50 children diagnosed with cancer in Estonia every year – ERR News
By daniellenierenberg
The youngest children diagnosed with cancer are just one day old. The most frequent type of cancer diagnosed is leukemia, ETV's current affairs show "Aktuaalne kaamera" reported.
"Leukemia is a disease of hematopoietic stem cells; hematopoietic stem cells are the cells which derive from all the cells that circulate in our blood - red blood cells, thrombocytes, white blood cells. Every one of them has a function and if they're not present, they're not able to fill the function," Ain Kaare, Head of the Department of Hematology and Bone Marrow Transplantation in University of Tartu said.
Kaare said that what helps children to cope with cancers is hope and optimism, and they are able to enjoy it, when they are feeling good.
These courageous children make an effort over years in order to get better. Kaare noted that there are children in the clinic who have undergone hematopoietic stem cell transplantation three times in a row, which often adults don't survive.
"In my work office, I have a picture on a wall by a boy who was five at the time, where he has written that "doctor Kaare is my friend". In the picture, there was I with a bag in my hand and in that bag there were supposed to be the hematopoietic stem cells that we transplanted to him," Kaare said.
Kaili Lellep, president of the Estonian Association of Parents of Children with Cancer (Vhihaigete laste vanemate liit) said that a child with a cancer needs a supportive parent around all the time to comfort them and explain everything if necessary, and to get their thoughts away from their illness. Children with cancer often stay in hospital for months.
On Saturday, golden ribbons and the golden light on Tallinn's TV tower and at Tallinn's Children Hospital (Tallinna lastehaigla) sent a message to hospital wards and homes alike, that seriously ill children are not alone and are being thought of, hoping that tomorrow they will be better. The golden ribbon is well-known all over the world.
"This ribbon symbolises support for children with cancer and support for the suffering of children with cancer," Lellep said.
--
Download the ERR News app for Android and iOS now and never miss an update!
See the original post:
50 children diagnosed with cancer in Estonia every year - ERR News
Cord Stem Cell banking Market 2020-2026 Booming With Healthy CAGR || Key Players Cryo-Save AG, Lifecell, StemCyte India Therapeutics Pvt. Ltd,…
By daniellenierenberg
Global Cord stem cell banking market is estimated to reach USD 13.8 billion by 2026 registering a healthy CAGR of 22.4%. The increasing number of parents storing their childs cord blood, acceptance of stem cell therapeutics, high applicability of stem cells are key driver to the market.
Request for FREE sample copy or PDF Herehttps://www.databridgemarketresearch.com/request-a-sample?dbmr=global-cord-stem-cell-banking-market&raksh
Few of the major market competitors currently working in the globalcord stem cell banking marketareCBR Systems, Inc., Cordlife, Cells4Life Group LLP, Cryo-Cell International, Inc., Cryo-Save AG, Lifecell, StemCyte India Therapeutics Pvt. Ltd, Viacord, SMART CELLS PLUS., Cryoviva India, Global Cord Blood Corporation, National Cord Blood Program, Vita 34, ReeLabs Pvt. Ltd., Regrow Biosciences Pvt. Ltd. , ACROBiosystems., Americord Registry LLC., New York Blood Center, Maze Cord Blood, GoodCell., AABB, Stem Cell Cryobank, New England Cryogenic Center, Inc. among others
The data and information included in this Global Cord Stem Cell banking business report helps businesses take sound decisions and plan about the advertising and sales promotion strategy more successfully. This Cord Stem Cell banking market research report is generated by taking into account a range of objectives of market research that are vital for the clients success. This report also includes strategic profiling of key players in the market, systematic analysis of their core competencies, and draws a competitive landscape for the Healthcare industry. The Global Cord Stem Cell banking business report includes market shares for global, Europe, North America, Asia Pacific and South America.
Market Definition: Global Cord Stem Cell Banking Market
Cord stem cells banking is nothing but the storing of the cord blood cell contained in the umbilical cord and placenta of a newborn child. This cord blood contains the stem cells which can be used in future to treat disease such as leukemia, thalassemia, autoimmune diseases, and inherited metabolic disorders, and few others.
Segmentation: Global Cord Stem Cell Banking Market
Cord Stem Cell banking Market : By Storage Type
Cord Stem Cell banking Market : By Product Type
Cord Stem Cell banking Market : By Service Type
Cord Stem Cell banking Market : By Indication
Cord Stem Cell banking Market : By Source
Cord Stem Cell banking Market : By Geography
Browse Detailed TOC, Tables, Figures, Charts and Companies @https://www.databridgemarketresearch.com/toc?dbmr=global-cord-stem-cell-banking-market&raksh
Key Developments in the Cord Stem Cell banking Market:
Cord Stem Cell banking Market : Drivers
Cord Stem Cell banking Market : Restraint
Competitive Analysis: Global Cord Stem Cell Banking Market
Global cord stem cell banking market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions and others to increase their footprints in this market. The report includes market shares of cord stem cell banking market for Global, Europe, North America, Asia Pacific, South America and Middle East & Africa.
Key benefits of buying the Cord Stem Cell banking Market Report:
This Cord Stem Cell banking Market report will enable both of the sides in market be an established firm or a relative new entrant. It helps the established firms to know about the moves which are being performed by their competitors and also helps the new entrants by educating them about the market situations and the industry trends. This Cord Stem Cell banking Market report is quite fruitful in helping to understand the market definition and all the aspects of the market including the CAGR value and key profiles.
Want Full Report? Enquire Here @https://www.databridgemarketresearch.com/inquire-before-buying?dbmr=global-cord-stem-cell-banking-market&raksh
About Data Bridge Market Research:
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475Mail:[emailprotected]
Here is the original post:
Cord Stem Cell banking Market 2020-2026 Booming With Healthy CAGR || Key Players Cryo-Save AG, Lifecell, StemCyte India Therapeutics Pvt. Ltd,...
What are stem cells and bone marrow? – Macmillan Cancer …
By daniellenierenberg
There are two different types of stem cell transplants:
To understand these treatments, it helps to know about bone marrow and stem cells.
Bone marrow is part of our immune system which protects us from infection and disease. It is found inside our bones, mainly in the hip bone and the breast bone. The bone marrow is where stem cells are made.
Stem cells are blood cells at the earliest stage of development. All our blood cells develop from stem cells in the bone marrow. Stem cells stay inside the bone marrow and when they are fully developed they go into the bloodstream.
Blood cells do not live long. The bone marrow normally makes millions of new blood cells every day to replace blood cells as they are needed.
There are three main types of blood cells:
There are two main types of white blood cell. These are called neutrophils and lymphocytes. Neutrophils are the most common. You will hear your doctor or nurse talk about your neutrophil count during your treatment.
Original post:
What are stem cells and bone marrow? - Macmillan Cancer ...
Bride saves babys life by donating her bone marrow then meets her for the first time as a flower girl at he – The Sun
By daniellenierenberg
WHEN student Hayden Ryals saw a call for blood stem cell donors, she didn't think twice about signing up.
But she was shocked when she received a call just a year later, asking for her help to save a one-year-old girl's life.
6
Hayden, now 27, from Alabama, had the operation and instantly felt bonded to little Skye.
And two years later, the pair met for the first time, when Skye was invited to be a flower girl at Hayden's wedding.
Speaking exclusively to Fabulous Digital, Hayden tells her story...
Since I was about 16, I have always given blood. It seemed like such a small thing to do to help people. Donating only takes 10 minutes.
6
Then I went to University in Auburn, Alabama. I was walking to a lecture one day and saw a stall from Be the Match. I wandered over to see what they were about.
The lady at the stall told me they were looking for bone marrow donors. I just needed a swab in my cheek, so they would have my tissue, and then I would be put on the register. You only get called if you're a match.
I happily said yes, it only took two minutes, and didnt think much more about it.
Almost a year to the day later, in April 2016, I got a phone call. It was from Be the Match.
When I spoke to her mum Talia, it was emotional. 'Youve saved my daughters life,' she said through tears
"You have been matched with a one-year-old little girl," I was told.
At first I thought it was a mistake, surely I wouldnt be able to do something so big? But it was true, she needed me to save her life.
I had been feeling so down in life, wondering what I was supposed to be doing, I felt a surge of joy at being able to help someone.
6
I found out the little girl, Skye Savren-McCormick, wasdiagnosed withjuvenile myelomonocytic leukemia, a rare and aggressive form of blood cancer. She lived in California, miles away from me.
I immediately knew I wanted to help her.
I sent her parents a letter, through a co-ordinator, telling them I wouldnt back out.
They already felt like family to me. It was strange how connected I felt to a little girl I had never met.
6
In July 2016, we did the transfer. I went to a hospital three hours away in Birmingham Alabama and was put under general anaesthetic for an hour.
They put a hollow needle into my hip bone to extract my bone marrow. It really wasnt bad, and I didnt feel much pain afterwards.
I was told Skye responded well, but had to wait a year to contact Skye's parents.
When I eventually spoke to her mum Talia, it was emotional. "Youve saved my daughters life," she said through tears.
6
Around this time, I started dating my childhood friend Adrian Ryals, now 34. He was in the US Air Force, and was posted to Korea for a year in 2017.
Just before he left, Adrian popped the question. Delighted, we set a wedding date for June 2018.
In March 2018, I sent Skye a birthday present and asked if she would consider being my flower girl.
Becoming a blood stem cell donor
Every 20 minutes, someone is diagnosed with blood cancer in the UK.
For many, blood stem cell donation is their only chance of survival.
It's difficult to find a match, because of the millions of different stem cell combinations, so the DKMS are constantly on the look out for donors.
To become a blood stem cell donor, you just need to request a kit and do a five-minute cheek swab at home.
You can check your eligibility, and request a kit, here.
The odds are you may never be called upon.
Most blood stem cells are collected through a needle in the arm, just like giving blood.
Bone marrow collection involves stem cells being collected from the back of the hip under general anaesthetic. It takes one to two hours and most donors return to normal activities within a week. This method is only used in 10% of cases.
I knew it was a big ask, she lived a six-hour flight away, but she was so special to me.
If there was a chance she could come, I wanted her at my wedding.
Skye still lived in hospital at the time and had never flown. But in May 2018, the doctor gave her the green light to be able to come to the wedding.
6
Talia, Skye and her dad Todd flew down the Thursday before the wedding.
As we arrived at the church where we were having the rehearsal, they were already there waiting.
I was breathless and speechless to finally meet this little human, and know I was fortunate enough to have been able to help her.
I just ran up to her, got on my knees and gave her a big hug. She wasnt shy with me, as we had spoken on the phone a few times before.
SHOE'S HOOKED Stacey Solomon shares genius way she keeps her shoes tidy using curtain hooks
HEY BIG SPENDER Lonely businessman worth 25m is looking for a beautiful woman to date
WHAT A DRAWER Stacey Solomon reveals ultra-tidy bathroom cabinets using IKEA bargains
WHAT A HOWLER Mum accidentally asks dog groomer for a f***y wax after mixing up numbers
FLOOR-LESS Cleaner reveals how she got her kitchen floor sparkling using a 5 stain remover
MY JENERATION Secrets to Jennifer Aniston's fantastic body as four fans try her look
Skye didnt really understand what I had done for her, but she knew I was somebody special.
I was so honoured to have Skye be my flower girl, it made the wedding even more beautiful. I feel so lucky to have her in my life.
Earlier this week, we reported on a mother-of-the-bride who demanded her ginger bridesmaid dyed her hair for the wedding - because it "clashed" with her hair.
Read the rest here:
Bride saves babys life by donating her bone marrow then meets her for the first time as a flower girl at he - The Sun
8-year-old bone marrow recipient and donor celebrate in emotional reunion – WFAA.com
By daniellenierenberg
DALLAS It is more blessed to give than to receive. That's what a Bible verse says. And watching the smiles of a now healthy 8-year-old boy, that's what a recent bone marrow donor will gladly tell you too.
"I felt like the earth underneath my legs was pulled out and like I didn't know what to do," said Anitha Nagilla of Frisco of the 2017 chronic myeloid leukemia diagnosis for her then 6-year-old son Akshaj.
After chemotherapy and other treatments, he would need a bone marrow transplant to regenerate his immune system. But no one in his family, including his older sister, was a close enough match. Also, the likelihood of someone with Asian Indian heritage having a matched, available donor is only 41%.
The Nagilla family moved to north Texas from southern India 13 years ago.
WFAA
Every three minutes, someone is diagnosed with a blood cancer, like leukemia or lymphoma. For many patients, finding a bone marrow donor who is a match is their only chance for a cure. Finding a match can happen anywhere in the world at any time.
In nearby Colleyville, another immigrant, unknowingly, was about to help save the Akshaj's life.
WFAA
"Typical immigration story. Parents moved for a better life for their children and for themselves," said Dr. Prasanthi Ganesa, an oncologist who works at the Center for Cancer and Blood disorders in Fort Worth.
Dr. Ganesa moved to the U.S. as a 10-year-old child, also from southern India. She now works with adult cancer patients.
But as a medical student at Texas A&M, she and a group of friends decided to join the nationalBone Marrow Registry. The donation of blood, stem cells, and bone marrow can help people recover from a variety of cancer-related illnesses.
"At that time it was pretty simple," Dr. Ganesa said of joining the registry approximately 17 years ago. "You fill out some paperwork. It's a (saliva) swab and they have my information. So I've been on it, really not thinking about it, until I got the call. It was a surprise. It was a delightful surprise."
The surprise was that she was a match for a young boy, the same age as her own youngest child. After an outpatient procedure where marrow was extracted from a location on each hip, she went home, then back to work, and waited to hear what happened to whoever it was that received her donation.
Dr. Prasanthi Ganesa
Friday morning at Children's Medical Center in Dallas, she met him face to face.
In a meeting room all decorated for Valentine's Day, they celebrated what is also known as "National Donor Day."
"Hi buddy, how are you?" Dr. Ganesa said as she reached out to hug 8-year-old Akshaj Nagilla. "Oh my goodness," she said as they embraced.
"Definitely is on the list of one of my happiest proudest moments in my life," Dr. Ganesa said. "And Akshaj I have you to thank for that. You know what this means right? We're gonna have to be friends forever," she said as the audience of doctors, nurses, and family and friends laughed and applauded.
Being on the marrow registry is easy. All it takes is a swab of saliva. And minority donors are needed the most. Dr. Ganesa was one of two marrow donors for Akshaj. She supplied the first donation.
Akshaj initially recovered but relapsed in the fall of 2018, when he received a second transplant from a different donor, also of Asian Indian heritage. But his family credits the first donation with starting his long road to recovery.
"She being close here in Dallas is undoubtedly remarkable, in that it happened to our family," Anitha Nagilla said.
"She saved my son's life directly. But she saved some other lives as well in the family," Nagilla said of the impact on her entire extended family. "She is a lifesaver for others as well."
Friday morning at their first meeting, the Nagilla family presented Dr. Ganesa with a gold bracelet and a card with a personal message from Akshaj inside. "I'm doing good and wish you well always", he wrote.
"How wonderful is this," Dr. Ganesa said as they embraced again.
The usually shy 8-year-old also mustered up the courage to climb up to a podium and address the entire crowd, but mostly his message was for Dr. Ganesa.
"I am very thankful because I am still alive," he said.
"I just encourage everybody of Indian origin, of southeast Asian origin, any minority group to get yourself on the registry because it could save a life," Dr. Ganesa said.
"It feels really good to be able to say I gave a part of myself and I saved this person's life. I think it's the ultimate meaning of being a human being. We are here to love all serve all. And what an opportunity that I have had. So I am so grateful that I've had that opportunity," Dr. Ganesa said.
She says she feels like she received more than she gave. As she, her own two sons and the Nagilla family gathered for a group hug, her own extended family maybe just got a lot bigger too.
See more here:
8-year-old bone marrow recipient and donor celebrate in emotional reunion - WFAA.com
Carl June on CRISPR, CART and how the Vietnam War dropped him into medicine – Endpoints News
By daniellenierenberg
In August of 2011, Carl June and his team published a landmark paper showing their CART treatment had cleared a patient of cancer. A year-to-the-month later, Jennifer Doudna made an even bigger splash when she published the first major CRISPR paper, setting off a decade of intense research and sometimes even more intense public debate over the ethics of what the gene-editing tool could do.
Last week, June, whose CART work was eventually developed by Novartis into Kymriah, published in Sciencethe first US paper showing how the two could be brought together. It was not only one of the first time scientists have combined the groundbreaking tools, but the first peer-reviewed American paper showing how CRISPR could be used in patients.
June used CRISPR to edit the cells of three patients with advanced blood cancer, deleting the traditional T cell receptor and then erasing the PD1 gene, a move designed to unleash the immune cells. The therapy didnt cure the patients, but the cells remained in the body for a median of 9 months, a major hurdle for the therapy.
Endpoints caught up with June about the long road both he and the field took to get here, if the treatment will ever scale up, and where CRISPR and other advancements can lead it.
The interview has been condensed and edited.
Youve spoken in the past about howyou started working in this field in the mid-90s after your wife passed away from cancer. What were some of those early efforts? How did you start?
Well, I graduated from high school and had a low draft number [for the Vietnam War] and was going to go to study engineering at Stanford, but I was drafted and went into the Naval Academy in 1971, and I did that so I wouldnt have to go to the rice fields.
The war ended in 73, 74, so when I graduated in 1975, I was allowed to go to medical school, and then I had a long term commitment to the Navy because they paid for the Acadamy and Medical school. And I was interested in research and at the time, what the Navy cared about was a small scale nuclear disaster like in a submarine, and like what happened at Chernobyl and Fukushima. So they sent me to the Fred Hutchinson Cancer Center where I got trained in cancer, as a medical oncologist. I was going to open a bone marrow transplant center in Bethesda because the Navy wanted one in the event of a nuclear catastrophe.
And then in 1989, the Berlin Wall came down and there was no more Cold War. I had gone back to the Navy in 86 for the transplant center, which never happened, so then I had to work in the lab full time. But in the Navy, all the research has to be about combat and casualty. They care about HIV, so my first papers were on malaria and infectious disease. And the first CAR-T trials were on HIV in the mid-90s.
In 96, my wife got diagnosed with ovarian cancer and she was in remission for 3-4 years. I moved to the University of Pennsylvania in 1999 and started working on cancer because I wasnt allowed to do that with the Navy. My wife was obviously a lot of motivation to do that. She passed away in 2001. Then I started working with David Porter on adoptive transfer T cells.
I got my first grant to do CAR-T cells on HIV in 2004, and I learned a whole lot. I was lucky to have worked on HIV because we did the first trials using lentiviruses, which is an engineered HIV virus.
I was trained in oncology, and then because of the Navy forced to work on HIV. It was actually a blessing in disguise.
So if you hadnt been drafted, you wouldve become an engineer?
Yes. Thats what I was fully intending. My dad was a chemical engineer, my brother is an engineer. Thats what I thought I was going to do. No one in my family was ever a physician. Its one of those many quirks of fate.
Back then, we didnt have these aptitude tests. It was just haphazard. I applied to three schools Berkeley, Stanford and Caltech and I got into all three. It was just luck, fate.
And it turned out when I went to the Naval Academy, they had added a pre-med thing onto the curriculum the year before, so thats what I did when I started, I did chemistry.
I wouldve [otherwise] been in nuclear submarines. The most interesting thing in the Navy then was the nuclear sub technology.
You talked about doing the first CAR-T trials on HIV patients because thats where the funding was. Was it always in your head that this was eventually going to be something for cancer?
So I got out of the Navy in 99 and moved to Penn. I started in 98 working on treating leukemia, and then once I got to Penn, I continued working one day a week on HIV.
Its kind of a Back-to-the-Future thing because now cancer has paved out a path to show that CART cells can work and put down the manufacturing and its going to be a lot cheaper making it for HIV. I still think thats going to happen.
Jim Riley, who used to be a postdoc in my lab, has some spectacular results in monkeys with HIV models. They have a large NIH and NIAID research program.
So were going to see more and more of that. The CAR technology is going to move outside of cancer, and into autoimmune and chronic infections.
I want to jump over to cytotoxic release syndrome (CRS)because a big part of the CRISPR study was that it didnt provoke this potentially deadly adverse effect. When did you first become aware that CRS was going to be a problem?
I mean we saw it in the very first patient we treated but in all honesty, we missed it. Im an MD, but I dont see the patient and David Porter tookcare of the first three patients and our first pediatric patient,Emily Whitehead.
In our first patients, 2 out of 3, had complete remission and there were fevers and it was CRS but we thought it was just an infection, and we treated with antibiotics for 3 weeks and[eventually] it went away. And sort of miraculously he was in remission and is still in remission, 9 years later.
And then when we treated Emily. She was at a 106-degree fever over three days, and there was no infection.
Ive told this story before. My daughter has rheumatoid arthritis, and I had been president of the Clinical Immunologists Society from 2009 to 2010, and the first good drug for juvenile rheumatoid arthritisthat came out. I was invited to give the Japanese scientist Tadamitsu Kishimoto the presidential award for inventing the drug.
Then in 2012, Emily Whitehead was literally dying from CRS, she had multiple organ failures. And her labs came back and IL-6 levels were 1000x normal. It turns out the drug I was looking at for my daughter, it blocks IL-6 levels. I called the physician and I said, listen theres something actionable here, since its in your formulary to give it to her off-label.
And she gave her the appropriate dose for rheumatoid arthritis. It was miraculous. She woke up very rapidly.
Now its co-labeled. When the FDA approvedKymriah, it was co-labeled. It kind of saved the field.
How were you feeling during this time? Did you have any idea what was happening to her?
No, not until we got the cytokine levels, and then it was really clear. The cytokine levels go up and it exactly coincided. Then we retroactively checked out adults and they had adverse reactions and it easy to see. We hadnt been on the lookout because it wasnt in our mouse models.
And it appeared with those who got cured. Its one of the first on-target toxicities seen in cancer, a toxicity that happens when you get better. All the toxicities from chemotherapy are off-target: like leukopenia or hair loss.
I had a physician who had a fever of 106, I saw him on a fever when he was starting to get CRS. When the nurse came in and it said 106, they thought the thermometer must be broken. On Monday, I saw him, and said how are you feeling and he said fine. And I looked at the thermometer and histemperature was still 102.
People will willingly tolerate on-target toxicity thats very different from chemotherapy if they know it helps get them better. Thats a new principle in cancer therapy.
You had these early CART results almost at the same time that Doudna publishes the first CRISPR papers, then still in bacteria. When did you first start thinking about combining the two?
Yeah, it was published inSciencein 2012 and thats when Emily Whitehead got treated. Its an amazing thing.
Thats something so orthogonal. You think how in the heck can that ever benefit CART cells? but my lab had done the first edited cells in patients, published in 2012. And we used zinc-fingered nucleases, which were the predecessors to CRISPR. It knocked out one gene at a time, but we showed it was safe.
I was already into gene editing because it could make T cells resistant to HIV. So it was pretty obvious that there were candidates in T cells that you can knock out. And almost every lab started working on some with CRISPR, cause it was much easier.
We were the first to get full approval by the FDA, so we worked on it from 2012, had all the preclinical data by 2016, and then it takes a while to develop a lot of new assays for this as we were very cautious to optimize safety and it took longer than we wanted, but in the end, we learned a tremendous amount.
So what did we learn?
First of all our patients had advanced metastatic cancer and had had a lot of chemotherapy. The first patient had had 3 bone marrow transplants.
One thing is feasibility: could you really do all the complex engineering? So we found out we could. feasibility was passed.
Another was the fact that cas9 came out of bacteria, forms of strep and staph. Everyone has pre-existing immunity to Cas9 and we had experience from the first trial with Sangamo[with zinc-finger nucleases] where some patients had a very high fever. In that case, we had used adenoviruses, and it turned out our patients had very high levels of baseline immune response to adenoviruses, so we were worried that would happen with CRISPR, and it did not happen.
It did not have any toxicity. If it had, it would have really set the field back. If there was animmune response to cas9 and CRISPR, there couldve been a real barrier to the field.
And then, the cells survived in the patients. The furthest on, it was 9 months. The cells had a very high level of survival. In the previous trials, the cells survived less than 7 days. In our case, the half-life was 85 days. We dont know the mechanism yet.
And we found very big precision in the molecular scissors, and that was a good thing for the field. You could cut 3 different genes on 3 different chromosomes and have such high fidelity.
It [CRISPR] is living up to the hype. Its going to fix all these diseases.
Whats the potential in CAR-T, specifically?
Well theres many many genes that you can add. There are many genes that knocking outwill make the cells work better. We started with the cell receptor. There are many, I think, academics and biotechs doing this now and it should make the cells more potent and less toxic.
And more broadly, what else are you looking at for the future of CART? The week before your paper, there were the results from MD Anderson on natural killer cells.
Different cell types, natural killer cells, stem cells putting CAR molecules into stem cells, macrophages. One of my graduate students started a company to do CAR macrophages and macrophages actually eat tumor cells, as opposed to T cells that punch holes in them.
There will be different cell types and there will be many more ways to edit cells. The prime editing and base editing. All different new variations.
Youve talked about how people used to think the immuno-oncology, if it ever worked, would nevertheless be a boutique treatment. Despite all the advancements, Novartis and Gilead still have not met the sales they once hoped to grab from their CART treatments. Are you confident CART will ever be widely accessible?
Oh yeah, Novartis sales are going up. They had a hiccup launching.
Back in 96 or 97, when Genentech launched Herceptin, their commercial antibody, they couldnt meet the demand either and then they scaled up and learned how to do better cultures. So right now Novartis is using tech invented in my lab in the 1990s culture tech thats complex and requires a lot of labor, so the most expensive part is human labor. A lot can be made robotic. The scale problem will be much easier.
Thats an engineering problem that will become a thing of the past. The manufacturing problem will get a lot cheaper. Here in the US, we have a huge problem with how drugs are priced. We have a problem with pricing. Thats a political issue.
But in cell therapy, its just kind of the growth things you see in a new industry. Itll get worked out.
This article has been updated to reflect that Jim Riley conducted work on CAR in HIV.
Read more here:
Carl June on CRISPR, CART and how the Vietnam War dropped him into medicine - Endpoints News
Breakthrough in Stem Cell Research: First Image of Niche Environment | Newsroom – UC Merced University News
By daniellenierenberg
By Lorena Anderson, UC Merced
Professor Joel Spencer and his lab have made a huge breakthrough in stem cell research.
Professor Joel Spencer was a rising star in college soccer and now he is an emerging scientist in the world of biomedical engineering, capturing for the first time an image of a hematopoietic stem cell (HSC) within the bone marrow of a living organism.
Everyone knew black holes existed, but it took until last year to directly capture an image of one due to the complexity of their environment, Spencer said. Its analogous with stem cells in the bone marrow. Until now, our understanding of HSCs has been limited by the inability to directly visualize them in their native environment until now.
This work brings an advancement that will open doors to understanding how these cells work which may lead to better therapeutics for hematologic disorders including cancer.
Understanding how HSCs interact within their local environments might help researchers understand how cancers use this same environment in the bone marrow to evade treatment.
Spencer studied biological sciences at UC Irvine where he was the captain of the mens Division 1 soccer team. He initially planned to pursue a career in professional soccer until faculty mentors opened doors for research and introduced Spencer to biophotonics the science that deals with the interactions of light with biological matter.
UC faculty were a big part of my research experience; they became mentors and friends, Spencer said. My first foray into research was as a lab tech, and that is where I met people who were doing biomedical imaging, and it just caught my wonder.
An image of a stem cell in its natural niche
Spencer left his native California to earn his Ph.D. in bioengineering at Tufts University in Boston and took a postdoctoral research position in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School. In Boston, he learned about live-animal imaging and his wonder became a passion.
Now his emphasis is on biomedical optics: building new microscopes and new imaging techniques to visualize and study biological molecules, cells and tissue in their natural niches in living, fully intact small animals.
I work at the interface of engineering and biology. My lab is seeking to answer biological questions that were impossible until the advancements in technology we have seen in the past couple decades, he said. You need to be able to peer inside an organ inside a live animal and see whats happening as it happens.
Based on work conducted at UC Merced and in Boston, he and his collaborators including his grad student Negar Tehrani visualized stem cells inside the bone marrow of live, intact mice.
He and his collaborators have a new paper published in the journal Nature detailing the work they conducted to study HSCs in their native environment in the bone marrow.
We can see how the cells behave in their native niches and how they respond to injuries or stresses which seems to be connected to the constant process of bone remodeling, Tehrani said. Researchers have been trying to answer questions that have gone unanswered for lack of technology, and they have turned to engineering to solve those puzzles.
Its important for researchers to understand the mechanics of stem cells because of the cells potential to regenerate and repair damaged tissue.
Spencer, left, and students from his lab
Spencer returned to California three years ago, joining the Department of Bioengineering in the School of Engineering at UC Merced. Hes also an affiliate of the Health Sciences Research Institute and the NSF CREST Center for Cellular and Biomolecular Machines . This is his third paper in Nature, but the first stemming from work conducted in his current lab.
He didnt come to UC Merced just because he loves biology Spencer also joined the campus because of the students.
Now Im back in the UC system Im a homegrown UC student whos now faculty, Spencer said. As a student within the system I was able to participate in myriad opportunities, including mentorships that advanced my career. Now I try to encourage graduate and undergrad students to follow their dreams. I love being able to give them opportunities its something I really want to do for the next generation.
Read the original here:
Breakthrough in Stem Cell Research: First Image of Niche Environment | Newsroom - UC Merced University News
Isolated Extramedullary Relapse in Acute Lymphoblastic Leukemia: What Can We Do Before and After Transplant? – Cancer Network
By daniellenierenberg
Santiago Riviello-Goya, MD1; Aldo A. Acosta-Medina, MD2; Sergio I. Inclan-Alarcon, MD3; Sofa Garcia-Miranda, MD2; and Christianne Bourlon, MD, MHSc2
1Department of Medicine, Instituto Nacional de Ciencias Mdicas y Nutricin Salvador Zubirn, Mexico City, Mexico; 2Department of Hematology, Instituto Nacional de Ciencias Mdicas y Nutricin Salvador Zubirn, Mexico City, Mexico; 3Cancer Center, Centro Mdico ABC, Mexico City, Mexico
A 43-year-old male with a history of B-cell acute lymphoblastic leukemia (ALL), who underwent allogeneic hematopoietic stem cell transplantation (HSCT) 5 months prior, presented to the emergency department with a 5-day history of progressive bilateral lower extremity weakness. On physical examination, there were no additional neurologic findings; sensory function and urethral and anal sphincter tone were preserved.
Initial clinical laboratory testing showed peripheral blood cell counts, a peripheral blood smear, and a comprehensive metabolic panel within normal limits. Neuroimaging by computed tomography (CT) and magnetic resonance showed no evidence of acute intracranial processes or lesions suggestive of leukemic relapse. A lumbar puncture for cerebrospinal fluid (CSF) analysis was performed and documented the presence of lymphoid-appearing blasts (Figure 1). Flow cytometry (FC) confirmed central nervous system (CNS) infiltration by B-lineage lymphoid blasts (CD34+, CD45+, CD22+, CD19+, and CD10+) (Figure 2). Bone marrow aspirate and biopsy, including FC evaluation, were negative for systemic relapse. Bone marrow chimerism was 98%.
With a diagnosis of isolated extramedullary leukemic relapse (iEMR), the patient was initiated on weekly intrathecal chemotherapy and was weaned off graft-versus-host disease (GVHD) prophylaxis, achieving CSF clearance after 4 weeks of therapy. Against Hematology service recommendations, the patient declined systemic therapy and received only whole brain radiation therapy (24 Gy in 12 fractions).
The patient experienced remission of neurologic symptoms; however, after 5 months, he developed bilateral testicular tenderness and enlargement. An ultrasound was performed and was suggestive of leukemic infiltration (Figure 3). Chemotherapy with methotrexate and L-asparaginase in addition to radiotherapy to the testes (24 Gy in 12 fractions) was given without complications.
One year after initial CNS iEMR, the patient developed overt bone marrow relapse (BMR), as evidenced by development of bone pain throughout the lumbosacral region, and the appearance of multiple blastic and lytic lesions throughout the appendicular and axial skeleton. A positron emission tomography-CT scan documented abdominal lymphadenopathy (Figure 4). With this rapidly progressive picture, the patient was transitioned to supportive care and died 2 months later.
Is the risk of iEMR following HSCT modified by the choice of conditioning regimen? If so, which of the following approaches would have been the best choice to prevent iEMR in this patient?
A. There is no role of conditioning therapy in preventing iEMRB. Reduced intensity of regimen to favor graft-versus-leukemia (GVL) effectC. Nonmieloablative regimens including fludarabineD. Mieloablative regimens including total body irradiation (TBI)
CORRECT ANSWER: D. Mieloablative regimens including total body irradiation (TBI).
Allogeneic HSCT is an effective treatment for ALL, which can achieve long-term remission and even a potential cure.1 Antineoplastic activity is dependent on both high-dose chemotherapy and graft alloreactivity, with the latter manifested in the GVL effect, and undesirably yet inherently, in GVHD.2 Despite recent advances in allogeneic HSCT strategies, disease relapse is common and remains the most important cause of death in this population. Relapse is reported in 30% to 40% of patients but can increase to 60% in patients who are in a second complete remission (CR) at time of HSCT.2,3
Risk factors for relapse in patients with ALL who have undergone HSCT include disease- and transplant-related features. Reported high-risk disease characteristics include: hyperleukocytosis at diagnosis (white blood cell count >30 x109/L for B-lineage ALL and >100 x109/L for T-lineage ALL); cytogenetics associated with poor outcomes, including chromosome 11 translocations and t(9;22); a short remission timespan; more than a first CR; and a failed or delayed remission after induction therapy.4 In the HSCT population, transplant-related factors should be considered, including alternative donors other than those who are matched related and matched unrelated, the type of conditioning regimen, and the development of GVHD.2
ALL relapse following HSCT most commonly involves the medullary compartment, with a cumulative incidence of 41% at 5 years. Conversely, extramedullary relapse (EMR) is uncommon, with a 5-year cumulative incidence of 11.0% and 5.8% for EMR and iEMR, respectively.5 Due to the rarity of EMR, its prognostic impact remains controversial and the ideal management strategies are a subject of active study.
EMR is associated with poor clinical outcomes; however, the subgroup of patients with iEMR (as presented in this patient case) is gaining attention due to its increasing frequency, its role heralding a systemic relapse, and its clinical behavior showing better survival outcomes compared with BMR and EMR.6-8
Isolated EMR is defined as the presence of clonal blasts in any tissue other than the medullary compartment; bone marrow evaluation must show less than 5% of clonal blasts and a full donor chimerism. Most commonly affected sites include the skin, soft tissues, lymph nodes, and immune sanctuaries including the CNS and testes.1,5,9 Because prevention rather than treatment of relapse is related to improved survival outcomes, it is important to define subgroups of patients who may benefit fromearly intervention with a personalized transplant strategy.
Higher rates of iEMR have been linked to patients of younger age. This is thought to be secondary to: (1) a higher incidence of ALL compared with acute myeloid leukemia (AML) in this age subgroup, the former of which is most associated with EMR; (2) the relative overrepresentation of myelomonocytic/monocytic phenotypes in AML presenting in young individuals; and (3) the higher likelihood of a history of EMR in children compared with adults.1,10
A history of extramedullary (EM) disease, which has consistently been found to impact the development of iEMR, is preexistent in up to half of patients. In 2 out of 3 cases of EMR, disease affects the site of original EM involvement, possibly due to low efficacy of both high-dose chemotherapy and the GVL effect.1,5 An exception to this is CNS involvement, despite being a risk factor for subsequent CNS iEMR, which is commonly reported de novo, reflecting the protective effect of regularly administered prophylaxis to patients at high risk of CNS infiltration.11
The effect of GVHD on risk of iEMR is highly nuanced. Despite its well-known role as a protective factor for BMR, the same effect does not appear to hold true for iEMR.12 Initial reports in this population showed no differences in relapse-free survival regardless of acute or chronic GVHD (cGVHD) or a positive association between extensive cGVHD and iEMR development.10,13 This has led to investigators to postulate that the underlying physiopathology differs among different types of relapse, with decreased expression of human leukocyte antigen (HLA) minor histocompatibility antigens and adhesion molecules and decreased penetration of both immune cells and high-dose chemotherapy to EM sites.14 These mechanisms lead to decreased effectivness of T-cell dependent cytotoxicity of donor lymphocytes as compared with the medullary compartment, with subsequent clone selection and escape, enabling the development of iEMR.6
With the increased use of alternative donors, this has been contested in the haploidentical setting, with a recent report showing significantly increased rates of iEMR in patients who do not develop cGVHD. It is suggested that the role of GVL, coupled with GVHD, in this HLA-mismatched setting could partially explain the added benefit of GVHD in this subgroup. This report also evidenced increased tumor chemosensitivity in patients with EMR compared with BMR, possibly explained by reduced concentrations of conditioning therapy at EM sites.9
Cytogenetics associated with poor outcomes and advanced disease at the time of HSCT were described as risk factors for iEMR in initial cohort studies.1,5,10,15,16 However, recent publications that include alternative-donor HSCT recipients have reported that a haploidentical source could overcome this negative impact.9
The influence of type of conditioning regimen on likelihood of iEMR has been studied only retrospectively, mainly comparing TBI-based versus chemotherapy-based approaches. The landmark paper by Simpson et al showed a significantly elevated rate of iEMR in patients receiving busulfan-based conditioning. This finding has been related to the lack of penetration of drugs into the immune sanctuaries with chemotherapy-only regimens.17
Multiple approaches, including combination and single treatment for iEMR, have been described. Combination therapy including systemic chemotherapy plus local radiotherapy (or in CNS disease, radiation to the craniospinal axis, intrathecal chemotherapy, and systemic chemotherapy) has been associated with higher response rates than single-treatment strategies.9 Nonetheless, the best responses have been observed when combination therapy is followed by a cellular therapy (eg, second allogeneic HSCT, donor leukocyte infusion, and donor stem cell infusion), leading to CR rates of greater than 80%.5,13 Whether this increase in CR rate translates to an increase in survival outcomes remains debatable due to conflicting results in the current literature for iEMR.
Financial Disclosure: The authors have no significant financial interest in or other relationship with the manufacturer of any product or provider of any service mentioned in this article.
Corresponding author:
Christianne Bourlon, MD, MHScVasco de Quiroga No. 15.Belisario Domnguez Seccin XVI
Tlalpan, C.P. 14080, Ciudad de Mxico, Mxico
E-mail: chrisbourlon@hotmail.com
References:
1. Ge L, Ye F, Mao X, et al. Extramedullary relapse of acute leukemia after allogeneic hematopoietic stem cell transplantation: different characteristics between acute myelogenous leukemia and acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2014;20(7):1040-1047. doi: 10.1016/j.bbmt.2014.03.030.
2. Pavletic SZ, Kumar S, Mohty M, et al. NCI First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation: report from the Committee on the Epidemiology and Natural History of Relapse following Allogeneic Cell Transplantation. Biol Blood Marrow Transplant. 2010;16(7):871-890. doi: 10.1016/j.bbmt.2010.04.004.
3. Devillier R, Crocchiolo R, Etienne A, et al. Outcome of relapse after allogeneic stem cell transplant in patients with acute myeloid leukemia. Leuk Lymphoma. 2013;54(6):1228-1234. doi: 10.3109/10428194.2012.741230.
4. Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C; ESMO Guidelines Committee. Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v69-v82. doi: 10.1093/annonc/mdw025.
5. Shem-Tov N, Saraceni F, Danylesko I, et al. Isolated extramedullary relapse of acute leukemia after allogeneic stem cell transplantation: different kinetics and better prognosis than systemic relapse. Biol Blood Marrow Transplant. 2017;23(7):1087-1094. doi: 10.1016/j.bbmt.2017.03.023.
6. Lee JH, Choi SJ, Lee JH, et al. Anti-leukemic effect of graft-versus-host disease on bone marrow and extramedullary relapses in acute leukemia. Haematologica. 2005;90(10):1380-1388.
7. Xie N, Zhou J, Zhang Y, Yu F, Song Y. Extramedullary relapse of leukemia after allogeneic hematopoietic stem cell transplantation. Medicine (Baltimore). 2019;98(19):e15584. doi: 10.1097/MD.0000000000015584.
8. Shi JM, Meng XJ, Luo Y, et al. Clinical characteristics and outcome of isolated extramedullary relapse in acute leukemia after allogeneic stem cell transplantation: a single-center analysis. Leuk Res. 2013;37(4):372-377. doi: 10.1016/j.leukres.2012.12.002.
9. Mo XD, Kong J, Zhao T, et al. Extramedullary relapse of acute leukemia after haploidentical hematopoietic stem cell transplantation: incidence, risk factors, treatment, and clinical outcomes. Biol Blood Marrow Transplant. 2014;20(12):2023-2028. doi:10.1016/j.bbmt.2014.08.023.
10. Harris AC, Kitko CL, Couriel DR, et al. Extramedullary relapse of acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation: incidence, risk factors and outcomes. Haematologica. 2013;98(2):179-184. doi: 10.3324/haematol.2012.073189.
11. Hamdi A, Mawad R, Bassett R, et al. Central nervous system relapse in adults with acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(11):1767-1771. doi: 10.1016/j.bbmt.2014.07.005.
12. Giralt SA, Champlin RE. Leukemia relapse after allogeneic bone marrow transplantation: a review. Blood. 1994;84(11):3603-3612.
13. Solh M, DeFor TE, Weisdorf DJ, Kaufman DS. Extramedullary relapse of acute myelogenous leukemia after allogeneic hematopoietic stem cell transplantation: better prognosis than systemic relapse. Biol Blood Marrow Transplant. 2012;18(1):106-112. doi: 10.1016/j.bbmt.2011.05.023.
14. Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112(12):4371-4383. doi: 10.1182/blood-2008-03-077974.
15. Lee KH, Lee JH, Choi SJ, et al. Bone marrow vs extramedullary relapse of acute leukemia after allogeneic hematopoietic cell transplantation: risk factors and clinical course. Bone Marrow Transplant. 2003;32(8):835-842. doi: 10.1038/sj.bmt.1704223.
16. Clark WB, Strickland SA, Barrett AJ, Savani BN. Extramedullary relapses after allogeneic stem cell transplantation for acute myeloid leukemia and myelodysplastic syndrome. Haematologica. 2010;95(6):860-863.
17. Simpson DR, Nevill T, Shepherd JD, et al. High incidence of extramedullary relapse of AML after busulfan/cyclophosphamide conditioning and allogeneic stem cell transplantation. Bone Marrow Transplant. 1998;22(3):259-264. doi: 10.1038/sj.bmt.1701319.
Excerpt from:
Isolated Extramedullary Relapse in Acute Lymphoblastic Leukemia: What Can We Do Before and After Transplant? - Cancer Network
Are stem cells really the key to making humans live longer? – Wired.co.uk
By daniellenierenberg
To some longevity acolytes, stem cells promise the secret to eternal youth. For a hefty fee, you can pay a startup to extract your own stem cells and cryogenically freeze them, in the hope that they can one day be used in a treatment to help extend your life.
Other firms let you bank stem cells from your babys umbilical cord and placenta after childbirth, if youre convinced the high cost represents an insurance policy against future illness. Or you can follow the example of Sandra Bullock and Cate Blanchett and opt for an anti-ageing cream made with stem cells derived from the severed foreskins of newborn babies in South Korea.
Stem cells are the parent cells which give rise to other cells in our bodies. Since scientists first isolated human embryonic stem cells in a lab and grew them over 20 years ago, they have been mooted as a source of great hope for regenerative medical treatments, including for age-related degenerative conditions such as Parkinsons, Alzheimers, heart disease and stroke.
But apart from a few small-scale examples, the only stem cell-based medical treatment practised in clinics uses haematopoietic stem cells found in the blood and bone marrow which only produce blood cells for transplants in blood cancer patients. These cells are taken from a patients sibling or an unrelated donor, before being infused into a patients blood, or theyre taken from a patients own blood before being reinfused. The procedure has been used to treat blood malignancies for almost half a century, and recently multiple sclerosis too. So how likely is it that the predictions about stem cells' longevity-enhancing powers will become a reality?
In September 2019, Google banned ads for unproven or experimental medical techniques such as most stem cell therapy, citing a rise in bad actors attempting to take advantage of individuals by offering untested, deceptive treatments [that can often] lead to dangerous health outcomes. The decision was welcomed by the International Society for Stem Cell Research, which emphasised that most stem cell interventions remain experimental. Selling treatments before well-regulated clinical trials have been done, the body said, [threatens public] confidence in biomedical research and undermines the development of legitimate new therapies.
Its easy to see how less scrupulous companies can exploit the allure of stem cells, which seem to occupy a place in our collective consciousness as a kind of magical elixir. High hopes for stem cell-based therapies have grown since 2006, when the Japanese biologist Shinya Yamanaka created a new technology to reprogram adult cells, such as skin cells, into a similar state to embryonic stem cells, which are pluripotent, meaning they can develop into any tissue in the body. The Nobel prize-winning breakthrough was hailed as a major step in the study of stem cells without the need for controversial embryo research, and towards the use of these human induced pluripotent stem cells to regenerate damaged or diseased organs or effectively grow new spare parts which could treat the life-limiting and life-shortening illnesses associated with ageing.
Gerontologist Aubrey de Grey, whose Strategies for Engineered Negligible Senescence (SENS) research foundation aims to eliminate ageing-related diseases, thinks the chances well soon have stem cell based therapies are high. For anything that's in clinical trials, you're talking about maybe five years before it's available to the general public, he says, citing stem cell treatments for Parkinsons disease, currently being tested in phase two clinical trials, as one of the developments he thinks is likely to come soonest.
However, given that these trials involve a relatively small number of participants and most clinical trials ultimately fail, his predictions might be overly optimistic. Often described as a maverick, De Grey believes that humans can live forever and there is a 50 per cent chance medical advances of which stem cell therapies will play an important part will make this a reality within the next 17 years. Though living forever, he says, is not the ultimate goal but a rather large side effect of medicine which will successfully prevent or repair the damage that comes with ageing.
For New Jersey-based Robert Hariri, who co-founded Human Longevity Inc, which set its sights more modestly on making 100 the new 60, stem cells derived from placentas present especially exciting opportunities. A biomedical scientist, surgeon and entrepreneur, Hariri says his current venture Celularity which is focused on engineering placental cells, including stem cells, to create drugs for cancer and other conditions is not as concerned about the actual age number, but about preserving human performance as we age and treating the degenerative diseases that rob us of our quality of life.
Many of those working in the field, however, remain cautious in their optimism. Researchers have highlighted the potential risks of giving pluripotent cells to patients, whether they are induced or embryonic, as these cells can develop cancer-causing mutations as they grow.
Davide Danovi, a scientist at Kings College Londons Centre for Stem Cells & Regenerative Medicine, says the path to stem cell-based therapy is very long and full of hurdles. The supply chain involves challenges, he says. On the one hand, allogeneic treatments those with stem cells derived from one individual and expanded into big batches to create cells to treat many individuals have the advantage of being similar to the traditional pharmaceutical business models. The product is clear, its something that comes in a vial and can be scaled up and mass produced, Danovi says. But this treatment can present a greater risk of rejection from the patient, as opposed to the more bespoke autologous option which is more expensive and time-consuming as it involves extracting a patients own stem cells before reprogramming them.
Danovi is most excited by the potential of stem cells to treat age-related macular degeneration. In 2017 Japanese scientist Masayo Takahash led a team that administered transplants of artificially grown retinal cells created from induced pluripotent stem cells taken from donors to five patients with the eye condition, which can cause blindness, and theyre reported to be doing well. The eye, he says seems to be a place where immunity plays less of a role relative to other issues, so you can host cells which come from another individual with fewer problems [of rejection]. But, with other organs such as the liver, he says there are major conceptual problems with creating enough tissue. Its like the clean meat burger - you're talking about a production that is, in many cases, not easy to reach with the current technology.
Hariri believes placentas will solve some of the production challenges crucially, theyre an abundant commodity, with the vast majority thrown out after childbirth. His interest was sparked 20 years ago when his oldest daughter was in the womb: When I saw her first ultrasound in the first trimester, the placenta had already developed into a relatively sizable organ, even though she was just a peanut-sized embryo. Id been taught that the placenta was nothing more than an interface, but [if that was the case], you would expect that it would grow at the same rate as the embryo. His curiosity piqued, he began to see the placenta not as an interface but as a biological factory, where stem cells could be expanded and differentiated to participate in the development of that foetus. That intrigued me and I started to collect placentas and just, you know, basically disassemble them.
Placentas have numerous benefits, he says they dont carry the same ethical controversy as embryonic stem cells, for one thing. Scientists working on embryonic stem cells have to destroy an early embryo, and that option yields them a dozen cells, which have to be culture-expanded in the laboratory into billions of cells. In contrast, the placenta houses, billions and hundreds of billions of cells, which can be expanded as well, but you're starting out with a dramatically larger starting material.
Increasingly, scientists in the anti-ageing sphere are focusing on an approach that seems like the opposite of planting fresh stem cells into our bodies. Experts such as Ilaria Bellantuono at Sheffield Universitys Healthy Lifespan Institute are working towards creating senolytics medication that could kill off our senescent cells, the zombie cells that accumulate in tissues as we age and cause chronic inflammation. I think stem cells are very good for specific disease, where the environment is still young, Bellantuono says, but the data in animal models tells us that senolytics are actually able to delay the onset and reduce the severity of multiple diseases at the same time for example, there is evidence for osteoarthritis, osteoporosis, cardiovascular disease, Alzheimer's, Parkinson's, and diabetes. She explains that while human trials are still in their early stages, senolytics are likely to be more cost-effective than stem cell therapy and the status quo of older patients taking multiple pills for multiple diseases, which can interact with each other. Besides, she adds, they may actually work in tandem with stem-cell based therapies in the future, with senolytics creating a more hospitable environment in tissues to allow stem cells to do their work.
And as for the so-called penis facial? Its far from the only ultra-expensive stem cell skincare making bold anti-ageing claims but youre probably better off saving your money, as you are with the experimental medical treatments on offer. Stem cells are definitely exciting but theyre not the key to eternal youth. At least, not yet.
Robert Harari will be one of the speakers at WIRED Health in London on March 25, 2020. For more details, and to book your ticket, click here
Why do modern tomatoes taste so bad?
How Tesla became the world's most overvalued car company
Marvel at the incredible real-life Iron Man
How Slack ruined work
Follow WIRED on Twitter, Instagram, Facebook and LinkedIn
Get The Email from WIRED, your no-nonsense briefing on all the biggest stories in technology, business and science. In your inbox every weekday at 12pm sharp.
by entering your email address, you agree to our privacy policy
Thank You. You have successfully subscribed to our newsletter. You will hear from us shortly.
Sorry, you have entered an invalid email. Please refresh and try again.
See the article here:
Are stem cells really the key to making humans live longer? - Wired.co.uk
CytoDyn Reports Continued Positive Clinical Data on its Phase 1b/2 mTNBC and Expanded Access Studies for MBC Ahead of Breakthrough Therapy Designation…
By daniellenierenberg
VANCOUVER, Washington, Feb. 14, 2020 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn or the Company"), a late-stage biotechnology company developing leronlimab (PRO 140), a CCR5 antagonist with the potential for multiple therapeutic indications, announced today continued positive data for its mTNBC and MBC patients.
Metastatic triple-negative breast cancer (mTNBC), an aggressive histological subtype, has a poor prognosis. In addition, metastatic breast cancer (MBC) is breast cancer that has spread beyond the breast and lymph nodes to other organs in the body (typically the bones, liver, lungs, or brain). Both types of cancer pose significant challenges for patients due to their aggressiveness and limited treatment options. An integral part of CytoDyns mission and purpose is to provide effective therapeutic solutions to these patients. Results of the first five patients are as follows:
Patient #1: Enrolled in mTNBC Phase 1b/2 - Injected on 9/27/2019. CTC (circulating tumor cells) dropped to zero in two weeks on 10/11/2019. Total CTC and EMT (Epithelial Mesenchymal Transition in Tumor Metastasis) dropped to zero after about one month of treatment with leronlimab (once-a-week 350 mg dose). After approximately four months of treatment with leronlimab and Carboplatin, the patient had zero CTC+EMT. Furthermore, the patients CT scan indicated a 20% tumor shrinkage within the first few weeks of treatment with leronlimab.
Patient #2: Enrolled in single IND. Patient is MBC with HER2+ stage 4 metastasis to lung, liver, and brain. Patients radiologist cancelled 2nd round of treatment due to leronlimabs effect on shrinking the largest tumor in the brain by 56% and other lesions being stable. Leronlimab has, and continues to be, the only treatment in place since the measurement of brain tumor shrinkage was initiated. Patient was permitted to obtain CTC+EMT test results. After 10 weeks of treatment with leronlimab, this patients CTC+EMT results were zero (results reported on 2/12/2020).
Patient #3: Enrolled on 1/3/2020. This patients CAML counts went down from 45 to 30. CTC+EMT are stable and there has been no change in the total number.
Patient #4: Enrolled on 1/7/2020. This patients total CTC+EMT dropped by 75% in the first two weeks of treatment with leronlimab.
Patient #5: Enrolled on 2/4/2020. This patients CTC+EMT have been recorded upon enrollment and the first results are expected on 2/25/2020.
In addition to the first five patients, enrollment and treatment updates in CytoDyns Phase 2 protocol basket trial under its cancer IND are as follows:
Patient #6: Injected on 2/8/2020 and the first results since enrollment are due by end of February.
Patient #7: Injected on 2/13/2020.
Patients #8, 9 and 10: Completed screening for enrollment.
The patients enrolled in the mTNBC Phase 1b/2 trial continue to demonstrate meaningful results that support the hypothesis regarding leronlimabs mechanism of action, said Bruce Patterson, M.D., chief executive officer and founder of IncellDx, a diagnostic partner and an advisor to CytoDyn. In the four patients (1 with MBC, 3 with TNBC) now with results from leronlimab therapy, patients #1-3 have zero CTCs and zero EMTs and Patient #4, who has been treated with leronlimab for 2 weeks showed a decrease of CTCs and EMTs from 8 to 2. New data from Patient #2 with Stage 4 MBC and who has been treated with 10 weekly doses of leronlimab showed zero CTCs and zero EMTs, in addition to the shrinkage or disappearance of some brain metastases as previously reported.
Nader Pourhassan, Ph.D., president and chief executive officer of CytoDyn, added: These findings are extremely promising in light of the success rate of other treatment options. Therapeutic options for patients suffering from breast cancer are highly limited and we look forward to continuing enrollment and exploring leronlimabs potential to treat this devastating disease. Since our basket trial for all solid tumor cancers has been initiated, we are currently screening a prostate cancer patient, and if continued positive clinical results are forthcoming from this patient, we are hopeful that this will clear the path for CytoDyn to file for Breakthrough Therapy designation for all solid tumor cancers. Our mechanism of action is not only focused on the inhibition of metastasis of solid tumor cancers, but also targets the tumor itself through macrophages, angiogenesis and T-reg.
About Triple-Negative Breast CancerTriple-negative breast cancer (TNBC) is a type of breast cancer characterized by the absence of the three most common types of receptors in the cancer tumor known to fuel most breast cancer growthestrogen receptors (ER), progesterone receptors (PR) and the hormone epidermal growth factor receptor 2 (HER-2) gene. TNBC cancer occurs in about 10 to 20 percent of diagnosed breast cancers and can be more aggressive and more likely to spread and recur. Since the triple-negative tumor cells lack these receptors, common treatments for breast cancer such as hormone therapy and drugs that target estrogen, progesterone, and HER-2 are ineffective.
About Leronlimab (PRO 140)The U.S. Food and Drug Administration (FDA) have granted a Fast Track designation to CytoDyn for two potential indications of leronlimab for deadly diseases. The first as a combination therapy with HAART for HIV-infected patients and the second is for metastatic triple-negative breast cancer. Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases including NASH. Leronlimab has successfully completed nine clinical trials in over 800 people, including meeting its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients).
In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab can significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.
In the setting of cancer, research has shown that CCR5 plays an important role in tumor invasion and metastasis. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98% in a murine xenograft model. CytoDyn is therefore conducting a Phase 1b/2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019. Additional research is being conducted with leronlimab in the setting of cancer and NASH with plans to conduct additional clinical studies when appropriate.
The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation and may be important in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells. CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to further support the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD and that blocking this receptor from recognizing certain immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of GvHD.
About CytoDynCytoDyn is a biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a key role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and in immune-mediated illnesses, such as GvHD and NASH. CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients. CytoDyn plans to seek FDA approval for leronlimab in combination therapy and plans to complete the filing of a Biologics License Application (BLA) in the first quarter of 2020 for that indication. CytoDyn is also conducting a Phase 3 investigative trial with leronlimab as a once-weekly monotherapy for HIV-infected patients and plans to initiate a registration-directed study of leronlimab monotherapy indication, which if successful, could support a label extension. Clinical results to date from multiple trials have shown that leronlimab can significantly reduce viral burden in people infected with HIV with no reported drug-related serious adverse events (SAEs). Moreover, results from a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients, with some patients on leronlimab monotherapy remaining virally suppressed for more than five years. CytoDyn is also conducting a Phase 2 trial to evaluate leronlimab for the prevention of GvHD and a Phase 1b/2 clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is at http://www.cytodyn.com.
Forward-Looking Statements This press release contains certain forward-looking statements that involve risks, uncertainties and assumptions that are difficult to predict. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as believes, hopes, intends, estimates, expects, projects, plans, anticipates and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. The Companys forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i) the sufficiency of the Companys cash position, (ii) the Companys ability to raise additional capital to fund its operations, (iii) the Companys ability to meet its debt obligations, if any, (iv) the Companys ability to enter into partnership or licensing arrangements with third parties, (v) the Companys ability to identify patients to enroll in its clinical trials in a timely fashion, (vi) the Companys ability to achieve approval of a marketable product, (vii) the design, implementation and conduct of the Companys clinical trials, (viii) the results of the Companys clinical trials, including the possibility of unfavorable clinical trial results, (ix) the market for, and marketability of, any product that is approved, (x) the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Companys products, (xi) regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii) general economic and business conditions, (xiii) changes in foreign, political, and social conditions, and (xiv) various other matters, many of which are beyond the Companys control. The Company urges investors to consider specifically the various risk factors identified in its most recent Form 10-K, and any risk factors or cautionary statements included in any subsequent Form 10-Q or Form 8-K, filed with the Securities and Exchange Commission. Except as required by law, the Company does not undertake any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.
CYTODYN CONTACTSMedia:Grace FotiadesLifeSci Communications[emailprotected](646) 876-5026
Investors: Dave Gentry, CEORedChip CompaniesOffice: 1.800.RED.CHIP (733.2447)Cell: 407.491.4498[emailprotected]
Follow this link:
CytoDyn Reports Continued Positive Clinical Data on its Phase 1b/2 mTNBC and Expanded Access Studies for MBC Ahead of Breakthrough Therapy Designation...
Actinium to Highlight Targeted Conditioning Portfolio at 2020 Transplantation & Cellular Therapy Annual Meeting; Phase 3 SIERRA Trial Preliminary…
By daniellenierenberg
NEW YORK, Feb. 13, 2020 /PRNewswire/ --Actinium Pharmaceuticals, Inc. (NYSE AMERICAN: ATNM) ("Actinium") announced today that presentations from its targeted conditioning portfolio have been accepted for presentation at the 2020 Transplantation & Cellular Therapy (TCT) Meetings, which brings together thousands of transplant professionals from over 500 transplant centers worldwide. TCT is being held February 19-23, 2020 at the Marriott World Center in Orlando, Florida. Notably, data from the pivotal Phase 3 SIERRA trial of Iomab-B have been selected for an oral presentation.
"We are excited that Iomab-B and the SIERRA trial have once again been selected as an oral presentation at TCT," said Dr. Mark Berger, Chief Medical Officer of Actinium. "We look forward to highlighting the potential benefit that Iomab-B can provide to a patient population with active disease who are otherwise ineligible for BMT. We are confident these findings will be received with great enthusiasm. TCT, which assembles leading transplant physicians from top centers in the United States and worldwide, is the ideal venue to showcase the extremely encouraging findings from the SIERRA trial thus far. In addition, our other conference activities are expected to provide significant exposure for this important trial and invaluable interactions with BMT thought leaders. Through the SIERRA trial, we aspire to change the treatment paradigm for older patients with relapsed or refractory AML to make potentially curative BMT via Iomab-B the standard of care for this patient population that continues to have poor outcomes."
Actinium's TCT Presentations:
Late Breaking Oral Presentation:
Poster Presentation:
About the SIERRA TrialThe SIERRA trial (Study ofIomab-B inElderlyRelapse/RefractoryAcute Myeloid Leukemia) is the only randomized Phase 3 trial that offers BMT (Bone Marrow Transplant) as an option for older patients with active, relapsed or refractory AML or acute myeloid leukemia. BMT is the only potentially curative treatment option for older patients with active relapsed or refractory AML and there is no standard of care for this indication other than salvage therapies. Iomab-B is an ARC (Antibody Radiation-Conjugate) comprised of the anti-CD45 antibody apamistamab and the radioisotope I-131 (Iodine-131). The 20 active SIERRA trial sites in the U.S. and Canada represent many of the leading bone marrow transplant centers by volume. For more information, visit http://www.sierratrial.com.
About Transplantation & Cellular Therapy Meetings (TCT) TCT, formerly known as the BMT Tandem Meetings, are the combined annual meetings of the American Society for Blood and Marrow Transplantation (ASBMT) and the Center for International Blood & Marrow Transplant Research (CIBMTR).Each year the conference brings together several thousand investigators, clinicians, researchers, nurses and other allied health professionals from over 500 transplant centers from over 50 countries around a full scientific program focused on bone marrow transplant and cellular therapies.
About Actinium Pharmaceuticals, Inc. (NYSE: ATNM)Actinium Pharmaceuticals, Inc. is a clinical-stage biopharmaceutical company developing ARCs or Antibody Radiation-Conjugates, which combine the targeting ability of antibodies with the cell killing ability of radiation. Actinium's lead application for our ARCs is targeted conditioning, which is intended to selectively deplete a patient's disease or cancer cells and certain immune cells prior to a BMT or Bone Marrow Transplant, Gene Therapy or Adoptive Cell Therapy (ACT) such as CAR-T to enable engraftment of these transplanted cells with minimal toxicities. With our ARC approach, we seek to improve patient outcomes and access to these potentially curative treatments by eliminating or reducing the non-targeted chemotherapy that is used for conditioning in standard practice currently. Our lead product candidate, I-131 apamistamab (Iomab-B) is being studied in the ongoing pivotal Phase 3Study ofIomab-B inElderlyRelapsed orRefractoryAcute Myeloid Leukemia (SIERRA) trial for BMT conditioning. The SIERRA trial is over fifty percent enrolled and promising single-agent, feasibility and safety data has been highlighted at ASH, TCT, ASCO and SOHO annual meetings. I-131 apamistamab will also be studied as a targeted conditioning agent in a Phase 1/2 anti-HIV stem cell gene therapy with UC Davis and is expected to be studied with a CAR-T therapy in 2020. In addition, we are developing a multi-disease, multi-target pipeline of clinical-stage ARCs targeting the antigens CD45 and CD33 for targeted conditioning and as a therapeutic either in combination with other therapeutic modalities or as a single agent for patients with a broad range of hematologic malignancies including acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Ongoing combination trials include our CD33 alpha ARC, Actimab-A, in combination with the salvage chemotherapy CLAG-M and the Bcl-2 targeted therapy venetoclax. Underpinning our clinical programs is our proprietary AWE (Antibody Warhead Enabling) technology platform. This is where our intellectual property portfolio of over 100 patents, know-how, collective research and expertise in the field are being leveraged to construct and study novel ARCs and ARC combinations to bolster our pipeline for strategic purposes. Our AWE technology platform is currently being utilized in a collaborative research partnership with Astellas Pharma, Inc. Website: https://www.actiniumpharma.com/
Forward-Looking Statements for Actinium Pharmaceuticals, Inc.
This press release may contain projections or other "forward-looking statements" within the meaning of the "safe-harbor" provisions of the private securities litigation reform act of 1995 regarding future events or the future financial performance of the Company which the Company undertakes no obligation to update. These statements are based on management's current expectations and are subject to risks and uncertainties that may cause actual results to differ materially from the anticipated or estimated future results, including the risks and uncertainties associated with preliminary study results varying from final results, estimates of potential markets for drugs under development, clinical trials, actions by the FDA and other governmental agencies, regulatory clearances, responses to regulatory matters, the market demand for and acceptance of Actinium's products and services, performance of clinical research organizations and other risks detailed from time to time in Actinium's filings with the Securities and Exchange Commission (the "SEC"), including without limitation its most recent annual report on form 10-K, subsequent quarterly reports on Forms 10-Q and Forms 8-K, each as amended and supplemented from time to time.
Contacts:
Investors:Hans Vitzthum LifeSci Advisors, LLCHans@LifeSciAdvisors.com(617) 535-7743
Media:Alisa Steinberg, Director, IR & Corp Commsasteinberg@actiniumpharma.com(646) 237-4087
SOURCE Actinium Pharmaceuticals, Inc.
Bone Therapeutics to present preclinical data on the osteogenic properties of ALLOB in bone repair at the Annual Meeting of the Orthopaedic Research…
By daniellenierenberg
Press Release
Gosselies, Belgium, 11February 2020, 7am CET BONE THERAPEUTICS (Euronext Brussels and Paris: BOTHE), the leading biotech company focused on the development of innovative cell and biological therapies to address high unmet medical needs in orthopaedics and bone diseases, announces that the Company will today present at the Annual Meeting of the Orthopaedic Research Society (ORS), in Phoenix (Arizona), USA.
The Annual ORS Meeting is the yearly summit organised by the international Orthopaedic Research Society, gathering scientists, clinicians and entrepreneurs to advance musculoskeletal research and orthopaedic care. In the oral presentation, Bone Therapeutics will highlight additional preclinical in vitro and in vivo results demonstrating the potent osteogenic properties of its allogeneic bone-forming cell therapy platform, ALLOB, to promote bone-formation and improve fracture healing in relevant models.
ALLOB is the Companys allogeneic product that consists of human bone-forming cells derived from cultured bone marrow mesenchymal stem cells of healthy adult donors, and is manufactured through a proprietary, scalable production process. ALLOB successfully completed two Phase II studies in two indications and the Company has started the CTA submission procedure with the regulatory authorities in Europe to start the PhaseIIb clinical trial in patients with difficult-to-heal tibial fractures.
Presentation Details:
Title: ALLOB, A Ready-to-use and Injectable Cryopreserved Allogenic Cell Therapy Product Derived from Bone Marrow Mesenchymal Stem Cells, Displays Potent Osteoinductive and Osteogenic Properties, Leading to Enhanced Bone Fracture HealingSpeaker: Sandra Pietri, PhD Associate Director R&D, Bone TherapeuticsSession: Podium Session 58 Bone Cell Signaling and TreatmentsDate: Tuesday, 11 February 2020Time: 8:00am 9:00am MST (4pm 5 pm CET)Location: Room West 301D, Phoenix Convention Center, Phoenix, Arizona, USA
About Bone Therapeutics
Bone Therapeutics is a leading biotech company focused on the development of innovative products to address high unmet needs in orthopedics and bone diseases. The Company has a broad, diversified portfolio of bone cell therapies and an innovative biological product in later-stage clinical development, which target markets with large unmet medical needs and limited innovation.
Bone Therapeutics is developing an off-the-shelf protein solution, JTA-004, which is entering Phase III development for the treatment of pain in knee osteoarthritis. Positive Phase IIb efficacy results in patients with knee osteoarthritis showed a statistically significant improvement in pain relief compared to a leading viscosupplement. The clinical trial application (CTA) to start the pivotal Phase III program has been submitted to the regulatory authorities in Europe and the trial is expected to start in Q1 2020.
Bone Therapeutics other core technology is based on its cutting-edge allogeneic cell therapy platform (ALLOB) which can be stored at the point of use in the hospital, and uses a unique, proprietary approach to bone regeneration, which turns undifferentiated stem cells from healthy donors into bone-forming cells. These cells can be administered via a minimally invasive procedure, avoiding the need for invasive surgery, and are produced via a proprietary, scalable cutting-edge manufacturing process. Following the promising Phase IIa efficacy and safety results for ALLOB, the Company has started the CTA submission procedure with the regulatory authorities in Europe to start the Phase IIb clinical trial with ALLOB in patients with difficult-to-heal fractures, using its optimized production process.
The ALLOB platform technology has multiple applications and will continue to be evaluated in other indications including spinal fusion, osteotomy and maxillofacial and dental applications.
Bone Therapeutics cell therapy products are manufactured to the highest GMP (Good Manufacturing Practices) standards and are protected by a broad IP (Intellectual Property) portfolio covering ten patent families as well as knowhow. The Company is based in the BioPark in Gosselies, Belgium. Further information is available at http://www.bonetherapeutics.com.
Story continues
Contacts
Bone Therapeutics SAMiguel Forte, MD, PhD, Chief Executive OfficerJean-Luc Vandebroek, Chief Financial OfficerTel: +32 (0) 71 12 10 00investorrelations@bonetherapeutics.com
International Media Enquiries:Consilium Strategic CommunicationsMarieke VermeerschTel: +44 (0) 20 3709 5701bonetherapeutics@consilium-comms.com
For French Media and Investor Enquiries:NewCap Investor Relations & Financial CommunicationsPierre Laurent, Louis-Victor Delouvrier and Arthur RouillTel: + 33 (0)1 44 71 94 94bone@newcap.eu
Certain statements, beliefs and opinions in this press release are forward-looking, which reflect the Company or, as appropriate, the Company directors` current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this press release regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this press release as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its subsidiary undertakings or any such person`s officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this press release or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this press release.
The rest is here:
Bone Therapeutics to present preclinical data on the osteogenic properties of ALLOB in bone repair at the Annual Meeting of the Orthopaedic Research...
BrainStorm Cell Therapeutics and FDA Agree to Potential NurOwn Regulatory Pathway for Approval in ALS – GlobeNewswire
By daniellenierenberg
NEW YORK, Feb. 11, 2020 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics, Inc., (NASDAQ:BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, today announced that the Company recently held a high level meeting with the U.S. Food and Drug Administration (FDA) to discuss potential NurOwn regulatory pathways for approval in ALS. Repeated intrathecal administration of NurOwn (autologous MSC-NTF cells) is currently being evaluated in a fully enrolled Phase 3 pivotal trial in ALS (NCT03280056).
In the planned meeting with senior Center for Biologics Evaluation and Research (CBER) leadership and several leading U.S. ALS experts, the FDA confirmed that the fully enrolled Phase 3 ALS trial is collecting relevant data critical to the assessment of NurOwn efficacy. The FDA indicated that they will look at the "totality of the evidence" in the expected Phase 3 clinical trial data. Furthermore, based on their detailed data assessment, they are committed to work collaboratively with BrainStorm to identify a regulatory pathway forward, including opportunities to expedite statistical review of data from the Phase 3 trial.
Both the FDA and BrainStorm acknowledged the urgent unmet need and the shared goal of moving much needed therapies for ALS forward as quickly as possible.
This is a key turning point in ourworktowardprovidingALSpatientswith a potential new therapy,said ChaimLebovits, President and CEO ofBrainStorm. We commend the FDA foritscommitmentto the ALS communityandtofacilitating the development, and we ultimately hope, the approvalofNurOwn.The entire BrainStorm team is grateful for the ongoing and conscientious collaboration in the quest to beat ALS.
Ralph Kern, MD, MHSc, Chief Operating Officer and Chief Medical Officer, stated, The entire team at BrainStorm has collectively worked to ensure that we conduct the finest, science-based clinical trials. We had the opportunity to communicate with Senior Leadership at the FDA and discuss how we can work together to navigate the approval process forward along a novel pathway. We appreciate their willingness and receptiveness to consider innovative approaches as we all seek to better serve the urgent unmet medical needs of the ALS community.
Brian Wallach, Co-Founder of I AM ALS stated: There is nothing more important to those living with ALS than having access to therapies that effectively combat this fatal disease. We have been working with BrainStorm for months now because we believe that NurOwn is a potentially transformative therapy in this fight. We were privileged to represent the patient voice at this meeting and are truly grateful to the company and the FDA for this critical agreement. This is a truly important moment of hope and we look forward to seeing both the Phase III data and the hopeful approval of NurOwn as soon as is possible.
About NurOwnNurOwn (autologous MSC-NTF cells) represent a promising investigational approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. NurOwn is currently being evaluated in a Phase 3 ALS randomized placebo-controlled trial and in a Phase 2 open-label multicenter trial in Progressive MS.
About BrainStorm Cell Therapeutics Inc.BrainStorm Cell Therapeutics Inc.is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwnCellular Therapeutic Technology Platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement as well as through its own patents, patent applications and proprietary know-how. Autologous MSC-NTF cells have received Orphan Drug status designation from theU.S. Food and Drug Administration(U.S.FDA) and theEuropean Medicines Agency(EMA) in ALS. BrainStorm has fully enrolled the Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six sites in the U.S., supported by a grant from theCalifornia Institute for Regenerative Medicine(CIRM CLIN2-0989). The pivotal study is intended to support a BLA filing for U.S.FDAapproval of autologous MSC-NTF cells in ALS. BrainStorm received U.S.FDAclearance to initiate a Phase 2 open-label multi-center trial of repeat intrathecal dosing of MSC-NTF cells in Progressive Multiple Sclerosis (NCT03799718) inDecember 2018and has been enrolling clinical trial participants sinceMarch 2019. For more information, visit the company'swebsite.
Safe-Harbor Statement
Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.
CONTACTS
Corporate:Uri YablonkaChief Business OfficerBrainStorm Cell Therapeutics Inc.Phone: 646-666-3188uri@brainstorm-cell.com
Media:Sean LeousWestwicke/ICR PRPhone: +1.646.677.1839sean.leous@icrinc.com
Or
Katie Gallagher | Account Director, PR and MarketingLaVoieHealthScience Strategic CommunicationsO: 617-374-8800 x109M: 617-792-3937kgallagher@lavoiehealthscience.com
View original post here:
BrainStorm Cell Therapeutics and FDA Agree to Potential NurOwn Regulatory Pathway for Approval in ALS - GlobeNewswire
BrainStorm Cell Therapeutics to Announce Fourth Quarter and Full Year 2019 Financial Results and Provide a Corporate Update – BioSpace
By daniellenierenberg
NEW YORK, Feb. 10, 2020 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics, Inc. (NASDAQ:BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, today announced that the Company will hold a conference call to update shareholders on financial results for the fourth quarter and full year ended December 31, 2019, and provide a corporate update, at 8:00 a.m., Eastern Time, on Tuesday, February 18, 2020.
BrainStorms President & CEO, Chaim Lebovits, will present the full year 2019 corporate update, after which, participant questions will be answered. Joining Mr. Lebovits to answer investment community questions will be Ralph Kern, MD, MHSc, Chief Operating Officer and Chief Medical Officer, and Preetam Shah, PhD, Chief Financial Officer.
Participants are encouraged to submit their questions prior to the call by sending them to: q@brainstorm-cell.com and questions should be submitted by 5:00 p.m., Eastern Time, Monday, February 17 2020.
The investment community may participate in the conference call by dialing the following numbers:
Those interested in listening to the conference call live via the internet may do so by visiting the Investors & Media page of BrainStorms website at http://www.ir.brainstorm-cell.com and clicking on the conference call link.
A webcast replay of the conference call will be available for 30 days on the Investors & Media page of BrainStorms website:
About NurOwn
NurOwn (autologous MSC-NTF cells) represent a promising investigational approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. NurOwn is currently being evaluated in a Phase 3 ALS randomized placebo-controlled trial and in a Phase 2 open-label multicenter trial in Progressive MS.
About BrainStorm Cell Therapeutics Inc.
BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn Cellular Therapeutic Technology Platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement as well as through its own patents, patent applications and proprietary know-how. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. Brainstorm has fully enrolled the Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six sites in the U.S., supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a BLA filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. Brainstorm received U.S. FDA clearance to initiate a Phase 2 open-label multi-center trial of repeat intrathecal dosing of MSC-NTF cells in Progressive Multiple Sclerosis (NCT03799718) in December 2018 and has been enrolling clinical trial participants since March 2019. For more information, visit the company's website.
Safe-Harbor Statement
Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.
CONTACTS
Investor Relations:Preetam Shah, MBA, PhDChief Financial OfficerBrainStorm Cell Therapeutics Inc.Phone: 862-397-8160pshah@brainstorm-cell.com
Media:Sean LeousWestwicke/ICR PRPhone: +1.646.677.1839sean.leous@icrinc.com
Read more from the original source:
BrainStorm Cell Therapeutics to Announce Fourth Quarter and Full Year 2019 Financial Results and Provide a Corporate Update - BioSpace
Biotech companies leading the way with exosome human clinical trials – Born2Invest
By daniellenierenberg
Testing a new therapeutic in human subjects for the first time is a major step in the translation of any novel treatment from the laboratory bench to clinical use.
When the therapeutic represents a paradigm shift, reaching this milestone is even more significant.
After years of planning, preparation and hard work to establish a base camp, starting human clinical trials is the first step towards the summit itself: gaining regulatory approval for product sales.
Exosomes tiny packets of proteins and nucleic acids (e.g. mRNA and miRNA) released by cells, that have powerful regenerative properties ranging from promoting wound healing to stimulating brain injury recovery following stroke represent just such a paradigm-shifting potential advance in human medicine.
The first commercial exosome therapeutics conference was held in Boston in September 2019 and over 15 companies participated.
This conference signals the emergence of exosomes as a new class of regenerative medicine products.
So far, just one or two of the companies working in the novel field of exosome-based therapies have reached the pivotal point and transitioned into human clinical trials. In this article we survey the field, starting with the pace-setters.
During the past few years, a handful of universities and research hospitals have carried out small scale, first-in-human Phase I clinical trials using exosomes. In each case where the study results are available, the exosome treatment was found to be safe and well-tolerated.
But the field has hotted up in the past few months, with the first companies reaching the pivotal point of testing exosome-based products in people.
On 28th January 2020, Melbourne-based Exopharm announced the first dosing under its first human clinical trial, becoming the first company to test exosomes potential for healing wounds in people.
The PLEXOVAL Phase I study will test Exopharms Plexaris product, a cell-free formulation of exosomes from platelets, which in preclinical animal studies have shown a regenerative effect, improving wound closure and reducing scarring.
The main readouts of the PLEXOVAL study the results of which are expected to be available sometime after mid-2020 will be safety, wound closure and scarring.
Joining Exopharm at the front of the pack is Maryland-based United Therapeutics.
Founded in 1996, United Therapeutics specialises in lung diseases and has a portfolio of FDA-approved conventional small molecule and biologic drugs on the market for a range of lung conditions.
On 26th June 2019, United Therapeutics announced approval for a Phase I trial (NCT03857841) of an exosome-based therapy against bronchopulmonary dysplasia (BDP), a condition common in preterm infants that receive assisted ventilation and supplemental oxygen.
Recruitment has commenced but dosing has not been announced. The study is due to conclude by December 2021. BDP is characterised by arrested lung growth and development, with health implications that can persist into adulthood.
Human clinical trials of a stem cell therapy for BDP, by Korean stem cell company Medipost, are already underway. However as with many stem cell therapies recent animal studies have shown that is the exosomes released by stem cells that are responsible for the therapeutic effect.
United Therapeutics therapy, UNEX-42, is a preparation of extracellular vesicles that are secreted from human bone marrow-derived mesenchymal stem cells. The company has not released any information about how its exosomes are produced or isolated.
A little behind the two leaders, three other companies have announced their aim to initiate their first clinical trials of exosome therapeutics within the next 12 months.
Launched in 2015, Cambridge, Massachusetts-based Codiak has long been considered among the leaders in developing exosome-based therapies.
Rather than exploiting the innate regenerative potential of select exosome populations, Codiak is developing engineered exosomes that feature a defined therapeutic payload. The companys initial focus has been to target immune cells, leveraging the immune system to combat cancer.
The company plans to initiate clinical trials of its lead candidate, exoSTING, in the first half of 2020. The therapeutic is designed to trigger a potent antitumor response from the patients own immune system, mediated by T cells. A second immuno-oncology candidate, exoIL-12, is due to enter clinical trials in the second half of 2020, the company says.
In nearby New Jersey, Avalon Globocare is also developing engineered exosomes. Its lead product, AVA-201, consists of exosomes enriched in the RNA miR-185, which are produced using engineered mesenchymal stem cells.
In animal tests, miR-185 suppressed cancer cell proliferation, invasion and migration in oral cancer. In July 2019, the company announced plans to start its first exosome clinical trial before the close of 2019. As of February 2020, however, no further announcement regarding this clinical trial has been made.
Avalon has also made no further announcement on a second planned clinical trial, also intended to start during the fourth quarter of 2019, of a second exosome candidate, AVA-202.
These angiogenic regenerative exosomes, derived from endothelial cells, can promote wound healing and blood vessel formation, the company says. The planned Phase I trial was to test AVA-202 for vascular diseases and wound healing.
Meanwhile, Miami-based Aegle Therapeutics plans to begin a Phase I/IIa clinical trial of its exosome therapy, AGLE-102, during 2020. AGLE-102 is based on native regenerative exosomes isolated from bone marrow mesenchymal stem cells.
After initially focussing on burns patients, in January 2020 to company announced had raised the funds to commence an FDA-cleared clinical trial of AGLE-102 to treat dystrophic epidermolysis bullosa, a rare paediatric skin blistering disorder. The company says it plans to commence this clinical trial in the first half of 2020.
A number of companies are in the preclinical phase of exosome therapy research.
Some of these companies have been set up specifically to develop exosome-based products. In the UK, Evox co-founded by University of Oxford researcher Matthew Wood in 2016 is developing engineered exosomes to treat rare diseases.
The company has developed or sourced technology that allows it to attach proteins to exosomes surface, or to load proteins or nucleic acids inside the exosome, to deliver a therapeutic cargo to a target organ.
Its lead candidate targets a lysosomal storage disorder called Niemann-Pick Disease type C, using exosomes that carry a protein therapeutic cargo. Evox says it plans to submit the Investigational New Drug (IND) application to the FDA during 2020, paving the way for the first clinical trial. It currently has five other candidates, for various indications, at the preclinical stage of development.
In Korea, Ilias and ExoCoBio are developing exosome therapeutics. Ilias founded by faculty from the Korean Advance Institute of Science and Technology specialises in loading large protein therapeutics into exosomes.
It is currently carrying out preclinical research toward treating sepsis, preterm labour and Gauchers disease. ExoCoBio is focusing on the native regenerative capacity of exosomes derived from mesenchymal stem cells, including to treat atopic dermatitis.
New companies continue to enter the exosome space. In August 2019, Carmine Therapeutics was launched, with the aim to develop gene therapies that utilize exosomes from red blood cells to deliver large nucleic acid cargoes. The company is targeting the areas of haematology, oncology and immunology.
Meanwhile, a wave of companies originally set up to develop live stem cell therapies are diversifying into stem cell derived exosome production and research.
It is now generally acknowledged that stem cell exosomes are the main therapeutically active component of stem cells, and that medical products based on exosomes will be safer to apply, and easier and cheaper to make and transport, than live cell therapies.
Originally established to produce neural stem cells for other research organisations, Aruna Bio has developed proprietary neural exosomes that can cross the blood brain barrier.
The company is now developing an exosome therapy for stroke. In October 2019, the Athens, Georgia-based company said had raised funding to support the research and development to enable its first IND application to the FDA in 2021.
In the UK, ReNeuron has also focussed on stroke, and has several clinical trials underway assessing its CTX stem cells to promote post stroke rehabilitation. The company is also working with third parties to investigate the drug- and gene therapy delivery potential of exosomes derived from CTX stem cells.
Switzerland-based Anjarium is also developing an exosome platform to selectively deliver therapeutics.20 The company is focussing on engineering exosomes loaded with therapeutic RNA cargo and displaying targeting moieties on its surface.
California-based Capricor has commenced clinical trials of a cardiosphere-derived stem cell therapy for the treatment of Duchenne muscular dystrophy (DMD).
At an earlier phase, its regenerative exosome therapy CAP-2003 is in pre-clinical development for a variety of inflammatory disorders including DMD.
A number of other stem cell companies, including TriArm, Creative Medical, AgeX Therapeutics and BrainStorm Cell Therapeutics, are reported to be investigating exosome-based therapies derived from their stem cell lines.
Exopharms position as a frontrunner in bringing exosomes into humans is no lucky accident. The companys operations are based around its unique, proprietary method for manufacturing and isolating exosomes, known as LEAP technology.
As academics and observers of the exosome field have pointed out, reliable and scalable exosome manufacture has threatened to be a major bottleneck that limits the translation of exosome therapeutics into clinical use. The standard laboratory-scale method for collecting the exosomes produced by cultured cells has been to spin the liquid cell culture medium in an ultracentrifuge, or pass it through a fine filter.
The most common technique used so far, the ultracentrifuge, has major scalability limitations. Issues include the high level of skill and manual labour required, the time-intensive nature of the process, and the associated costs of reagents and equipment. It is impossible to imagine collecting enough exosomes for a late stage clinical trial this way.
Another issue is the low purity of the exosomes collected. These techniques sort the contents of cell culture medium by their mass and/or size. Although the exosomes are concentrated, they could be accompanied by other biological components present in the cell culture medium that happen to be a similar size or mass to the exosome.
Importantly, a biotechnology company needs a proprietary step in the process to make a proprietary product over which it has exclusivity. Exopharms LEAP technology is a good example of a proprietary manufacturing step. Ultracentrifuge is not a proprietary process.
So the big players in the emerging exosome field have generally placed a strong emphasis on developing their manufacturing and purification capability.
Exopharm developed a chromatography-based purification method, in which a patent-applied-for inexpensive functionalised polymer a LEAP Ligand is loaded into a chromatography column. The LEAP Ligand sticks to the membrane surface of exosomes passed through the column. Everything else in the cell culture medium mixture is simply washed away. The pure exosome product is then eluted from the column and collected for use. As well as being very scalable, the technique is versatile. LEAP can be used to produce a range of exosome products, by isolating exosomes from different cell sources.
Codiak, similarly, says it has developed scalable, proprietary chromatography-based methods to produced exosomes with comparable identity, purity, and functional properties as exosomes purified using methods such as ultracentrifugation. Chromatography is a flow-based technique for separating mixtures. In an April 2019 SEC filing, the company said it is establishing its own Phase 1/2 clinical manufacturing facility, which it is aiming to have fully-operational by first half 2020.
Avalon GloboCare teamed up with Weill Cornell Medicine to develop a standardised production method for isolating clinical-grade exosomes. Aegle also says it has a proprietary isolation process for producing therapeutic-grade exosomes. And Evox emphasises the GMP compliant, scalable, commercially viable manufacturing platform it has developed.
At Exopharm, the manufacturing technique that has allowed the company to leap ahead of the pack and into human clinical trials is its proprietary LEAP platform. Overcoming the exosome production and isolation bottleneck was exactly the problem the companys scientists set out to solve when Exopharm formed in 2013.
In addition to the Plexaris exosomes, isolated from platelets, currently being tested in human clinical trials, Exopharm is progressing toward human clinical trials of its second product, Cevaris, which are exosomes isolated from stem cells.
Exosomes are now under development by around 20 companies across the world. The leaders in the field are now entering clinical trials with both nave exosome products and engineered exosome products. A number of cell therapy companies are also moving across into the promising exosome product space.
The coming years promise dynamic changes, with partnerships and eventually product commercialization. Exopharm is a clear leader in this emerging field.
(Featured image by Darko Stojanovic from Pixabay)
DISCLAIMER: This article was written by a third party contributor and does not reflect the opinion of Born2Invest, its management, staff or its associates. Please review our disclaimer for more information.
This article may include forward-looking statements. These forward-looking statements generally are identified by the words believe, project, estimate, become, plan, will, and similar expressions. These forward-looking statements involve known and unknown risks as well as uncertainties, including those discussed in the following cautionary statements and elsewhere in this article and on this site. Although the Company may believe that its expectations are based on reasonable assumptions, the actual results that the Company may achieve may differ materially from any forward-looking statements, which reflect the opinions of the management of the Company only as of the date hereof. Additionally, please make sure to read these important disclosures.
Link:
Biotech companies leading the way with exosome human clinical trials - Born2Invest
Mechanism of signal transmission in blood cell development deciphered – Mirage News
By daniellenierenberg
How do biochemical messengers mediate the development of new blood cells and how do these processes get out of control in leukaemias? An international research team involving partners from Germany, United Kingdom, Finland and the USA has achieved a fundamental breakthrough in understanding the mechanism of these processes.
The results of the research project were published on February 7th 2020 in the new issue of the renowned journal Science.
In adults, billions of mature blood cells are formed from haematopoietic stem cells in the bone marrow every day. This process is tightly regulated by a family of messenger proteins called cytokines that control the development and proliferation of the different blood cell types.
Cytokines interact with specific receptors on the surface of cells, which allows the transmission of signals controlling whether the cell divides or differentiates into a specific blood cell type. Various leukaemias are associated with genetic mutations that activate these signalling pathways in the absence of cytokines in an uncontrolled manner. Until now, the molecular mechanisms of how individual mutations trigger signal activation and lead to these blood cancers have remained unclear.
Using single-molecule microscopy in living cells, the researchers have now been able to clearly show for the first time that the receptors are crosslinked by cytokines to form pairs. Until now, it has been assumed that the receptors are already present as inactive pairs even without cytokines. From their new observations using super-resolution fluorescence microscopes, the researchers concluded that pair formation itself is the basic switch for the activation of signal transduction in the cell.
By directly visualising individual receptors at physiological conditions under the microscope, we were able to resolve a controversy that has preoccupied the field for more than 20 years, explains Professor Jacob Piehler from Osnabrck University.
In combination with biomedical studies at the Universities of York and Dundee, the researchers found that several important disease-relevant mutations led to the pairing of certain receptors without cytokine. These observations led us to a previously unknown mechanism how individual mutations at this receptor trigger cytokine-independent signalling and thus can promote leukaemia, reveals Professor Ian Hitchcock from the University of York.
Cooperation partners at the University of Helsinki used these insights to develop a comprehensive structural model via atomic-scale simulations and molecular modelling, which could explain the different modes of action of different mutations.
Our biomolecular simulations unveiled surprising features concerning the orientation of active receptor pairs at the plasma membrane, explaining how mutations render activation possible without a ligand. These predictions were subsequently confirmed experimentally, explains Professor Ilpo Vattulainen from the University of Helsinki.
These fundamental insights into the mechanism of signal activation enable completely new and much more targeted strategies for combating leukaemias. Further, the researchers suspect that a wide range of inflammatory and allergic diseases can also be traced back to similar mechanisms.
Stephan Wilmes, Maximillian Hafer, Joni Vuorio, Julie A. Tucker, Hauke Winkelmann, Sara Lchte, Tess A. Stanly, Katiuska D. Pulgar Prieto, Chetan Poojari, Vivek Sharma, Christian P. Richter, Rainer Kurre, Stevan R. Hubbard, K. Christopher Garcia, Ignacio Moraga, Ilpo Vattulainen, Ian S. Hitchcock, Jacob Piehler: Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. In: Science; Article DOI:10.1126/science.aaw3242
Professor Ilpo Vattulainen
Department of Physics, University of Helsinki, Finland
Link:
Mechanism of signal transmission in blood cell development deciphered - Mirage News
Stem Cell Treatments Market to Exhibit Impressive Growth of CAGR during the per – News by aeresearch
By daniellenierenberg
Latest Research Report on Stem Cell Treatments Market size | Industry Segment by Applications (Nerve Diseases, Immunological Diseases, Musculoskeletal Disorders, Cardiovascular Diseases, Gastrointestinal Diseases and Other), by Type (Adipose Tissue-Derived Mesenchymal Stem Cells, Bone Marrow-Derived Mesenchymal Stem Cells, Cord Blood/Embryonic Stem Cells and Other Cell Sources), Regional Outlook, Market Demand, Latest Trends, Stem Cell Treatments Industry Growth, Share & Revenue by Manufacturers, Company Profiles, Forecasts 2025.Analyzes current market size and upcoming 5 years growth of this industry.
New research report to its expanding repository. The research report, titled Stem Cell Treatments Market, mainly includes a detailed segmentation of this sector, which is expected to generate massive returns by the end of the forecast period, thus showing an appreciable rate of growth over the coming years on an annual basis. The research study also looks specifically at the need for Stem Cell Treatments Market.
Our Report Offerings Include:
Request Sample Copy of this Report @ https://www.aeresearch.net/request-sample/72554
Report Scope:
The study includes the profiles of key players in the Stem Cell Treatments market with a significant global and/or regional presence. The Stem Cell Treatments market competition by Top Manufacturers Covers:
By Product:
By Application:
Points Covered in The Report:
Recent Industry Trend:
The report contains the profiles of various prominent players in the Global Stem Cell Treatments Market. Different strategies implemented by these vendors have been analyzed and studied to gain a competitive edge, create unique product portfolios and increase their market share. The study also sheds light on major global industry vendors. Such essential vendors consist of both new and well-known players. Besides, the business report contains important data relating to the launch of new products on the market, specific licenses, domestic scenarios and the strategies of the organization implemented on the market.
MAJOR TOC OF THE REPORT:
Request Customization on This Report @ https://www.aeresearch.net/request-for-customization/72554
Read the original:
Stem Cell Treatments Market to Exhibit Impressive Growth of CAGR during the per - News by aeresearch
Anemia: Causes, symptoms and treatment – Livescience.com
By daniellenierenberg
Anemia also known as iron-poor blood is a condition that develops when either the blood doesn't have enough red blood cells or the concentration of hemoglobin in red blood cells is very low. Hemoglobin is the iron-containing protein in red blood cells that carries oxygen from the lungs to the rest of the body. When there are fewer red blood cells than normal or low levels of hemoglobin, the body doesn't get enough oxygen-rich blood for healthy functioning, which is what causes the symptoms of anemia.
Anemia is the most common blood disorder in the United States, affecting nearly 3 million Americans, according to the Centers for Disease Control and Prevention (CDC).
The term anemia is a broad one that represents several hundred different conditions some of them mild and treatable, others that are quite serious, said Dr. Nancy Berliner, chief of hematology at Brigham and Women's Hospital in Boston. There are three reasons that people are anemic, Berliner said: Either their body can't make enough red blood cells, something is destroying the red blood cells faster than their body can make news ones or blood loss (from menstrual periods, colon polyps or a stomach ulcer, for example) is greater than blood cell production.
There are more than 400 different types of anemia, according to the Pacific Heart, Lung & Blood Institute. Here are a few of the more common and better understood types:
Iron-deficiency anemia: The most common form of anemia is caused by low-iron levels in the body. Humans need iron to make hemoglobin, and most of that iron comes from dietary sources. Iron-deficiency anemia can result from a poor diet or from blood loss through menstruation, surgery or internal bleeding.
Pregnancy also increases the body's need for iron because more blood is needed to supply oxygen to the developing fetus, which may quickly drain the body's available iron stores, leading to a deficit. Problems absorbing iron from food because of Crohn's disease or celiac disease can also result in anemia.
Vitamin deficiency anemia: Besides iron, the body also needs two different B-vitamins folate and B12 to make enough red blood cells. Not consuming enough B12 or folate in the diet or an inability to absorb enough of these vitamins can lead to deficient red blood cell production.
Sickle cell anemia or sickle cell disease (SDC): This inherited disease causes red blood cells to become crescent-shaped rather than round. Abnormally shaped red cells can break apart easily and clog small blood vessels, resulting in a shortage of red blood cells and episodes of pain, according to the Mayo Clinic. People become chronically anemic because the sickle-shaped red cells are not pliable and can't get through blood vessels to deliver oxygen, Berliner said.
SDC occurs most often in people from parts of the world where malaria is or was common, according to the CDC; the sickle cell trait may provide protection against severe forms of malaria. In the U.S., SDC affects an estimated 100,000 Americans.
Thalassemia: Thalassemia is an inherited blood disorder that results in lower-than-normal levels of hemoglobin. This type of anemia is caused by genetic mutations in one or more of the genes that control the production of hemoglobin, according to the National Heart, Lung & Blood Institute (NHLBI).
Aplastic anemia: Aplastic anemia is a rare, life-threatening condition that develops when bone marrow stops making enough new blood cells, including red cells, white cells and platelets.
Aplastic anemia may be caused by radiation and chemotherapy treatments, which can damage stem cells in bone marrow that produce blood cells. Some medications, exposure to toxic chemicals like pesticides, viral infections and autoimmune disorders can also affect bone marrow and slow blood cell production.
Hemolytic anemias: This disorder causes red blood cells to be destroyed faster than bone marrow can replace them. Hemolytic anemias may be caused by infections, leaky heart valves, autoimmune disorders or inherited abnormalities in red blood cells, according to the American Society of Hematology.
Anemia of inflammation: Also called anemia of chronic disease, anemia of inflammation commonly occurs in people with chronic conditions that cause inflammation. This includes people with infections, rheumatoid arthritis, inflammatory bowel disease, chronic kidney disease, HIV/AIDS and certain cancers, according to the National Institute of Diabetes and Digestive and Kidney Diseases.
When a person has a disease or infection that causes inflammation, the immune system responds in a way that changes how the body works, resulting in anemia. For example, inflammation suppresses the availability of iron, so the body may not use and store the mineral normally for healthy red blood cell production, Berliner said. Inflammation may also stop the kidneys from producing a hormone that promotes red blood cell production.
The risk for anemia is higher in people with a poor diet, intestinal disorders, chronic diseases and infections. Women who are menstruating or pregnant are also prone to the disorder.
The risk of anemia increases with age, and about 10% to 12% of people over 65 are anemic, Berliner said. But the condition is not a normal part of aging, so the cause should be investigated when it's diagnosed, she said. Older adults may develop anemia from chronic diseases, such as cancer, or iron-deficiency anemia from abnormal bleeding.
According to NHLBI, the following types of people have an increased risk of developing anemia:
Mild forms of anemia may not cause any symptoms. When signs and symptoms of anemia do occur, they may include the following, according to the NHLBI:
The first test used to diagnose anemia is a complete blood count, which measures different parts and features of the blood: It shows the number and average size of red blood cells, as well as the amount of hemoglobin. A lower-than-normal red blood cell count or low levels of hemoglobin indicate anemia is present.
If more testing is needed to determine the type of anemia, a blood sample can be examined under a microscope to check for abnormalities in the size and shape of the red cells, white cells and platelets.
Related: This man's taste buds disappeared because of a blood condition
The treatment of anemia depends on the specific type of anemia, Berliner said, and anemias caused by nutritional deficiencies respond well to changes in diet. People with iron-deficiency anemia may need to take supplemental iron for several months or longer to replenish blood levels of the mineral. Some people, especially pregnant women, may find it hard to take iron because it causes side effects, such as an upset stomach or constipation, Berliner said.
For vitamin-deficiency anemias, treatment with B12 or folate from supplements (or a B12 shot) and foods, can improve levels of these nutrients in the blood, Berliner said.
Serious problems, such as aplastic anemia, which involves bone marrow failure, may be treated with medications and blood transfusions. Severe forms of thalassemia might need frequent blood transfusions.
Treatment for sickle cell anemia may include pain medications, blood transfusions or a bone marrow transplant.
Additional resources:
This article is for informational purposes only, and is not meant to offer medical advice.
More:
Anemia: Causes, symptoms and treatment - Livescience.com
Bone Marrow Processing System Market : Comprehensive Analysis of Factors That Drive Market Growth (2018 2025) – Instant Tech News
By daniellenierenberg
Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.
The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.
Request For Report Sample:https://www.trendsmarketresearch.com/report/sample/3184
Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.
In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.
Get Complete TOC with Tables and Figures at :https://www.trendsmarketresearch.com/report/requesttoc/3184
Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.
Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others
You can Buy This Report from Here @https://www.trendsmarketresearch.com/checkout/3184/Single
See the original post:
Bone Marrow Processing System Market : Comprehensive Analysis of Factors That Drive Market Growth (2018 2025) - Instant Tech News
All you need to know about hematologic cancers – The New Indian Express
By daniellenierenberg
Express News Service
BENGALURU:Blood cancers could be leukaemia (of white blood cells), lymphoma (of Lymph nodes) or myelomas (of bone marrow) besides some other rare types. These are overall less common than breast, lung and prostate cancers, however, form a big subset of curable cancers.Generally, patients present with bleeding or infections and are mistaken for other causes and accidentally diagnosed with one of the above acute haematological/blood cancers. Acute leukaemia is more common in children.
Chronic leukaemia, on the other hand, are often diagnosed during routine health checkups with high blood counts and enlarged spleen. Often, myelomas present with renal dysfunction, low haemoglobin or bone fractures, and are missed during the early stages. While all these are extremely treatable, the key is to diagnose the problem on time.
Lymphomas present as lymph node swelling and form almost 60 per cent of all blood cancers and treated with some combinations of chemotherapies and biologics. Bone marrow transplantation (or stem cell transplantation) has an important role in haematological cancers. Autologous (own stem cells) and allogenic (donor stem cells) transplants are used.
There is 180-degree change in the way we diagnose and treat these set of disorders. High-end molecular diagnostics is basis of typing them enabling precision diagnosis and treatment. Monoclonal antibodies, inhibitors and small molecules (biologic therapies) make the treatment much more effective with lesser side effects.
Newer therapies like CAR-T (Chimeric Antigen Receptor-T) cell therapies are used for relapsed acute lymphoblastic leukaemia, large B cell lymphoma and myeloma. However cost of such therapies at this juncture is prohibitive. But with higher applications and wider utilisation, these genetic modification therapies will be more and more accessible.The author is medical oncologist andhemato-oncologist,Vikram Hospital, Bangalore
Read the rest here:
All you need to know about hematologic cancers - The New Indian Express