Little Mila on amazing path to recovery – Croatia Week
By daniellenierenberg
Mila Roncevic (Photo: Private album)
24 December 2019 There has been some great news just before Christmas from America where little Mila Roncevic has been receiving life-saving treatment.
Mila, from Rijeka in Croatia, has been fighting leukaemia (acute myelogenous megakaryocytic leukaemia AML M7) and earlier this year was given just a 1% chance of beating it. A massive fundraising campaign in Croatia and abroad back in April helped raise $5.6 million to get her to the Childrens Hospital of Philadelphia for urgent treatment.
Mila has been at the hospital since 3 April and on Monday her father has shared some incredible news that after a successful bone marrow transplant, the leukemia has receded.
Mila is fine right now. She underwent a bone marrow transplant from a donor on 1/11/2019 and so far its better than okay. It was not a surgery per se, but rather a bone marrow transplant after achieving and maintaining remission for six months. Transplantation is not an operation but a complex procedure which includes preparation of the so-called conditioning, that is, achieving the conditions for receiving donor stem cells and then recovering and waiting for defence cells to be created on their own, in which case she had to remain in complete isolation because there is no immunity. In order to receive the transplant, the disease must recede, which they achieved within a month of arrival and maintained for almost half a year, her father Marin told 24sata.
Marin says that just three weeks after the transplant, Mila was released from hospital and to the amazement and disbelief of all the doctors, she is now running, lifting, eating and drinking alone and does everything that was considered impossible in the early post-transplant period.
She looks and acts like a perfectly healthy baby, even though we know that there are still many potential dangers ahead, Marin said.
Marin says going to Philadelphia was certainly the right decision, which has been confirmed by the successful outcome of the treatment.
In Croatia, the chances for successful treatment were below 1%. It was also the right decision because at that moment we had no alternative, nor enough time to look for it. It is difficult to actually talk about percentages, because as far as we are told, cases with similar diagnoses that have been successfully cured in Croatia and Europe do not exist, he said, before thanking everyone again who helped get Mila to the United States for treatment.
(Photo: Private album)
Thank you people. If it wasnt for your empathy, kindness and intrinsic desire to help, none of this would be possible. Every kuna, every prayer and every good thought saved Mila and will help countless other children for whom funds will be provided for. This action also showed how important it is for all of us to stick together and how much we can do that way. We are incredibly grateful to have genuinely and openly begged for help and received it. Its not just about the money. It is about the love, support and prayers of all people who have felt our affliction and suffering.
See more here:
Little Mila on amazing path to recovery - Croatia Week
A blood cancer diagnosis helped me find true happiness – The Guardian
By daniellenierenberg
December 2017, and the Christmas party season is in full flow. Everywhere I look are scenes from some hilariously awful Dickens pastiche: revellers squeezed into warm pubs; joyful chatter spilling out on to the street; the sound of carols and the scent of mulled wine in the air. Its as if I am peering in at it all through frosted glass, wishing my own Christmas could be as carefree.
Instead, I have spent a morning turned on my side on a hospital bed while a nervous-looking young doctor works up a sweat attempting to force a long needle into my hipbone. He needs it to go deep enough that he can suck out some of the marrow inside, but my tough bones are making life difficult for him.
I dont feel so tough. My wife and I spend the next fortnight anxiously waiting for the results. Results that should confirm why my body is behaving in unexpected ways: the unusual infections; the crushing fatigue; the old jeans that suddenly slip off my waist.
Christmas is never a nice time to feel alone. Yet, despite the fact I am surrounded by loved ones, that is how I feel: terrifyingly alone. The emotions of the season get warped and amplified. I attempt to go to one party, see a friend who is going through her own hellish time, and we both sob on each others shoulders for five minutes straight. Everything feels raw and heavy. My little girl is not even 18 months old, and I love her more than anything but I find it hard to even be in the same room as her. Its all too much.
If Christmas has lost its religious meaning, then it hasnt for me. I try praying for the first time in about three decades: Er, yes, it has been a while sorry about that but could you just help me out with this one thing? I promise God and Santa Ill be all sorts of good if things turn out OK.
***
My results arrive on 22 December. There is a wait in a hospital corridor that is still too triggering to think about properly. And then a doctor calls me in, sits me down and tells me that I have a rare blood cancer called essential thrombocythemia, which sounds like some cult artist signed to Warp Records in the 90s (the doctor doesnt say that bit). There is no known cure. But dont worry, he says, its manageable. I just need to take some aspirin and keep an eye on it. You will lead a normal life, he says. My wife tells me my face instantly changed colour, the pallid grey lifting for the first time in weeks.
My little girl throws up all over the seat when we pull out of the drive, and it doesnt even feel slightly annoying
Its a strange gift, receiving blood cancer for Christmas. In some ways I preferred the Mr Frosty slushy-making kit I got when I was eight, and maybe even the Scalextric that never quite played out the way you hoped it would from the adverts. And yet what the doctor is telling me you will lead a normal life feels like the biggest and best present I have ever received. Queueing up to be discharged, I let wave after wave of euphoria run through me and think to myself: This has to be the weirdest cancer diagnosis ever.
A day later, we pack up the car and head off to my parents. My little girl throws up all over the back seat as soon as we pull out of the drive, and it doesnt even feel slightly annoying. We laugh. Life is good. That Christmas, for the first time since I can remember, I am truly happy; just living in the moment. The light seems brighter and more beautiful. I notice dew drops on plants and the smell of fresh air. I hug my wife and daughter even more tightly than usual.
***
All this relief is not to last long. In the first week of 2018, I attend a follow-up appointment and am told that, sorry, they hadnt seen all of the bone marrow samples before. My condition is, in fact, developing into a much more serious disease called myelofibrosis, which needs treatment.
A week on from that, I turn up at the hospital, steeled to start chemotherapy. But there is worse news: a team of specialists have discussed my case and they believe I am at high risk of developing acute myeloid leukaemia, a swift and deadly cancer. They recommend you have a stem cell transplant, says the doctor. I ask when. As soon as possible. If I can find a match on the stem cell donor register, then I will be dosed up with drugs so intense that my entire immune system will be wiped out; then a strangers cells will be fed into me and we will all cross our fingers and hope that my body doesnt reject them. The chance of survival and the disease not returning does not seem to me to be all that much better than 50/50. Even if it all succeeds, the recovery process will be long and gruelling.
I spend the next few weeks in a state of catatonic depression. Or do I? Because I am somehow getting things done: I organise a will, I arrange a sperm bank visit (the transplant, even if successful, will leave me infertile), I cry myself senseless writing a letter to my daughter in case the worst should happen. I also drink all the good bottles of wine I had been saving for special occasions. A bottle of Domaine Dujac Morey Saint-Denis 2012 on a Tuesday night with defrosted Quorn chilli not the pairing Id had in mind, but saving it for the future seems silly.
Through all the gloom I see something with startling clarity. I realise that what Im mourning is not so much my old life before all this started a life of pointless anxieties, petty rivalries and overthinking but rather the carefree, optimistic version of life I had briefly glimpsed over Christmas. And yet no sooner have I understood all this than the chance to enact it has been snatched away. I feel like an old professor who has finally unravelled the mysteries of the universe with his dying breath.
***
Over the next few months, something happens that I still find hard to believe. I am transferred to a new hospital with a more specialist team on the case. There are more blood tests and scans, and another long needle is forced into my hip. And then I get another gift, this one in time for Christmas 2018: my condition is not so serious as I was led to believe. It appears to be a peculiar version of a peculiar cancer caught somewhere between the relatively benign essential thrombocythemia and the more concerning myelofibrosis. But it is stable, at least for now, with no signs to suggest it will progress any time soon.
***
I like to think that this year I have made good on my promise to live like I did during the Christmas of 2017. My outlook has certainly changed. When people ask how, I always say the same thing: that its great to get older. The idea of panicking about a milestone such as my imminent 40th seems so ridiculous now. Instead, just think what a privilege it is to be able to get there.
I am more present for my family these days, and less consumed with things I cant control. I have returned to the volunteering role I thought I didnt have time for; I have got fit; I dont let work define my happiness; I am kinder to myself. I have bought lots more nice wine to replace the nice wine I drank with defrosted Quorn chilli.
Do I still get annoyed by delayed trains, lost keys or the fact my daughter is taking half an hour to put on a pink tutu, the only item of clothing in the house that shell wear? It would be a lie to say no. But the second I think: But youre not quite likely to die any more, the problem disappears. I am, undeniably, a happier person.
I still have a malfunction inside me and I still have to think about it every day. Its hard not to my spleen, inflated with excess blood cells, gently nudges against my ribs like an annoying acquaintance who would hate me to forget that all is not quite right. At some point in the future and not even the best doctors can predict exactly when the disease might whirr into life and start scarring my bone marrow, turning it into a barren wasteland that can no longer produce enough blood to keep me alive. Im hopeful that science will find a fix before that time comes. There are encouraging signs on the horizon. And if not? Well, these days I try not to dwell on the future. I am here, instead, for the present. I am alive. I am alive with the spirit of Christmas.
MPN Voice provides information and emotional support to people diagnosed with a myeloproliferative neoplasm
See the rest here:
A blood cancer diagnosis helped me find true happiness - The Guardian
Boston Stem Cell Center – Bone Marrow Stem Cells in …
By daniellenierenberg
The problem with the embryonic stem cells are the many complications associated with them. Besides the ethical considerations, from a practical point of view, we are still a long way from being able to utilize these cells in a safe and consistent manner.
When using embryonic stem cells, you are inheriting any potential diseases that the baby may have. For instance, the baby may have a gene that increases susceptibility to cancer. In fact, the embryonic cells themselves may act as a tumor since there is no natural check on these cells. Furthermore, these cells are foreign materials to the body, and the body will react and attack these cells in an immune response. This can sometimes cause a serious medical condition called graft versus host disease. In that case, the patient may have to be placed on immunosuppressant drugslike an organ transplant patient. With our present technology, embryonic stem cells are not the answer. For those reasons, the FDA has put significant restrictions on the use of this type of cell in humans.
Continued here:
Boston Stem Cell Center - Bone Marrow Stem Cells in ...
National Marrow Donor Program/Be The Match Applauds Congress for Its Support of Patients with Blood Cancers and Other Diseases – Benzinga
By daniellenierenberg
Bipartisan legislation provides record funding for lifesaving cellular transplants and eliminates a Medicare payment barrier for seniors.
Washington, DC, December 20, 2019 --(PR.com)-- National Marrow Donor Program (NMDP)/Be The Match applauds Congress for passing bipartisan legislation that provides record levels of funding to increase access for patients to cellular transplants, which can be the only curative treatments for blood cancers such as leukemia or lymphoma and other blood diseases. The bill also increases access to these same therapies for senior citizens by fixing a Medicare reimbursement issue that can be a barrier for them to these life-saving procedures.
Increasing funding levels for these programs and bringing Medicare payment policies for these procedures up to date represents major victories for the 1.3 million Americans fighting blood cancers, said Brian Lindberg, Chief Legal Officer and General Counsel of NMDP/Be The Match. By increasing funding for life-saving cellular transplants and removing Medicare barriers that inhibit access to care, Congress has given hope to patients in need of these curative treatments.
We are honored to have broad support from members in the House and Senate who stand with us and our mission to find matched donors for every patient in need of these cellular therapies, Lindberg added. Increasing patient access to life-saving bone marrow and cord blood transplant is NMDP/Be The Matchs top priority.
The program works closely with organizations throughout the nation to recruit volunteer donors for the registry and with public and private insurers to ensure that all patients have equal access to treatment.
The $30 million included in the final legislation for the C.W. Bill Young Cell Transplantation Program, an increase of $5.4 million over last year, and the $17.3 million for the National Cord Blood Inventory, an increase of $1.0 million, will help reduce barriers to transplant by:
Advancing new and innovative methods of providing the best possible transplant to every patient in need, regardless of socioeconomic status, age, ethnic ancestry, or any other individually defining characteristic; Continuing to simplify processes and systems to reduce time to transplant, providing the patient and their physician the therapy the patient needs exactly when he/she needs it; and Protecting access to transplant by allowing NMDP to pursue our vision of achieving equal outcomes for all.
In the case of older Americans, inadequate Medicare transplant reimbursement, primarily for donor-related costs, poses a significant barrier to patient access.
Unlike Medicare payment policies for the acquisition of solid organs for transplant, Medicare does not provide separate payments for the cost of acquiring the cells for transplant (which can include the cost of identifying genetically matched donors, collecting the cells, and transporting them to the transplant hospital). As a result, hospitals take substantial financial losses on these life-saving procedures, which often require a 20-to-30-day hospital stay on average, because the reimbursement rate does not come close to covering the true costs of treatment.
NMDP/Be The Match looks forward to working closely with the Centers for Medicare & Medicaid Services (CMS), which operates the Medicare program, to ensure that this critical payment reform is implemented as quickly as possible, so that Medicare beneficiaries are not at risk of being denied the bone marrow, peripheral blood stem cell, or cord blood transplant they need to survive.
About National Marrow Donor Program/Be The MatchFor people with life-threatening blood cancers such as leukemia and lymphoma, a cure exists. National Marrow Donor Program(NMDP)/Be The Match connects patients with their donor match for a life-saving marrow or umbilical cord blood transplant and works to identify and eliminate financial and other barriers faced by these patients. NMDP also provides patients and their families one-on-one support, education, and guidance before, during and after transplant.
Contact Information:National Marrow Donor ProgramEllen Almond(703) 548-0019Contact via Emailhttps://bethematch.org/
Read the full story here: https://www.pr.com/press-release/802090
Press Release Distributed by PR.com
Follow this link:
National Marrow Donor Program/Be The Match Applauds Congress for Its Support of Patients with Blood Cancers and Other Diseases - Benzinga
Why Proper Hydration Is Necessary for the Body to Function – Guardian Liberty Voice
By daniellenierenberg
Some people believe that it is impossible to ionize water, others believe the product is too good to be true.
It is important to note that the ionization of water can be tested using scientific measuring devices such as pH and ORP meters. According to The Miraculous Properties of Ionized Water, the changes that ionization produceareradical, immediate, and measurable.
Ionized water is the charging of water by creating negative ions (-OH) and positive ions (+OH). They are created through electrolysis and then the ions are separated through a membrane, so the water is negatively charged.
There has been a considerable amount of research conducted on the effects of ionized water. Most of the research has been conducted by the Japanese. All of the research has arrived at the same conclusion: ionized water benefits everything it comes in contact with as long as its used correctly. There is hard scientific evidence to back up this claim.
There are strong detoxing effects of ionized water, which proves it is not like any other water consumed. These detoxing effects are due to the small water-molecule cluster size. Water-molecule cluster size is measured using a Nuclear Magnetic Resonance device. The change in the surface tension of ionized water can also be determined. It is measured in dynes. The lower the surface tension, the smaller the water-molecule clusters.
Water is the most essential element needed by the body; therefore, health begins with water. It is impossible to be truly healthy without being properly hydrated.
When babies are born, their bones are mostly water. They are more pliable at birth than at any other time in their lives. As people grow older, the bones dry out and become brittle. The body takes the calcium from the bones to distribute it to other parts of the body that need it more.
By the age of 65, the average person is 50-70 percent dehydrated.This is whythe elderly are riddled with disease and constipation.
Bone marrow is critical to the immune system because it contains T-cells, B-cells and other cells that together form the immune system. White blood cells produce antibodies that have a multitude of other immune functions. Red blood cells carry oxygen, produce stem cells and blood platelets that allow the blood to clot.
Stem cells are primitive cells that continue to divide into infinity and form any other cell the body needs. These cells are birthed out of bone marrow, which makes hydration critical to the body. It is imperative to keep bone marrow hydrated, cleansed, and rejuvenated for great health and longevity.
Every single organ in the body requires water to properly function to its full capacity. The body is 69 percent water. The brain is 85 percent water, bones 35 percent water, blood 83 percent water, and the liveris90 percent water.
When the body is dehydrated, it puts ones health in immediate danger. Each day people should drink half their body weight in ounces. However, The Miraculous Properties of Ionized Water recommends people drink much more than half their body weight in water because that amount of water is lost through basic functions of the human body, such as urinating, sweating, breathing, and defecating.
The National Research Council guidelines suggest that the body requires one milliliter of water for every calorie of food consumed, which tends to be half of ones body weight. For example, if one weighs 200 pounds, they should drink 100 ounces of water. According to the official report from the National Research Council states that most of this quantity is contained in prepared foods. This implies that people will get the water they need from the foods they eat and drinking water is not necessary.
These types of misconceptions lead people to believe that water is a choice, not a necessity. Digestion is dehydrating and requires a large amount of water from the bodys reserves. Additionally, the typical American diet consists of dry, cooked and processed foods. Raw foods contain significant amounts of water and are better for ones diet.
There are some who believe that water consumed in raw foods is enough to hydrate the body. This is not true. Even if one could eat enough raw foods to hydrate the body, water would still be required to flush the digestive tract between meals. This is one of the healthiest things one can do. None of the bodys processes will function to capacity if the body is not well hydrated.
By Jeanette Vietti
Source:
The Miraculous Properties of Ionized Water
Image Courtesy of Rubbermaid Products Flickr Page Creative Commons License
body, spot
See the rest here:
Why Proper Hydration Is Necessary for the Body to Function - Guardian Liberty Voice
Is Momo (MOMO) Stock Outpacing Its Computer and Technology Peers This Year? – Nasdaq
By daniellenierenberg
Investors interested in Computer and Technology stocks should always be looking to find the best-performing companies in the group. Momo (MOMO) is a stock that can certainly grab the attention of many investors, but do its recent returns compare favorably to the sector as a whole? One simple way to answer this question is to take a look at the year-to-date performance of MOMO and the rest of the Computer and Technology group's stocks.
Momo is one of 630 companies in the Computer and Technology group. The Computer and Technology group currently sits at #7 within the Zacks Sector Rank. The Zacks Sector Rank considers 16 different sector groups. The average Zacks Rank of the individual stocks within the groups is measured, and the sectors are listed from best to worst.
The Zacks Rank is a proven system that emphasizes earnings estimates and estimate revisions, highlighting a variety of stocks that are displaying the right characteristics to beat the market over the next one to three months. MOMO is currently sporting a Zacks Rank of #1 (Strong Buy).
Over the past 90 days, the Zacks Consensus Estimate for MOMO's full-year earnings has moved 11.33% higher. This signals that analyst sentiment is improving and the stock's earnings outlook is more positive.
According to our latest data, MOMO has moved about 53.94% on a year-to-date basis. In comparison, Computer and Technology companies have returned an average of 32.75%. This shows that Momo is outperforming its peers so far this year.
Breaking things down more, MOMO is a member of the Internet - Software and Services industry, which includes 19 individual companies and currently sits at #74 in the Zacks Industry Rank. On average, this group has gained an average of 34.46% so far this year, meaning that MOMO is performing better in terms of year-to-date returns.
Going forward, investors interested in Computer and Technology stocks should continue to pay close attention to MOMO as it looks to continue its solid performance.
Momo Inc. (MOMO): Free Stock Analysis Report
To read this article on Zacks.com click here.
The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.
See the original post:
Is Momo (MOMO) Stock Outpacing Its Computer and Technology Peers This Year? - Nasdaq
Waning treatment is a warning for all ‘one-and-done’ therapies – STAT – STAT
By daniellenierenberg
As a new mother, she didnt know to look for blue-tinged lips. She could just tell her babys color was off. On a chest X-ray, the clean, white-against-dark curves of his ribs were obscured, clouded by fluid. Pneumonia. That tipped Ray Ballards physicians off: He had a form of severe combined immunodeficiency SCID, for short a genetic mutation that hampered the growth of crucial immune cells, leaving him utterly vulnerable to infection.
The best fix was a transplant of his mothers bone marrow. The attitude was that in three to six months, you should be able to go back to normal life, recalled his mom, Barb Ballard.
That was true at least sort of. He got two more booster transplants before he hit 10. An antibiotic left him with hearing loss, and a virus with digestive tract damage. His lack of B cells meant he needed regular injections of other peoples antibodies, and his T cell counts were never ideal. But he was healthy enough to go to public school, to move through the hallways high-fiving half the guys, to slowly inhale and take aim during rifle team practice.
advertisement
His T cells had to be working well enough that he wasnt coming down with everything that walked into the classroom, Ballard said.
Then, when Ray was around 18, his immunity began to wane. For him, it came in the form of a norovirus he couldnt shake. For others with the same rare disease, it appears as pneumonia or gastrointestinal trouble or an unexpected T cell decline. Over the last 10 years, the trend has become increasingly clear: The bone marrow transplants that kept certain babies with SCID alive sometimes stop working after years or decades of providing fairly reliable immune defenses.
Now, to patient advocates, this has become an urgent lesson in the language people use to talk about treatment and not just for SCID. They see their communitys experience as a cautionary tale for anyone developing or receiving a therapy thats marketed as potentially curative.
Theres an expectation and a hope: When they hear about bone marrow transplants, it sounds like a lifetime deal, a forever fix, said John Boyle, president and CEO of the Immune Deficiency Foundation. Weve discovered, as a result of this issue, that bone marrow transplant ended up not being the forever fix we thought it was.
Experts have known for years that some of these transplants wouldnt provide full immune protection over the course of a SCID patients entire life. They say clinicians should have avoided the word cure. But even scientific papers that hinted at such complications called the treatment curative. Just this year, an Immune Deficiency Foundation employee was given the unenviable task of sifting through the organizations thousands of pages of online material, scrubbing out every cure that popped up. It was only there a handful of times sometimes in quotes from clinicians, Boyle said but it was there and it needed to be removed.
The language patients hear can sometimes even change their outcomes. Weve heard of cases where, years later, they realized their immune system isnt as healthy as they thought, but nobody was tracking that because they hadnt maintained a relationship with the physician, or the physician didnt maintain a relationship with them, explained Ballard. The word cure, it gives them a false sense of security.
At a time when seemingly every biotech is promoting the idea of one-and-done therapies and setting prices accordingly these advocates hope companies, too, will be more wary. One of the things Im trying to make them very aware of is the need for lifelong follow-up, said Heather Smith, who runs the SCID Angels for Life foundation. For her, its personal: This summer, her son took part in a clinical trial for a gene therapy in the hope that it would provide the immune protection that his decades-old bone marrow transplant no longer could. My son will be followed for 15 years, she said. But what about after that?
Part of the issue with bone marrow transplants from one person to another is the natural genetic variation between us, particularly in the proteins that help our bodies distinguish its own cells from foreign ones. Receiving cells from someone whose proteins dont match yours could cause a civil war within you. Thats why bone marrow transplants began back in the 1950s with identical twins: Sharing those genes meant increasing the likelihood of harmony between the body and the graft.
But the vast majority of people dont have a protein-matched sibling, let alone an identical twin. So researchers set about figuring out how to transplant bone marrow from a parent to a child in spite of only sharing half of their genes and from a matched unrelated donor to a stranger. Like cooks intent on refining recipes to their taste, the doctors who adapted the technique for SCID often did so slightly differently from one another. Over the past 35 years, those idiosyncrasies have hardened into habits. Right now, everybody transplants their patients their way, said Dr. Sung-Yun Pai, an immune deficiency researcher and co-director of the gene therapy program at Boston Childrens Hospital.
Perhaps the most vociferous controversy has been about whether to use chemotherapy to wipe out the existing stem cells within a recipients bone marrow to make room for the donors. The doctors who do use chemo before a transplant might prescribe different doses; others forego it entirely.
The arguments were sound on both sides. On the one hand, the toxic drugs could clean out the niches within our bone and increase the chances that the donors cells take root. On the other, these chemicals could hamper growth, brain development, and fertility, could make an infant who was already sick even sicker, and could increase the likelihood of certain cancers later in life. Its like being exposed to a bunch of X-rays and sunlight, or other DNA-damaging agents, Pai explained.
Because SCID is so rare the most common subtype is thought to occur in 1 out of every 50,000 to 100,000 newborns and because every hospital was doing transplants slightly differently, it was hard for physicians to systematically study what was working best. But even early on, they could tell that some of the infants whod gotten no chemo were developing incomplete immune systems. They didnt produce their own B cells, for instance, and so needed regular injections of antibodies collected from other peoples blood.
In healthy infants, stem cells migrate from the crevices of the skeleton to an organ in the chest called the thymus, where theyre trained to become T cells. In these infants, the T cell counts grew after transplant but it wasnt necessarily because the sludge was securely taking hold in the niches of their bones. Rather, immunologists say, the donors progenitor cells were only transient. Some were able to head toward the thymus for schooling. Some graduated and started fighting off infections. But as those populations were depleted with age, there werent robust reserves of stem cells in the bone marrow that could arrive to produce more. To Pai, its like trying to fill a kindergarten class in a neighborhood where no ones having babies.
You and I continue to have a slow trickle of new T cells coming out, said Dr. Harry Malech, a senior investigator at the National Institutes of Health, who sits on the board of a gene therapy company, Orchard Therapeutics (ORTX), but does not receive any financial compensation. Instead of a torrent becoming slower, in these patients it goes from a trickle to practically nothing.
Thats why immunity starts to wane in kids like Ray Ballard. To many immunologists, it isnt a surprise, though they still arent sure why chemo-less transplants last longer for some of these kids than others. They can also understand how some families and clinicians might have viewed this treatment as a lifetime fix.
As Malech put it, If I said to you, Your child, instead of dying in infancy, will likely get to adulthood, go to school, have a normal life, you might think the word cure in your mind.
Even for parents who knew the protection might not last forever, the failure of a long-ago bone marrow transplant puts them in a bind. If they do nothing, their child will once again be vulnerable to any passing infection, which could prove fatal. They can try another round of the same procedure, though booster transplants sometimes come with added complications. Or they can try getting their child into a research trial for gene therapy, which comes with the risks of any experimental treatment.
Some feel an irrational guilt when the bone marrow they donated to their child stops functioning. Its your cells, and if it doesnt work, you failed them, said Ballard, who lives in Clifton, Va., about a 40-minute drive from Washington, D.C. Her son Ray had already had three transplants as a child. When his immune system started to fail again in early adulthood, gene therapy at the NIH seemed like the only reasonable choice.
That would involve researchers removing cells from his bone marrow, using an engineered virus as a kind of molecular syringe to slip in a healthy copy of the gene in which he had a defect, and then threading these corrected cells back into his veins a bone marrow transplant to himself. But preparing a virus can be tricky, and there were delays.
Meanwhile, Rays condition was getting worse. His norovirus was preventing him from absorbing much nutrition, and as Ballard put it, his bone structure was just crumbling at that point. His doctors told her he had the skeleton of an 85-year-old.
He died this past February, at 25 years old. One friend got his birth and death dates tattooed onto her shoulder. Another painted a portrait of him for Ballard, in which his arms are crossed, his lips pressed together in a wry smile.
At Boston Childrens, Pai is now helping to lead a randomized trial to better understand what dose of chemo works best for SCID patients receiving transplants. Over the last decade or so, she, Malech, and many other clinicians have also teamed up to track the long-term results of immune deficient patients whove received someone elses bone marrow.
Pai is hopeful that knowing about the phenomenon of waning immunity will give gene therapies a better shot at becoming a durable fix. They probably have a better chance of achieving a one-time, lifelong cure, but its never wrong to be humble, she said. Only after decades more and hundreds or thousands of patients will we know for sure.
Patient advocates point out that even then, these patients will still have the capacity of passing on their SCID-causing gene to future generations, and so the word cure is overly optimistic. Thats why I like the word remission, said Smith. That still gives you the hope. If you were given a cancer diagnosis, you wouldnt go through treatment and then just forget about it for the rest of your life.
As Boyle put it, Weve seen the promise and then weve seen the reality. Everyone who is looking at a transformational therapy should be optimistic, but also realistic, and not assume that this is truly one and done. (Boyles foundation has received financial support from Orchard Therapeutics, which is developing a gene therapy for a form of SCID.)
To Amy Saada, of South Windsor, Conn., that isnt theoretical. Her son Adam is now 12, and the immunity from the bone marrow transplant he got as a baby is wearing off. He isnt yet sick, but his parents know they need to decide between gene therapy or another transplant soon. She has a very clear memory of how long and uncertain the recovery from treatment felt. In some ways, she wishes she didnt know quite as much as she does; that way, she would feel less trepidation about what lies ahead.
Your heart kind of sinks, she said. Youve already been through it once, and it was hell. Its harder the second time.
Read the original post:
Waning treatment is a warning for all 'one-and-done' therapies - STAT - STAT
‘Last Christmas…’ London student saved a stranger’s life, this year he is alive and celebrating his gift of life – Charity Today News
By daniellenierenberg
Last Christmas a student from London received what he says was the best Christmas present ever the chance to save a strangers life.
Will Briant, 23, from Kennington, was found to be the best match for a patient with blood cancer in desperate need of a stem cell transplant. Will recently received a letter informing him that his anonymous recipients transplant had been a success and that he is now doing well.
Will initially joined the Anthony Nolan stem cell register in 2014. His girlfriend, who volunteered with Edinburg Universitys Blood, Bone Marrow and Transplant Society, which is part of blood cancer charity Anthony Nolans student volunteer network called Marrow, suggested that he sign up.
Will said: My girlfriend, Libby, told me this amazing statistic that a quarter of all stem cell donors sign up through Marrow at university, so I couldnt not join.
If it wasnt for Marrow and for Libby, I wouldnt have become a donor and given someone hope of a second chance of life just before Christmas.
After Will joined the Anthony Nolan register the charity confirmed his tissue type. Every time the charity was informed that someone needed a transplant it compared the patients tissue type to Wills and over 750,000 others on the register, as well as registers across the world.
In December last year, Will received an email from Anthony Nolan, informing him that he had come up as a potential match for a blood cancer patient in desperate need of a stem cell transplant. Will then went to his GP for blood tests, to confirm that he was in fact the best possible match.
Will said: Just a week before Christmas, I got the best Christmas present ever. I was told that I was the best match for the patient, and I would be donating early in the new year!
I was so excited. When you sign up you know that its such a tiny chance that youll be found as the best match for someone, so to actually be chosen felt really exciting. Also, because it was just before Christmas, it felt quite exciting to know that the patient would find out that they had a match just in time for Christmas!
On average, people who join the stem cell register have around a 1 in 800 chance of being asked to donate in the next five years, but for men aged 16-30, its 1 in 200. This is why Anthony Nolan need more young men to join the register.
At the beginning of this year, having spent Christmas at home with his family, Will donated his stem cells at The London Clinic.
Will said: For four days before the donation I had a course of G-CSF injections to increase the number of stem cells I was producing. This caused mild flu-like symptoms, I just felt a bit tired and achy really. The whole way through, I kept thinking about the recipient, and how, in this context, I was absolutely delighted to have mild flu-like symptoms! It was quite strange to be doing it for real, after talking to so many potential donors when I volunteered with Marrow at university!
Libby, the same girlfriend who had suggested Will consider signing up to the register four years earlier, accompanied him to his donation.
Will said: I sat in a hospital bed for four hours and was so pampered by the staff there! There was a huge choice of different lunches, endless coffees and I got to watch programmes on my iPad.
Following his donation Will then went back to his studies and his job, barely giving a second thought to what hed just done. However, this all changed when a month after the donation he received a letter of thanks from the recipient of his stem cells.
Will said: It was honestly the best letter Ive ever received. It was especially powerful because it really hit home, that not only had I given him a second chance of life, but also, I had given his wife, his children, his grandchildren and his friends more precious time with him.
Patients and recipients must remain anonymous for two years following a transplant, but they are able to communicate via anonymous letters and cards. After the two-year period, if both parties agree, they are allowed to meet.
Just recently, Will also received a letter from the hospital at which his recipient received their stem cell transplant to say that the donation had been successful and even though recovery can be a long process, he is currently recovering well. Will is hoping that they will both exchange Christmas cards this year.
Anthony Nolan is the charity that finds matching stem cell donors for people with blood cancer and blood disorders and gives them a second chance of life. It costs 40 for Anthony Nolan to add each new donor to the register, so the charity needs financial support to help it continue to give patients, their family and their friends hope.
Terence Lovell, Director of Engagement at Anthony Nolan told Charity Today: Our amazing stem cell donors, like Will, continue to enable many patients with blood cancer to spend Christmas with their loved ones, who wouldnt be here without their act of kindness.
Anyone wanting to support our work can visit our website and make a donation, which will help give someone like Wills recipient, a second chance of life in the future. Without your support, there is no cure.
Anthony Nolan also carries out ground-breaking research to save more lives and provide information and support to patients after a stem cell transplant, through its clinical nurse specialists and psychologists, who help guide patients through their recovery. Find out more about Anthony Nolan this Christmas by visitinghttps://www.anthonynolan.org/
The rest is here:
'Last Christmas...' London student saved a stranger's life, this year he is alive and celebrating his gift of life - Charity Today News
Global Bone Graft and Substitutes Market to Surpass US$ 4673.5 Million by 2027 Coherent Market Insights – Business Wire
By daniellenierenberg
SEATTLE--(BUSINESS WIRE)--According to Coherent Market Insights, the global bone graft and substitutes market is estimated to be valued at US$ 3,046.7 million in 2019, and is expected to exhibit a CAGR of 5.5% during the forecast period (2019-2027).
Key Trends and Analysis of the Global Bone Graft and Substitutes Market:
Key players in the market are focusing on receiving product approvals for bone grafts and bone graft substitutes are expected to fuel growth of the global bone graft and substitutes market over the forecast period. For instance, in December 2016, CoreBone, an Israel-based company manufacturing bone grafts from corals received approval from European Medicines Agency (EMA) for use this product in Europe, which is expected to generate a significant revenue for the region through its sales.
Request your Sample PDF copy @ https://www.coherentmarketinsights.com/insight/request-sample/1050
Moreover, adoption of inorganic growth strategies by major key players is expected to boost the market growth over the forecast period. For instance, in February 2019, Orthofix Medical acquired Options Medical, LLC, a medical device distributor based in Florida, U.S. The acquisition aims to enhance the sales force. Moreover, in 2017, LifeNet Health acquired Austria-based tissue bank- AlloTiss Gemeinntzige Gewebebank GmbH. The acquisition enabled LifeNet Health to establish training and distribution center in Vienna, Austria to support the use of allograft in Europe.
Furthermore, rising road accidents and injuries is expected to propel the market growth over the forecast period. For instance, in 2018, as per the World Health Organization (WHO) estimation, around 1.35 million people are reported to die each year due to road traffic crashes, globally.
Among regions, Asia Pacific is expected to show significant growth in the global bone graft and substitutes market, owing to increasing road accidents in the region. For instance, according to the World Health Organization report in 2013, Asia Pacific region reported around 153,000 fatalities due to road accidents or around 400 deaths each day. It also stated that road traffic death rate in South-East Asia region was 17.0 per 100,000 population, compared to the global rate of 17.4, where there was considerable variation seen within the region ranging from 3.5 in the Maldives to 36.2 in Thailand in 2015.
Key Market Takeaways:
Buy this Report (Single User License) @ https://www.coherentmarketinsights.com/insight/buy-now/1050
Market Segmentation:
Originally posted here:
Global Bone Graft and Substitutes Market to Surpass US$ 4673.5 Million by 2027 Coherent Market Insights - Business Wire
BrainStorm Cell Therapeutics Wins 2020 ‘Buzz of BIO’ Award – Multiple Sclerosis News Today
By daniellenierenberg
For its promising investigational therapeutic approach to neurodegenerative diseases, including progressive multiple sclerosis (MS), BrainStorm Cell Therapeutics is theBuzz of BIO 2020 winnerin the Public Therapeutic Biotech category.
The Buzz of BIO contest identifies U.S. companies with groundbreaking, early-stage potential to improve lives. The event also is anopportunity to make investor connections that could take products to the next phase.
Ten biotechnology companies are nominated in each of the three categories of Buzz of BIO: Public Therapeutic Biotech, Private Therapeutic Biotech, and Diagnostics and Beyond. In the Public Therapeutic Biotech category that BrainStorm won, nominated companies must be actively developing a publicly traded human treatment intended for review by theU.S. Food and Drug Administration.
As a developer of autologous cellular therapies for debilitating neurodegenerative diseases, BrainStorm is testing its investigational therapy,NurOwn, in progressive MS patients, for whom treatment options are limited.
The therapy is based on patients own bone marrow-derived mesenchymal stem cells that are engineered to secrete growth factors. Such factors are thought to protect nerves from damage, promote the repair of myelin (the protective coat of neurons that is destroyed in MS), and ultimately slow or stabilize disease progression.
BrainStorms current open-label Phase 2 clinical study (NCT03799718) is enrolling up to 20 adults with either secondary progressive or primary progressive MS at three U.S. sites:theKeck School of Medicine of USC, the Stanford School of Medicine, and theCleveland Clinic. After undergoing a bone marrow aspiration to collect cells, each participant will receive three intrathecal (injected into the spinal cord) NurOwn cell transplants within 16 weeks, and will be tracked for at least another 12 weeks to assess safety and effectiveness. Contact information for the trial centers is available here.
Thanks to everyone who voted for BrainStorm during the Buzz of BIO competition,Chaim Lebovits, BrainStorm president and CEO, said in a press release.
As the winner of the contest, BrainStorm also was invited to givea presentation at theBio CEO & Investor Conference, to be held Feb. 1011 in New York City.
The entire management team at BrainStorm was very pleased with the results of this competition, and we look forward to presenting to an audience of accredited investors who may benefit from the companys story, said Lebovits. We thank the BIO[Biotechnology Innovation Organization] team for singling out BrainStorms NurOwn as a key technology with the potential to improve lives.
NurOwn cells also are being tested in a Phase 3 trial (NCT03280056) in patients with amyotrophic lateral sclerosis (ALS).
Total Posts: 1,053
Patrcia holds her PhD in Medical Microbiology and Infectious Diseases from the Leiden University Medical Center in Leiden, The Netherlands. She has studied Applied Biology at Universidade do Minho and was a postdoctoral research fellow at Instituto de Medicina Molecular in Lisbon, Portugal. Her work has been focused on molecular genetic traits of infectious agents such as viruses and parasites.
Continued here:
BrainStorm Cell Therapeutics Wins 2020 'Buzz of BIO' Award - Multiple Sclerosis News Today
BeyondSpring Publishes Report on Benefits and Mechanism of Plinabulin in Reducing Neutropenia with Multiple Chemotherapies – Yahoo Finance
By daniellenierenberg
Plinabulin Protects Bone Marrow from Chemotherapy-Induced Deficiencies with a Differentiated Yet Complimentary Mechanism to G-CSF for CIN Prevention
NEW YORK, Dec. 19, 2019 (GLOBE NEWSWIRE) -- BeyondSpring Inc. (BYSI), a global biopharmaceutical company focused on the development of innovative immuno-oncology cancer therapies, today announced that the peer reviewed journal Cancer Chemotherapy and Pharmacology published a report on the unique mechanism of action (MoA) of the Companys lead asset, Plinabulin. The report demonstrates that Plinabulin can successfully treat chemotherapy-induced neutropenia (CIN) caused by multiple chemotherapies. In addition, Plinabulin has positive effects on bone marrow cells, with a mechanism distinct from G-CSF-based therapies, the current standard of care for CIN.
The paper, titled, Plinabulin ameliorates neutropenia induced by multiple chemotherapies through a mechanism distinct from GCSF therapies, reports on Plinabulins ability to reduce neutropenia induced by docetaxel, cyclophosphamide or doxorubicin chemotherapy, without affecting bone marrow or blood G-CSF levels. The results support Plinabulins clinical testing as a non-G-CSF-based treatment for CIN associated with chemotherapies of different mechanisms.
Importantly, our nonclinical data also demonstrated the positive effects of Plinabulin on bone marrow cellsconsistent with clinical results recently reported in human subjects at ASH 2019which demonstrate that Plinabulin increases the number of circulating white blood cells positive for CD34 (a marker for hematopoietic stem and progenitor cells, or HSPC, in humans), as well as the finding that Plinabulin protects bone marrow lymphoid and myeloid progenitor cells from the negative effects of chemotherapy, said James R. Tonra, Senior Vice President, Preclinical Development at BeyondSpring and the lead author of the article. A therapy that increases bone marrow HSPC count also has the potential to alleviate chemotherapy-induced deficiencies (chemo-assault) in multiple mature cell populations within the hematopoietic system. In line with this potential, Plinabulin alleviates docetaxel-induced thrombocytopenia, as well as neutropenia, in NSCLC patients.
By combining these two molecules Plinabulin and G-CSF patients get the benefit of these different and additive mechanisms of action that can work together to create a new standard of care in preventing CIN, added Dr. Ramon Mohanlal, BeyondSprings Chief Medical Officer and Executive Vice President, Research and Development. CIN not only puts chemotherapy patients at increased risk of infections and mortality, but also can deny them from receiving the best anti-cancer care, as CIN typically leads to a decrease / delay or discontinuation of otherwise effective chemotherapy. A chemotherapy dose reduction of just 15 percent can reduce long-term survival by as much as 50 percent. Plinabulin has also demonstrated anti-cancer activity in studies to date, and the addition of Plinabulin to G-CSF potentially offers the distinct advantage of better protection against CIN versus G-CSF alone, avoidance of G-CSF-related bone pain and improving outcomes.
The article is authored by BeyondSprings James Tonra, Ph.D.; Ramon Mohanlal, MD, Ph.D.; G. Kenneth Lloyd, Ph.D., Chief Scientific Officer; and Lan Huang, Ph.D., Co-Founder, Chairman and CEO.
About BeyondSpring BeyondSpring is a global, clinical-stage biopharmaceutical company focused on the development of innovative immuno-oncology cancer therapies. BeyondSprings lead asset, Plinabulin, is in two Phase 3 global clinical programs, one as a direct anticancer agent in the treatment of non-small cell lung cancer (NSCLC) and the other in the prevention of chemotherapy-induced neutropenia (CIN). BeyondSpring has strong R&D capabilities with a robust pipeline in addition to Plinabulin, including three immuno-oncology assets and a drug discovery platform using the ubiquitination degradation pathway. The Company also has a seasoned management team with many years of experience bringing drugs to the global market.
About PlinabulinPlinabulin, BeyondSprings lead asset, is a marine-derived small molecule that sequesters tubulin heterodimers in a differentiated manner from other agents in this class. Plinabulin is currently in late-stage clinical development to increase overall survival in cancer patients, as well as to alleviate chemotherapy-induced neutropenia (CIN). The anticancer benefits of Plinabulin have been associated with positive effects on antigen presenting cells and T-cell activation, as well as to the direct killing of cancer cells. Plinabulins CIN data highlights the ability to boost the number of hematopoietic stem / progenitor cells (HSPCs), or lineage-/cKit+/Sca1+ (LSK) cells in mice. Effects on HSPCs could explain the ability of Plinabulin to not only treat CIN but also to reduce chemotherapy-induced thrombocytopenia and increase circulating CD34+ cells in patients.
Story continues
About Chemotherapy-Induced Neutropenia (CIN)CIN is a common, often severe side effect that cancer patients who are undergoing treatment experience involving the destruction of neutrophils, which are a type of white blood cell and a patients first line of defense against infections. The current standard of care for CIN prevention is G-CSF monotherapy, which has serious limitations as described in its product information summary.
As many as 90 percent of patients who receive high-risk chemotherapy and G-CSF monotherapy may still experience grade 3 or 4 neutropenia [Lee et al., Annals of Surgical treatment and research 94(5): 223-228 (2018)]. Patients with grade 4 (severe) neutropenia have an abnormally low concentration of neutrophils, making these patients more susceptible to bacterial / fungal infections and sepsis, which can require hospitalization and be fatal. Grade 4 CIN can have an adverse effect on chemotherapy administration and is usually considered a significant predictor of low relative dose intensity (RDI), dose delays and dose reductions [Lalami Y, Critical Reviews in Oncology / Hematology, 120: 163 179 (2017)]. Even a 15 percent chemotherapy dose reduction can reduce long-term survival by as much as 50 percent [Bonadonna, Med Oncol 29:14951501 (2012)].
Additionally, as many as 70 percent of patients using G-CSF monotherapy experience bone pain [Moore et al., Annals of Pharmacotherapy 51(9): 797-803 (2017)]. Twenty-five percent of patients also report that the pain is severe. The National Comprehensive Cancer Network (NCCN) guidelines require that patients with grade 3 or 4 neutropenia decrease chemotherapy dose intensity, delay chemotherapy cycle timing or discontinue chemotherapy, each of which can have a negative effect on the long-term outcomes of cancer care [Lalami et al., Critical Reviews in Oncology / Hematology 120: 163-179 (2017)].
Cautionary Note Regarding Forward-Looking StatementsThis press release includes forward-looking statements that are not historical facts. Words such as will, expect, anticipate, plan, believe, design, may, future, estimate, predict, potential, suggest, objective, goal, or variations thereof and variations of such words and similar expressions are intended to identify such forward-looking statements. Forward-looking statements are based on BeyondSprings current knowledge and its present beliefs and expectations regarding possible future events and are subject to risks, uncertainties and assumptions. Certain of the statements made in this press release are forward-looking, such as those, among others, relating to BeyondSprings expectations regarding the completion of the proposed offering. No assurance can be given that the offering discussed above will be consummated, or that the net proceeds of the offering will be used as indicated. Consummation of the offering and the application of the net proceeds of the offering are subject to numerous possible events, factors and conditions, many of which are beyond the control of the Company and not all of which are known to it, including, without limitation, market conditions and those described under the heading Risk Factors in the Company's Annual Report on Form 20-F for the year ended December 31, 2018, as updated by those risk factors included in the Companys subsequent filings under the Securities Exchange Act of 1934, as amended, which can be accessed at the SEC's website at http://www.sec.gov. Actual results and the timing of events could differ materially from those anticipated in these forward-looking statements as a result of several factors including, but not limited to, the anticipated amount needed to finance the Companys future operations, unexpected results of clinical trials, delays or denial in regulatory approval process, its expectations regarding the potential safety, efficacy or clinical utility of its product candidates, or additional competition in the market, and other risk factors referred to in BeyondSprings current Form 20-F on file with the SEC. The forward-looking statements made herein speak only as of the date of this release and BeyondSpring undertakes no obligation to update publicly such forward-looking statements to reflect subsequent events or circumstances, except as otherwise required by law.
Media Contacts:Caitlin Kasunich / Dave SchemeliaKCSA Strategic Communications212.896.1241 / 212.896.1242ckasunich@kcsa.com / dschemelia@kcsa.com
Read this article:
BeyondSpring Publishes Report on Benefits and Mechanism of Plinabulin in Reducing Neutropenia with Multiple Chemotherapies - Yahoo Finance
The Project to Save Lives Free Press of Jacksonville – Jacksonville Free Press
By daniellenierenberg
https://www.projectlifemovement.org/impact/https://www.projectlifemovement.org/impact/
Our Impact
The Project to Save Lives Leukemia, Sickle Cell anemia and other diseases can often be cured with a bone marrow transplant. However, African American patients with leukemia and Sickle Cell have only a 23% chance of finding a bone marrow match on the National Registry. For mixed race patients the chance of finding a match is even lower. Conversely, African American and mixed race patients with leukemia or Sickle Cell have a 77% or more chance of dying if the only treatment that will save their lives is a bone marrow match and transplant. Compare this to the 41% chance of finding a match for Asian or Pacific Islanders, 46% for Hispanics or Latinos, 57% for American Indian and Alaska Natives, and 77%f for whites. The only reason for these discrepancies is the lack of bone marrow donors from the African American and mixed race communities. The solution to this problem is simple. We can save lives by having more African American and mixed race bone marrow donors, and providing supportservices to African American and mixed race children and adults in need of bone marrow transplants. This is the mission of The Project to Save Lives.
Doctors also use bone marrow transplants to treat aplastic anemia, autoimmune diseases (including scleroderma and multiple sclerosis), Hodgkin lymphoma, immune deficiency disorders, inborn errors of metabolism, non-hodkin lympohma, myelodysplastic syndrome, myeleproliferative neoplasms, multiple myeloma, myelofibrosis.
Thousands of patients with these diseases will need a bone marrow transplant to survive. Given the lack of African American and mixed race donors, the shortage of diverse donors costs lives. With ethnicity being the key to a perfect match between donor and recipient, we can change the odds only by increasing donors from the African American and mixed race communities. Increase the donors and the odds of finding matching donors will increase. You could save a life and become a hero by being a donor, and being a donor can be as simple as donating blood platelets.
ligible donors must be 18-44 years of age and in general good health. Donors must be willing and committed to donate to any patient they might match. Registration involves completing a consent form and a simple cheek swab test. Cheek swabbing is free. This can be done at an actual drive or by requesting a kit online to complete your swab. This places you on the Be The Match Registry for anyone you might match. While the current method of registration is digital The Project to Save Lives is working on a method of registration for those not equipped to register digitally.
If you match a patient in need, there are two ways to donate. The patients doctor chooses the method of donation that is best for the patient. 80% of the time Peripheral blood stem cell (PBSC) donation is used. This is the method of collecting blood-forming cells for transplants. The same blood forming cells that are found in marrow are also found in the circulating (peripheral) blood. PBSC is a non-surgical procedure, called apheresis. The donation takes place at an experienced facility that participates in PBSC collections. For 5 days leading up to donation you will be given injections of a drug called filgrastim to increase the number of cells in your bloodstream that are used for transplant. Some of your blood is then removed through a needle in one arm and passed through a machine that separates out the blood-forming cells. The remaining blood is returned to you through the other arm. The other 20% of marrow donations take place in a hospital under general anesthesia. Doctors use a needle to withdraw liquid marrow from the back of your pelvic bone. Donors feel no pain or discomfort during the donation. The procedure is out-patient. There is small discomfort to save a life. Further, donors never pay for donating and are never paid to donate. The amount of cells donated will not weaken your immune system. Most donors are back to their usual routine in a few days and your marrow naturally replaces itself within 4-6 weeks.
Some believe that donors are usually found in their family. This is not true. 70% of patients do not have a matching donor in the family. Adding more registry members increases the ethnic diversity of the registry which increases the variety of tissue types available, which helps more people of ethnicity and ethnic diversity find the match they need. Additionally, members of the LGBTQ+ community can join the registry and donate. The African American and mixed race communities need members who are committed to helping save a life. This means being willing to donate to anyone in need. If you are called as a potential match for a patient, your commitment means that youre willing to take up to 20-30 hours spread over 4-6 weeks to: attend an information session, attend appointments, and donate. You are also committing to keeping your contact information up-to-date so that the registry can find you to quickly get a blood sample for further match testing.
There are many myths about bone marrow donation:MYTH: Donating is very painful.FACT: Donating is less painful than you think.MYTH: Donating involves opening up or removing bones.FACT: This is not true. Most blood stem cell donors (80%) give PBSC a process similar to platelet donation. This is a non-surgical, out-patient procedure and no bone is removed. The donorreceives a drug for 5 days to increase the number of cells in the bloodstream. The cells are then collected during donation. The donor may experience head or muscle aches that disappearshortly after the donation, and are typically back to their normal routine in 1 to 2 days.
The other procedure (20%) is a surgical, out-patient procedure that takes place in a hospital operating room. While the donor is under anesthesia, the doctors collect marrow from the back ofthe donors pelvic bone. After donation, donors may feel soreness in the lower back. Donors are typically back to their normal routine in 2 to 7 days.MYTH: Donating is dangerous.FACT: There are few risks to donating.MYTH: Donating takes a long time.FACT: It doesnt take long to save someones life.MYTH: Donating is expensive and you need medical insurance.FACT: Donating is absolutely free to the donor.MYTH: Sharing your personal information and DNA is risky.FACT: Be the Match and HIPPA will protect your privacy andconfidentiality.MYTH: Asking about a donors ethnic background is racist.FACT: Ethnic background is an important factor for matching donors to patients. When it comes to matching human leukocyte antigen (HLA) types,a patients ethnic background is important inpredicting the likelihood or finding a match. This is because HLA markers used in matching are inherited.MYTH: Gay men cannot join or donate.FACT: Gay men and others in the LGBTQ+ community CAN join the registry and donate.MYTH: Be the Match discriminates against people age 45+.FACT: Age guidelines protect the safety of the donor and provide the best possible outcome for the patient. They are not meant to discriminate.
More Important Facts:1. Every 3 minutes, someone is diagnosed with a blood cancer like Leukemia. For many of these and other patients with diseases like Sickle Cell anemia, a marrow transplant is the only lifesaving treatment-their only chance for a cure.2. Every year, more than 14,000 patients are diagnosed with life-threatening blood cancerslike leukemia and lymphomaor other diseases for which a marrow or cord blood transplant from an unrelated donor may be their best or only hope of a cure.3. 70% of all patients who need a transplant do not have a matched donor in their family. They depend on Be The Match Registry to find an unrelated donor or cord blood unit.4. Approximately 70 % of transplants facilitated by the National Marrow Donor Program are for patients diagnosed with leukemia or lymphoma.5. Every 10 minutes, someone dies from a blood cancer. Thats more than six people each hour, or 148 people each day.6. More than 70 diseases can be treated & cured by an unrelated donor transplant.7. Leukemia causes more deaths than any other cancer among children and young adults under the age of 20.8. Be The Match Registry works tirelessly on behalf of patients in need of a life-saving transplant. Through successful partnerships with organizations, more volunteer donors step forward, more funding becomes available to support critical outreach and more advances are made in the science of transplants. We all have the power to heal, the power to save a life. Take the first step.9. African Americans and people of mixed race are particularly at risk of dying due to inability to find a match.10. Due to significant medical achievements in recent decades, survival rates are higher than ever for bone marrow and PBSC transplants. There are Health Benefits of Diets That Increase Bone Marrow in Donors. There are health benefits to diets that will increase your Red Blood Count to make you a more valuable donor. The Be the Match registry can give you information on what to eat to increase your Red Blood Count which will, in turn, greatly improve you health.
Join the Be The Match RegistryBe the Match is the largest, most diverse registry of potential marrow donors and cord blood units in the world. Be the Match offers one-on-one support, education and guidance before, during and after transplants. But first a marrow match must be found. And there are many patients in need of a donor. The ICLA DA SILVA FOUNDATION, INC. is A Recruitment Center for the Be the Match Registry. The Icla da Silva Foundation is the largest recruitment center for the Be The Match Registry in the United States. It recruits over 38,000 new potential bone marrow donors every year, with a strong focus on minority communities. The Icla da Silva Foundation was established in 1992, in memory of the 13-year-old Brazilian girl named Icla da Silva. After two years of fighting leukemia, Icla passed away in New York City, where she came hoping to get her life saving treatment: a bone marrow transplant. The young girl never found a matching donor.
With offices across the United States and Puerto Rico, the Foundation is continuously expanding its efforts in providing assistance and hope to thousands of families in the United States and all over the world. The mission of the Icla da Silva Foundation is to save lives by recruiting bone marrow donors and providing support services to children and adults with leukemia and other diseases treatable by marrow transplants. The Icla da Silva Foundation is a nonprofit organization under section 501(c) 3 of the IRS Code. Eligible donors must be 18-44 years of age and in general good health. Be willing and committed to donate to any patient that you might match. Registration involves completing a consent form and a simple cheek swab test. This places you on the Be The Match Registry for anyone you might match. You can contact the ICLA/Be the Match organization through the following:
https://bethematch.org/support-thecause/donate-bone-marrow/donation-faqs/. You can also contact The Project to
Save a Life through its two community volunteers: John-Michael Lawrence atlawrencejohnmichael9@gmail.com and Rhoda London at diversitydonordrive@aol.com.
What You Can Do Besides Being a Donor:If you are not able to donate or are younger than 18 or older than 44, you can:1. Host an actual cheek swabbing drive in you place of worship, school, business organization;2. Publicize a digital drive in any of the above on Facebook or any other social media;3. Share the information with other groups,family and friends;4. Make a financial donation in honor of your own good health or in honor of your recovery from and illness. Since swabbing and medical expenses are free, financial donations go to support analyzing the swabs and medical expenses for the donor and recipient;5. For a PHYSICAL Drive, register online at Join.Bethematch.org/JaxDonors for information and videos on how to hold a drive. Please join the effort, you can save a life.
See the original post here:
The Project to Save Lives Free Press of Jacksonville - Jacksonville Free Press
Gene Therapy Arrives – Scientific American
By daniellenierenberg
The idea for gene therapya type of DNA-based medicine that inserts a healthy gene into cells to replace a mutated, disease-causing variantwas first published in 1972. After decades of disputed results, treatment failures and some deaths in experimental trials, the first gene therapy drug, for a type of skin cancer, was approved in China in 2003. The rest of the world was not easily convinced of the benefits, however, and it was not until 2017 that the U.S. approved one of these medicines. Since then, the pace of approvals has accelerated quickly. At least nine gene therapies have been approved for certain kinds of cancer, some viral infections and a few inherited disorders. A related drug type interferes with faulty genes by using stretches of DNA or RNA to hinder their workings. After nearly half a century, the concept of genetic medicine has become a reality.
These treatments use a harmless virus to carry a good gene into cells, where the virus inserts it into the existing genome, canceling the effects of harmful mutations in another gene.
GENDICINE:Chinas regulatory agency approved the worlds first commercially available gene therapy in 2003 to treat head and neck squamous cell carcinoma, a form of skin cancer. Gendicine is a virus engineered to carry a gene that has instructions for making a tumor-fighting protein. The virus introduces the gene into tumor cells, causing them to increase the expression of tumor-suppressing genes and immune response factors.The drug is still awaiting FDA approval.
GLYBERA:The first gene therapy to be approved in the European Union treated lipoprotein lipase deficiency (LPLD), a rare inherited disorder that can cause severe pancreatitis. The drug inserted the gene for lipoprotein lipase into muscle cells. But because LPLD occurs in so few patients, the drug was unprofitable. By 2017 its manufacturer declined to renew its marketing authorization; Glybera is no longer on the market.
IMLYGIC:The drug was approved in China, the U.S. and the E.U. to treat melanoma in patients who have recurring skin lesions following initial surgery. Imlygic is a modified genetic therapy inserted directly into tumors with a viral vector, where the gene replicates and produces a protein that stimulates an immune response to kill cancer cells.
KYMRIAH:Developed for patients with B cell lymphoblastic leukemia, a type of cancer that affects white blood cells in children and young adults, Kymriah was approved by the FDA in 2017 and the E.U. in 2018. It works by introducing a new gene into a patients own T cells that enables them to find and kill cancer cells.
LUXTURNA:The drug was approved by the FDA in 2017 and in the E.U. in 2018 to treat patients with a rare form of inherited blindness called biallelic RPE65 mutation-associated retinal dystrophy. The disease affects between 1,000 and 2,000 patients in the U.S. who have a mutation in both copies of a particular gene, RPE65. Luxturna delivers a normal copy of RPE65 to patients retinal cells, allowing them to make a protein necessary for converting light to electrical signals and restoring their vision.
STRIMVELIS:About 15 patients are diagnosed in Europe every year with severe immunodeficiency from a rare inherited condition called adenosine deaminase deficiency (ADA-SCID). These patients bodies cannot make the ADA enzyme, which is vital for healthy white blood cells. Strimvelis, approved in the E.U. in 2016, works by introducing the gene responsible for producing ADA into stem cells taken from the patients own marrow. The cells are then reintroduced into the patients bloodstream, where they are transported to the bone marrow and begin producing normal white blood cells that can produce ADA.
YESCARTA:Developed to treat a cancer called large B cell lymphoma, Yescarta was approved by the FDA in 2017 and in the E.U. in 2018. It is in clinical trials in China. Large B cell lymphoma affects white blood cells called lymphocytes. The treatment, part of an approach known as CAR-T cell therapy, uses a virus to insert a gene that codes for proteins called chimeric antigen receptors (CARs) into a patients T cells. When these cells are reintroduced into the patients body, the CARs allow them to attach to and kill cancer cells in the bloodstream.
ZOLGENSMA:In May 2019 the FDA approved Zolgensma for children younger than two years with spinal muscular atrophy, a neuromuscular disorder that affects about one in 10,000 people worldwide. It is one of the leading genetic causes of infant mortality. Zolgensma delivers a healthy copy of the human SMN gene to a patients motor neurons in a single treatment.
ZYNTEGLO:Granted approval in the E.U. in May 2019, Zynteglo treats a blood disorder called beta thalassemia that reduces a patients ability to produce hemoglobin, the protein in red blood cells that contains iron, leading to life-threatening anemia. The therapy has been approved for individuals 12 years and older who require regular blood transfusions. It employs a virus to introduce healthy copies of the gene for making hemoglobin into stem cells taken from the patient.The cells are then reintroduced into the bloodstream and transported to the bone marrow, where they begin producing healthy red blood cells that can manufacture hemoglobin.
This approach uses a synthetic strand of RNA or DNA (called an oligonucleotide) that, when introduced into a patients cell, can attach to a specific gene or its messenger molecules, effectively inactivating them. Some treatments use an antisense method, named for one DNA strand, and others rely on small interfering RNA strands, which stop instruction molecules that go from the gene to the cells protein factories.
DEFITELIO:This drug contains a mixture of single-strand oligonucleotides obtained from the intestinal mucosa of pigs. It was approved (with limitations) in the U.S. and the E.U. in 2017 to treat severe cases of veno-occlusive disease, a disorder in which the small veins of the liver become obstructed, in patients who have received a bone marrow transplant.
EXONDYS 51:In 2016 the FDA granted approval to Exondys 51 amid some controversy regarding its efficacy; two members of the FDA review panel resigned in protest of the decision. The therapy is designed to treat a form of Duchenne muscular dystrophy caused by mutations in the RNA that codes for the protein that helps to connect muscle fibers cytoskeletons to a surrounding matrix. Exondys 51 is effective in treating about 13 percent of the Duchenne population.
KYNAMRO:Approved by the FDA in in 2013, Kynamro is designed to inhibitor effectively shut down production ofa protein that helps to produce low-density lipoprotein (LDL). Injected subcutaneously, this therapy is used to lower LDL levels in patients who have dangerously high cholesterol.
MACUGEN:Age-related macular degeneration is the leading cause of vision loss in people age 60 and older. It is caused by deterioration of the center of the retina due to leaking blood vessels. Approved in the U.S., Macugen inhibits these blood vessels from growing under the retina, thus treating the disorder.
SPINRAZA:With its FDA approval in 2016, Spinraza became the first gene-based therapy for spinal muscular atrophy. The inherited disorder is caused by low levels of SMN, a key protein for the maintenance of motor neurons. Spinraza binds to RNA from a backup gene called SMN2, converting that RNA into instructions for making fully functioning SMN proteins.
See the original post here:
Gene Therapy Arrives - Scientific American
Bone Marrow Processing System Market Expected to Witness an Imperishable Growth over 2025 – Guru Online News
By daniellenierenberg
Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.
The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.
Get More Information:https://www.trendsmarketresearch.com/report/sample/3184
In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.
Request For Table of Contents:https://www.trendsmarketresearch.com/report/requesttoc/3184
Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.
Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others
Report Description:https://www.trendsmarketresearch.com/report/bone-marrow-processing-system-market
See the original post:
Bone Marrow Processing System Market Expected to Witness an Imperishable Growth over 2025 - Guru Online News
Gene Therapy for Sickle-Cell Anemia Looks Promisingbut It’s Riddled With Controversy – Singularity Hub
By daniellenierenberg
Gene therapy is fighting to enter mainstream medicine. With sickle cell disease, the fight is heating up.
Roughly two years ago, the FDA made the historic decision to approve the first gene therapy in the US, finally realizing the therapeutic potential of hacking our biological base code after decades of cycles of hope and despair. Other approvals soon followed, including Luxturna to target inherited blindness and Zolgensma, a single injection that could save children with a degenerative disease from their muscles wasting away and dying before the age of two.
Yet despite their transformative potential, gene therapy has only targeted relatively rareand often fataldisorders. Thats about to change.
This year, a handful of companies deployed gene therapy against sickle-cell anemia, a condition that affects over 20 million people worldwide and 100,000 Americans. With over a dozen therapies in the run, sickle-cell disease could be the indication that allows gene therapy to enter the mainstream. Yet because of its unique nature, sickle-cell could also be the indication that shines an unflinching spotlight on challenges to the nascent breakthrough, both ethically and technologically.
You see, sickle-cell anemia, while being one of the worlds best-known genetic diseases, and one of the best understood, also predominantly affects third-world countries and marginalized people of color in the US. So far, gene therapy has come with a hefty bill exceeding millions; few people afflicted by the condition can carry that amount. The potential treatments are enormously complex, further upping costs to include lengthy hospital stays, and increasing potential side effects. To muddy the waters even more, the disorder, though causing tremendous pain and risk of stroke, already has approved pharmaceutical treatments and isnt necessarily considered life-threatening.
How we handle gene therapies for sickle-cell could inform many other similar therapies to come. With nearly 400 clinical trials in the making and two dozen nearing approval, theres no doubt that hacking our genes will become one of the most transformative medical wonders of the new decade. The question is: will it ever be available for everyone in need?
Even those uninterested in biology have likely heard of the disorder. Sickle-cell anemia holds the crown as the first genetic disorder to be traced to its molecular roots nearly a hundred years ago.
The root of the disorder is a single genetic mutation that drastically changes the structure of the oxygen-carrying protein, beta-globin, in red blood cells. The result is that the cells, rather than forming their usual slick disc-shape, turn into jagged, sickle-shaped daggers that damage blood vessels or block them altogether. The symptoms arent always uniform; rather, they come in crisis episodes during which the pain becomes nearly intolerable.
Kids with sickle-cell disorder usually die before the age of five; those who survive suffer a lifetime of debilitating pain and increased risk of stroke and infection. The symptoms can be managed to a degree with a cocktail of drugsantibiotics, painkillers, and a drug that reduces crisis episodes but ups infection risksand frequent blood transfusions or bone marrow transplants. More recently, the FDA approved a drug that helps prevent sickled-shaped cells from forming clumps in the vessels to further combat the disorder.
To Dr. David Williams at Boston Childrens Hospital in Massachusetts, the availability of these treatmentshowever inadequatesuggests that gene therapy remains too risky for sickle-cell disease. Its not an immediately lethal diseaseit wouldnt be ethical to treat those patients with a highly risky experimental approach, he said to Nature.
Others disagree. Freeing patients from a lifetime of risks and pain seems worthy, regardless of the price tag. Inspired by recent FDA approvals, companies have jumped onto three different treatments in a bitter fight to be the first to win approval.
The complexity of sickle-cell disease also opens the door to competing ideas about how to best treat it.
The most direct approach, backed by Bluebird Bio in Cambridge, Massachusetts, uses a virus to insert a functional copy of the broken beta-globin gene into blood cells. This approach seems to be on track for winning the first FDA approval for the disorder.
The second idea is to add a beneficial oxygen-carrying protein, rather than fixing the broken one. Here, viruses carry gamma-globin, which is a variant mostly present in fetal blood cells, but shuts off production soon after birth. Gamma-globin acts as a repellent that prevents clotting, a main trigger for strokes and other dangerous vascular diseases.
Yet another idea also focuses on gamma-globin, the good guy oxygen-carrier. Here, rather than inserting genes to produce the protein, the key is to remove the breaks that halt its production after birth. Both Bluebird Bio and Sangamo Therapeutics, based in Richmond, California, are pursing this approach. The rise of CRISPR-oriented companies is especially giving the idea new promise, in which CRISPR can theoretically shut off the break without too many side effects.
But there are complications. All three approaches also tap into cell therapy: blood-producing cells are removed from the body through chemotherapy, genetically edited, and re-infused into the bone marrow to reconstruct the entire blood system.
Its a risky, costly, and lengthy solution. Nevertheless, there have already been signs of success in the US. One person in a Bluebird Bio trial remained symptom-free for a year; another, using a CRISPR-based approach, hasnt experienced a crisis in four months since leaving the hospital. For about a year, Bluebird Bio has monitored a dozen treated patients. So far, according to the company, none has reported episodes of severe pain.
Despite these early successes, advocates worry about the actual impact of a genetic approach to sickle-cell disease.
Similar to other gene therapies, the treatment is considered a last-line, hail Mary solution for the most difficult cases of sickle cell disease because of its inherent risks and costly nature. Yet end-of-the-line patients often suffer from kidney, liver, and heart damages that make chemotherapy far too dangerous.
Then theres the problem of global access. Some developing countries, where sickle-cell disease is more prevalent, dont even have consistent access to safe blood transfusions, not to mention the laboratory equipment needed for altering blood-producing stem cells. Recent efforts in education, early screening, and prevention have also allowed people to live longer and reduce the stigma of the disorder.
Is a $1 million price tag ever attainable? To combat exhorbitant costs, Bluebird Bio is offering an installment payment plan for five years, which can be terminated anytime the treatment stops working. Yet for patients in South Africa, India, or Cambodia, the costs far exceed the $3 per month price tag for standard treatment. Even hydroxyurea, the newly-approved FDA drug to reduce crisis pain episodes, is just a fraction of the price tag that comes with gene therapy.
As gene therapy technologies are further refined and their base cost reduced, its possible that overall costs will drop. Yet whether these treatments will be affordable in the long run remains questionable. Even as scientists focus on efficacy rather than price tag, NIH director Dr. Francis Collins believes not thinking about global access is almost unethical. There are historical examples for optimism: vaccines, once rather fringe, now touch almost every corner of our world with the help of scientific knowledge, advocacy groups, andfundamentallyproven efficacy.
With the rise of gene therapy, were now in an age of personalized medicine beyond imagination. Its true that perhaps sickle-cell disease genetic therapies arent quite there yet in terms of safety and efficacy; but without tackling access issues, the therapy will be stymied in its impact for global good. As genetic editing tools become more powerful, gene therapy has the potential to save even more livesif its made accessible to those who need it most.
Image Credit: Image by Narupon Promvichai from Pixabay
The rest is here:
Gene Therapy for Sickle-Cell Anemia Looks Promisingbut It's Riddled With Controversy - Singularity Hub
Hematopoietic Stem Cell Transplantation (HSCT) Market Expected to Deliver Dynamic Progression until 2028| Regen Biopharma Inc – The World Industry…
By daniellenierenberg
The "Hematopoietic Stem Cell Transplantation (HSCT) Market" report contains data that has been carefully analyzed in the various models and factors that influence the industrial expansion of the Hematopoietic Stem Cell Transplantation (HSCT) market. An assessment of the impact of current market trends and conditions is also included to provide information on the future market expansion. The report contains comprehensive information on the global dynamics of Hematopoietic Stem Cell Transplantation (HSCT), which provides a better prediction of the progress of the market and its main competitors [Regen Biopharma Inc, China Cord Blood Corp, CBR Systems Inc, Escape Therapeutics Inc, Cryo-Save AG, Lonza Group Ltd, Pluristem Therapeutics Inc, ViaCord Inc]. The report provides detailed information on the future impact of the various schemes adopted by governments in different sectors of the world market.
The Hematopoietic Stem Cell Transplantation (HSCT) market report is crafted with figures, charts, tables, and facts to clarify, revealing the position of the specific sector at the regional and global level. The report also provides a brief summary of all major segments, such as [Autologous], with more detailed market share data in terms of supply, demand, and revenue from trading processes and after-sales.
Grab the sample of Hematopoietic Stem Cell Transplantation (HSCT) market here: http://www.marketsnresearch.com/request-for-sample.html?repid=62938
The Hematopoietic Stem Cell Transplantation (HSCT) report rates the market according to different segments, including geographic areas [Peripheral Blood Stem Cells Transplant (PBSCT), Bone Marrow Transplant (BMT), Cord Blood Transplant (CBT)] and current market trends. The market report contains information about different companies, manufacturers and traders.
The market report comprises an analysis of the latest developments in the field of innovative technologies, detailed profiles of the industry's top competitors, and an excellent business model. The report also contains information on market expectations for the coming years. The Hematopoietic Stem Cell Transplantation (HSCT) report also provides a detailed summary of the macro and microelement estimations that are important to market participants and newly developed companies.
For more enquires regarding Hematopoietic Stem Cell Transplantation (HSCT) market, click here: http://www.marketsnresearch.com/inquiry-for-buying.html?repid=62938
The different characteristics and performance of Hematopoietic Stem Cell Transplantation (HSCT) are analyzed based on subjective and quantitative techniques to give a clear picture of current and future evaluation.
Research Objective :
Our board of exchange givers additionally as exchange experts over the value chain have taken immense endeavors in doing this gathering activity and hard work add request to deliver the key players with helpful essential and optional information concerning the world Hematopoietic Stem Cell Transplantation (HSCT) advertise. moreover, the report furthermore contains contributions from our exchange experts that may encourage the key players in sparing their time from the inside examination half. firms WHO get and utilize this report will be totally benefitted with the derivations conveyed in it. but this, the report furthermore gives top to bottom investigation on Hematopoietic Stem Cell Transplantation (HSCT) deal in addition on the grounds that the elements that impact the customers additionally as undertakings towards this technique.
Thanks for reading this article; you'll be able to additionally get individual chapter wise section or region wise report versions like North America, Europe, Asia-Pacific, South America, geographic area and continent.
Sorry! The Author has not filled his profile.
See the original post:
Hematopoietic Stem Cell Transplantation (HSCT) Market Expected to Deliver Dynamic Progression until 2028| Regen Biopharma Inc - The World Industry...
CytoDyn Signs Definitive Agreements with Vyera Pharmaceuticals to Commercialize Leronlimab in the U.S. for the Treatment of HIV – GlobeNewswire
By daniellenierenberg
In exchange for the exclusive right to market and distribute leronlimab in the U.S. for HIV-related indications, Vyera will pay upfront and regulatory and sales-based milestone payments of up to $87.5 million, as well as a royalty of 50 percent on net sales. Vyera will also make an investment in CytoDyn of $4 million in the form of registered CytoDyn common stock
CytoDyn will maintain responsibility for the development and FDA approval of leronlimab for all HIV-related and other indications
VANCOUVER, Washington and NEW YORK, Dec. 17, 2019 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn) and Vyera Pharmaceuticals, LLC (Vyera), today announced that they have entered into a Commercialization and License Agreement (CLA) and a related Supply Agreement to commercialize leronlimab (PRO 140) in the U.S. for the treatment of HIV.
Under theterms of the CLA, CytoDyn will maintain responsibility for the development and FDA approval of leronlimab for all HIV-related and other indications, while Vyera has been granted an exclusive license to market and distribute leronlimab in the U.S. for the treatment of HIV. In exchange for such exclusive license, Vyera has agreed to pay upfront and regulatory and sales-based milestone payments of up to $87.5 million, as well as a royalty of 50 percent on net sales. Vyera also agreed to make an investment in CytoDyn of $4 million in the form of registered CytoDyn common stock.
It is anticipated that these agreements will enable CytoDyn to leverage Vyeras well-established commercial infrastructure and highly-experienced sales team for the launch and commercialization of leronlimab and provide Vyera with a complimentary and novel product to bolster its pipeline of therapies for the treatment of infectious diseases.
This agreement helps complete the strategic objective to further establish CytoDyn as a leader in efforts to enhance the lives of patients through target-specific medicine, said Nader Pourhassan, Ph.D., CytoDyns President and Chief Executive Officer. Vyeras focus on developing therapies for patients living with serious and neglected diseases make them an ideal partner for this collaboration. We are excited to work with Vyera to leverage their platforms and capabilities to potentially offer a more effective treatment option for this HIV population.
Averill L. Powers, Chief Executive Officer of Phoenixus AG, Vyeras parent company, noted: Vyeras collaboration with CytoDyn demonstrates our commitment to address the needs of significant patient populations across our group companies generally and, in particular, a new level of our commitment to supporting patients living with HIV.
About Leronlimab (PRO 140)The U.S. Food and Drug Administration (FDA) has granted a "Fast Track" designation to CytoDyn for two potential indications of leronlimab for deadly diseases. The first as a combination therapy with HAART for HIV-infected patients, and the second is for metastatic triple-negative breast cancer (mTNBC). Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases, including NASH. Leronlimab has successfully completed nine clinical trials in over 800 people, including meeting its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard anti-retroviral therapies in Highly Treatment Experienced (HTE) Multi-Drug Resistant (MDR) HIV Patients).
In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab can significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.
In the setting of cancer, research has shown that CCR5 plays an important role in tumor invasion and metastasis. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98 percent in a murine xenograft model. CytoDyn is, therefore, conducting a Phase 2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019. Additional research is being conducted with leronlimab in the setting of cancer and NASH with plans to conduct additional clinical studies when appropriate.
The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation and may be important in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells. CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to further support the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD and that blocking this receptor from recognizing certain immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of graft-versus-host disease (GvHD).
About CytoDynCytoDyn is a biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a key role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and immune-mediated illnesses, such as graft-vs-host disease (GvHD) and NASH. CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard anti-retroviral therapies in HIV-infected treatment-experienced patients. CytoDyn plans to seek FDA approval for leronlimab in combination therapy and plans to complete the filing of a Biologics License Application (BLA) in 2019 for that indication. CytoDyn is also conducting a Phase 3 investigative trial with leronlimab (PRO 140) as a once-weekly monotherapy for HIV-infected patients and, plans to initiate a registration-directed study of leronlimab monotherapy indication, which if successful, could support a label extension. Clinical results to date from multiple trials have shown that leronlimab (PRO 140) can significantly reduce viral burden in people infected with HIV with no reported drug-related serious adverse events (SAEs). Moreover, results from a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients, with some patients on leronlimab monotherapy remaining virally suppressed for more than four years. CytoDyn is also conducting a Phase 2 trial to evaluate leronlimab for the prevention of GvHD and has received clearance to initiate a clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is at http://www.cytodyn.com.
About VyeraVyera is a United States based biopharmaceutical company committed to developing and commercializing treatments that address serious and rare diseases with high unmet medical needs. Vyera supports programs that offer financial assistance to patients in need and gives discounts to organizations that provide care to underserved populations. Vyeras research and development efforts focus on novel treatment options for toxoplasmosis and other rare or serious health conditions. https://www.vyera.com/.
Forward-Looking StatementsThis press release contains certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, Section 21E of the Securities Exchange Act of 1934 and as that term is defined in the Private Securities Litigation Reform Act of 1995, that involve risks, uncertainties, and assumptions that are difficult to predict. CytoDyn and Vyera (collectively, the Companies) intend that such forward-looking statements be subject to the safe harbors created thereby. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as "believes," "hopes," "intends," "estimates," "expects," "projects," "plans," "anticipates" and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. The Companies forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i) the sufficiency of the Companies cash position, (ii) the Companies ability to raise additional capital to fund its operations, (iii) the Companies ability to meet its debt obligations, if any, (iv) the Companies ability to enter into partnership or licensing arrangements with third parties, (v) the Companies ability to identify patients to enroll in its clinical trials in a timely fashion, (vi) the Companies ability to achieve approval of a marketable product, (vii) the design, implementation and conduct of the Companies clinical trials, (viii) the results of the Companies clinical trials, including the possibility of unfavorable clinical trial results, (ix) the market for, and marketability of, any product that is approved, (x) the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Companies products, (xi) regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii) general economic and business conditions, (xiii) changes in foreign, political, and social conditions, and (xiv) various other matters, many of which are beyond the Companies control. CytoDyn urges investors to consider specifically the various risk factors identified in its most recent Form 10-K, and any risk factors or cautionary statements included in any subsequent Form 10-Q or Form 8-K, filed with the Securities and Exchange Commission. Except as required by law, neither Company the Company undertakes any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.
CytoDyn Contacts:
Media:Grace FotiadesLifeSci Public Relationsgfotiades@lifescipublicrelations.com(646) 876-5026
Investors:Deanna Ebenhahndebenhahn@cytodyn.com
Vyera Contacts:
Media:media@vyera.com
Investors:ir@vyera.com
BioRestorative Therapies Featured in IEEE Pulse Magazine’s Cover Story About Stem Cell Therapies for Low Back Pain – GlobeNewswire
By daniellenierenberg
MELVILLE, N.Y., Dec. 16, 2019 (GLOBE NEWSWIRE) -- BioRestorative Therapies, Inc. (BioRestorative or the Company) (OTC: BRTX), a life sciences company focused on stem cell-based therapies, announced today feature coverage in the news outlet, IEEE Pulse, a magazine of the IEEE Engineering in Medicine and Biology Society. According to IEEE, it is the worlds largest technical professional organization for the advancement of technology.
To view the IEEE Pulse Magazines article featuring BioRestorative, click here.
The published cover-story article features commentary from Francisco Silva, Chief Scientist and Vice President of Research and Development for BioRestorative, regarding BRTX-100, the Companys lead therapeutic candidate for chronic lumbar disc disease. Once the U.S. Food and Drug Administration (FDA) authorizes the sale of BRTX-100, we would ship it to your doctor, and with a 30-minute procedure the material would be injected into your disc in a 1.5 ml solution, explains Silva. He elaborates on the product, discussing growing and expanding stem cells from the patients bone marrow under hypoxic conditions that mimic those in the normal intervertebral space. We are enriching the cells to be able to survive in this harsh environment, says Silva.
In addition to BRTX-100, the magazine article also highlights BioRestoratives other research pursuit, its ThermoStem program, utilizing brown adipose (fat) derived stem cells to target treatment of metabolic diseases and disorders, like diabetes, obesity and hypertension.
About BioRestorative Therapies, Inc.
BioRestorative Therapies, Inc. (www.biorestorative.com) develops therapeutic products using cell and tissue protocols, primarily involving adult stem cells. Our two core programs, as described below, relate to the treatment of disc/spine disease and metabolic disorders:
Disc/Spine Program (brtxDISC): Our lead cell therapy candidate, BRTX-100, is a product formulated from autologous (or a persons own) cultured mesenchymal stem cells collected from the patients bone marrow. We intend that the product will be used for the non-surgical treatment of painful lumbosacral disc disorders. The BRTX-100 production process utilizes proprietary technology and involves collecting a patients bone marrow, isolating and culturing stem cells from the bone marrow and cryopreserving the cells. In an outpatient procedure, BRTX-100 is to be injected by a physician into the patients damaged disc. The treatment is intended for patients whose pain has not been alleviated by non-invasive procedures and who potentially face the prospect of surgery. We have received authorization from the Food and Drug Administration to commence a Phase 2 clinical trial using BRTX-100 to treat persistent lower back pain due to painful degenerative discs.
Metabolic Program (ThermoStem): We are developing a cell-based therapy to target obesity and metabolic disorders using brown adipose (fat) derived stem cells to generate brown adipose tissue (BAT). BAT is intended to mimic naturally occurring brown adipose depots that regulate metabolic homeostasis in humans. Initial preclinical research indicates that increased amounts of brown fat in the body may be responsible for additional caloric burning as well as reduced glucose and lipid levels. Researchers have found that people with higher levels of brown fat may have a reduced risk for obesity and diabetes.
Forward-Looking Statements
This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including, without limitation, whether the Company will be able to consummate the private placement and the satisfaction of closing conditions related to the private placement and those set forth in the Company's Form 10-K filed with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and the Company undertakes no obligation to update such statements.
CONTACT:Email: ir@biorestorative.com
Immunotherapy drug improves outcomes for some children with relapsed leukemia – National Institutes of Health
By daniellenierenberg
News Release
Tuesday, December 10, 2019
New findings from a clinical trial show that treatment with the immunotherapy drug blinatumomab is superior to standard chemotherapy for children and young adults with high- or intermediate-risk B-cell acute lymphoblastic leukemia (B-ALL) that has relapsed. Those treated with blinatumomab had longer survival, experienced fewer severe side effects, had a higher rate of undetectable residual disease, and were more likely to proceed to a stem cell transplant.
Our study demonstrates that immunotherapy with blinatumomab is more effective and less toxic than chemotherapy as a bridge to curative bone marrow transplant for children and young adults with very aggressive relapse of B-ALL, said Patrick Brown, M.D., who chaired the trial and is director of the Pediatric Leukemia Program at the Johns Hopkins Kimmel Cancer Center, Baltimore. We are thrilled that these patients, whose survival has not substantially improved for decades, now have a new and better standard of care.
The findings were presented as a late-breaking abstract at the American Society of Hematology (ASH) annual meeting on Dec. 10, 2019. The trial was led by the Childrens Oncology Group (COG), part of the National Cancer Institute (NCI)sponsored National Clinical Trials Network. NCI is part of the National Institutes of Health. Amgen reviewed the trial protocol and amendments and provided the study drug under a Cooperative Research and Development Agreement with NCI.
These findings will likely have immediate impact on the treatment of this group of children and young adults with relapsed B-ALL, said Malcolm Smith, M.D., Ph.D., associate branch chief for pediatric oncology in NCIs Cancer Therapy Evaluation Program, which sponsored the trial. These results also reinforce the important role that federally funded clinical trials play in developing more effective treatments for children with cancer.
When children have B-ALL that relapses after their initial treatment, they are typically given chemotherapy. The first four to six weeks of chemotherapy, the reinduction phase, is commonly followed by additional intensive chemotherapy, or consolidation treatment, to further reduce disease levels. Following this, hematopoietic stem cell transplant is considered the best treatment for approximately half of patients, based on factors such as whether relapse occurred during initial treatment or shortly after it was completed.
However, chemotherapy can produce severe side effects in some patients and is sometimes ineffective in reducing leukemia levels to the low levels needed prior to transplant. As a result, patients may not be able to proceed to transplant or transplant may be delayed, which increases the risk that the leukemia will return.
The COG study investigated blinatumomab as an alternative type of consolidation treatment to follow the reinduction phase. Blinatumomab is a type of immunotherapy that works by binding to two different molecules: CD19, a protein, or antigen, expressed on the surface of B-ALL cells, and CD3, an antigen expressed on T cells. By bringing T cells close to leukemia cells, the immunotherapy helps the T cells recognize and kill the cancer cells.
Blinatumomab has been approved by the U.S. Food and Drug Administration (FDA) for adults and children with B-ALL that has returned or has not responded to treatment. FDA has also granted accelerated approval to the drugmeaning confirmatory trials must show it has clinical benefitfor some adults and children undergoing treatment for B-ALL who achieve complete remission but still have small amounts of leukemia detectable using very sensitive methods.
Investigators in this study wanted to see if blinatumomab could increase rates of survival free from leukemia and be less toxic than intensive chemotherapy in children and young adults undergoing consolidation treatment.
The trial report was based on 208 children and young adults aged 130 with relapsed B-ALL who had received reinduction chemotherapy and were considered to have high- or intermediate-risk disease. They were randomly assigned to receive either two rounds of intensive chemotherapy or two 4-week rounds of treatment with blinatumomab before proceeding to a transplant. (A separate part of the study addressed children with low-risk disease.)
After a median follow-up time of 1.4 years, those in the blinatumomab group had higher rates of 2-year disease-free survival, the primary outcome of the study, than those who received intensive chemotherapy (59.3 5.4% vs. 41 6.2%). Those treated with blinatumomab also had higher rates of overall survival (79.4 4.5% vs. 59.2 6%), fewer severe side effects, a higher rate of undetectable residual disease (79% vs. 21%), and a higher rate of proceeding to stem cell transplant (73% vs. 45%).
At a planned interim analysis, an independent data safety monitoring committee concluded that the outcome for children treated with blinatumomab was superior to that of children treated with chemotherapy only and recommended that enrollment to the high- and intermediate-risk part of the trial be stopped.
Future clinical trials will study whether blinatumomabs effects in relapsed B-ALL can be enhanced by combining it with other immunotherapy and will test whether adding the drug to standard chemotherapy for children and young adults with newly diagnosed B-ALL is beneficial.
About the National Cancer Institute (NCI):NCIleads the National Cancer Program and NIHs efforts to dramatically reduce the prevalence of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI website atcancer.govor call NCIs contact center, the Cancer Information Service, at 1-800-4-CANCER (1-800-422-6237).
About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.
NIHTurning Discovery Into Health
###
See the original post here:
Immunotherapy drug improves outcomes for some children with relapsed leukemia - National Institutes of Health
Stem Cell Therapies Market research Likely to Emerge over a Period of 2015-2025 – PharmiWeb.com
By daniellenierenberg
VALLEY COTTAGE, N.Y. Stem cells are undifferentiated biological cells, and having remarkable potential to divide into any kind of other cells. When a stem cell divides, each new cell will be a new stem cell or it will be like another cell which is having specific function such as a muscle cell, a red blood cell, brain cell and some other cells.
There are two types of stem cells
Stem cells harvested from umbilical cord blood just after birth. And this cells can be stored in specific conditions. Stem cells also can be harvest from bone marrow, adipose tissue.
Embryonic cells can differentiate into ectoderm, endoderm and mesoderm in developing stage. Stem cells used in the therapies and surgeries for regeneration of organisms or cells, tissues.
Stem cells are used for the treatment of Gastro intestine diseases, Metabolic diseases, Immune system diseases, Central Nervous System diseases, Cardiovascular diseases, Wounds and injuries, Eye diseases, Musculoskeletal disorders.
Download the sample copy of Report with table of contents and Figures @: https://www.futuremarketinsights.com/reports/sample/rep-gb-1087
Harvesting of Adult cell is somewhat difficult compare to embryonic cells. Because Adult cells available in the own body and it is somewhat difficult to harvest.
Stem Cell TherapiesMarket: Drivers and Restraints
Technology advancements in healthcare now curing life threatening diseases and giving promising results. Stem Cell Therapies having so many advantages like regenerating the other cells and body organisms. This is the main driver for this market. These therapies are useful in many life threatening treatments. Increasing the prevalence rate of diseases are driven the Stem Cell Therapies market, it is also driven by increasing technology advancements in healthcare. Technological advancements in healthcare now saving the population from life threatening complications.
Increasing funding from government, private organizations and increasing the Companies focus onStem cell therapiesare also driven this market
However, Collecting the Embryonic Stem cells are easy but Collecting Adult Stem cell or Somatic Stem cells are difficult and also we have to take more precautions for storing the collected stem cells.
Preview Analysis of Stem Cell Therapies Market: Global Industry Analysis and Opportunity Assessment 2015 2025: https://www.futuremarketinsights.com/reports/stem-cell-therapies-market
Stem Cell TherapiesMarket: Segmentation
Stem Cell Therapies are segmented into following types
Based on treatment:
Based on application:
Based on End User:
Stem Cell TherapiesMarket: Overview
With rapid technological advantage in healthcare and its promising results, the use of Stem Cell Therapies will increase and the market is expected to have a double digit growth in the forecast period (2015-2025).
Stem Cell TherapiesMarket: Region- wise Outlook
Depending on geographic regions, the global Stem Cell Therapies market is segmented into seven key regions: North America, South America, Eastern Europe, Western Europe, Asia Pacific excluding Japan, Japan and Middle East & Africa.
The use of Stem Cell Therapies is high in North America because it is highly developed region, having good technological advancements in healthcare setup and people are having good awareness about health care. In Asia pacific region china and India also having rapid growth in health care set up. Europe also having good growth in this market.
Buy this report @https://www.futuremarketinsights.com/checkout/1087
Stem Cell TherapiesMarket: Key Players
Some of the key players in this market are
Our advisory services are aimed at helping you with specific, customized insights that are relevant to your specific challenges. Let us know about your challenges and our trusted advisors will connect with you:https://www.futuremarketinsights.com/askus/rep-gb-1087
More from Healthcare, Pharmaceuticals and Medical devices:
About Us
Future MarketInsights (FMI) is a leading market intelligence and consulting firm. We deliversyndicated research reports, custom research reports and consulting serviceswhich are personalized in nature. FMI delivers a complete packaged solution,which combines current market intelligence, statistical anecdotes, technologyinputs, valuable growth insights and an aerial view of the competitiveframework and future market trends.
Contact UsMr.Abhishek BudholiyaFuture Market Insights616 Corporate Way, Suite 2-9018,Valley Cottage, NY10989,United StatesT:+1-347-918-3531F: +1-845-579-5705T(UK): + 44-(0)-20-7692-8790Sales:sales@futuremarketinsights.comPress Office:Press@futuremarketinsights.comBlog:MarketResearch BlogWebsite:https://www.futuremarketinsights.com/
See original here:
Stem Cell Therapies Market research Likely to Emerge over a Period of 2015-2025 - PharmiWeb.com