment or fit between their capabilities and opportunities for future growth prospects. During a forecast period, it defines the optimal or favorable fit for the vendors to adopt successive merger and acquisition strategies, geography expansion, research & development, and new product introduction strategies to execute further business expansion and growth.
Cumulative Impact of COVID-19:COVID-19 is an incomparable global public health emergency that has affected almost every industry, so for and, the long-term effects projected to impact the industry growth during the forecast period. Our ongoing research amplifies our research framework to ensure the inclusion of underlaying COVID-19 issues and potential paths forward. The report is delivering insights on COVID-19 considering the changes in consumer behavior and demand, purchasing patterns, re-routing of the supply chain, dynamics of current market forces, and the significant interventions of governments. The updated study provides insights, analysis, estimations, and forecast, considering the COVID-19 impact on the market.
The report provides insights on the following pointers:1. Market Penetration: Provides comprehensive information on the market offered by the key players2. Market Development: Provides in-depth information about lucrative emerging markets and analyzes the markets3. Market Diversification: Provides detailed information about new product launches, untapped geographies, recent developments, and investments4. Competitive Assessment & Intelligence: Provides an exhaustive assessment of market shares, strategies, products, and manufacturing capabilities of the leading players5. Product Development & Innovation: Provides intelligent insights on future technologies, R&D activities, and new product developments
The report answers questions such as:1. What is the market size and forecast of the Global Cell Isolation/Cell Separation Market?2. What are the inhibiting factors and impact of COVID-19 shaping the Global Cell Isolation/Cell Separation Market during the forecast period?3. Which are the products/segments/applications/areas to invest in over the forecast period in the Global Cell Isolation/Cell Separation Market?4. What is the competitive strategic window for opportunities in the Global Cell Isolation/Cell Separation Market?5. What are the technology trends and regulatory frameworks in the Global Cell Isolation/Cell Separation Market?6. What are the modes and strategic moves considered suitable for entering the Global Cell Isolation/Cell Separation Market?Read the full report: https://www.reportlinker.com/p05913776/?utm_source=GNW
About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.
__________________________
Originally posted here:
Cell Isolation/Cell Separation Market Research Report by Product, by Cell Type, by Cell Source, by Technique, by Application, by End User - Global...
The Fallacy of Banking Umbilical Cord Blood for Your Baby – The MIT Press Reader
By daniellenierenberg
Companies are exhorting expectant parents to protect their baby from the medical evils that lie ahead. But are claims of benefits overblown?
By: Mikkael A. Sekeres
My patient, a man in his 70s, sat a few feet away from me in a clinic room at our cancer center. His wife was by his side, both literally and emotionally she was his touchstone, his connection to the normal life he led before his leukemia diagnosis. I noticed they tended to wear outfits that even complemented each other, as if their sartorial choices had harmonized and become intertwined along with their affection over the 40 years of their marriage. Their choice for the day: grey sweatshirts declaring their allegiance to the hapless Cleveland Browns.
He had weathered the slings and arrows of the chemotherapy we used to treat his cancer during a five-week hospital stay, and now was in a tenuous remission. We talked about next steps in his treatment, which ranged from giving him a break, to more chemotherapy, to considering the most aggressive intervention we could offer a bone marrow transplant.
The phrase bone marrow transplant was a bit of a misnomer, though. While we could wipe out any residual leukemia in his bone marrow with high-dose chemotherapy and replace his fresh bone marrow from a healthy person, we may not be able to find a good bone marrow match. Another potential option: We could use umbilical cord blood from a newborn, which is rich in the stem cells normally found in the bone marrow, and which recent studies have shown may not need to match as closely as is necessary for a marrow donor. Hearing this, my patients wife interjected.
Our daughter is pregnant, and her due date is next month. She started, glancing at my patient as he nodded his head in agreement. She wanted us to ask if she should save the babys cord blood in case he needs it for a transplant.
I explained to them that the babys cord blood was unlikely to be a close enough match to my patient, as my patients daughter would only be a half-match for him, and her baby less than that. My patient then asked me a question I have been hearing more and more over the years: Should my daughter save the cord blood in case our grandbaby needs it, in case he or she develops cancer?
Brochures for these companies line Plexiglas display cases in obstetrics offices, with pamphlets exhorting nervous, expectant parents to protect their baby from the medical evils that lie ahead.
Indeed, in the U.S., the practice of storing umbilical cord blood is steadily on the rise. Banking cord blood in case a bone marrow transplant is needed in the future is appealing on so many levels. The umbilical cord attaching the developing fetus to its mothers placenta is rich in those juicy bone marrow stem cells that are so effective at making the blood components. Coming from an infant at the time of birth, they should be uncorrupted by cancer (emphasis on the should, as well see in a moment). Cord blood is also easy to collect: At the time of delivery, after the cord is cut, the remaining blood in that cord is milked out into a collection bag. That bag is then kept in a freezer until the time comes, if ever, when it is needed and can be infused as a transplant.
The cost for using commercial cord blood banking companies, however, can be substantial. Upfront charges with whats called an enrollment fee can range from $1,500 to $3,500. On top of that, a yearly storage fee is assessed, with the total amount for 18 to 20 years of storage cresting $5,000 in some cases.
Brochures for these companies line Plexiglas display cases in obstetrics offices, with pamphlets exhorting nervous, expectant parents to protect their baby from the medical evils that lie ahead. What better source for a transplant than a childs own, pure stem cells, harvested at a time years before that child ever developed cancer? But cost aside, is the effort even worth it for the risk that a child may one day develop a cancer and need a future transplant?
To answer this question, we need to take a couple of things into consideration. First, what is the likelihood of a child developing a cancer, and then needing a transplant to treat that cancer? A study conducted by the Center for International Blood and Marrow Transplant Research attempted to figure this out. They first identified the cancers for which transplantation could potentially be needed. For people aged 0 to 19 years (the length of time a cord blood would be kept banked) leukemia was the most common, followed by lymphoma, neuroblastoma, brain tumors, and sarcomas. Cancer in children and adolescents are rare all told, the incidence rate in the United States for all of these cancers combined is about 12 per 100,000 children per year. Its horrible if its your child who develops cancer, but pediatric cancer is still an uncommon event.
Its horrible if its your child who develops cancer, but pediatric cancer is still an uncommon event.
The next conclusion is based on the likelihood that these cancers would not be eradicated by chemotherapy and/or radiation therapy and would require an allogeneic transplant that is, one that uses stem cells taken from a genetically matched donor and the assumption that everyone could identify a sibling or brother from another mother transplant and was healthy enough to undergo the procedure. The authors estimated that the incidence rate of transplant for children and adolescents was a little over 2 per 100,000 per year in the United States during their first two decades of life. Analyzed another way, the probability a child will need a transplant by the time he or she reaches age 20 is 0.04 percent.
The lifetime chance of getting struck by lightning is similar, at about 1 in 3,000, or 0.033 percent.
Would you pay thousands of dollars for a medication right now, in the event that sometime in your life you may be struck by lightning, and that medication may help you survive the lightning strike?
Seems excessive to me.
A second way of determining the value of cord blood banking in case a child develops cancer is to consider whether that cord blood is really as pure as we think. The most common childhood cancer through age 19 is leukemia, with an annual incidence rate of 4.7 per 100,000 children in the United States. Could it be possible that the leukemia was present at some small level even at birth, years before the child was diagnosed with leukemia?
One approach to studying this would be to screen every newborn for leukemia. Given the incidence rate of childhood leukemia, this would mean subjecting over 21,000 babies to a blood test for every case of future leukemia identified.
Its difficult to justify that type of monumental screening effort to answer a research question about the origins of leukemia. A more reasonable approach would be to identify children who have leukemia, and try to determine whether they had it when they were born.
But how to go about obtaining a blood sample from a birth that occurred years earlier? A group of clever scientists from the United Kingdom and Germany thought the answer might be found in something called Guthrie cards. Robert Guthrie was a microbiologist working at the Roswell Park Cancer Institute in Buffalo, New York, in the 1950s when his niece was diagnosed with phenylketonuria (PKU), an inherited deficiency in the enzyme necessary to metabolize the amino acid phenylalanine. If caught early enough, an infants diet can be modified so that the effects of the deficiency are minimized. If not, the condition can lead to developmental defects and mental disability.
Guthries niece was not so lucky.
This, and having a child of his own with cognitive delays, motivated Guthrie to devote his career to detecting preventable childhood diseases. He developed a test for PKU that could be performed when a drop of blood from a finger prick or heel stick was applied to filter paper on a card. It was successfully piloted in Newark in 1960, and by 1963, 400,000 infants had been tested in 29 states. Testing spread around the country, and across the pond.
And hospital laboratories kept those Guthrie cards for years after a child was born.
Could it be possible that the leukemia was present at some small level even at birth, years before the child was diagnosed with leukemia?
The scientists found three children with acute lymphocytic leukemia (more common in children than AML, whereas the opposite is true in adults) who had the same chromosome mutation associated with their leukemias a translocation of chromosomes 4 and 11. After obtaining permission from the parents of these children, the scientists then searched laboratory repositories to find the Guthrie cards stored there from when the children were born. They used a PCR-specific lab test for this translocation on the dried blood still remaining on the childrens Guthrie cards, and were able to detect the chromosome abnormality for all three children from a blood drop obtained months or years before the leukemia was diagnosed. In another, similar study, the same group of scientists was able to detect chromosome evidence of leukemia in 9 of the 12 Guthrie cards obtained from children who diagnosed with leukemia between two and five years later.
The leukemia was there all along, even prior to birth in these children, waiting years in some cases to rear its ugly head. And if the leukemia was measurable on a genetic level in their blood, it was almost certainly present in their cord blood. Banking cord blood from these children would have preserved those juicy, healthy stem cells, but also probably cells already corrupted by genetic abnormalities that would lead to leukemia again, if the cells were re-infused into a child as a transplant years later.
Getting back to the question: Is the cost and effort of banking cord blood worth it for the risk that a child may one day develop a cancer and need a future transplant?
I didnt think so when my three children were born.
But I did have their cord blood collected and I donated it to be stored for use through the Be The Match program, in case a complete stranger needs it. So that one day, my children could be the brothers from another mother, or sister from another mister me being the mister!
And so that one day, my patients wont have to forego potentially curative treatments for their leukemias because they cant find an adequate donor.
Mikkael Sekeres is the Director of the Leukemia Program at the Cleveland Clinic and the author of When Blood Breaks Down: Life Lessons from Leukemia, from which this article is adapted.
See the original post:
The Fallacy of Banking Umbilical Cord Blood for Your Baby - The MIT Press Reader
World Autologous Cell Therapy Industry 2020-2025 with Vericel, Pharmicell, Holostem Terapie Avanzate, Lineage Cell Therapeutics and Opexa Therapeutics…
By daniellenierenberg
DUBLIN--(BUSINESS WIRE)--The "Global Autologous Cell Therapy Market: Growth, Trends and Forecasts (2020-2025)" report has been added to ResearchAndMarkets.com's offering.
The Global Autologous Cell Therapy market is anticipated to grow at a CAGR of 15.9% during the forecast period.
The major factors attributing to the growth of the autologous cell therapy market are the rising incidence of chronic diseases such as autoimmune diseases, cancer, blood disorder, and others.
A rise in the population suffering from chronic diseases is also propelling the demand for market growth. In 2018, as per the AARDA (American Autoimmune Related Diseases Association) statistics, around 50 million Americans have an autoimmune disease, and this number is expected to rise in the future.
As per the CDC (Centers for Disease Control and Prevention) estimates Sickel Cell Disease (SCD) affects around 100,000 Americans annually - and there are few more factors which are playing crucial roles in taking the autologous cell therapy market to the next level, among them one is on-going drug developments for new applications which are expected to further propel the growth of the autologous cell therapy market.
Key Market Trends
Bone Marrow Segment Expected to Hold the Largest Market Share
Bone marrow transplant is a technique for replacing damaged and destroyed cells with new stem cells in the bone marrow. Bone marrow is the most commonly used for autologous cell therapy as it can benefit individuals with a range of cancer (malignant) and non-cancer (benign) diseases and will drive the market during the forecast period.
As per the statistics from Globocan 2018, worldwide 18,078,957 individuals have cancer. Asia remains the leading contributor in the rising incidence of cancer with a reported share of 48.4% followed by Europe, North and Latin America, Africa, and Oceania with a share of 23.4%, 13.2% and 7.8%, 5.8%, and 1.4% respectively.
North America Dominates the Market and is Expected to do Same Over the Forecast Period
North America is expected to dominate the overall autologous cell therapy market, throughout the forecast period. This is owing to factors such as the rising incidence of chronic diseases such as cancer, blood disorder, autoimmune diseases, and other diseases and the availability of advanced healthcare infrastructure among the major factors.
In North America, the United States holds the largest market share owing to the factors such as increasing number of population suffering from cancer and other chronic diseases, along with the rising geriatric population and developments related to stem cell therapy and rising demand for biotechnological practices in the country, is anticipated to further drive the demand in this region.
Competitive Landscape
The autologous cell therapy market is moderately competitive and consists of several major players. In terms of market share, few of the major players are currently dominating the market. And some prominent players are vigorously making acquisitions and joint ventures with the other companies to consolidate their market positions across the globe.
Some of the companies which are currently dominating the market are Vericel Corporation, Pharmicell Co. Inc., Holostem Terapie Avanzate S.r.l., Lineage Cell Therapeutics Inc., and Opexa Therapeutics.
Key Topics Covered
1 INTRODUCTION
1.1 Study Deliverables
1.2 Study Assumptions
1.3 Scope of the Study
2 RESEARCH METHODOLOGY
3 EXECUTIVE SUMMARY
4 MARKET DYNAMICS
4.1 Market Overview
4.2 Market Drivers
4.2.1 Rising Incidence of Chronic Diseases
4.2.2 Emphasis Increasingly on Drug Development for New Applications
4.3 Market Restraints
4.3.1 Systemic Immunological Reactions Possibility
4.3.2 Expensive Practise, Product and High Capital Investment
4.4 Porter's Five Force Analysis
5 MARKET SEGMENTATION
5.1 By Therapy
5.1.1 Autologous Stem Cell Therapy
5.1.2 Autologous Cellular Immunotherapies
5.2 By Application
5.2.1 Oncology
5.2.2 Musculoskeletal Disorder
5.2.3 Blood Disorder
5.2.4 Autoimmune Disease
5.2.5 Others
5.3 By Source
5.3.1 Bone Marrow
5.3.2 Epidermis
5.3.3 Others
5.4 By End User
5.4.1 Hospitals
5.4.2 Research Centers
5.4.3 Others
5.5 Geography
5.5.1 North America
5.5.2 Europe
5.5.3 Asia-Pacific
5.5.4 Middle-East and Africa
5.5.5 South America
6 COMPETITIVE LANDSCAPE
6.1 Company Profiles
6.1.1 Vericel Corporation
6.1.2 Pharmicell Co. Inc.
6.1.3 Holostem Terapie Avanzate S.r.l.
6.1.4 Lineage Cell Therapeutics, Inc.
6.1.5 Opexa Therapeutics
6.1.6 BrainStorm Cell Therapeutics
6.1.7 Sangamo Therapeutics
7 MARKET OPPORTUNITIES AND FUTURE TRENDS
For more information about this report visit https://www.researchandmarkets.com/r/gydkh
Continue reading here:
World Autologous Cell Therapy Industry 2020-2025 with Vericel, Pharmicell, Holostem Terapie Avanzate, Lineage Cell Therapeutics and Opexa Therapeutics...
Hematopoietic Stem Cell Transplantation Market is Stunning Worldwide Gaining Revolution in Eyes of Global Exposure – Owned
By daniellenierenberg
Latest released the research study onGlobal Hematopoietic Stem Cell Transplantation Market, offers a detailed overview of the factors influencing the global business scope.Hematopoietic Stem Cell TransplantationMarket research report shows the latest market insights, current situation analysis with upcoming trends and breakdown of the products and services. The report provides key statistics on the market status, size, share, growth factors of theHematopoietic Stem Cell Transplantation Market. The study covers emerging players data, including: competitive landscape, sales, revenue and global market share of top manufacturers.
Top players in Global Hematopoietic Stem Cell Transplantation Market are:
Gilead Sciences Inc. (United States)
Thermo Fisher Scientific (United States)
PromoCell (Germany)
CellGenix Technologie Transfer GmbH (Germany)
Cesca Therapeutics Inc.(United States)
R&D Systems (United States)
Genlantis (United States)
Lonza Group Ltd.(Switzerland)
TiGenix N.V.(Belgium)
ScienCell Research Laboratories (United States)
Regen Biopharma Inc. (United States)
China Cord Blood Corp (Hong Kong)
CBR Systems Inc. (United States)
Free Sample Report + All Related Graphs & Charts @: https://www.advancemarketanalytics.com/sample-report/69543-global-hematopoietic-stem-cell-transplantation-market-1
Brief Overview on Hematopoietic Stem Cell Transplantation
Despite the increasing availability of smart antineoplastic therapies in recent years, Hematopoietic stem cell transplantation (HSCT) remains an optimal treatment modality for many hematologic malignancies. HSCT is one of a range of therapeutic options which is available to patients suffering from various diseases. It is a widely accepted treatment for many life-threatening diseases. The treatment is available to patients who suffer from refractory or relapsing neoplastic disease and non-neoplastic genetic disorders, as well as from chronic bone marrow failure. Hematopoietic stem cells are young or immature blood cells which are found to be living in bone marrow. These blood cells when matures in bone marrow very few enters into bloodstream. These cells that enter bloodstream are called as peripheral blood stems cells. Hematopoietic stem cells transplantation is the replacement of absent, diseased or damaged hematopoietic stem cells due to chemotherapy or radiation, with healthy hematopoietic stem cells.
Recent Development in Global Hematopoietic Stem Cell Transplantation Market:
In January 2019, Paul-Ehrlich Institute discovered important surface molecules supporting hematopoietic recovery after transplantation of blood stem cells. The protein C receptor on hematopoietic stem cell improves stem cell transplantation. Transplantation of blood stem cells (HSCTs) is an important treatment for the patients with hematopoietic disorders
Keep yourself up-to-date with latest market trends and changing dynamics due to COVID Impact and Economic Slowdown globally. Maintain a competitive edge by sizing up with available business opportunity in Hematopoietic Stem Cell Transplantation Market various segments and emerging territory.
Market Drivers
Market Trend
Market Challenges
Market Restraints:
Market Opportunities:
Region Included are: North America, Europe, Asia Pacific, Oceania, South America, Middle East & Africa
Country Level Break-Up: United States, Canada, Mexico, Brazil, Argentina, Colombia, Chile, South Africa, Nigeria, Tunisia, Morocco, Germany, United Kingdom (UK), the Netherlands, Spain, Italy, Belgium, Austria, Turkey, Russia, France, Poland, Israel, United Arab Emirates, Qatar, Saudi Arabia, China, Japan, Taiwan, South Korea, Singapore, India, Australia and New Zealand etc.
Enquire for customization in Report @: https://www.advancemarketanalytics.com/enquiry-before-buy/69543-global-hematopoietic-stem-cell-transplantation-market-1
Strategic Points Covered in Table of Content of Global Hematopoietic Stem Cell Transplantation Market:
Chapter 1: Introduction, market driving force product Objective of Study and Research Scope the Global Hematopoietic Stem Cell Transplantation market
Chapter 2: Exclusive Summary the basic information of the Global Hematopoietic Stem Cell Transplantation Market.
Chapter 3: Displaying the Market Dynamics- Drivers, Trends and Challenges of the Global Hematopoietic Stem Cell Transplantation
Chapter 4: Presenting the Global Hematopoietic Stem Cell Transplantation Market Factor Analysis Porters Five Forces, Supply/Value Chain, PESTEL analysis, Market Entropy, Patent/Trademark Analysis.
Chapter 5: Displaying the by Type, End User and Region 2013-2020
Chapter 6: Evaluating the leading manufacturers of the Global Hematopoietic Stem Cell Transplantation market which consists of its Competitive Landscape, Peer Group Analysis, BCG Matrix & Company Profile
Chapter 7: To evaluate the market by segments, by countries and by manufacturers with revenue share and sales by key countries in these various regions.
Chapter 8 & 9: Displaying the Appendix, Methodology and Data Source
Finally, Global Hematopoietic Stem Cell Transplantation Market is a valuable source of guidance for individuals and companies.
Data Sources & Methodology
The primary sources involve the industry experts from the Global Hematopoietic Stem Cell Transplantation Market including the management organizations, processing organizations, analytics service providers of the industrys value chain. All primary sources were interviewed to gather and authenticate qualitative & quantitative information and determine the future prospects.
In the extensive primary research process undertaken for this study, the primary sources Postal Surveys, telephone, Online & Face-to-Face Survey were considered to obtain and verify both qualitative and quantitative aspects of this research study. When it comes to secondary sources Companys Annual reports, press Releases, Websites, Investor Presentation, Conference Call transcripts, Webinar, Journals, Regulators, National Customs and Industry Associations were given primary weightage.
Get More Information: https://www.advancemarketanalytics.com/reports/69543-global-hematopoietic-stem-cell-transplantation-market-1
What benefits does AMA research study is going to provide?
Definitively, this report will give you an unmistakable perspective on every single reality of the market without a need to allude to some other research report or an information source. Our report will give all of you the realities about the past, present, and eventual fate of the concerned Market.
Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.
About Author:
Advance Market Analytics is Global leaders of Market Research Industry provides the quantified B2B research to Fortune 500 companies on high growth emerging opportunities which will impact more than 80% of worldwide companies revenues.
Our Analyst is tracking high growth study with detailed statistical and in-depth analysis of market trends & dynamics that provide a complete overview of the industry. We follow an extensive research methodology coupled with critical insights related industry factors and market forces to generate the best value for our clients. We Provides reliable primary and secondary data sources; our analysts and consultants derive informative and usable data suited for our clients business needs. The research study enables clients to meet varied market objectives a from global footprint expansion to supply chain optimization and from competitor profiling to M&As.
Contact Us:
Craig Francis (PR & Marketing Manager)AMA Research & Media LLPUnit No. 429, Parsonage Road Edison, NJNew Jersey USA 08837Phone: +1 (206) 317 1218[emailprotected]
Connect with us athttps://www.linkedin.com/company/advance-market-analyticshttps://www.facebook.com/AMA-Research-Media-LLP-344722399585916https://twitter.com/amareport
Gene Therapy Cure Claims Are Premature, Advocates Say – POZ
By daniellenierenberg
Journalists received not one but three announcements this week from American Gene Technologies (AGT) touting the most promising potential cure for HIV in the world. But such claims amount to unjustified hype, advocates say. The experimental therapy has not yet been tested in humans andif it worksit could be years before its ready for clinical use.
AGT just received clearance from the Food and Drug Administration (FDA) to start the first Phase I human clinical trial of its genetically modified T-cell product, dubbed AGT103-T, which the company is developing in collaboration with researchers at the National Institute of Allergy and Infectious Disease.
From its research, AGT believes a cure is attainable and is now taking the significant step of testing in humans, the company announced in a press release. Added AGT founder and CEOJeff Galvin, I am confidentAGT103-Twill be an important step toward an eventual cure for HIV.
But advocates say such claims are not only premature, they are also harmful in giving people with HIV the false impression that a cure is around the corner.
AGTs public relations strategy preys on the emotions of people living with HIV and has a deleterious effect on the understanding of the cure field overall, Seattle advocate Michael Louella told POZ. They make their outrageous comments, and these are then picked up and believed to be certain truth. Any attempt to promote a more nuanced and better-grounded understanding of gene therapy or the clinical process becomes impossible.
Although HIV can be suppressed indefinitely with combination antiretroviral therapy, it has proved exceedingly difficult to cure because a so-called reservoir of latent virus can remain hidden from the drugs in resting immune cells. Only two people appear to have been cured after bone marrow transplants from donors with HIV-resistant stem cellsa procedure far too dangerous for people who dont have life-threatening blood cancer.
Nonetheless, researchers are exploring numerous cure strategies, ranging from flushing HIV out of resting cells to genetically engineering immune cells to make them resistant to the virus. Most experts expect that a combination approach will likely be needed to maintain durable control of HIV after stopping antiretroviral therapythe definition of a functional cure.
AGTs process involves collecting immune cells from a patient and selecting those cells that target HIV antigens. A harmless lentivirus vector is then used to insert genes into the HIV-specific CD4 T cells that disable CCR5 receptorswhich most strains of HIV use to enter cellsas well as genes involved in HIV replication. The genetically modified CD4 cells are then reinfused back into the same patient in a single dose. The entire process takes 11 days.
The company said it expects the approach will provide durable control of genetically diverse strains of HIV, including those that use a different receptor (known as CXCR4) to enter cells. The experimental therapy should work to remove infected cells from the body and decrease or eliminate the need for lifelong antiretroviral treatment, AGT claims.
Another company, Sangamo BioSciences, previously reported promising results from early studies using a different gene therapy technique (a zinc finger nuclease) to edit out CCR5 receptors from T cells. Although it did not cure HIV, some study participants saw a reduction in the size of their viral reservoir and a long-term increase in CD4 counts. More recently, Chinese researcher He Jiankui used yet another technique (CRISPR-Cas9) to disable the CCR5 gene in human embryos in an effort to protect them from HIV.
AGTs approach not only uses a different gene-editing method to disable CCR5, but it also selects CD4 T cells that target HIV and protects them from destruction by the virus, thereby helping the selected cells survive and avoiding the wasted effort of modifying cells that wont attack HIV.
A recent medical journal report described preclinical studies of the approach, which showed that it is feasible to manufacture the modified HIV-specific CD4 T cells. AGT claims that in laboratory studies, the product demonstrates the ability to clear itself of HIV when challenged with the virus and HIV-infected human cells. The company has not yet reported results from studies of the experimental therapy in animals.
These findings were used to support AGTs investigational new drug application to the FDA to allow the company to proceed with a Phase I study in human volunteers, which will be conducted in Baltimore and Washington, DC. Eligible participants must have been on antiretroviral therapy for one to three years, have an undetectable viral load, have a stable CD4 count above 500 and may not have any AIDS-defining conditions.
AGT expects to enroll the first participant in September, with the first infusion of genetically modified T cells to be administered in December. The company said it expects initial data by the end of the year.
But this will be far too soon to determine whether the altered T cells persist in the body or whether they can maintain long-term viral suppression after antiretroviral therapy is discontinued.
Saying AGT believes there is a high likelihood that participants in the upcoming trial will be cured is beyond outrageous and completely undermines informed consent because its an unethical inducement to participate [in trials], Richard Jefferys of the Treatment Action Group told POZ.
And its not based on a shred of evidence. To my knowledge, theres no humanized mouse data, no macaque dataits all theory, he continued. "I would hope that they pause to reconsider their PR strategy and broaden their consultation with stakeholders, including community-based advocates.
Click here for more news about HIV cure research.
Originally posted here:
Gene Therapy Cure Claims Are Premature, Advocates Say - POZ
3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration – Science Advances
By daniellenierenberg
INTRODUCTION
In recent years, a number of growth factors have been tested in clinical trials for a variety of therapeutic applications including bone regeneration and neovascularization of ischemic tissues. Despite early promising results, the results obtained in larger phase 2 trials have often not shown the expected benefit to patients (1, 2), with some having marked adverse effects (35). The Infuse bone graft, which consists of recombinant human bone morphogenetic protein-2 (rhBMP-2) soaked onto a collagen sponge at a dosage of 1.5 mg/ml, has received Food and Drug Administration approval for certain spinal, dental, and trauma indications and is in widespread clinical use. However, major complications and adverse effects have increasingly been attributed because of the off-label use of the product (3, 4). Clinically, the current delivery vehicle for BMP-2 is a collagen powder or sponge that has been shown to result in a large initial burst release, which contrasts with the expression profile observed during normal fracture repair where BMP expression increases until day 21, suggesting a need for slower and more sustained growth factor release profile (6, 7). Furthermore, because of the short half-life of the growth factor and the harsh fracture environment (5), supraphysiological dosages of BMP-2 are being delivered to elicit bone regeneration, which has been linked to adverse effects such as heterotopic ossification. Therefore, there is a clear clinical need to develop alternative strategies to deliver single or multiple growth factors to the site of injury with sustainable and physiologically relevant dosages such that repair is induced without these adverse effects.
A number of growth factors have been shown to be expressed at different phases of fracture healing, including vascular endothelial growth factor (VEGF) and BMPs. The coupled relationship in bone healing, both physical and biochemical, between blood vessels and bone cells has long been recognized (8, 9). During fracture healing, VEGF is released directly after injury and predominately drives the formation of the fracture hematoma (9). Inhibition of VEGF has been shown to disrupt the repair of fractures and large bone defects (1012). Despite this, VEGF delivery alone is often not sufficient to heal critically sized bone defects, which may be due to suboptimal dosing or the timing of VEGF release. Furthermore, VEGF does not appear to drive progenitor cell differentiation toward the chondrogenic or osteogenic lineage; therefore, combination therapies with BMPs have been developed in an attempt to accelerate the regeneration of large bone defects (9, 1318). During normal fracture healing, VEGF expression peaks around day 5/10 (19, 20) and then decreases, whereas BMP-2 expression increases constantly until day 21, suggesting a need for delivery systems that support the early release of VEGF and the sustained release of BMP-2 (6, 7, 19, 20). To this end, composite polymer systems have been used to deliver VEGF and BMP-2 in a sequential fashion (1518). The timed release of VEGF/BMP-2 was found to enhance ectopic bone formation (1618); however, in an orthotopic defect, no significant benefit was observed (17, 18). This may be due to the high dose of VEGF used in these studies (18), which has previously been shown to disrupt osteogenesis as a result of abnormal angiogenesis and vascular structure (8), or due to suboptimal growth factor release profiles from these constructs. This suggests that novel strategies are required for delivering low-dosage VEGF and BMP-2, with tight temporal control, to enhance vascularization and subsequent bone formation in orthotopic defects. Nanoparticles such as hydroxyapatite (HA) and laponite are known to be osteoinductive and have previously been shown to facilitate the adsorption and immobilization of proteins such as VEGF and BMP-2 because of the strong attraction between the nanoparticles and the growth factor (2123). This motivates the integration of these nanoparticles into regenerative implants to enable tight temporal control over the rate at which encapsulated growth factors are released into damaged tissue.
Processes such as angiogenesis are regulated not only by the temporal presentation of growth factors but also by spatial gradients of morphogens that regulate chemotactic cell migration. Using microfluidic devices (24, 25) or three-dimensional (3D) culture models (26, 27), it has been demonstrated that endothelial cell migration is mediated by gradients in VEGF. However, it is unclear whether incorporating gradients of VEGF into tissue-engineered scaffolds will enhance angiogenesis in vivo. Here, we used emerging multiple-tool biofabrication techniques (28) to deliver VEGF and BMP-2 with distinct spatiotemporal release profiles to enhance the regeneration of critically sized bone defects. To tune the temporal release of these morphogens from 3D printed constructs, we functionalized alginate-based bioinks with different nanoparticles known to bind these regulatory factors. Both the spatial position and temporal release of growth factor from the 3D printed implant determined its therapeutic potential. By slowing the release of BMP-2, it was possible to enhance bone formation in vivo within predefined positions of the implant. Furthermore, introducing spatial gradients of VEGF into 3D printed implants enhanced vascularization in vivo compared to controls homogenously loaded with the same total amount of growth factor. We also demonstrate accelerated large bone defect healing, with minimal ectopic bone formation, using 3D printed implants containing a spatial gradient of VEGF and spatially localized BMP-2.
To produce a printable bioink, various weight concentrations of methylcellulose were first added to RGD -irradiated alginate. Print fidelity (as measured by the filament spreading ratio) improved by increasing the methylcellulose content [see fig. S1 (A and B)]; however, the capacity to print multiple layers of material worsens because of the overly adhesive nature of the ink. For these reasons, a weight concentration of 2:1 (w/w) alginate to methylcellulose was chosen for all bioinks, as it substantially increased the print fidelity while allowing multiple layers of material to be accurately deposited.
To tune the temporal release profile of growth factor (here, VEGF), clay nanoparticles (22, 23, 29) or hydroxyapatite nanoparticles (nHA) (21) were added to the alginate-methylcellulose bioink. Adding methylcellulose to the alginate to produce a printable ink significantly increased the release of VEGF compared to that observed from alginate only [see fig. S1 (C and D)]. The addition of laponite, a clay-based nanoparticle, markedly slowed the release of VEGF (see fig. S1C), while the incorporation of nHA only had a small effect on growth factor release, producing a slightly more gradual release profile (see fig. S1D). This blend (alginate, methylcellulose, and nHA) will hereafter be referred to as the vascular bioink, as it allowed for the near complete release of VEGF over 10 days, mimicking that observed during normal fracture healing (19, 20). No laponite was included in this vascular bioink.
To demonstrate the utility of this vascular bioink, two strategies were compared to print implants containing a spatial gradient of VEGF (see fig. S1E). In the first, VEGF (100 ng/ml) was printed into the central 5-mm core of constructs 8 mm in diameter and 4 mm high, with a VEGF-free bioink used to print the periphery of the construct. In the second, VEGF (80 ng/ml) was printed into the center of the construct, and VEGF (20 ng/ml) was printed around the periphery of the implant. Control constructs containing a homogenous distribution of VEGF were also printed. One hour after printing, clear spatial differences in VEGF localization were observed in both gradient constructs, while roughly the same amount of protein was detected in the core and periphery of the homogenous VEGF control (see fig. S1F). Fourteen days after printing, a spatial gradient still existed in the construct that initially had all VEGF loaded into its central region, with no gradient observed in the other groups (see fig. S1G). This demonstrates that spatial gradients of growth factor can be maintained within constructs for at least 14 days after printing.
We next sought to assess whether depositing spatial gradients of VEGF within 3D printed polycaprolactone (PCL) implants would accelerate vascularization of the constructs in vivo. To this end, Homogenous VEGF, Gradient VEGF, and No VEGF constructs were implanted subcutaneously in the back of mice (see Fig. 1A), where the total amount of growth factor (25 ng) within the two VEGF-containing implants was constant. Two weeks after implantation, histological analysis of hematoxylin and eosin (H&E)stained samples revealed the presence of vessels in the Homogenous VEGF and Gradient VEGF groups; however, there were no obvious vessels present in the No VEGF group (see Fig. 1B). These vessels appeared mature, complete with smooth muscle actin (-SMA) and von Willebrand factor (vWF)stained walls and perfused with erythrocytes (see fig. S2A). The Homogenous VEGF constructs had vessels predominantly located in the periphery of the scaffold, with little to none present within the center of the scaffold. On the other hand, vessels were present both in the periphery and in the center of the Gradient VEGF group. Four weeks after implantation, all three experimental groups had mature vessels present (see Fig. 1C and fig. S2B). Similar to the Homogeneous VEGF group, the No VEGF group had vessels predominantly located in the periphery of the constructs, with little to none present within the center of the construct. When quantified, at both 2 and 4 weeks, there were significantly more vessels present in the Gradient VEGF group compared to both the Homogenous VEGF and No VEGF group (see Fig. 1D). There was significantly more vessels present in the periphery of the Gradient VEGF constructs at both 2 and 4 weeks in vivo compared to the other two experimental groups [see Fig. 1 (E and F)]. There was also a trend toward a larger number of vessels present in the center of the Gradient VEGF construct at 4 weeks compared to No VEGF (P = 0.09) and Homogenous VEGF (P = 0.1) groups (see Fig. 1F).
(A) Schematic of the 3D printed scaffold and experimental groups. Construct design (4 mm in diameter, 5 mm in height). H&E-stained sections of the three experimental groups at (B) 2 and (C) 4 weeks in vivo. Images were taken at 20. Arrows denote vessels. (D) Total number of vessels of the experimental groups at 2 and 4 weeks in vivo. Number of vessels present in the center versus the periphery at (E) 2 and (F) 4 weeks in vivo. **P < 0.01. Error bars denote SDs (n = 8 animals; n = 5 slices per animal). FBS, fetal bovine serum; pen/strep, penicillin/streptomycin.
Recognizing that a slower and more sustained release of BMP-2 could be beneficial for promoting osteogenesis (6, 7), we next sought to compare bone formation in vivo within implants with temporally distinct growth factor release profiles. To the base alginate-methylcellulose bioink (here termed the Fast BMP-2 Release bioink), laponite at varying w/w ratios of laponite to alginate were compared to determine the optimum ratio to generate a Slow BMP-2 Release bioink (see fig. S3). As there was little difference in the growth factor release profile from the different groups, a 6:1 alginate:laponite w/w ratio was chosen to minimize the amount of laponite in the bioink. The addition of laponite markedly slowed the in vitro release of BMP-2 from the bioink, resulting in a reasonable constant release of growth factor from day 7 to day 35 (see Fig. 2C). The addition of laponite also had no significant effect on the degradation rate of the bioink (Fig. 2B).
(A) Schematic of the experimental groups. Construct design (4 mm in diameter, 5 mm in height). MEM, alpha minimum essential medium. (B) Degradation of the two bioinks. (C) Cumulative release of BMP-2 of the fast release bioink versus the slow release bioink. (D) 3D reconstructions of the CT data for each group at 8 weeks. (E) CT analysis on total mineral deposition of each of the groups after 8 weeks in vivo. (F) CT analysis on the location of mineral deposition of each of the groups after 8 weeks in vivo. ***P < 0.001; error bars denote SDs (n = 8 animals). (G) Goldners trichromestained sections of both groups after 8 weeks in vivo. Images were taken at 20. White arrows denote developing bone tissue, and black arrows denote blood vessels. (H) Quantification of the amount of new bone formation per total area. Error bars denote SDs; **P < 0.01 (n = 8 animals, n = 6 slices per animal).
To assess whether slow and sustained release of BMP-2 would enhance ectopic bone formation in vivo, Fast BMP-2 Release (laponite) and Slow BMP-2 Release (+laponite) bioinks were mixed with bone marrowderived mesenchymal stem cells (BMSCs), deposited within 3D printed scaffolds, and then implanted subcutaneously in the back of mice (see Fig. 2A). Seeding these bioinks with MSCs was used to test their potential for promoting osteogenesis in an ectopic location. BMP-2 was specifically localized around the periphery of the implant. This pattern of growth factor presentation was chosen to test the capacity of the printed implants to spatially localize bone formation in vivo (note that the geometry of the implant is the same as that which will be used in the segmental defect study below, with the BMP-2 localized to the periphery of the implant such that bone would only form along the cortical shaft of the damaged limb rather than throughout). Eight weeks after implantation, there was significantly more mineral within the Slow BMP-2 Release group compared to the Fast BMP-2 Release group [see Fig. 2 (D and E)]. Microcomputed tomography (CT) reconstructions revealed that the mineral was preferentially deposited around the periphery of the constructs where the BMP-2 was localized [see Fig. 2 (D and F)]. Histological staining further verified this finding, with positive staining for new bone seen predominantly in the periphery of both groups (see Fig. 2G, denoted by white arrows). Quantification revealed that the Slow BMP-2 Release constructs had significantly more new bone formation per total area of construct (see Fig. 2H).
We next sought to assess whether the delayed release of BMP-2 from printed constructs containing spatial gradients in VEGF would enhance angiogenesis and bone formation within critically sized bone defects. To this end, VEGF gradient only, BMP-2 gradient only, and Composite (VEGF+BMP-2 gradient) constructs were printed and implanted in a 5-mm rat femoral defect (see Fig. 3A) and compared to an empty defect.
(A) Schematic of the 3D printed experimental groups including key features of the developed bioinks and the segmental defect procedure. Construct design (4 mm in diameter, 5 mm in height). (B) CT angiography representative images of vessel diameter. Red arrows denote leaky blood vessels denoted by pools of contrast agent. Quantification on (C) total vessel volume, (D) average vessel diameter, and (E) connectivity for all groups after 2 weeks in vivo. *P < 0.05 and **P < 0.01; error bars denote SDs (n = 9 animals). (F) Immunohistochemical staining of nuclei (blue), vWF (red), and SMA (green) of the experimental groups at 2 weeks after implantation. Images were taken at 40 and 63. Yellow arrows denote vessels with SMA and vWF dual staining; white arrows denote slightly less mature vessels with only vWF positive staining.
Two weeks after implantation, CT angiography was used to quantify and visualize the early vascular network that had formed within the defect site. 3D reconstructions revealed that vascular networks had formed in all four experimental groups (see Fig. 3B). When quantified, there was a significant increase in vessel volume in the Composite group compared to the VEGF gradient group (see Fig. 3C). There was also a significant increase in average vessel thickness in the BMP-2 gradient and Composite groups compared to the VEGF gradient group (see Fig. 3D). Although there was no significant difference in the connectivity of the vessels, there was a trend (P = 0.1) toward increased connectivity in the Composite group compared to the VEGF gradient group (see Fig. 3E). 3D reconstructions also revealed the presence of primitive immature blood vessels depicted by large globules of contrast agent (denoted by the red arrows in Fig. 3B). There appeared to be fewer primitive blood vessels present in the Composite group than the other three experimental groups. This was further verified by SMA and vWF staining, which revealed a larger number of vessels with only positive vWF-stained walls in the Empty and VEGF gradient groups (see Fig. 3F, denoted by white arrows). On the other hand, there were predominately more mature vessels with SMA and vWF-stained walls in both the BMP-2 gradient and Composite groups (see Fig. 3F, denoted by yellow arrows). Note that the differences in angiogenesis seen between the VEGF gradient and Composite groups (same amount of VEGF in both groups) could at least partially be explained by looking at the VEGF release profile from both groups (see fig. S4). The addition of the osteoinductive ink around the implant periphery significantly reduced the VEGF release rate from construct into the media, with a more linear release of growth factor over time.
Two weeks after surgery, defects within the Empty group were filled with a fibrous tissue (see Fig. 4A). In contrast, positive staining for cartilage and new bone deposition was observed in the BMP-2 gradient and Composite groups, suggesting that new bone was forming at least partially via endochondral ossification. When quantified, there was a trend toward increased cartilage development (red staining in Safranin O images) in both the BMP-2 gradient (P = 0.12) and Composite (P = 0.18) groups compared to the Empty (see Fig. 4B). No significant differences in bone formation was observed between any of the groups at week 2; however, the CT reconstructions showed mineralized calluses beginning to form in the BMP-2 gradient and Composite groups, which was less evident in the Empty and VEGF gradient groups [see Fig. 4 (C and D)].
(A) H&E- and Safranin Ostained sections of all groups after 2 weeks in vivo. Images were taken at 20. DB denotes cartilage undergoing endochondral ossification to become developing bone, and B denotes positive new bone tissue. Quantification of the amount of (B) bone formation and (C) developing bone per total area. Error bars denote SDs (n = 9 animals). (D) CT reconstructed images of the defect site.
Next, CT analysis was used to visualize and quantify bone formation within the defects at 4, 8, 10, and 12 weeks after implantation. Compared to the Empty group, there were significantly higher levels of new bone formation in the Composite group as early as 8 weeks after implantation [see Fig. 5 (A and B)]. A consistent pattern of healing was observed in the Composite group, with bone forming down through the PCL scaffold framework (see Fig. 5A and fig. S5). After 10 weeks of implantation, significantly higher levels of bone formation was observed in the BMP-2 gradient and Composite groups compared to the Empty group. By 12 weeks, all three experimental groups contained significantly higher levels of new bone compared to the Empty group. Twelve weeks after implantation, bone density mapping revealed that the new bone formed in the experimental groups consisted of a dense cortical-like bone present around the periphery of defect, comparable to the adjacent native bone (1200 mg HA/cm3) (see Fig. 5C). Quantitative densitometry analysis revealed no significant difference in the average density (mg HA/cm3) of the new bone that did form between any of the groups over the 12 weeks (see Fig. 5D).
(A) Reconstructed in vivo CT analysis of bone formation in the defects. (B) Quantification of total bone volume (mm3) in the defects at each time point. (C) Representative images of CT bone densities in the defects at 12 weeks halfway through the defect (scale bar, 1 mm throughout). (D) Average bone density (mg HA/cm3) in the defects at each time point. (E) Outline of ROI bone volume analysis including definitions of core, annulus, and heterotopic regions. (F) Total bone volume (mm3) in each region at 12 weeks. **P < 0.01, ***P < 0.001, and ****P < 0.0001; error bars denote SDs (n = 9 animals).
To assess the levels of heterotopic bone formation, region of interest (ROI) bone volume analysis was performed on the week 12 reconstructions. The total bone volume was quantified in the core, annulus, and heterotopic regions of the defect (see Fig. 5E). In all three experimental groups, bone preferentially formed in the annulus of the defect, with little ectopic bone formation (see Fig. 5F). All three experimental groups had significantly higher total bone volume in the annulus of the defect compared to the Empty annulus, with the highest total bone volume present in the Composite group.
We next sought to assess the nature of new bone tissue being formed using histological staining. Goldners trichrome staining revealed predominantly fibrous tissue formation, similar to what was seen previously at 2 weeks, in the Empty group (see Fig. 6A). There was positive staining for new bone, complete with marrow cavities, in all three experimental groups at 12 weeks after implantation. When quantified, there was significantly more bone found in all three experimental groups compared to the Empty group (see Fig. 6B). There were also significantly higher amounts of bone marrow present in the Composite group compared to the Empty group (see Fig. 6C). As observed in the CT 3D reconstructions, it is clear that the bone is forming down through the PCL scaffold framework, specifically in the Composite group. Safranin O staining revealed the presence of cartilage in all three experimental groups after 12 weeks, demonstrating that bone is continuing to develop via endochondral ossification. When quantified, there was significantly more cartilage present in the Composite group compared to all other groups at this time point (see Fig. 6D).
(A) Goldners trichrome and Safranin Ostained sections of all groups after 12 weeks in vivo. Images were taken at 20. BM denotes bone marrow. PCL denotes areas where the PCL frame was. DB denotes cartilage undergoing endochondral ossification to become new bone, and B denotes positive bone tissue. Quantification of the amount of (B) bone formation, (C) bone marrow, and (D) developing bone per total area. Error bars denote SDs. *P < 0.05, **P < 0.01, and ****P < 0.0001 (n = 9 animals).
Despite the tremendous potential of growth factor delivery, the results obtained in larger clinical trials have not always shown the expected benefit to patients (2), with some studies reporting marked adverse effects (35). The reasons for this are multifaceted, from the delivery methods to the supraphysiological dosages needed to elicit a therapeutic effect and the costs and adverse effects attached to these high doses. This study presents a novel alternative approach for spatiotemporally controlled delivery of growth factors. We developed a range of nanoparticle-functionalized bioinks to precisely control the temporal release of growth factors from 3D printed implants. Using multiple tool biofabrication techniques, we were able to print constructs containing spatiotemporal gradients of growth factors, which allowed for controlled tissue regeneration without the need for supraphysiological dosages. Specifically, the appropriate patterning of VEGF enhanced angiogenesis in vivo and, when coupled with defined BMP-2 localization and release kinetics, enhanced large bone defect healing with little heterotopic bone formation.
Alginate hydrogels are commonly used for bone tissue engineering, with a number of studies demonstrating the bone regeneration potential of RGD functionalized and -irradiated alginate (3033), making it a promising base bioink for the 3D bioprinting of osteogenic implants. However, one drawback to using RGD -irradiated alginate as a bioink is its low viscosity. It is imperative when printing multilayered structures that the bioink have appropriate rheological properties to prevent collapsing or sagging of the printed structure. The addition of methylcellulose to alginate-based bioinks was found to have a significant effect on both printability and the rate of growth factor release. The addition of methylcellulose has previously been shown to substantially increase the print fidelity of an alginate base bioink (22, 34, 35), although typically using higher concentrations than the one used in this study. Adding methylcellulose also accelerated the rate of growth factor release. This was previously seen with albumin release from alginate-methylcellulose beads (36). Such a polymeric network is at least partially defined by physical entanglements between the alginate or methylcellulose chains. As methylcellulose is characterized by high swellability, when the alginate/methylcellulose bioink is exposed to the medium, it swells rapidly, resulting in accelerated growth factor release from the bioink. The addition of methylcellulose may also have neutralized the charge on the alginate, which would also influence growth factor release kinetics. In contrast, the addition of nanoparticles, and, in particular, laponite, slowed the release of growth factor from the inks. Both nHA and laponite have previously been shown to facilitate with the adsorption and immobilization of VEGF within a hydrogel due to the strong attraction between the nanoparticles and the growth factor (2123). The stronger association between growth factors and laponite can be linked to the physiochemical properties of these particles (22, 29). These disc-shaped particles [typically 25 nm in diameter and 1 nm in thickness (37)] are characterized by a highly negatively charged face and a positively charged rim (22), with a zeta potential of 61 mV (as determined by the manufacturer). This allowed the positively charged growth factors such as VEGF to form strong electrostatic bonds with the negatively charged face of the nanoparticles (22). In contrast, the nHA nanoparticles used in this study, which we have previously shown to have a zeta potential of around 5 mV (38), would form a slightly weaker electrostatic bond with the VEGF. The addition of laponite to bioinks has also previously been shown to influence their mechanical properties (37). While we did not directly assess whether the addition of laponite influenced the stiffness of our ink, we did observe that it had no effect on their degradability, and on the basis of w/w ratio used in this study, we do not believe it had marked effects on mechanical properties such as matrix stiffness. Previous studies have shown that when using high concentrations of alginate (similar to that used in this study), the addition of laponite does not markedly affect the rheological properties of the bioink (37). However, future studies should investigate the overall mechanical properties of a bioink, as this may also influence its osteogenic potential (39). A potential limitation of laponite is that the strong electrostatic bond can limit the amount of growth factor released from a delivery system in the short-medium term (22). In this study, by tuning the ratio of laponite to alginate, it was possible to engineer bioinks that released most of their loaded protein over 35 days. Therefore, using specifically selected nanoparticles, it is possible to develop bioinks that support growth factor release profiles spanning days to weeks.
Using multiple-tool biofabrication, we demonstrated that distinct growth factor gradients can be established and maintained over time and that incorporating these gradients into printed implants can enhance sprouting angiogenesis in vivo. The process of sprouting angiogenesis begins with the selection of a distinct site on the mother vessel where sprout formation is initiated. This distinct site is referred to as the tip cell, and as the new sprout elongates, branches, and connects with other sprouts, the selection process for the tip cell is constantly reiterated (40). Previous studies have shown in the early postnatal retinas that tip cell migration depends on a gradient of VEGF-A and its proliferation is regulated by its concentration (40, 41). Therefore, the increase in vessel infiltration observed in VEGF gradient implants can possibly be attributed to tip cell migration and proliferation toward the areas of high VEGF concentration (40, 41). In contrast, when VEGF was homogenously distributed within the implant, there was less of a chemotactic effect, resulting in lower levels of vessel infiltration into the center of the construct.
When this bioprinting strategy was used to deliver both growth factors within a large bone defect, there was a significant increase in vessel infiltration within implants containing both a VEGF gradient and BMP-2 compared to those containing VEGF alone. Although it has been shown that delivery of BMP-2 alone can enhance new blood vessel formation within bone defects (42, 43), previous studies have not reported a benefit to delivering both growth factors to the defect site (17, 18). The finding that the laponite-functionalized bioink around the periphery of the implant was slowing the release of VEGF from the implant may partially explain the higher levels of vessel infiltration observed within the composite implant, with the slower VEGF release profile being perhaps more conducive to angiogenesis within the orthotopic environment. Somewhat unexpectedly, despite enhancing overall levels of bone formation, VEGF delivery alone did not increase early vessel infiltration into the implant. Note that orthotopic hematomas, generated by the surgical procedure, would have provided all defects with a source of endogenous chemotactic, angiogenic, and mitogenic growth factors (17). This may have mitigated the effect that an implant containing a VEGF gradient alone had on early angiogenesis.
3D printed implants containing spatial gradients of VEGF, coupled with defined BMP-2 localization, enhanced large bone defect healing with little heterotopic bone formation. Critically, this increase in bone healing was achieved using very low concentrations of exogenous growth factors. The concentration of VEGF used in this study was substantially less (80 to 160 times less) than previous studies (17, 18). Achieving therapeutic benefits with these low concentrations of growth factors is important for multiple reasons, not least of which is the observation that high concentrations of VEGF have been previously shown to disrupt osteogenesis as the result of abnormal angiogenesis and vascular structure (8). Furthermore, the concentrations of BMP-2 used here are at least an order of magnitude lower than that used previously to repair similar sized defects in a rat femoral defect model (28, 31). Repair in these studies is typically associated with a substantial amount of heterotopic bone formation (28, 31). Directly comparing to previous work in our lab, which used a clinically relevant BMP-2 dose in the same defect model (28), the results from this study exhibited substantially less heterotrophic bone formation [10% versus 50% (28) of total bone volume]. Although we did not observe full bone bridging after 12 weeks, new bone was still being formed via the process of endochondral ossification at 12 weeks, suggesting that regeneration was still proceeding. Allowing some level of physiological loading earlier in the healing process would likely have further accelerated regeneration (44). Together, the results from this study demonstrate the potential of 3D printing morphogen gradients for controlled tissue regeneration (with minimal heterotopic bone formation) without the need of supraphysiological dosages.
The translation of tissue engineering concepts from bench to bedside is a challenging, expensive, and time-consuming process. Numerous products have not made it past phase 2 trials, as they have not shown the expected benefit in patients (1, 2), while others have been associated with marked adverse effects (35). Here, we describe a previously unidentified approach for spatiotemporally defined growth factor delivery and demonstrate a potential clinical utility in the regeneration of large bone defects or the increased vascularization of any 3D printed construct. Proof-of-concept studies in small animals established the potential of these growth factor loaded bioinks for inducing enhanced angiogenesis and bone regeneration without the need for supraphysiological dosages. The benefit of this precise localization of growth factors in both time and space is that it allows for tightly controlled angiogenesis and new tissue formation, thereby reducing off-target effects. It is envisioned that this platform technology could be applied to the controlled regeneration of numerous different tissue types.
This study was designed to test whether the delayed release of BMP-2 from bioprinted constructs containing spatial gradients in VEGF will first enhance vascularization and sequentially enhance orthotopic bone regeneration. All animal experiments were conducted in accordance with the recommendations and guidelines of The Health Products Regulatory Authority, the competent authority in Ireland responsible for the implementation of Directive 2010/63/EU on the protection of animals used for scientific purposes in accordance with the requirements of the Statutory Instrument no. 543 of 2012. Subcutaneous mouse experiments were carried out under license (AE 19136/P069), and the rat femoral defect experiments were carried out under license (AE19136/P087) approved by The Health Products Regulatory Authority and in accordance with protocols approved by the Trinity College Dublin Animal Research Ethics Committee. The n for rodent models were based on the predicted variance in the model and was powered to detect 0.05 significance. For the subcutaneous surgeries, constructs were implanted in a balanced manner, such that each group contained an implant placed at each of the subcutaneous locations and samples for both surgical procedures were randomly distributed across the operated animals. For the rat surgeries, three rats from the empty group died from unforeseen complications and so were removed from the n number at the 12-week time point. One rat from the BMP-2 gradient group at 12-week time point was also removed, as it was deemed a statistical outlier using the Grubbs test.
Lowmolecular weight sodium alginate (58,000 g/mol) was prepared by irradiating sodium alginate (196, 000 g/mol; Protanal LF 20/40, Pronova Biopolymers, Oslo, Norway) at a gamma dose of 50,000 gray, as previously described (45). RGD-modified alginate was prepared by coupling the GGGGRGDSP to the alginate using standard carbodiimide chemistry. All bioinks were prepared by dissolving the RGD -irradiated alginate in growth medium, which consisted of alpha minimum essential medium (MEM) (GlutaMAX; Gibco, Biosciences, Ireland), 10% fetal bovine serum (FBS) (EU Thermo Fisher Scientific), penicillin (100 U/ml; Sigma-Aldrich), and streptomycin (100 g/ml; Sigma-Aldrich) (pen-strep) to make up a final concentration of 3.5% (w/v).
3D bioplotter from RegenHU (3DDiscovery) was used to evaluate the printability of the generated bioinks. The printability of varying the w/w ratio (2:1, 1:1, and 1:2) of methylcellulose to alginate was evaluated by measuring the spreading ratio as previously described (39)Spreading Ratio=Printed Filament DiameterActual Needle Diameter
To establish whether increasing the viscosity of the bioink influences growth factor release, methylcellulose (Sigma-Aldrich) was also added at ratio of 1:2 (w/w) to a 3.5% alginate solution of RGD -irradiated alginate. To establish whether the addition of clay-based particles to the bioink could further tailor the growth factor release profile of the bioinks, a 3.5% RGD -irradiated alginate solution was made, and either methylcellulose (2:1) (w/w) or a combination of both methylcellulose and laponite (Laponite XLG, BYK Additives & Instruments, UK) (6:3:1) (w/w) was added.
To establish whether the addition of nHA to the alginate would facilitate the adsorption and immobilization of growth factors within the hydrogel due to their strong electrostatic attraction between nHAs, three bioinks were tested (21). nHAs were prepared following a previously described protocol (46). A 3.5% RGD -irradiated alginate solution was made, and either methylcellulose (1:2) (w/w) or a combination of methylcellulose and nHA (2:1:2) (w/w) particles was added.
For all the growth factor release studies, VEGF (100 ng/ml; Gibco Life Technologies, Gaithersburg, MD, USA) was added to the solutions using dual-syringe approach, before precross-linking with 60 mM CaSO4 to make the bioinks as previously described (39). All constructs were cultured in growth medium in normoxic conditions, and media from each sample were changed bi-weekly. For VEGF release study, medium samples were taken (days 0, 3, 5, and 10) and snap-frozen at 80C. Hydrogels were also snap-frozen at 80C on day 0 to quantify the concentration of growth factor present in the constructs directly after printing.
To demonstrate the utility of the vascular bioink, two strategies were compared to print implants containing a spatial gradient of VEGF. The vascular bioink was prepared, cross-linked with 60 mM CaSO4, and printed to generate three experimental groups: (i) Homogenous VEGF. Bioink loaded with VEGF (100 ng/ml) was used to print constructs 8 mm in diameter and 4 mm high. (ii) Gradient 1. Bioink loaded with VEGF (100 ng/ml) was used to print a central 5-mm core with a VEGF-free bioink printed around the periphery of the 8-mm-diameter construct. (iii) Gradient 2. VEGF (80 ng/ml) was printed into the core, and VEGF (20 ng/ml) was printed into the periphery. Postprinting constructs were cross-linked again in a bath of 100 mM CaCl2 for 1 min. Constructs were cultured in growth medium in normoxic conditions for 14 days in vitro. The center and periphery of each construct were separated by coring out the center from the periphery of the scaffold and then snap-frozen at 80C, 1 hour after printing, and after 14 days in vitro.
To investigate whether the addition of laponite can tailor the growth factor release profile over a long culture period, a base bioink (Fast BMP-2 Release) and a laponite bioink (Slow BMP-2 Release) were compared. For both growth factor release profiles, a dual-syringe approach was used to deliver BMP-2 (200 ng/ml; PeproTech, UK) to the solutions before precross-linking with 60 mM CaSO4 to make the bioinks. These were printed into a 100 mM CaCl2 soak agarose mold to generate final constructs of 6 mm by 6 mm high. In addition to comparing the growth factor release profile of the two bioinks, the degradation rate of the bioinks was also investigated. These scaffolds were cultured in normoxic conditions for up to 35 days and media from each sample were changed weekly. For BMP-2 release study, medium samples were taken (days 0, 5, 7, 14, 21, and 35) and snap-frozen at 80C. Printed hydrogels were also snap-frozen at 80C on day 0 to quantify the concentration of growth factor present in the constructs directly after printing. For the degradation study, samples were washed and snap-frozen at 80C and each time point (days 0, 5, 7, 14, and 21). Samples were lyophilized by placing the samples in a freeze dryer (FreeZone Triad, Labconco, Kansas City, USA). Each sample was then weighed using an analytical balance (Mettler Toledo, XS205).
An enzyme-linked immunosorbent assay was used to quantify the levels of VEGF and BMP-2 (Bio-Techne, MN, USA) released by the alginates. The alginate samples were depolymerized with 1 ml of citrate buffer (150 mM sodium chloride, 55 mM sodium citrate, and 20 mM EDTA in H2O) for 15 min at 37C. The cell culture media and depolymerized alginate samples were analyzed at the specific time points detailed above. Assays were carried out as per the manufacturers protocol and analyzed on a microplate reader at a wavelength of 450 nm.
BMSCs were obtained from the femur of a 4-month-old porcine donor as previously described (47). All expansion was conducted in normoxic conditions, expanded in growth medium where the medium was changed twice weekly. Cells were used at the end of passage 3.
A 3D bioplotter from RegenHU (3DDiscovery) was used to print all of the scaffolds. Using a 30-gauge needle, constructs of 4 mm 5 mm high with both lateral and horizontal porosity and a fiber spacing of 1.2 mm were printed with PCL (Cappa, Perstop). The printing parameters of the PCL were as follows: temperature of thermopolymer tank (69C), temperature of thermopolymer head (72C), pressure (1 bar), screw speed (30 rpm), and feed rate (3 mm/s). Scaffolds were sterilized using ethylene oxide sterilization before hydrogel printing.
For the VEGF gradient study, the vascular bioink was prepared, cross-linked with 60 mM CaSO4, and printed within the PCL framework to generate three experimental groups: (i) No VEGF, bioink not loaded with VEGF; (ii) Homogenous, bioink loaded with VEGF (100 ng/ml) deposited (25 ng per construct) throughout the construct; and (iii) Gradient, bioink loaded with VEGF (500 ng/ml) deposited in the center (25 ng per construct) and VEGF-free bioink deposited on the outside (see Fig. 1A). Postprinting constructs were cross-linked again in a bath of 100 mM CaCl2 for 1 min.
For the BMP-2 release study, both a fast and slow release bioink were prepared and using the dual syringe approach, porcine MSCs were (2 106/ml) mixed to both bioinks to have an overall seeding density of 500 105 porcine MSCs/construct before being cross-linked with 60 mM CaSO4. Both bioinks were printed within the PCL framework to generate two experimental groups: (i) Fast release, fast release bioink loaded with BMP-2 (2 g/ml; 0.5 g per construct) deposited only in the periphery with the fast release bioink not loaded with BMP-2 in the center; and (ii) Slow release, slow release bioink loaded with BMP-2 (2 g/ml; 0.5 g per construct) deposited only in the periphery with the fast release bioink not loaded with BMP-2 in the center (see Fig. 2A). Postprinting constructs were cross-linked again in a bath of 100 mM CaCl2 for 1 min.
For the rat femoral defect, the vascular bioink, the osteoinductive bioink, and a base bioink (3.5% RGD -irradiated alginate and 1.75% methylcellulose) were prepared, cross-linked with 60 mM CaSO4, and printed within the PCL framework to generate three experimental groups: (i) VEGF Gradient, the vascular bioink loaded with VEGF (500 ng/ml) in the center of the implant and base bioink in the periphery; (ii) BMP-2 gradient, the osteoinductive bioink loaded with BMP-2 (10 g/ml) in the implant periphery (2 g per construct), with the base bioink in the center; and (iii) Composite (VEGF+BMP-2), the osteoinductive bioink in the periphery with the vascular bioink in the center (see Fig. 3A). Postprinting constructs were cross-linked again in a bath of 100 mM CaCl2 for 1 min.
Subcutaneous surgeries were performed on 20 8-week-old female BALB/c OlaHsd-Foxn 1nu nude mice (12 mice for the VEGF gradient study and 8 for the BMP-2 gradient study) (Envigo, Oxon, UK) as previously described (47). Scaffolds were 3D printed the morning of surgeries and implanted that day. Constructs were implanted in a balanced manner, such that each group contained an implant placed at each of the two subcutaneous locations and samples were randomly distributed across the operated animals.
For the rat segmental surgery, 72 12-week-old F344 Fischer male rats (Envigo, Oxon, UK) were anesthetized in an induction box using a mix of isoflurane and oxygen, initially at a flow rate of isoflurane of 5 liters/min to induce, followed by ~3 liters/min to maintain anesthesia. Once anesthetized, the animal was transferred to a heating plate that was preheated to 37C and preoperative analgesia was provided by buprenorphine (0.03 mg/ml). Surgical access to the femur was achieved via an anterolateral longitudinal skin incision and separation of the hindlimb muscles, the vastus lateralis, and biceps femoris. The femoral diaphysis was exposed by circumferential elevation of attached muscles, and the periosteum was removed. Before the creation of the defect, a PEEK plate was fixed to the anterolateral femur and was held in position using a clamp. Holes were created in the femur with a surgical drill using the plate as a template. Screws were then inserted into the drill holes in the femur to maintain the fixation plate in position. A 5-mm segmental defect was created using an oscillating surgical saw under constant irrigation with sterile saline solution. In the test groups, a scaffold was placed in the defect after a thorough washout of the surgical site. In the case of the empty defect group, the gap between bone ends was left empty. Soft tissue was accurately readapted with absorbable suture material. Closure of the skin wound was achieved using suture material and tissue glue.
Eight weeks after surgery, the BMP-2 gradient scaffolds were extracted and incubated in paraformaldehyde for 24 hours before being imaged via CT scans on a MicroCT42 (Scanco Medical, Brttisellen, Switzerland) as previously described (47).
Two weeks after surgery, 24 rats underwent a vascular perfusion protocol developed by Daly et al. (28). Briefly, the rat was sacrificed using CO2 asphyxiation, and the thoracic cavity was opened to insert a 20-gauge needle through the left ventricle of the heart. The inferior cava was cut and solutions of heparin (25 U/ml), and then, phosphate-buffered saline (PBS) was perfused through the vasculature using a peristaltic pump (Masterflex, Cole-Parmer, Vernon Hills, IL, USA) until the vasculature system was completely flushed clear. A solution of 10% formalin was then perfused for 5 min. Animals received a final perfusion of 20- to 25-ml radiopaque contrast agent MICROFIL (Flow Tech, Carver, MA, USA) and were left at 4C overnight. Explants were extracted and incubated in PBS for 24 hours before being imaged via CT scans on a MicroCT42 (Scanco Medical, Brttisellen, Switzerland) at 70 kVp, 113 A, and a 10-m voxel size. The volume of interest (VOI) was determined by positioning a 5-mm circle around the cross section of the femur with an overall length of 6.26 mm. MICROFIL has the same threshold as bone mineral, and therefore, to segment perfused vasculature from mineralized tissue within each construct, two scans were analyzed: calcified construct versus decalcified construct. The calcified constructs were scanned and postprocessed using a threshold value that accurately depicted both the mineral content and the vessel volume by visual inspection of the 2D grayscale tomograms (Scanco Medical MicroCT42). Noise was removed using a low-pass Gaussian filter (sigma = 1.2, support = 2), and a global threshold of 210 was applied. Next, samples were decalcified in EDTA (15 weight %, pH 7.4) for 2 weeks with the decalcification solution replaced daily (decalcified constructs). After 2 weeks, these decalcified constructs were scanned using the same settings and postprocessed at the same threshold as the calcified constructs to determine mineral content. Mineralized tissue content was determined by subtracting the bone volume of the decalcified scans from the calcified scans. Next, the decalcified scans were postprocessed at a threshold of 99 that accurately depicted just the vessel volume upon visual inspection of the 2D grayscale tomograms.
CT scans were performed on the rats using a Scanco Medical vivaCT 80 system (Scanco Medical, Bassersdorf, Switzerland). Rats (n = 9) were scanned at 4, 8, 10, and 12 weeks after surgery to assess defect bridging and bone formation within the defect. First, anesthesia was induced in an induction box using a mix of isoflurane and oxygen, initially at a flow rate of isoflurane of 5 liters/min to induce, followed by ~3 liters/min to maintain anesthesia. Next, the rats were placed inside the vivaCT scanner, and anesthesia was maintained by isoflurane-oxygen throughout the scan. Next, a radiographic scan of the whole animal was used to isolate the rat femur. The animals femur was aligned parallel to the scanning field of view to simplify the bone volume assessments. Scans were performed using a voltage of 70 kVp and a current of 113 A. A Gaussian filter (sigma = 0.8, support = 1) was used to suppress noise, and a global threshold of 210 was applied. A voxel resolution of 35 m was used throughout. 3D evaluation was carried out on the segmented images to determine bone volume and density and to reconstruct a 3D image. Bone volume and bone density in the defects were quantified by measuring the total quantity of mineral in the central 130 slices of the defect. To differentiate regional differences in bone formation, three VOIs were created. Concentric 2 mm, 4 mm, and 10 mm were aligned with the defect and used to encompass bone formation. The VOIs were aligned using untreated native bone along the femur. The core bone volume was quantified from the inner 2-mm VOI. The annular bone volume was quantified by subtracting the 2-mm VOI from the 4-mm VOI. Ectopic bone volume was quantified by subtracting the 4-mm VOI from the 10-mm VOI. The bone volume percentages for each region were then calculated by dividing the corresponding bone volume (i.e., bone volume in the annulus) by the total bone volume in the defect. The bone volume and densities were then quantified using scripts provided by Scanco.
For segmental defect samples, all constructs that were not being processed for vascular-CT imaging, were decalcified in Decalcifying Solution-Lite (Sigma-Aldrich) for 1 week before tissue processing. Once decalcified, all samples were dehydrated and embedded in paraffin using an automatic tissue processor (Leica ASP300, Leica). All samples were sectioned with a thickness of 8 m using a rotary microtome (Leica Microtome RM2235, Leica). Sections were stained with H&E for vessel infiltration, Safranin O to assess sulphated glycosaminoglycans (sGAG) content, and Goldners trichrome for bone formation. Quantitative analysis was performed on multiple H&E-stained slices, whereby vessels (positive staining for endothelium and erythrocytes present within the lumen), were counted on separate sections taken throughout each construct and averaged for each construct. Safranin O sections were evaluated for new developing bone (positive sGAG content). Massons trichromestained sections were evaluated for new bone formation. The percentage of developing bone, new bone, and marrow per total area of construct was measured in separate sections with the Deconvolution ImageJ plugin.
Immunofluorescence analysis was used to detect -SMA and vWF as previously described (47). Briefly, following blocking step, sections were then incubated overnight at +4C with goat polyclonal -SMA (1:250; ab21027, Abcam) in PBS with 3% of donkey serum (w/v) and 1% bovine serum albumin (BSA). After three washing steps with PBS containing 1% w/v BSA, the sections were incubated with Alexa Fluor 488 donkey anti-goat secondary antibody (1:200; ab150129, Abcam) for 1 hour at room temperature in the dark. The samples were washed three times in PBS with 1% w/v BSA, and the slides were then incubated overnight at +4C with rabbit polyclonal vWF antibody (1:200; ab6994, Abcam) in PBS with 3% of donkey serum (w/v) and 1% BSA (all from Sigma-Aldrich). After three washing steps with PBS and 1% w/v BSA, the sections were incubated with Alexa Fluor 647 donkey anti-rabbit secondary antibody (1:200; ab150075, Abcam) for 1 hour at room temperature in the dark. Last, samples were washed three times with PBS and 1% w/v BSA, and the sections were mounted using 4,6-diamidino-2-phenylindole mounting media (Sigma-Aldrich). Fluorescence emission was detected using a confocal laser scanning microscopy (Olympus FluoView 1000).
Results were expressed as means SD. Statistics was performed using the following variables: (i) When there were two groups and one time point, a standard two-tailed t test was performed. (ii) When there were more than two groups and one time point, a one-way analysis of variance (ANOVA) was performed. (iii) When there were more than two groups and multiple time points, a two-way ANOVA was performed. All analyses were performed using GraphPad (GraphPad Software, La Jolla, CA, USA; http://www.graphpad.com). For all comparisons, the level of significance was P 0.05.
Acknowledgments: We thank the staff at the Bioresources Unit in Trinity College Dublin for veterinary assistance and technical support. Funding: This publication has emanated from research supported by a research grant from the European Research Council (ERC) under grant no. 647004, the Irish Research Council (GOIPD/2016/324), and NIHs NIAMS grant R01AR063194. Author contributions: F.E.F. was responsible for technical design, development of bioinks, performing all animal surgeries, performing vessel perfusion, all CT scans, data interpretation, histological analysis, and drafting the paper. P.P. assisted with the rat surgeries and assisted with the vessel perfusions. L.H.A.v.D. assisted with CT analyses and CT scans. J.N. and D.C.B. assisted with all animal surgeries. J.-Y.S. and E.A. developed the RGD -irradiated alginate. D.J.K. conceived and helped design the experiments, oversaw the collection of results and data interpretation, and finalized the paper. Competing interests: Research undertaken in the laboratory of D.J.K. at Trinity College Dublin is part-funded by Johnson & Johnson. The authors declare no other competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.
Read this article:
3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration - Science Advances
Chicago mom of 4 donates bone marrow to 7-year-old boy she doesn’t know. ‘You just want to protect them.’ – Herald & Review
By daniellenierenberg
"You start to feel like there's this temptation of fate," she said. "Once your allusion of permanence is shattered, you feel like anything could happen."
But it was exactly this that made her want to go through with it. After planning so many funerals, going to the hospital to give bone marrow that would help a young boy and his family seemed the right thing to do.
Losing time with her own relatives made her adamant about the ability to help give more time to someone else.
In June, she underwent physical tests and surgery to extract the bone marrow. She felt mostly OK like she had fallen on ice and "got out of laundry for a few days." She knows she can't speak for all donors, but for her, it was a fairly swift recovery.
She thought of the child's family. She remembered her four children at age 7.
"I remember how little they were," she said. "You just want to protect them."
She doesn't know anything more about the boy, and DMKS can't release more information because of privacy laws. His family can reach out to her, but Leone says she's not expecting any communication because she is sure they have plenty going on with him undergoing treatment.
But she isn't seeking gratitude. In fact, she feels she has been given a gift. The thought that perhaps she is able to help is a bright spot in a tough year.
Go here to see the original:
Chicago mom of 4 donates bone marrow to 7-year-old boy she doesn't know. 'You just want to protect them.' - Herald & Review
Stem Cell Therapy Market Size by Top Companies, Regions, Types and Application, End Users and Forecast to 2027 – Bulletin Line
By daniellenierenberg
New Jersey, United States,- Verified Market Researchhas recently published an extensive report on the Stem Cell Therapy Market to its ever-expanding research database. The report provides an in-depth analysis of the market size, growth, and share of the Stem Cell Therapy Market and the leading companies associated with it. The report also discusses technologies, product developments, key trends, market drivers and restraints, challenges, and opportunities. It provides an accurate forecast until 2027. The research report is examined and validated by industry professionals and experts.
The report also explores the impact of the COVID-19 pandemic on the segments of the Stem Cell Therapy market and its global scenario. The report analyzes the changing dynamics of the market owing to the pandemic and subsequent regulatory policies and social restrictions. The report also analyses the present and future impact of the pandemic and provides an insight into the post-COVID-19 scenario of the market.
Global Stem Cell Therapy Market was valued at USD 117.66 million in 2019 and is projected to reach USD 255.37 million by 2027, growing at a CAGR of 10.97% from 2020 to 2027.
The report further studies potential alliances such as mergers, acquisitions, joint ventures, product launches, collaborations, and partnerships of the key players and new entrants. The report also studies any development in products, R&D advancements, manufacturing updates, and product research undertaken by the companies.
Leading Key players of Stem Cell Therapy Market are:
Competitive Landscape of the Stem Cell Therapy Market:
The market for the Stem Cell Therapy industry is extremely competitive, with several major players and small scale industries. Adoption of advanced technology and development in production are expected to play a vital role in the growth of the industry. The report also covers their mergers and acquisitions, collaborations, joint ventures, partnerships, product launches, and agreements undertaken in order to gain a substantial market size and a global position.
1.Stem Cell Therapy Market, By Cell Source:
Adipose Tissue-Derived Mesenchymal Stem Cells Bone Marrow-Derived Mesenchymal Stem Cells Cord Blood/Embryonic Stem Cells Other Cell Sources
2.Stem Cell Therapy Market, By Therapeutic Application:
Musculoskeletal Disorders Wounds and Injuries Cardiovascular Diseases Surgeries Gastrointestinal Diseases Other Applications
3.Stem Cell Therapy Market, By Type:
Allogeneic Stem Cell Therapy Market, By Application Musculoskeletal Disorders Wounds and Injuries Surgeries Acute Graft-Versus-Host Disease (AGVHD) Other Applications Autologous Stem Cell Therapy Market, By Application Cardiovascular Diseases Wounds and Injuries Gastrointestinal Diseases Other Applications
Regional Analysis of Stem Cell Therapy Market:
A brief overview of the regional landscape:
From a geographical perspective, the Stem Cell Therapy Market is partitioned into
North Americao U.S.o Canadao MexicoEuropeo Germanyo UKo Franceo Rest of EuropeAsia Pacifico Chinao Japano Indiao Rest of Asia PacificRest of the World
Key coverage of the report:
Other important inclusions in Stem Cell Therapy Market:
About us:
Verified Market Research is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.
Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.
Contact us:
Mr. Edwyne Fernandes
US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll-Free: +1 (800)-7821768
Email: [emailprotected]
See the article here:
Stem Cell Therapy Market Size by Top Companies, Regions, Types and Application, End Users and Forecast to 2027 - Bulletin Line
Novel CAR T-Cell Therapy Shows Promise in Advanced Hodgkin Lymphoma – Curetoday.com
By daniellenierenberg
Unlike other CAR T-cell therapies, clinical success was not associated with significant complications from therapy, said Dr. Jonathan Serody. This means this treatment should be available to patients in a clinic setting and would not require patients to be hospitalized, which is critical in our current environment.
Results from the parallel phase 1 and phase 2 studies also demonstrated that the CAR T-cell therapy was safe and did not produce any serious or severe side effects.
Researchers from the UNC Lineberger Comprehensive Cancer Center and Baylor College of Medicine administered anti-CD30 CAR T cells to 41 patients with relapsed or refractory Hodgkin lymphoma. All patients underwent lymphodepletion with bendamustine alone, bendamustine and fludarabine, or cyclophosphamide and fludarabine prior to the anti-CD30 CAR T-cell therapy.
Measuring safety was the primary goal of the two parallel studies.
The overall response rate, or the percentage of partial or complete responses to therapy, among 37 evaluable patients was 62%. Thirty-four of the patients received fludarabine-based lymphodepletion 17 of which received it with bendamustine, and the other half received it with cyclophosphamide. Two of these patients were considered to be complete response at infusion and maintained the response, so they were not included in final analysis.
The overall response rate among the remaining patients was 72%, with 59% of patients achieving a complete response. After a median follow-up of 533 days, researchers identified the one-year progression free survival rate to be 36% and the one-year overall survival rate to be 94%.
This is particularly exciting because the majority of these patients had lymphomas that had not responded well to other powerful new therapies, said senior study author Dr. Barbara Savoldo, professor in the Department of Microbiology and Immunology at the UNC School of Medicine, in a press release.Patients within the study had received a median of seven previous lines of therapy that included checkpoint inhibitors and autologous or allogeneic stem cell therapies, therapies known to be powerful but also tend to come with a host of side effects.
However, treatment with the anti-CD30 CART cells demonstrated a favorable safety profile. Although 10 patients developed cytokine release syndrome, all cases were considered minor.
Patients who received fludarabine-containing lymphodepletion were the only participants in the study to have a response to the anti-CD30 CAR T-cell therapy.
Although CD30 CAR T (cells) showed modest activity in (Hodgkin lymphoma) when infused without lymphodepletion, robust clinical responses were achieved when these cells were infused in hosts lymphodepleted with fludarabine-containing regimens, the authors wrote.
The activity of this new therapy is quite remarkable and while we need to confirm these findings in a larger study, this treatment potentially offers a new approach for patients who currently have very limited options to treat their cancer, said Dr. Jonathan Serody, director of the bone marrow transplant and cellular therapy program at UNC Lineberger Comprehensive Cancer Center, in the release. Additionally, unlike other CAR T-cell therapies, clinical success was not associated with significant complications from therapy. This means this treatment should be available to patients in a clinic setting and would not require patients to be hospitalized, which is critical in our current environment.
Follow this link:
Novel CAR T-Cell Therapy Shows Promise in Advanced Hodgkin Lymphoma - Curetoday.com
Jakafi May Offer Survival Benefit in Subset of Patients with Myelofibrosis – Curetoday.com
By daniellenierenberg
Jakafi may offer a survival benefit for patients with myelofibrosis and an increased number of circulating blasts, a recent study found.
While the presence of circulation blasts in the blood is considered an important factor in patient prognosis, the impact of bone marrow blasts on survival is not as well defined. To better understand the connection between the amount of blasts found in the blood and bone marrow together, all in regard to patient prognosis, researchers performed a retrospective analysis of 1,316 patients with myelofibrosis, a type of myeloproliferative neoplasm (MPN).
These patients (median age, 66 years), who all presented to the University of Texas MD Anderson Cancer Center in Houston, Texas, from July 1984 and 2018, had to have available circulation blasts in the blood and bone marrow percentages to be included in the analysis. Survival was noted as the time from the date of referral to the date of last follow-up or death, whichever came first. The median follow-up was 27 months.
Among the total, 700 (53%) had 0% circulation blasts in the blood and less than 5% had bone marrow blasts. Of the remaining patients who had 1% or greater circulation blasts in the blood, the range was as follows:
The researchers also found that higher percentages of circulating blasts in the blood had a negative correlation with hemoglobin and platelets, but a positive correlation with white blood cells, age and the presence of symptoms, among other factors.
Out of the total group, 523 patients (44%) received the JAK1/JAK2 inhibitor Jakafi. The authors noted that patients who received this treatment and also had 10% or less blasts, regardless of whether they were in the blood or bone marrow, saw a superior overall survival rate compared to those with similar disease features who did not receive Jakafi.
The studys authors went on to conclude that patients who have circulating blasts in the blood of 4% or more have an unfavorable prognosis; however, Jakafi offers a significant survival benefit to patients with circulating blasts in the blood of 10% or less, making a combination approach to treatment vital in improving the outcomes of patients with myelofibrosis.
Go here to see the original:
Jakafi May Offer Survival Benefit in Subset of Patients with Myelofibrosis - Curetoday.com
Covid-19 Impact: Patients with aplastic anemia at receiving end – Daily Pioneer
By daniellenierenberg
Poverty, Government apathy and Covid-19 induced-lockdown restricting travel proved fatal for little Kishan, a 11-year-old boy suffering from Aplastic anemia, a life-threatening blood disorder condition in which the bone marrow and stem cells do not produce enough blood cells
Facing severe financial constraints and waiting timely medical aid, first at Safdarjung Hospital and then AIIMS, both Government hospitals in Delhi, Kishans life was cut short in March this year amid Covid-19 pandemic.
However, Kishans is not a lone case. Dr Nita Radhakrishnan, paediatric haemato-oncologist at Super Speciality Paediatric Hospital, Noida, Uttar Pradesh says that as the deadly Coronavirus captured the attention of the nation in the most unprecedented manner, the non-Covid patients particularly those with the Aplastic anemia have suffered the most in the crisis.
She gave instances of her two teenage patients who succumbed to blood disorder in the Covid catastrophe. Manish (name change), a 17-year-old was suffering with on-and-off fever, gum bleeding, and melena for three months, he came to us in December last year just when Coronavirus had started spreading its tentacles from China to other parts of the world.
The boy was diagnosed with severe Aplastic anemia and was recommended requisite treatment like regular hospital visit for red cell transfusion before he could be given bone marrow transplant (BMT), a life saving treatment.
However, while the family was not able to visit our hospital in Noida due to the covid-lockdown, no blood products were available at the hospital near to the patients locality. In want of blood, Manish could not survive more days.
13-year-old Suresh (name change) too faced similar fate. While Government funds could not be sanctioned for his BMT in time the boy could not visit the Noida hospital for further follow-up due to travel restrictions. Two weeks later, Suresh died due to hemorrhage at his native place, lamented the doctor.
These are just two reported cases from the NCR hospital located near the countrys capital. Several have gone unreported. The Government has no policy nor any long-term plan for such patients.
The prognosis of severe aplastic anemia in our country is dismal. The incidence of 46 per million population of childhood aplastic anemia in India and other Asian countries is higher than what is observed in the West, explains Dr Radhakrishnan. The scenario is gloomy for the patients afflicted with the disease as they need blood transfusion almost every 20 days.
A significant proportion of patients of aplastic anemia (around 30 per cent) die before any definitive treatment is initiated. A study by AIIMS based on a recent series of patients follow-up showed that out of 1501 patients diagnosed over last seven years, only 303 ie 20 per cent received the definitive treatment modalities through either BMT or IST with ATG and cyclosporine, says Dr Radhakrishnan in her case report Aplastic anemia: Non-COVID casualties in the Covid-19 era, published in the latest edition of Indian Journal of Palliative Care.
The doctors have sought urgent intervention. Dr Radhakrishnan says that as we await the peak of Covid-19 in our country and possibly secondary and tertiary waves thereafter, patients with aplastic anemia who are the sickest among all hematological illnesses would benefit greatly from urgent intervention from the Government to ensure timely treatment.
Those suffering with Aplastic anemia, there is mostly delay in diagnosis, delay in initiation of treatment due to monetary constraints, non-inclusion of the disease under government schemes such as Ayushman Bharat and NHM and delay in sanction of money from other Government schemes such as Rashtriya Arogya Nidhi, Chief Minister and Prime Ministers relief fund often due to lack of proper documents, she added.
Delay means, risk of contracting fungal infections and increase in drug-resistant bacterial infections increase which further hamper the treatment, point out Dr Ravi Shankar and Dr Savitri Singh in the study.
Though the Union Health Ministry, after few days of lockdown period, issued directions for continuing treatment for essential health services including reproductive and maternal health services, newborn care, severe malnutrition, and NCDs including cancer care, palliative care, dialysis, and care of disabled, unfortunately those with Aplastic anemia got ignored.
This despite of the fact that these patients are at the highest risk of death following a break in the treatment of few weeks, notes Dr Radhakrishnan.
Because of the closure of offices and absence of staff, during the lockdown period, there was delay in sanction of usual grants due to the lockdown of offices and inability in generating documents such as income certificate from the tehsils.
For instance, Suresh and Manish, both our patients received the Government grant after around 34 months of applying for the same. But both had died before they could reach the hospital for treatment, lamented the hematologist.
View post:
Covid-19 Impact: Patients with aplastic anemia at receiving end - Daily Pioneer