Recovering from Cancer, a Stem Cell Transplant and Coronavirus – Cancer Health Treatment News
By daniellenierenberg
Dana-Farber Patient Recovering Well After Cancer and the Coronavirus
Pam Dobay is a warrior. In the last three years, the 67-year-old has dealt with a cancer diagnosis and stem cell transplant before recently contracting the coronavirus.
None of it was easy, but today, Dobay is recovering at home. She says she cannot begin to express the gratitude she feels towards everyone who has cared for her, including her Dana-Farber care team and her family.
When this is all over, I want to show everyone at Dana-Farber what they did, and thank them for everything, says Dobay.
A Blood Cancer Diagnosis
In February 2018, Dobay was diagnosed with myelofibrosis, a blood disorder in which the bone marrow is unable to produce healthy red blood cells. Dobays primary care physician first worried something wasnt right after her test results from routine blood work came back abnormal. Myelofibrosis is a precursor condition for leukemia, meaning it puts those who are diagnosed at a much higher chance of developing the disease.
Dobay, who lives in Holbrook, MA, was placed under the care ofCorey Cutler, MD, MPH, medical director of theAdult Stem Cell Transplantation Programat Dana-Farber/Brigham and Womens Cancer Center. Initially, she was given blood transfusions to help her body compensate for the bone marrows inability to produce red blood cells. This treatment is not designed to be a permanent fix, despite being highly effective for a short period of time: Eventually, Dobay would need a bone marrow transplant.
In September 2018, just six months after her diagnosis, Dobay underwent areduced-intensity transplant(sometimes referred to as a mini-transplant). Mini-transplant patients receive lower doses of chemotherapy than are used in a full-intensity transplant, and in general, receive no radiation therapy. The reduced-intensity procedure was developed for older patients and others who often cant tolerate the harsh side effects of full-intensity treatments.
The procedure still proved to be difficult for Dobay, who ended up in the intensive care unit (ICU) due to complications. This was a possibility her care team had prepared for, and slowly, her condition improved. While she still has some symptoms of chronic graft-versus-host disease (GVHD), she and her family including Robert Dobay, her husband of 45 years hoped this would be her toughest test.
This article was originally published on June 18, 2020, by Dana-Farber Cancer Institute. It is republished with permission.
View original post here:
Recovering from Cancer, a Stem Cell Transplant and Coronavirus - Cancer Health Treatment News
Cell Therapy Manufacturing Market: Opportunities Forecast and Value Chain 2020-2030 – 3rd Watch News
By daniellenierenberg
The Cell Therapy Manufacturing Market Research Report 2020 published by Prophecy Market Insights is an all-inclusive business research study on the current state of the industry which analyzes innovative strategies for business growth and describes significant factors such as top developers/manufacturers, production value, key regions, and growth rate. Impact of Covid-19 pandemic on the market will be completely analyzed in this report and it will also quantify the impact of this pandemic on the market.
The research study encompasses an evaluation of the market, including growth rate, current scenario, and volume inflation prospects, based on DROT and Porters Five Forces analyses. The market study pitches light on the various factors that are projected to impact the overall market dynamics of the Cell Therapy Manufacturing market over the forecast period (2019-2029).
Regional Overview:
The survey report includes a vast investigation of the geographical scene of the Cell Therapy Manufacturing market, which is manifestly arranged into the localities. The report provides an analysis of regional market players operating in the specific market and outcomes related to the target market for more than 20 countries.
Australia, New Zealand, Rest of Asia-Pacific
The facts and data are represented in the Cell Therapy Manufacturing report using graphs, pie charts, tables, figures and graphical representations helping analyze worldwide key trends & statistics on the state of the industry and is a valuable source of guidance and direction for companies and individuals interested in the market.
Get Sample Copy of This Report @ https://www.prophecymarketinsights.com/market_insight/Insight/request-sample/21
The research report also focuses on global major leading industry players of Cell Therapy Manufacturing market report providing information such as company profiles, product picture and specification, R&D developments, distribution & production capacity, distribution channels, price, cost, revenue and contact information. The research report examines, legal policies, and competitive analysis between the leading and emerging and upcoming market trends.
Cell Therapy ManufacturingMarket Key Companies:
harmicell, Merck Group, Dickinson and Company, Thermo Fisher, Lonza Group, Miltenyi Biotec GmBH, Takara Bio Group, STEMCELL Technologies, Cellular Dynamics International, Becton, Osiris Therapeutics, Bio-Rad Laboratories, Inc., Anterogen, MEDIPOST, Holostem Terapie Avanazate, Pluristem Therapeutics, Brammer Bio, CELLforCURE, Gene Therapy Catapult EUFETS, MaSTherCell, PharmaCell, Cognate BioServices and WuXi AppTec.
The predictions mentioned in the Cell Therapy Manufacturing market report have been derived using proven research techniques, assumptions and methodologies. This market report states the overview, historical data along with size, share, growth, demand, and revenue of the global industry.
Segmentation Overview:
The report provides an in-depth analysis of the Cell Therapy Manufacturing market segments and highlights the latest trending segment and major innovations in the market. In addition to this, it states the impact of these segments on the growth of the market. Apart from key players analysis provoking business-related decisions that are usually backed by prevalent market conditions, we also do substantial analysis of market based on COVID-19 impact, detailed analysis on economic, health and financial structure.
Request Discount @ https://www.prophecymarketinsights.com/market_insight/Insight/request-discount/21
Key Questions Answered in Report:
Stakeholders Benefit:
Get In-depth TOC @ https://www.prophecymarketinsights.com/market_insight/Global-Cell-Therapy-Manufacturing-Market-21
About us:
Prophecy Market Insights is specialized market research, analytics, marketing/business strategy, and solutions that offers strategic and tactical support to clients for making well-informed business decisions and to identify and achieve high-value opportunities in the target business area. We also help our clients to address business challenges and provide the best possible solutions to overcome them and transform their business.
Contact Us:
Mr Alex (Sales Manager)
Prophecy Market Insights
Phone: +1 860 531 2701
Email: [emailprotected]
VISIT MY BLOG:- https://medium.com/@varshashirode0000/global-blockchain-in-genomics-market-trends-analysis-and-forecast-till-2029-3f92b8bdc622
Read the original post:
Cell Therapy Manufacturing Market: Opportunities Forecast and Value Chain 2020-2030 - 3rd Watch News
5-year-old Thai boy with COVID-19 saves sisters life with his stem cells – Yahoo Singapore News
By daniellenierenberg
One day before Sila Jio Boonklomjit was set to donate desperately needed stem cells to save his sisters life, doctors made an alarming discovery: Hed contracted COVID-19.
The 5-year-old COVID-19 patient is now being credited with saving his big sisters life by going through with an experimental procedure to cure her of a genetic blood disorder without passing along the coronavirus.
Saying it was the first known case of such a procedure, Ramathibodi Hospital claimed victory yesterday after successfully transplanting bone marrow from Jio to his sister, Jintanakan Jean Boonklomjit, who was born with thalassemia and was in a severe condition.
Its as if my daughter is reborn and gets a new life, said the childrens father, Suchai Boonklomjit.
Thalassemia is a hereditary disorder that limits the bloods ability to carry oxygen and affects an estimated 1% of all Thais. Rather than being treated by ongoing blood transfusions, recent breakthroughs have shown it can be cured through gene therapy.
The procedure began in April but wasnt completed until yesterday by Suradej Hongeng of the hospitals pediatrics department.
Posted by onTuesday, June 23, 2020
According to Suradej, it was a long and uncertain road to this happy outcome. It had been difficult to find a donor compatible with Jean, leading them to settle on Jio as her best hope. After they were confirmed to be a genetic match in 2018, they prepared for the transplantation procedure.
Other difficulties followed, in part due to the young age of both patients. Moreover, Jeans immune system was compromised by chemotherapy while Jio had to be placed in quarantine on the eve of the procedure. Doctors believe he was likely infected by his mother, Sasiwimol Boonklomjit.
The case is believed to be the first successful stem cell transplant from a donor with active COVID-19. Both Jio and his mother have since recovered from the virus.
Read more of Coconuts Bangkoks content here.
This article, 5-year-old Thai boy with COVID-19 saves sisters life with his stem cells, originally appeared on Coconuts, Asia's leading alternative media company. Want more Coconuts? Sign up for our newsletters!
Read more:
5-year-old Thai boy with COVID-19 saves sisters life with his stem cells - Yahoo Singapore News
Hematopoietic Stem Cell Transplantation (HSCT) Market Expand Their Businesses With New Investments In 2020 And Coming Future – Bulletin Line
By daniellenierenberg
Hematopoietic Stem Cell Transplantation (HSCT) Market report provides (6 Year Forecast 2020-2026) including detailed Coronavirus (COVID-19) impact analysis on Market Size, Regional and Country-Level Market Size, Segmentation Market Growth, Market Share, Competitive Landscape, Sales Analysis and Value Chain Optimization. This Hematopoietic Stem Cell Transplantation (HSCT) market competitive landscape offers details by topmost key manufactures (Regen Biopharma Inc, China Cord Blood Corp, CBR Systems Inc, Escape Therapeutics Inc, Cryo-Save AG, Lonza Group Ltd, Pluristem Therapeutics Inc, ViaCord Inc) including Company Overview, Company Total Revenue (Financials), Market Potential, Presence, Hematopoietic Stem Cell Transplantation (HSCT) industry Sales and Revenue Generated, Market Share, Price, Production Sites and Facilities, SWOT Analysis, Product Launch. For the period 2014-2020, this study provides the Hematopoietic Stem Cell Transplantation (HSCT) sales, revenue and market share for each player covered in this report.
Key Target Audience of Hematopoietic Stem Cell Transplantation (HSCT) Market: Manufacturers of Hematopoietic Stem Cell Transplantation (HSCT), Raw material suppliers, Market research and consulting firms, Government bodies such as regulating authorities and policy makers, Organizations, forums and alliances related to Hematopoietic Stem Cell Transplantation (HSCT) market.
Get Free Sample PDF (including COVID-19 Impact Analysis, full TOC, Tables and Figures)of Hematopoietic Stem Cell Transplantation (HSCT)[emailprotected]https://www.researchmoz.us/enquiry.php?type=S&repid=2276986
Synopsis of Hematopoietic Stem Cell Transplantation (HSCT) Market:In 2019, the market size of Hematopoietic Stem Cell Transplantation (HSCT) is million US$ and it will reach million US$ in 2025, growing at a CAGR of from 2019; while in China, the market size is valued at xx million US$ and will increase to xx million US$ in 2025, with a CAGR of xx% during forecast period.
In this report, 2018 has been considered as the base year and 2019 to 2025 as the forecast period to estimate the market size for Hematopoietic Stem Cell Transplantation (HSCT).
Based onProduct Type, Hematopoietic Stem Cell Transplantation (HSCT) market report displays the manufacture, profits, value, and market segment and growth rate of each type, covers:
Allogeneic Autologous
Based onend users/applications, Hematopoietic Stem Cell Transplantation (HSCT) market report focuses on the status and outlook for major applications/end users, sales volume, market share and growth rate for each application, this can be divided into:
Peripheral Blood Stem Cells Transplant (PBSCT) Bone Marrow Transplant (BMT) Cord Blood Transplant (CBT)
Hematopoietic Stem Cell Transplantation (HSCT) Market: Regional analysis includes:
Do You Have Any Query Or Specific Requirement? Ask to Our Industry[emailprotected]https://www.researchmoz.us/enquiry.php?type=E&repid=2276986
The Hematopoietic Stem Cell Transplantation (HSCT) Market Report Can Answer The Following Questions:
What are the Upstream Raw Materials And Manufacturing Equipment of Hematopoietic Stem Cell Transplantation (HSCT)? What is the manufacturing process of Hematopoietic Stem Cell Transplantation (HSCT)?
Who are the key manufacturers of Hematopoietic Stem Cell Transplantation (HSCT) market? How are their operating situation (Capacity, Production, Price, Cost, Gross and Revenue)?
Economic impact on Hematopoietic Stem Cell Transplantation (HSCT) industry and development trend of Hematopoietic Stem Cell Transplantation (HSCT) industry.
What is the (North America, South America, Europe, Africa, Middle East, Asia, China, Japan) Production, Production Value, Consumption, Consumption Value, Import And Export of Hematopoietic Stem Cell Transplantation (HSCT)?
What will the Hematopoietic Stem Cell Transplantation (HSCT) Market Size and The Growth Rate be in 2026?
What are the key market trends impacting the growth of the Hematopoietic Stem Cell Transplantation (HSCT) market?
What are the Hematopoietic Stem Cell Transplantation (HSCT) Market Challenges to market growth?
What are the types and applications of Hematopoietic Stem Cell Transplantation (HSCT)? What is the market share of each type and application?
What are the key factors driving the Hematopoietic Stem Cell Transplantation (HSCT) market?
What are the Hematopoietic Stem Cell Transplantation (HSCT) market opportunities and threats faced by the vendors in the Hematopoietic Stem Cell Transplantation (HSCT) market?
Contact:
ResearchMozMr. Rohit Bhisey,Tel: +1-518-621-2074USA-Canada Toll Free: 866-997-4948Email:[emailprotected]
Browse More Reports Visit @https://www.mytradeinsight.blogspot.com/
Read the original post:
Hematopoietic Stem Cell Transplantation (HSCT) Market Expand Their Businesses With New Investments In 2020 And Coming Future - Bulletin Line
Should You Delay Cancer Treatment Because of COVID-19? Study Says Most Treatments Dont Worsen Coronavirus Infection – On Cancer – Memorial Sloan…
By daniellenierenberg
Summary
A review of 423 patients treated at MSK finds that most people with cancer dont fare any worse if they get COVID-19 than other people who are hospitalized for that infection.
In the early days of the COVID-19 pandemic, many doctors worried that people undergoing treatment for cancer would do particularly poorly if they became infected with the virus that causes the disease. Thats because treatments for cancer, especially chemotherapy, can lower a persons immune defenses and put them at higher risk for all kinds of infections.
But according to a new study from Memorial Sloan Kettering published June 24 in Nature Medicine, most people in active cancer treatment dont fare any worse if they get COVID-19 than other people who are hospitalized with the infection. Further research is needed to look at the effects of certain drugs mainly immunotherapies called checkpoint inhibitors, which did seem to make COVID-19 worse. But the researchers say their findings suggest that no one should delay cancer treatment because of concerns about the virus.
If youre an oncologist and youre trying to figure out whether to give patients chemotherapy, or if youre a patient who needs treatment, these findings should be very reassuring, says infectious disease specialist Ying Taur, one of the studys two senior authors.
Infectious disease expert Ying Taur has cared for many MSK patients who were hospitalized with COVID-19.
The study looked at 423 MSK patients diagnosed with COVID-19 between March 10 and April 7, 2020. Overall, 40% were hospitalized for COVID-19, and 20% developed severe respiratory illness. About 9% had to be placed on a mechanical ventilator, and 12% died. The investigators found that patients taking immunotherapy drugs called immune checkpoint inhibitors were more likely to develop severe disease and require hospitalization. But other cancer treatments, including chemotherapy and surgery, did not contribute to worse outcomes.
The big message now is clear: People should stay vigilant but not stop or postpone checkpoint immunotherapy or any other cancer treatment.
Factors that did make COVID-19 worse were the same as those seen in studies of people who didnt have cancer. We found that being older, as well as preexisting conditions like heart disease and diabetes, are all drivers of severe COVID-19 illness, says MSK Chief Medical Epidemiologist Mini Kamboj, the studys other senior author. This wasnt surprisingbecause these connections are well established.
Although the study wasnt large enough to make determinations about every treatment and every cancer type, patterns did emerge. Dr. Taur says there was initially great concern about people receiving high doses of chemotherapy for leukemia, especially those who had recently undergone bone marrow or stem cell transplants. Thats because transplants require a persons entire immune system to be wiped out with chemotherapy before they receive new blood cells, leaving them susceptible to all kinds of infections.
Surprisingly, though, Dr. Taur cared for recent transplant recipients who were infected with COVID-19 but didnt have any symptoms. If you think about it more, it makes sense, he says. Most of the complications seen in people with COVID-19 seem to be caused by the bodys immune response to the virus.
On the other hand, immunotherapy drugs called checkpoint inhibitors work by freeing up the immune system to attack cancer. Patients receiving these agents may develop a more robust reaction to the virus that causes COVID-19. This may explain why this study observed higher rates of complications in people with COVID-19 infection who were treated with checkpoint inhibitors.
Even with immune checkpoint inhibitors, though, these findings should not affect whether patients get treated. Everyone who needs these drugs should still receive them, Dr. Kamboj says. Its just important for doctors to be extra vigilant about testing and monitoring for the virus and for people with cancer to take extra precautions to avoid infection.
A study published in May 2020 by MSK immunotherapy expert Matthew Hellmann focused exclusively on people with lung cancer who got COVID-19. The researchers didnt find the same risks from immune checkpoint drugs as this Nature Medicine study. But that study included data on far fewer patients treated at MSK, which could explain the difference.
Dr. Kamboj notes that one aspect of this research that sets it apart from other studies is that it included at least 30 days of follow-up after a COVID-19 diagnosis. Also, it reported severe respiratory illness as a main outcome rather than death.
Having that follow-up time is something that a lot of other studies have not included because everyone is in a rush to get their data out. In addition, reporting death rates can overestimate infection-related mortality, especially in the early phase of an epidemic, Dr. Kamboj says. Also, the clinical spectrum and course of this disease is still not fully understood, especially in people with cancer. We wanted to give patients enough time to recover and make sure they didnt need to be readmitted to the hospital.
Even with immune checkpoint inhibitors, though, these findings should not affect whether patients get treated. Everyone who needs these drugs should still receive them.
She adds that another strength of the study is that patient outcomes were not affected by constraints caused by a lack of space or supplies even though MSK is in the heart of the COVID-19 epicenter in New York City, where other hospitals faced overcrowding and other issues. This gave researchers a true picture of how cancer patients fare with COVID-19. We saw a surge during the peak of the epidemic in New York, but everyone got the care they needed, Dr. Kamboj explains. We had enough ventilators for everyone who needed them. We never had to make decisions about who to admit to intensive care because of a lack of critical equipment.
Drs. Taur and Kamboj agree that this is just one of many studies that will need to be done on the connections between cancer and COVID-19. We still need to find out more. We need to look at the connections between COVID-19 and particular types of cancer as well as outcomes related to specific chemotherapy drugs, Dr. Taur concludes. But the big message now is clear: People should stay vigilant but not stop or postpone checkpoint immunotherapy or any other cancer treatment.
Bone Marrow Processing Systems Market Business Analysis, New Innovation | Share, Revenue, And Sales Till 2025 – Cole of Duty
By daniellenierenberg
Bone marrowaspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.
Get Access to sample pages @ https://www.trendsmarketresearch.com/report/sample/3184
The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.
In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.
Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.
Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others
Covid 19 Impact[emailprotected] https://www.trendsmarketresearch.com/report/covid-19-analysis/3184
See the rest here:
Bone Marrow Processing Systems Market Business Analysis, New Innovation | Share, Revenue, And Sales Till 2025 - Cole of Duty
TP53, KMT2D Abnormalities Linked With Poor Prognosis in MCL – Targeted Oncology
By daniellenierenberg
Disruption of the TP53 gene and mutation of the KMT2D gene are predictive of poor outcomes in patients with mantle cell lymphoma (MCL) who are receiving high-dose therapy, according to a new study.
The findings, which build upon growing knowledge of the genetics of MCL, can be used to better classify patients into risk categories, the investigators said. The study was published in the journal Haematologica.1
Corresponding author Simone Ferrero, MD, of the University of Torino, in Italy, noted that the current treatment paradigm for patients with MCLcytarabine-based chemotherapy followed by autologous stem cell transplantation (ASCT)has led to dramatic advancements in the outcomes of patients who are young and healthy enough for the therapy. However, Ferrero said as many as one-quarter of those patients will experience early treatment failure.
So far, the best tool clinicians have had to identify patients at high risk of relapse has been the MCL international prognostic index (MIPI), and the Ki-67 proliferation index. The combination of the 2 is known as the MIPI-c score. Although the tool is of value, Ferrero and colleagues asserted that the resulting scores lack the precision necessary to develop tailored schedules specifically for high-risk patients.
In an effort to better elucidate the factors associated with a high risk of failure, the investigators used samples from the phase III FIL-MCL0208 trial, which is a prospective, open-label, multicenter study designed to evaluate lenalidomide (Revlimid) as a maintenance therapy versus observation in patients in MCL remission following high-dose chemotherapy including rituximab (Rituxan) followed by ASCT (NCT02354313).
Ferrero and colleagues performed targeted resequencing and DNA profiling on purified tumor samples of the patients in the study. Out of 300 patients enrolled in the study, samples from 186 patients were able to be evaluated for genetic mutations and abnormalities in copy numbers.
The analysis confirmed earlier reports2,3 that TP53 disruption is a significant prognostic factor. After 4 years, patients with mutations or deletions of TP53 had lower progression-free survival (PFS) and overall survival (OS) rates compared with patients without the disruptions.
However, the authors broke new ground by identifying KMT2D as another important genetic factor. In wild-type cases, those with KMT2D mutations had PFS rates of just 33.2%, versus 63.7% in those without the mutation after 4 years (P <.001). Overall survival was similarly affected; the 4-year OS rate among patients with KMT2D mutations was 62.3% versus 86.8% among those without the mutation (P = .002).
In the FIL-MCL0208 trial, KMT2D mutations emerged as a novel biomarker heralding chemo-immunotherapy failure, with a predictive value similar to that of TP53 aberrations, Ferrero and colleagues wrote.
The authors then used their findings to create a new scoring system to identify patients at the highest risk.
The independent adverse prognostic value of TP53 and KMT2D aberrations prompted us to integrate the molecular results into the MIPI-c, aiming at further improving its ability to discriminate high-risk patients, the authors said.
The model begins with MIPI-c score; those with low or intermediate risk scores under MIPI-c were given 0 points in the new model, and those placed in the high-risk category by the MIPI-c model were given one point. In addition, patients with TP53 disruptions were given 2 additional points, as were those with the KMT2D mutation. In this new scoring system, which the investigators dubbed MIPI-g, patients with a score of 0 were deemed low risk, patients with scores of 1 to 2 were deemed intermediate risk, and patients with scores of 3 or higher were categorized as high risk.
When investigators performed PFS and OS calculations based on their risk categories, they found PFS rates varied dramatically among the groups, from 72.0% in the low-risk group to 11.5% in the high-risk group after 4 years (P <.0001). Four-year OS rates similarly dropped from 94.5% in the low-risk group to 44.9% (P <.0001). Among patients in the intermediate group, the 4-year PFS rate was 42.2% and the OS rate was 65.8%.
In the Nordic validation series, patients with KMT2D mutations showed similar worse outcomes compared with wild-type patients (median OS, 8.4 vs 12.7 years). Among patients with TP53 mutations, the median OS was 2.0 years compared with 12.7 years for patients with wild-type TP53. The validation series also showed similar 4-year OS rates by risk groups: 91.3% for low-risk patients, 72.2% for intermediate risk, and 15.4% for high risk.
Among the studys limitations, the authors noted that their analysis was performed only on CD19-positive bone marrow cells. The investigators also said they do not yet have sufficient randomization data to know whether and to what extent lenalidomide maintenance affected the patients with these mutations within the broader FIL-MCL0208 trial. However, they said it is unlikely that full data will be able to offer clear takeaways, since only 27 patients with the TP53/KMT2D mutations were finally randomized in the study, due to a high rate of progressive disease among these patients. Of those 27, only 9 were started on lenalidomide maintenance.
In their conclusion, Ferrero and colleagues said that the ability to distinguish the highest-risk patients could be used by clinicians to identify high-risk patients for novel therapeutic approaches.
As in other lymphoid disorders, novel non-chemotherapeutic strategies specifically designed for [high-risk] patients need to be investigated in MCL, the authors said. Besides the approved drugs lenalidomide and ibrutinib [Imbruvica], new molecules such as the BCL-2 inhibitor venetoclax [Venclexta] might be very promising for these chemorefractory patients, especially for TP53 disrupted cases.
References:
1. Ferrero S, Rossi D, Rinaldi A, et al. KMT2D mutations and TP53 disruptions are poor prognostic biomarkers in mantle cell lymphoma receiving high-dose therapy: a FIL study. Haematologica. 2020;105(6):1604-1612. doi:10.3324/haematol.2018.214056
2. Nordstrm L, Sernbo S, Eden P, et al. SOX11 and TP53 add prognostic information to MIPI in a homogeneously treated cohort of mantle cell lymphoma--a Nordic Lymphoma Group study. Br J Haematol. 2014;166(1):98-108. doi:10.1111/bjh.12854
3. Halldrsdttir AM, Lundin A, Murray F, et al. Impact of TP53 mutation and 17p deletion in mantle cell lymphoma. Leukemia. 2011;25(12):1904-1908. doi:10.1038/leu.2011.162
See the rest here:
TP53, KMT2D Abnormalities Linked With Poor Prognosis in MCL - Targeted Oncology
Bone Marrow Processing Systems Market Insights on Challenges & Opportunities by 2025 – 3rd Watch News
By daniellenierenberg
Bone marrowaspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.
Get Access to sample pages @ https://www.trendsmarketresearch.com/report/sample/3184
The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.
In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.
Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.
Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others
Covid 19 Impact[emailprotected]https://www.trendsmarketresearch.com/report/covid-19-analysis/3184
See the article here:
Bone Marrow Processing Systems Market Insights on Challenges & Opportunities by 2025 - 3rd Watch News
Stem Cell Banking Market Report (2020-2025) | The Demand For The Market Will Drastically Increase In The Future – Jewish Life News
By daniellenierenberg
The global Stem Cell Banking market was valued at USD 1.52 billion in 2016 and is projected to reach USD 7.94 billion by 2025, growing at a CAGR of 20.17% from 2017 to 2025.
View Source Of Related Reports:
Viral Inactivation MarketVirus Filtration MarketViral Clearance MarketVeterinary-Animal Vaccines Market Vaccine Adjuvants MarketTerahertz and Infrared Spectroscopy MarketTangential Flow Filtration MarketSterile Filtration MarketStem Cell Banking Market
Stem Cell banking involves preservation of new born placental stem cells or amniotic stem cells as well as adult bone marrow stem cells. The concept ensures health safety in case of a major surgery or organ regeneration needs for the patient. With increasing awareness regarding the practice, the market is expected to boost in near future.
The Final Report will cover the impact analysis of COVID-19 on this industry:
Download Sample of This Strategic Report:https://www.kennethresearch.com/sample-request-10008449
Sample Infographics:
Market Dynamics:1. Market Drivers1.1 Easy Extraction Methods1.2 High birth ratio1.3 Increase in GDP and Disposable income in developing nations1.4 Increasing support from public and private sector1.5 Scope of stem cell usage in therapeutics and treatment2. Market Restraints2.1 Large number of players in the market2.2 High Cost of technology2.3 Lack of awareness2.4 Regulatory restrains
Market Segmentation:1. By Application:1.1 Cerebral Palsy1.2 Thalassemia1.3 Leukemia1.4 Diabetes1.5 Autism1.6 Others
2. By Services:2.1 Collection & Transportation2.2 Processing2.3 Analysis2.4 Storage
3. By Bank Type:3.1 Cord Blood3.2 Cord Tissue
4. By Region:4.1 North America (U.S., Canada, Mexico)4.2 Europe (Germany, UK, France, Rest of Europe)4.3 Asia Pacific (China, India, Japan, Rest of Asia Pacific)4.4 Latin America (Brazil, Argentina, Rest of Latin America)4.5 Middle East & Africa
Competitive Landscape:The major players in the market are as follows:1.CBR Systems, Inc.2. Cordlife3. Cryo-Cell4. Cryo-Save AG (A Group of Esperite)5. Lifecell6. Stemcyte7. Viacord8. Smart Cells International Ltd.9. Cryoviva India10. Cordvida11. China Cord Blood CorporationThese major players have adopted various organic as well as inorganic growth strategies such as mergers & acquisitions, new product launches, expansions, agreements, joint ventures, partnerships, and others to strengthen their position in this market.
Request For Full Report:https://www.kennethresearch.com/sample-request-10008449
RESEARCH METHODOLOGY OF VERIFIED MARKET INTELLIGENCE:Research study on the Stem Cell Bankingmarketwas performed in five phases which include Secondary research, Primary research, subject matter expert advice, quality check and final review.The market data was analyzed and forecasted using market statistical and coherent models. Also market shares and key trends were taken into consideration while making the report. Apart from this, other data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Company Market Share Analysis, Standards of Measurement, Top to Bottom Analysis and Vendor Share Analysis.
To know more about the Research Methodology of Verified Market Intelligence and other aspects of the research study, kindly get in touch with our sales team.
About Kenneth Research:
Kenneth Research provides market research reports to different individuals, industries, associations and organizations with an aim of helping them to take prominent decisions. Our research library comprises of more than 10,000 research reports provided by more than 15 market research publishers across different industries. Our collection of market research solutions covers both macro level as well as micro level categories with relevant and suitable market research titles. As a global market research reselling firm, Kenneth Research provides significant analysis on various markets with pure business intelligence and consulting services on different industries across the globe. In addition to that, our internal research team always keep a track on the international and domestic market for any economic changes impacting the products demand, growth and opportunities for new and existing players.
Contact Us
Kenneth Research
Email:[emailprotected]
Phone: +1 313 462 0609
Originally posted here:
Stem Cell Banking Market Report (2020-2025) | The Demand For The Market Will Drastically Increase In The Future - Jewish Life News
Acute Myeloid Leukemia (AML) Therapeutics Market Promising Growth Opportunities over 2017 2025 – 3rd Watch News
By daniellenierenberg
Leukemia are a heterogeneous group of cancers affecting the bone marrow and White Blood Cells (WBC). Leukemia is characterized by the rapid increase of abnormal blood cells growth or blasts, resulting in a decrease in the numbers of healthy, normal fully modified blood cells, leading to the typical symptoms of bleeding, anemia, and high risk of infection. Leukemia can grow along either the myeloid or lymphoid stem cell lines, it depends on the effect of genetic and epigenetic mutations on the progression of pluripotent stem cells to the various lines of mature cells which then pass into the blood. The effected line, combined with the rate of action and growth of disease reflects the four types of leukemias- Acute Myeloid Leukemia (AML), chronic lymphoblastic leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia. AML: Acute Myeloid Leukemia, is a serious condition, its the most common leukemia suffered by adult people. According to a report from American Cancer Society, the average age for first diagnostic for AML is 64. With few days without treatment, AML develops fast, in duration of few weeks, the patient becomes severely ill. Due to its fast onset and acuteness in nature, there is no staging system for Acute Myeloid Leukemia (AML).The treatment for Acute Myeloid Leukemia (AML) has changed in last 4 decades.
Get Free Sample Copy With Impact Analysis Of COVID-19 Of Market Report @https://www.persistencemarketresearch.com/samples/16738
The drug approval process is difficult in AML, (many drugs have not been approved by USFDA, for instance Laromustine, Dacogen and Tipitarnib) efforts have been made to introduce new therapies in the AML market.
Primary drivers boosting the growth of acute myeloid leukemia (AML) therapeutics market are minimal but increased prevalence of acute myeloid leukemia (AML), increased drug approval rate for AML, classification of acute myeloid leukemia (AML) as an orphan disease. Over the forecast period, population of people over 65 year is anticipated to increase, which is another key driver for acute myeloid leukemia (AML) therapeutics market.
However, lack of targeted therapies in current acute myeloid leukemia (AML) therapeutics landscape, the drug difficult approval process in AML can hinder the growth of acute myeloid leukemia (AML) therapeutics market, but this restraint has opened an opportunity for key players to innovate acute myeloid leukemia (AML) therapeutics market.
The global acute myeloid leukemia (AML) therapeutics market is segmented on the basic of disease subtype, treatment type, end user and region.
Based on the disease subtype, the acute myeloid leukemia (AML) therapeutics market is segmented into the following:
Based on treatment type, the acute myeloid leukemia (AML) therapeutics market is segmented into the following:
Based on end user, the acute myeloid leukemia (AML) therapeutics market is segmented into the following:
The global acute myeloid leukemia (AML) therapeutics market is anticipated to show lucrative growth owing to increased investment in innovative technologies by key players. Players in this market using various strategies to fuel their global footprint and to gain a competitive edge. Product pipelines, new product launches, agreements and collaborations, acquisitions, mergers and clinical trials are some key strategies applied from global players in recent years are anticipated to give a robust hike to the market in the forecast period.
You Can Buy This PMR Healthcare Report From Here @https://www.persistencemarketresearch.com/checkout/16738
Geographically, acute myeloid leukemia (AML) therapeutics market is segmented into regions viz. North America, Latin America, Europe, Asia Pacific and Japan, Middle East and Africa. North America is anticipated to be major contributor to this market accounting maximum percent of share in AML therapeutics market followed by Europe. Slow but constant growth in prevalence for AML in North America is anticipated to fuel the growth in acute myeloid leukemia (AML) therapeutics market. In Asia pacific region, China and India are anticipated to show high growth in acute myeloid leukemia (AML) therapeutics market due to new developments in healthcare infrastructure in the region.
The players in acute myeloid leukemia (AML) therapeutics market include Ambit Biosciences Corporation, Celgene Corporation, Cephalon Inc., Clavis Pharma ASA, Eisai Co. Ltd, Genzyme Corporation, and Sunesis Pharmaceuticals Inc., Abbvie Inc., Astellas Pharma Inc, CTI Biopharma Corp etc.
Continue reading here:
Acute Myeloid Leukemia (AML) Therapeutics Market Promising Growth Opportunities over 2017 2025 - 3rd Watch News
Bone Marrow Processing System Market to Grow at Robust CAGR in the COVID-19 Lockdown Scenario – 3rd Watch News
By daniellenierenberg
Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.
Request For Report [emailprotected]https://www.trendsmarketresearch.com/report/sample/3184
The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.
Get Complete TOC with Tables and [emailprotected]https://www.trendsmarketresearch.com/report/discount/3184
In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.
<<< Get COVID-19 Report Analysis >>>https://www.trendsmarketresearch.com/report/covid-19-analysis/3184
Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.
Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others
Read more here:
Bone Marrow Processing System Market to Grow at Robust CAGR in the COVID-19 Lockdown Scenario - 3rd Watch News
CRISPR trial shows promising results for sickle cell and thalassaemia – BioNews
By daniellenierenberg
22 June 2020
CRISPRgenome editing has been successfully used to treat three patients with blood disorders in a clinical trial.
Two US patients with beta-thalassaemia and one with sickle cell disease had their bone marrow stem cells edited to produce a different form of haemoglobin, which is normally only found in fetuses and newborns.
'The results [demonstrate] that CRISPR/Cas9 gene editing has the potential to be a curative therapy for severe genetic diseases like sickle cell and beta-thalassaemia,' said Dr Reshma Kewalrami, CEO and President of Vertex, which is running the study jointly with another US pharmaceutical company, CRISPR Therapeutics.
Both sickle cell and beta-thalassaemia are caused by mutations in a gene that produces haemoglobin, the protein in red blood cells that carries oxygen throughout the body. With limited treatment options, patients are often dependent on blood transfusions.
However, the human body is able to make another form of haemoglobin, encoded in a completely separate gene, which is normally only expressed during fetal development and is switched off soon after birth.
In the clinical trial, blood stem cells were removed from the patients and a control gene that turns off the production of fetal haemoglobin was inactivated. Patients were given chemotherapy to remove remaining bone marrow stem cellsbefore they were replaced by the editedcells. The patients were then able to make fetal haemoglobin as adults.
The results of the ongoing trial, presented at the virtual Annual European Hematology Association Congress, reported that two beta-thalassaemia patients were transfusion independent at five and fifteen months after treatment, and the sickle cell patient was free from painful crises at nine months after treatment.
All three patients suffered significant side effects (from which they all recovered), but these were thought to be as a result of the chemotherapy rather than genome editing. Chemotherapy can also have long-term effects including infertility.
It is hoped that this treatment will have long-lasting and durable effects in patients with inherited blood diseases, and early clinical data appear promising. However, patients will need to be followed up throughout their lives to record any changes.
'These highly encouraging early data represent one more step toward delivering on the promise and potential of CRISPR/Cas9 therapies as a new class of potentially transformative medicines to treat serious diseases,' said Dr Samarth Kulkarni, CEO of CRISPR Therapeutics.
See original here:
CRISPR trial shows promising results for sickle cell and thalassaemia - BioNews
Efforts at coronavirus vaccines and treatments abound in the Bay Area – San Francisco Chronicle
By daniellenierenberg
The frenetic search for the miracle that will rid the world of COVID-19 is branching out in a thousand directions, and a large part of the microbial treasure hunt is going on in the Bay Area, where major progress has been made in the 100 days since residents were ordered to shelter in place.
Scientists at universities, laboratories, biotechnology companies and drug manufacturers are combing through blood plasma taken from infected patients for secrets that will help them fight the disease.
The key is likely a super-strength antibody found in some patients. But researchers must first figure out how those antibodies work and how they can be harnessed and used to stop the many health problems associated with COVID-19, particularly acute respiratory distress syndrome, or ARDS, which has killed more people than any other complication connected to the disease.
Other developments showing promise include injections of mesenchymal stem cells, found in bone marrow and umbilical cords, that doctors are studying to battle inflammation caused by ARDS. And a steroid called dexamethasone reduced the number of deaths by halting the overreactive immune responses in seriously ill patients in the United Kingdom.
In all, more than 130 vaccines and 220 treatments are being tested worldwide.
What follows is a list of some of the most promising elixirs, medications and vaccines with ties to the Bay Area:
Monoclonal antibodies / Vir Biotechnology, San Francisco: Scientists at Vir and several institutions, including Stanford and UCSF, are studying monoclonal antibodies, which are clones of coronavirus-fighting antibodies produced by COVID-19 patients.
The idea is to utilize these neutralizing antibodies which bind to the virus crown-like spikes and prevent them from entering and hijacking human cells.
Only about 5% of coronavirus patients have these super-strength antibodies, and those people are believed to be immune to a second attack.
The trick for scientists at Vir is to identify these neutralizing antibodies, harvest, purify and clone them. If they succeed, the resulting monoclones could then be used to inoculate people and it is hoped give them long-term immunity against the coronavirus. The company recently signed a deal with Samsung Biologics, in South Korea, to scale up production of a temporary vaccine in the fall after clinical trials are complete.
Another monoclonal antibody, leronlimab, is being studied in coronavirus clinical trials by its Washington state drugmaker, CytoDyn. The companys chief medical officer is in San Francisco, and the company that does laboratory tests of leronlimab is in San Carlos.
Interferon-lambda / Stanford University: Doctors at Stanford are running a trial to see if interferon-lambda, which is administered by injection, helps patients in the early stages of COVID-19. Interferon-lambda is a manufactured version of a naturally occurring protein that has been used to treat hepatitis. Stanford doctors hope it will boost the immune system response to coronavirus infections.
Dr. Upinder Singh, a Stanford infectious-disease expert, said the trial has enrolled more than 50 patients and is halfway finished. We have noted that patients tolerate the drug very well, she said.
Mesenchymal stem cells / UCSF and UC Davis Medical Center: UCSF Dr. Michael Matthay is leading a study about whether a kind of stem cell found in bone marrow can help patients with ARDS. Matthay hopes that the stem cells can help reduce the inflammation associated with some of ARDS most dire respiratory symptoms, and help patients lungs to recover.
Matthay is aiming to enroll 120 patients in San Francisco, the UC Davis Medical Center in Sacramento and hospitals in a handful of other states. He said the trial, which includes a small number ARDS patients who dont have COVID-19, should have results within a year. So far 17 patients are enrolled in the trial, most of them in San Francisco.
Remdesivir / Gilead Sciences (Foster City): Remdesivir, once conceived as a potential treatment for ebola, was the first drug to show some promise in treating COVID-19 patients. The drug interferes with the process through which the virus replicates itself. A large study led by the federal government generated excitement in late April when officials said hospitalized patients who received remdesivir intravenously recovered faster than those who received a placebo.
A later study looking at dosage showed some benefit for moderately ill COVID-19 patients who received remdesivir for five days, but improvement among those who got it for 10 days was not statistically significant. Gilead, a drug company, recently announced that it will soon launch another clinical trial to see how remdesivir works on 50 pediatric patients, from newborns to teenagers, with moderate to severe COVID-19 symptoms. More than 30 locations in the U.S. and Europe will be involved in the trial, the company said.
Coronavirus crisis: 100 days
Editors note: Its been 100 days since the Bay Area sheltered in place, protecting itself from the coronavirus pandemic. What have we learned in that time? And what does the future hold for the region and its fight against COVID-19? The Chronicle explores the past 100 days and looks to the future in this exclusive report.
Favipiravir / Fujifilm Toyama Chemical (Stanford University): This antiviral drug, developed in 2014 by a subsidiary of the Japanese film company to treat influenza, is undergoing numerous clinical studies worldwide, including a Stanford University trial that began this month. Unlike remdesivir, it can be administered orally, so it can be used to treat patients early in the disease, before hospitalization is necessary.
Stanford epidemiologists want to see if favipiravir, which has shown promising results in other trials, prevents the coronavirus from replicating in human cells, halts the shedding of the virus and reduces the severity of infection. The Stanford study, the only outpatient trial for this drug in the nation, is enrolling 120 people who have been diagnosed with COVID-19 within the past 72 hours. Half of them will get a placebo. People can enroll by emailing treatcovid@stanford.edu.
Colchicine / UCSF (San Francisco and New York): The anti-inflammatory drug commonly used to treat gout flare-ups is being studied in the U.S. by scientists at UCSF and New York University. The drug short-circuits inflammation by decreasing the bodys production of certain proteins, and researchers hope that it will reduce lung complications and prevent deaths from COVID-19. About 6,000 patients are receiving colchicine or a placebo during the clinical trial, dubbed Colcorona, which began in March and is expected to be completed in September.
Selinexor / Kaiser Permanente: Kaiser hospitals in San Francisco, Oakland and Sacramento are studying selinexor, an anticancer drug that blocks a key protein in the cellular machinery for DNA processing, as a potential COVID-19 treatment. The drug has both antiviral and anti-inflammatory properties, and its administered orally, according to Kaisers Dr. Jacek Skarbinski. The trial aims to enroll 250 patients with severe symptoms at Kaiser and other hospitals that are participating nationwide.
VXA-COV2-1 / Vaxart, South San Francisco: The biotechnology company Vaxart is testing this drug to see if it is as effective at controlling COVID-19 as trials have shown it to be against influenza. VXA-COV2-1, the only potential vaccine in pill form, uses the genetic code of the coronavirus to trigger a defensive response in mucous membranes. The hope is that the newly fortified membranes will prevent the virus from entering the body.
Its the only vaccine (candidate) that activates the first line of defense, which is the mucosa, said Andrei Floroiu, Vaxarts chief executive, noting that intravenous vaccines kill the virus after it is inside the body. Our vaccine may prevent you from getting infected at all.
The drug was effective against influenza and norovirus in trials and appears to work on laboratory animals, Floroiu said. He expects trials of VXA-COV2-1 on humans to begin later this summer.
VaxiPatch / Verndari (Napa and UC Davis Medical Center): Napa vaccine company Verndari makes a patented adhesive patch that can deliver a vaccine instead of a shot. Now, the company is trying to make a vaccine for COVID-19 that they can administer through that patch. At UC Davis Medical Center in Sacramento, Verndari researchers are developing a potential vaccine that relies on the coronavirus spike-shaped protein. When injected into a person, the substance would ideally train their body to recognize the virus and fight it off without becoming ill.
A spokeswoman told The Chronicle that the companys preclinical tests have shown early, positive data in developing an immune response. Verndari hopes to move into the next phase of testing in the coming weeks and start clinical trials in humans this year.
If the vaccine is proved effective and safe, patients could receive it through the mail, according to company CEO Dr. Daniel Henderson. The patch would leave a temporary mark on the skin that patients could photograph and send to their doctor as proof they have taken the vaccine, Henderson has said.
Peter Fimrite and J.D. Morris are San Francisco Chronicle staff writers. Email: pfimrite@sfchronicle.com, jd.morris@sfchronicle.com Twitter: @pfimrite, @thejdmorris
Go here to see the original:
Efforts at coronavirus vaccines and treatments abound in the Bay Area - San Francisco Chronicle
Cell Therapy Manufacturing Market: Opportunities Forecast and Value Chain 2020-2030 – Cole of Duty
By daniellenierenberg
Prophecy Market Insights Cell Therapy Manufacturing market research report focuses on the market structure and various factors affecting the growth of the market. The research study encompasses an evaluation of the market, including growth rate, current scenario, and volume inflation prospects, based on DROT and Porters Five Forces analyses. The market study pitches light on the various factors that are projected to impact the overall market dynamics of the Cell Therapy Manufacturing market over the forecast period (2019-2029).
The data and information required in the market report are taken from various sources such as websites, annual reports of the companies, journals, and others and were validated by the industry experts. The facts and data are represented in the Cell Therapy Manufacturing report using diagrams, graphs, pie charts, and other clear representations to enhance the visual representation and easy understanding the facts mentioned in the report.
Get Sample Copy of This Report @ https://www.prophecymarketinsights.com/market_insight/Insight/request-sample/21
The Cell Therapy Manufacturing research study contains 100+ market data Tables, Pie Chat, Graphs & Figures spread through Pages and easy to understand detailed analysis. The predictions mentioned in the market report have been derived using proven research techniques, assumptions and methodologies. This Cell Therapy Manufacturing market report states the overview, historical data along with size, share, growth, demand, and revenue of the global industry.
All the key players mentioned in the Cell Therapy Manufacturing market report are elaborated thoroughly based on R&D developments, distribution channels, industrial penetration, manufacturing processes, and revenue. Also, the report examines, legal policies, and competitive analysis between the leading and emerging and upcoming market trends.
Cell Therapy ManufacturingMarket Key Companies:
harmicell, Merck Group, Dickinson and Company, Thermo Fisher, Lonza Group, Miltenyi Biotec GmBH, Takara Bio Group, STEMCELL Technologies, Cellular Dynamics International, Becton, Osiris Therapeutics, Bio-Rad Laboratories, Inc., Anterogen, MEDIPOST, Holostem Terapie Avanazate, Pluristem Therapeutics, Brammer Bio, CELLforCURE, Gene Therapy Catapult EUFETS, MaSTherCell, PharmaCell, Cognate BioServices and WuXi AppTec.
Segmentation Overview:
Apart from key players analysis provoking business-related decisions that are usually backed by prevalent market conditions, we also do substantial analysis on market segmentation. The report provides an in-depth analysis of the Cell Therapy Manufacturing market segments. It highlights the latest trending segment and major innovations in the market. In addition to this, it states the impact of these segments on the growth of the market.
Request [emailprotected] https://www.prophecymarketinsights.com/market_insight/Insight/request-discount/21
Regional Overview:
The survey report includes a vast investigation of the geographical scene of the Cell Therapy Manufacturing market, which is manifestly arranged into the localities. The report provides an analysis of regional market players operating in the specific market and outcomes related to the target market for more than 20 countries.
Australia, New Zealand, Rest of Asia-Pacific
Key Questions Answered in Report:
Stakeholders Benefit:
About us:
Prophecy Market Insights is specialized market research, analytics, marketing/business strategy, and solutions that offers strategic and tactical support to clients for making well-informed business decisions and to identify and achieve high-value opportunities in the target business area. We also help our clients to address business challenges and provide the best possible solutions to overcome them and transform their business.
Contact Us:
Mr. Alex (Sales Manager)
Prophecy Market Insights
Phone: +1 860 531 2701
Email: [emailprotected]
VISIT MY BLOG:- https://prophecyconsumerelectronics.blogspot.com/
Go here to see the original:
Cell Therapy Manufacturing Market: Opportunities Forecast and Value Chain 2020-2030 - Cole of Duty
Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Releas | IJN – Dove Medical Press
By daniellenierenberg
Amir Hashemi,1 Masoumeh Ezati,2 Javad Mohammadnejad,3 Behzad Houshmand,4 Shahab Faghihi5
1Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran; 2Tissue Engineering and Biomaterials Research Center, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran; 3Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran; 4Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; 5Tissue Engineering and Biomaterials Research Center, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
Correspondence: Javad Mohammadnejad; Shahab Faghihi Tel +9821 8609-3078Tel/ Fax +98 21 44787386Fax +98(21)88497324Email mohamadnejad@ut.ac.ir; sfaghihi@nigeb.ac.ir
Background: Ineffective integration has been recognized as one of the major causes of early orthopedic failure of titanium-based implants. One strategy to address this problem is to develop modified titanium surfaces that promote osteoblast differentiation. This study explored titanium surfaces modified with TiO2 nanotubes (TiO2 NTs) capable of localized drug delivery into bone and enhanced osteoblast cell differentiation.Materials and Methods: Briefly, TiO2 NTs were subjected to anodic oxidation and loaded with Metformin, a widely used diabetes drug. To create surfaces with sustainable drug-eluting characteristics, TiO2 NTs were spin coated with a thin layer of chitosan. The surfaces were characterized via scanning electron microscopy, atomic force microscopy, and contact angle measurements. The surfaces were then exposed to mesenchymal bone marrow stem cells (MSCs) to evaluate cell adhesion, growth, differentiation, and morphology on the modified surfaces.Results: A noticeable increase in drug release time (3 days vs 20 days) and a decrease in burst release characteristics (85% to 7%) was observed in coated samples as compared to uncoated samples, respectively. Chitosan-coated TiO2 NTs exhibited a considerable enhancement in cell adhesion, proliferation, and genetic expression of type I collagen, and alkaline phosphatase activity as compared to uncoated TiO2 NTs.Conclusion: TiO2 NT surfaces with a chitosan coating are capable of delivering Metformin to a bone site over a sustained period of time with the potential to enhance MSCs cell attachment, proliferation, and differentiation.
Keywords: titania nanotubes, titanium, osteogenic differentiation, anodization, mesenchymal bone marrow stem cells, MSCs
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.
See original here:
Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Releas | IJN - Dove Medical Press
Orca Bio breaches the surface with $192M for ‘high precision’ cell therapies – FierceBiotech
By daniellenierenberg
Bone marrow transplants can save patients lives by essentially giving them a new immune system to fight off cancer. But they can also cause life-threatening side effects, so their use is relegated to the sickest of patients. Orca Bio wants to change that by taking aim at how these treatments are made.
The Bay Area biotech is coming out of stealth with a $192 million series D round that will propel a pipeline of high precision allogeneic cell therapies and the manufacturing technology behind those treatments. Founded in 2016, Orca Bio zeroed in on manufacturing to make bone marrow transplants safer and more effective.
Theres a bit of a trade-off: You can have precision and a few cells, or you can have lots of cells and sacrifice precision, Orca CEO and co-founder Ivan Dimov, Ph.D., told Fierce Biotech. Most folks out there deal with less precision in order to get the sheer number of cells to treat patients We focused on technology to process extremely large numbers of cells while still having single-cell precision.
Fierce Innovation Awards: Life Sciences Edition 2020
Submit your entry to demonstrate innovative technologies and services that have the potential to make the greatest impact for biotech and pharma companies.
RELATED: AACR: A look at next-gen CAR-T therapies for blood cancers
Orcas proposition is to take donor T cells and stem cells, sort them into their different subtypes and combine them in the right mixture to treat disease.
We dont genetically modify them. But if we now take these cells and build a proprietary mix of them with single-cell precision, we can define the function of what theyre going to do, Dimov said. We can elicit powerful curative effects and control toxicities in a precise way to enhance safety and efficacy in patients that essentially need a whole new blood and immune system.
Dimov likens the processto assembling different kinds of soldiers into the right army unit to give patients so they have a new immune system to seek and destroy cancers while not seeking and destroying the patient themselves and their own tissue.
Because the manufacturing process is quick and uses donor cells, Orcas treatments could eventually reach more patients than CAR-T therapies and other engineered cell therapies can. Some cancer patients may not have enough T cells, or T cells of good enough quality, to turn into a treatment, while others simply do not live long enough for the treatment to be made.
RELATED: BIO: Meet Refuge Biotech, the company developing 'intelligent' cell therapies
The series D, drawn from Lightspeed Ventures, 8VC, DCVC Bio, ND Capital, Mubadala investment Company, Kaiser Foundation Hospitals, Kaiser Permanente Group Trust and IMRF, brings Orcas total raised to nearly $300 million. That haulwill bring its lead program, TRGFT-201, through clinical development. The program is in a phase 1/2 study in patients with blood cancers, while a second program, OGFT-001, is in a phase 1 study, also in blood cancers.
Orcas first two programs are designed for patients with terminal blood cancers, but they could move earlier in the cancer care timeline if they prove to be safer than traditional bone marrow transplants. Beyond cancer, the approach could be applied to a range of genetic disorders of the blood and immune system. The companyhasnt decided where to go next, but Dimov said the approach could be useful in treating autoimmune diseases like Crohns disease or Type 1 diabetes.
Follow this link:
Orca Bio breaches the surface with $192M for 'high precision' cell therapies - FierceBiotech
Magenta Therapeutics and Beam Therapeutics Announce Collaboration to Evaluate Targeted Antibody-Drug Conjugate (ADC) MGTA-117 as Conditioning Regimen…
By daniellenierenberg
CAMBRIDGE, Mass.--(BUSINESS WIRE)--Magenta Therapeutics (Nasdaq: MGTA) and Beam Therapeutics (Nasdaq: BEAM) today announced a non-exclusive research and clinical collaboration agreement to evaluate the potential utility of MGTA-117, Magentas novel targeted ADC for conditioning of patients with sickle cell disease and beta-thalassemia receiving Beams base editing therapies. Beam is pursuing two differentiated base editing approaches to treat hemoglobinopathies: its hereditary persistence of fetal hemoglobin (HPFH) program to precisely and robustly elevate fetal hemoglobin, which could be used in treatments for both sickle cell disease and beta-thalassemia, as well as a novel approach to directly correct the sickle causing point mutation (Makassar).
Conditioning is a critical component necessary to prepare a patients body to receive the edited cells, which carry the corrected gene and must engraft in the patients bone marrow in order to be effective. Todays conditioning regimens rely on nonspecific chemotherapy or radiation, which are associated with significant toxicities. MGTA-117 precisely targets only hematopoietic stem and progenitor cells, sparing immune cells, and has shown high selectivity, potent efficacy, wide safety margins and broad tolerability in non-human primate models. MGTA-117 may be capable of clearing space in bone marrow to support long-term engraftment and rapid recovery in patients.
Beam has demonstrated the ability to edit individual DNA bases in hematopoietic stem cells at high efficiency and with little impact on the viability of edited cells relative to unedited cells using its novel base editing technology. Combining MGTA-117 with Beams HPFH and Makassar base editors could meaningfully advance the treatment of patients with sickle cell disease or beta-thalassemia.
We believe patients will benefit from a more precise process to remove hematopoietic stem cells and prepare them to receive genetic medicines. Magenta has developed targeted ADCs as the preferred modality for our conditioning programs, and we have designed MGTA-117 specifically to optimize it for use with a genetically-modified cell product delivered in a transplant setting, said Jason Gardner, D.Phil., president and chief executive officer, Magenta Therapeutics. Beams next-generation base editing technology complements our next-generation conditioning approach very well, and we are excited to combine these strengths to address the still-significant unmet medical needs of the sickle cell and beta-thalassemia patient communities.
Base editing has the potential to offer lifelong treatment for patients with many diseases, including sickle cell disease and beta-thalassemia. Our novel base editors create precise single base changes in genes without cutting the DNA, enabling durable correction of hematopoietic stem cells with minimal effects on cell viability or genomic integrity, said John Evans, chief executive officer of Beam. Combining the precision of our base editing technology with the more targeted conditioning regimen enabled by MGTA-117 could further improve therapeutic outcomes for patients suffering from these severe diseases. We look forward to partnering with the Magenta team to explore these novel technologies together.
Beam will be responsible for clinical trial costs related to development of Beams base editors when combined with MGTA-117, while Magenta will continue to be responsible for all other development costs of MGTA-117. Magenta will also continue to develop MGTA-117 in other diseases, including blood cancers and genetic diseases. Each company will retain all commercial rights to their respective technologies.
About MGTA-117
MGTA-117, Magentas most advanced conditioning program, is a CD117-targeted antibody engineered for the transplant setting and conjugated to amanitin, a toxin in-licensed from Heidelberg Pharma. It is designed to precisely deplete only hematopoietic stem and progenitor cells and has shown high selectivity, potent efficacy, wide safety margins and broad tolerability in non-human primate models, suggesting that it may be capable of clearing space in bone marrow to support long-term engraftment and rapid recovery in patients. Magenta plans to complete IND-enabling studies this year and initiate clinical studies in 2021. Magenta will continue to develop MGTA-117 in other diseases, including blood cancers and genetic diseases.
About Magenta Therapeutics
Magenta Therapeutics is a clinical-stage biotechnology company developing medicines to bring the curative power of immune system reset through stem cell transplant to more patients with autoimmune diseases, genetic diseases and blood cancers. Magenta is combining leadership in stem cell biology and biotherapeutics development with clinical and regulatory expertise, a unique business model and broad networks in the stem cell transplant world to revolutionize immune reset for more patients. Magenta is based in Cambridge, Mass. For more information, please visit http://www.magentatx.com. Follow Magenta on Twitter: @magentatx.
About Base Editing and Beam TherapeuticsBeam Therapeutics (Nasdaq: BEAM) is a biotechnology company developing precision genetic medicines through the use of base editing. Beams proprietary base editors create precise, predictable and efficient single base changes, at targeted genomic sequences, without making double-stranded breaks in the DNA. This enables a wide range of potential therapeutic editing strategies that Beam is using to advance a diversified portfolio of base editing programs. Beam is a values-driven organization focused on its people, cutting-edge science, and a vision of providing life-long cures to patients suffering from serious diseases. For more information, visit http://www.Beamtx.com.
Magenta Therapeutics Forward-Looking StatementsThis press release may contain forward-looking statements and information within the meaning of The Private Securities Litigation Reform Act of 1995 and other federal securities laws, including, without limitation, statements regarding the research and clinical collaboration agreement between Magenta and Beam, including the timing, progress and success of the collaboration contemplated under the agreement, the successful evaluation of MGTA-117 in conjunction with Beams base-editing therapies under the agreement, the anticipated cost allocation and other commercial terms under the agreement, Magentas strategy and business plan, the future development, manufacture and commercialization between Beam and Magenta as well as statements regarding expectations and plans for the anticipated timing of Magentas clinical trials and regulatory filings and the development of Magentas product candidates and advancement of Magentas preclinical programs. The use of words such as may, will, could, should, expects, intends, plans, anticipates, believes, estimates, predicts, projects, seeks, endeavor, potential, continue or the negative of such words or other similar expressions can be used to identify forward-looking statements. The express or implied forward-looking statements included in this press release are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation, risks set forth under the caption Risk Factors in Magentas most recent Annual Report on Form 10-K filed on March 3, 2020, as updated by Magentas most recent Quarterly Report on Form 10-Q and its other filings with the Securities and Exchange Commission, risks, uncertainties and assumptions regarding the impact of the COVID-19 pandemic to Magentas business, operations, strategy, goals and anticipated timelines, and risks, uncertainties and assumptions inherent in preclinical and clinical studies, including, without limitation, whether results from preclinical studies or earlier clinical studies will be predictive of the results of future trials and the expected timing of submissions for regulatory approval or review by governmental authorities. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this press release may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. You should not rely upon forward-looking statements as predictions of future events. Although Magenta believes that the expectations reflected in the forward-looking statements are reasonable, it cannot guarantee that the future results, levels of activity, performance or events and circumstances reflected in the forward-looking statements will be achieved or occur. Moreover, except as required by law, neither Magenta nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements included in this press release. Any forward-looking statement included in this press release speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.
Beam Forward-Looking Statements
This press release contains forward-looking statements. Investors are cautioned not to place undue reliance on these forward-looking statements, including statements about the timing, progress and success of the collaboration contemplated under the agreement between Beam and Magenta, the successful evaluation of MGTA-117 in conjunction with Beams base-editing therapies under the agreement, the expected timing of filing INDs applications and the therapeutic applications of Beams technology. Each forward-looking statement is subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statement. Applicable risks and uncertainties include the risks and uncertainties, among other things, regarding: the success in development and potential commercialization of our product candidates; Beams ability to obtain, maintain and enforce patent and other intellectual property protection for our product candidates; whether preclinical testing of our product candidates and preliminary or interim data from preclinical and clinical trials will be predictive of the results or success of ongoing or later clinical trials; that enrollment of clinical trials may take longer than expected; that Beams product candidates will experience manufacturing or supply interruptions or failures; that Beam will be unable to successfully initiate or complete the preclinical and clinical development and eventual commercialization of product candidates; that the development and commercialization of Beams product candidates will take longer or cost more than planned; the impact of COVID-19 on Beams business and the other risks and uncertainties identified under the heading Risk Factors and in Beams Annual Reports on Form 10-K for the year ended December 31, 2019 and in Beams Quarterly Report on Form 10-Q for the quarter ended March 31, 2020, and in any subsequent filings with the Securities and Exchange Commission. These forward-looking statements (except as otherwise noted) speak only as of the date of this press release. Factors or events that could cause Beams actual results to differ may emerge from time to time, and it is not possible for Beam to predict all of them. Beam undertakes no obligation to update any forward-looking statement, whether as a result of new information, future developments or otherwise, except as may be required by applicable law.
Read the original:
Magenta Therapeutics and Beam Therapeutics Announce Collaboration to Evaluate Targeted Antibody-Drug Conjugate (ADC) MGTA-117 as Conditioning Regimen...
For babies born with a rare immune deficiency, a unique new test to better target care – Yahoo India News
By daniellenierenberg
Montreal [Canada], June 18 (ANI): A new test developed at CHU Sainte-Justine in Montreal will enable better management of patients with severe combined immunodeficiency (SCID).
The results of the study were presented in the medical journal Blood Advances published by the American Society of Hematology.
Routine neonatal screening, although not yet available in Quebec, has led to an increase in the incidence of patients diagnosed with SCID in North America in recent years.
This syndrome, a group of rare hereditary genetic disorders, is characterized by a total absence of immune system function, including an absence of T-lymphocytes, the white blood cells that play a crucial role in the body's immune defence.
Without appropriate treatment, the disorder is fatal during the first months of life in the majority of cases.
Many of the genes involved in SCID have been identified, but clinicians sometimes come across patients who do not have any identified genetic abnormalities.
"It's very frustrating. In about seven per cent of patients, we can't provide optimal care because we don't know the genetic cause," said Dr. Elie Haddad, a pediatric immunologist at CHU Sainte-Justine and expert in the field of SCID.
"Depending on the nature of the mutated gene, there are two treatments for SCID: either a bone marrow transplantation or a thymus transplantation. We still need to be able to identify the type of disease in order to choose the correct treatment option," added Haddad.
The gene involved can either disrupt hematopoietic stem cells in the bone marrow that consequently cannot naturally become T-cells, or it can affect the function of the thymus. The thymus is an organ in which immature white blood cells from the bone marrow 'learn' to become T-cells.
When doctors are unable to identify the real cause of the disorder, they usually turn to bone marrow transplantation. They do so for two reasons: first, transplants are easier to perform, and second, among the known genes, more are responsible for a dysfunction of the hematopoietic cells than for a malfunction of the thymus.
However, knowing the origin of the disease is critical, because if it's the thymus that's not working properly, then the bone marrow transplant will have no effect, and vice versa.
"Given this clinical need, our goal was to create a functional test by taking a very small volume of peripheral blood rather than a bone marrow sample, which is a more complex process to perform in babies and more invasive than a simple blood test," said Panojot Bifsha, first author of the study.
In the laboratory, a very small number of stem cells is isolated from patients using a limited amount of blood (3 to 5 mL). A test with a 3D culture that mimics the function of a human thymus is used to test this small number of cells, and a response is obtained in less than five weeks. If the results are normal, thymus transplantation is recommended, but if they are abnormal, then a bone marrow transplant is preferred.
"Our 3D culture system is unique because it allows us to test a very small number of stem cells circulating in the blood and get a relatively quick response. We received blood samples from all over North America, which allowed us to validate our method.
A similar study conducted with bone marrow samples at the U.S. National Institutes of Health (NIH) produced similar results, proving the reliability of the test developed at CHU Sainte-Justine from a blood sample. The U.S. study was also published today in Blood Advances.
As Quebec's hub of care and research for children with rare or serious diseases, CHU Sainte-Justine strives to stay one step ahead in research niches for which it is famous, such as the genetics of rare diseases and innovative treatments in precision medicine.
Additional studies will be required to further validate the latest test and allow it to be used on more patients.(ANI)
Read the original post:
For babies born with a rare immune deficiency, a unique new test to better target care - Yahoo India News
Rheumatoid Arthritis Stem Cell Therapy Market Future Innovation Strategies, Growth & Profit Analysis, Forecast by 2028 – The Cloud Tribune
By daniellenierenberg
The global Rheumatoid Arthritis Stem Cell Therapy market study presents an all in all compilation of the historical, current and future outlook of the market as well as the factors responsible for such a growth. With SWOT analysis, the business study highlights the strengths, weaknesses, opportunities and threats of each Rheumatoid Arthritis Stem Cell Therapy market player in a comprehensive way. Further, the Rheumatoid Arthritis Stem Cell Therapy market report emphasizes the adoption pattern of the Rheumatoid Arthritis Stem Cell Therapy across various industries.Request Sample Reporthttps://www.factmr.com/connectus/sample?flag=S&rep_id=1001The Rheumatoid Arthritis Stem Cell Therapy market report highlights the following players:The global market for rheumatoid arthritis stem cell therapy is highly fragmented. Examples of some of the key players operating in the global rheumatoid arthritis stem cell therapy market include Mesoblast Ltd., Roslin Cells, Regeneus Ltd, ReNeuron Group plc, International Stem Cell Corporation, TiGenix and others.
The Rheumatoid Arthritis Stem Cell Therapy market report examines the operating pattern of each player new product launches, partnerships, and acquisitions has been examined in detail.Important regions covered in the Rheumatoid Arthritis Stem Cell Therapy market report include:
North America (U.S., Canada)Latin America (Mexico, Brazil)Western Europe (Germany, Italy, U.K., Spain, France, Nordic countries, BENELUX)Eastern Europe (Russia, Poland, Rest Of Eastern Europe)Asia Pacific Excluding Japan (China, India, Australia & New Zealand)JapanMiddle East and Africa (GCC, S. Africa, Rest Of MEA)
The Rheumatoid Arthritis Stem Cell Therapy market report takes into consideration the following segments by treatment type:
Allogeneic Mesenchymal stem cellsBone marrow TransplantAdipose Tissue Stem Cells
The Rheumatoid Arthritis Stem Cell Therapy market report contain the following distribution channel:
HospitalsAmbulatory Surgical CentersSpecialty ClinicsHave Any Query? Ask our Industry Experts-https://www.factmr.com/connectus/sample?flag=AE&rep_id=1001
Buy the report at a discounted rate!!! Exclusive offer!!!
The Rheumatoid Arthritis Stem Cell Therapy market report offers a plethora of insights which include:
Changing consumption pattern among individuals globally.Historical and future progress of the global Rheumatoid Arthritis Stem Cell Therapy market.Region-wise and country-wise segmentation of the Rheumatoid Arthritis Stem Cell Therapy market to understand the revenue, and growth lookout in these areas.Accurate Year-on-Year growth of the global Rheumatoid Arthritis Stem Cell Therapy market.Important trends, including proprietary technologies, ecological conservation, and globalization affecting the global Rheumatoid Arthritis Stem Cell Therapy market.
The Rheumatoid Arthritis Stem Cell Therapy market report answers important questions which include:
Which regulatory authorities have granted approval to the application of Rheumatoid Arthritis Stem Cell Therapy in Health industry?How will the global Rheumatoid Arthritis Stem Cell Therapy market grow over the forecast period?Which end use industry is set to become the leading consumer of Rheumatoid Arthritis Stem Cell Therapy by 2028?What manufacturing techniques are involved in the production of the Rheumatoid Arthritis Stem Cell Therapy?Which regions are the Rheumatoid Arthritis Stem Cell Therapy market players targeting to channelize their production portfolio?Get Full Access of the Report @https://www.factmr.com/report/1001/rheumatoid-arthritis-stem-cell-therapy-market
Pertinent aspects this study on the Rheumatoid Arthritis Stem Cell Therapy market tries to answer exhaustively are:
What is the forecast size (revenue/volumes) of the most lucrative regional market? What is the share of the dominant product/technology segment in the Rheumatoid Arthritis Stem Cell Therapy market? What regions are likely to witness sizable investments in research and development funding? What are Covid 19 implication on Rheumatoid Arthritis Stem Cell Therapy market and learn how businesses can respond, manage and mitigate the risks? Which countries will be the next destination for industry leaders in order to tap new revenue streams? Which new regulations might cause disruption in industry sentiments in near future? Which is the share of the dominant end user? Which region is expected to rise at the most dominant growth rate? Which technologies will have massive impact of new avenues in the Rheumatoid Arthritis Stem Cell Therapy market? Which key end-use industry trends are expected to shape the growth prospects of the Rheumatoid Arthritis Stem Cell Therapy market? What factors will promote new entrants in the Rheumatoid Arthritis Stem Cell Therapy market? What is the degree of fragmentation in the Rheumatoid Arthritis Stem Cell Therapy market, and will it increase in coming years?Why Choose Fact.MR?
Fact.MR follows a multi- disciplinary approach to extract information about various industries. Our analysts perform thorough primary and secondary research to gather data associated with the market. With modern industrial and digitalization tools, we provide avant-garde business ideas to our clients. We address clients living in across parts of the world with our 24/7 service availability.
Dana-Farber Patient Recovering Well After Cancer and the Coronavirus | Dana-Farber – Dana-Farber Cancer Institute
By daniellenierenberg
Pam Dobay is a warrior. In the last three years, the 67-year-old has dealt with a cancer diagnosis and stem cell transplant before recently contracting the coronavirus.
None of it was easy, but today, Dobay is recovering at home. She says she cannot begin to express the gratitude she feels towards everyone who has cared for her, including her Dana-Farber care team and her family.
When this is all over, I want to show everyone at Dana-Farber what they did, and thank them for everything, says Dobay.
In February 2018, Dobay was diagnosed with myelofibrosis, a blood disorder in which the bone marrow is unable to produce healthy red blood cells. Dobays primary care physician first worried something wasnt right after her test results from routine blood work came back abnormal. Myelofibrosis is a precursor condition for leukemia, meaning it puts those who are diagnosed at a much higher chance of developing the disease.
Dobay, who lives in Holbrook, MA, was placed under the care of Corey Cutler, MD, MPH, medical director of the Adult Stem Cell Transplantation Program at Dana-Farber/Brigham and Womens Cancer Center. Initially, she was given blood transfusions to help her body compensate for the bone marrows inability to produce red blood cells. This treatment is not designed to be a permanent fix, despite being highly effective for a short period of time: Eventually, Dobay would need a bone marrow transplant.
In September 2018, just six months after her diagnosis, Dobay underwent a reduced-intensity transplant (sometimes referred to as a mini-transplant). Mini-transplant patients receive lower doses of chemotherapy than are used in a full-intensity transplant, and in general, receive no radiation therapy. The reduced-intensity procedure was developed for older patients and others who often cant tolerate the harsh side effects of full-intensity treatments.
The procedure still proved to be difficult for Dobay, who ended up in the intensive care unit (ICU) due to complications. This was a possibility her care team had prepared for, and slowly, her condition improved. While she still has some symptoms of chronic graft-versus-host disease (GVHD), she and her family including Robert Dobay, her husband of 45 years hoped this would be her toughest test.
In March 2020, Dobay started experiencing fevers, chills, and difficulty breathing three symptoms of the coronavirus. Dobays family called Cutler, who instructed them to immediately bring her to the nearest emergency room. She was initially treated at her local hospital, but after she tested positive for the coronavirus, the family pushed for her to be transported to Brigham and Womens Hospital.
The team at Dana-Farber encourages anyone who is experiencing symptoms associated with COVID-19 to report them right away. Even if you have a confirmed case of the coronavirus, there are measures in place to ensure you can receive the care thats safe for you, your care team, and other patients and staff members.
Because Dobay was a former bone marrow transplant recipient and has GVHD, she is immunocompromisedand was at an increased risk for developing severe symptoms due to COVID-19. Upon being admitted to the ICU at Brigham and Womens, her condition worsened, and she needed to be placed on a ventilator.
Due to visitor restrictions, the Dobays were not allowed to visit her in the hospital, so her husband called her care team every day to check in.
Dr. Cutler contacted Francisco Marty, MD, an infectious disease specialist in the Adult Stem Cell Transplantation Center at Dana-Farber/Brigham and Womens Cancer Center, to discuss Dobays care. Marty was the principal investigator of trials testing the antiviral drug remdesivir, and its ability to treat patients with COVID-19 pneumonia.At the time, it was unclear if it would help bone marrow transplant recipients.
Dobay became the first stem cell transplant patient at Brigham and Womens to receive the drug. A week after starting treatment her lung function improved, and she was able to come off the ventilator. However, other medical complications led to her being placed back on the ventilator and to remain in the intensive care unit for a couple of more weeks. Over time, she was once again taken off the ventilator, and in early May she was finally able to go home.
We were very happy that the remdesivir trials were open to all patients, including many of our cancer and bone marrow transplant patients at Dana-Farber, says Marty. The initial reports from the clinical trials have shown patients who receive remdesivir recover faster from COVID-19 pneumonia. As additional analyses from the trials are performed, we will be able to see more closely how remdesivir helped the cancer patients at Dana-Farber and elsewhere.
We were all terrified, but she is just incredibly strong, Robert Dobay says. We are so thankful for her care team who helped her get through this.
Dobay says she has regained most of her strength since returning home, and in addition to her physical therapy, she is once again doing squats, weightlifting, and sit-ups. She is also back to going on walks with her daughter and her dog.
Pam has such a strong will, and her supportive husband was a remarkably large part of her recovery, says Tricia Severns, ANP-BC, OCN, a nurse practitioner at Dana-Farber and a member of Dobays care team. The entire family is incredibly strong and supportive.
I feel really lucky to still be here, adds Dobay. I could not have gotten through all of this without my family. Wed do anything for one another.
Excerpt from:
Dana-Farber Patient Recovering Well After Cancer and the Coronavirus | Dana-Farber - Dana-Farber Cancer Institute