Tevogen Bio Secures Funding from Team of Doctors to Support Clinical Trials of Its Investigational Curative T Cell Therapy for COVID-19 – PRNewswire
By daniellenierenberg
METUCHEN, N.J., Jan. 25, 2021 /PRNewswire/ -- Tevogen Bio today announced it has secured necessary funding from HMP Partners of New Jersey, an investment firm managed by medical doctors, which will allow Tevogen to support all clinical trials of its investigational, potentially curative COVID-19 treatment. Tevogen's Investigational New Drug (IND) application for its proprietary antigen-specific T cell therapy is under review by the U.S. Food and Drug Administration (FDA).
All COVID-19 therapeutics utilized to date have sought to slow the progression of the infection and/or moderate its symptoms. These approaches buy time for the patient's own T cells to activate and respond to the infection, which is the mechanism that the body employs to rid itself of viruses such as the SARS-CoV-2.
In the upcoming trials, Tevogen will study its investigational treatment, TVGN-489, allogeneic T cells that have been programmed and grown in the laboratory, for its safety and capability to recognize and destroy COVID-19 infected cells. Lead investigator Dr. Neal Flomenberg, Chair of the Department of Medical Oncology at Thomas Jefferson University, stated his optimism, "We're excited by the purity and potency of the cells we've been able to generate in the lab. Based on prior experience with these sorts of cells in other settings, we're very hopeful that they will be both safe and effective when the clinical trials are launched."
HMP Partners is supporting Tevogen's efforts to develop a curative treatment due to concerns over recent COVID-19 mutations and the current lack of curative options for this deadly infection. HMP CEO Dr. Manmohan Patel, a prominent pulmonary and critical care specialist, said, "We believe it's imperative to create a curative treatment that is not expected to be compromised by mutations." He added, "Unmodified virus specific T cells are well established as being effective and safe at treating viral infections, which is why we are supporting Tevogen's efforts to develop a much-needed COVID-19 cure."
While Tevogen has raised private investment from HMP Partners to launch its clinical trials, the company is seeking government funding to expedite capacity to manufacture at the scale necessary to develop pandemic-level product supply, just as have a number of vaccine and antibody manufacturers.
Tevogen's proprietary solution is designed to enable a single donation from a donor to generate more than a thousand doses of COVID-19 specific cytotoxic T cells.Yale-trained infectious disease epidemiologist Dr. Ryan Saadi is leading Tevogen's efforts and is among those who are financing the trials. Dr. Saadi stated, "We halted our pursuit for an oncology cure in order to focus solely on COVID-19, and our manufacturing efficiencyand agile business model will allow us to deliver a cure that will be affordable and accessible to all."
About Tevogen Bio
Tevogen Bio was formed after decades of research by its contributors to concentrate and leverage their expertise, spanning multiple sectors of the healthcare industry, to help address some of the most common and deadly illnesses known today. The company's mission is to provide curative and preventative treatments that are affordable and scalable, in order to positively impact global public health.
About HMP Partners
HMP Partners of New Jersey is a consortium of medical doctors who are dedicated to supporting the advancement of potentially life-saving technologies. HMP CEO Dr. Manmohan Patel, a prominent pulmonary and critical care specialist, has nearly 50 years of medical expertise in a diverse field of specialties, including pulmonary, internal, geriatric and emergency medicine as well as critical care. Dr. Patel's commitment to community and medical management is demonstrated by his distinguished appointments, including serving as the Director of Post Cardiac Surgery at Saint Michael's Medical Center in Newark, NJ and as Chairman of the Department of Medicine at Meadowlands Hospital Medical Center in Secaucus, NJ. In 2000, he was appointed by the Governor of New Jersey to the Board of Medical Examiners Executive Committee for the state and served on various other committees, including reviewing malpractice actions, in that capacity.
About Dr. Neal Flomenberg
Dr. Neal Flomenberg is the Chairman of the Department of Medical Oncology and Deputy Director of the Sidney Kimmel Cancer Center at Jefferson University in Philadelphia.Dr. Flomenberg launched Jefferson's Blood and Marrow Transplantation (BMT) Program in 1995. Throughout his four decades of practice, he has maintained a longstanding interest in the immunogenetics and immunology of stem cell transplantation, with the goal of making transplantation safer and more widely available. He is board certified in the fields of internal medicine, hematology, and medical oncology.
Media Contacts:
Mark Irion
[emailprotected]
Katelyn Petroka[emailprotected]
SOURCE Tevogen Bio
Read this article:
Tevogen Bio Secures Funding from Team of Doctors to Support Clinical Trials of Its Investigational Curative T Cell Therapy for COVID-19 - PRNewswire
Regenerative medicine is advancing health care in diverse ways – Hometown Focus
By daniellenierenberg
Regenerative medicine contributed to patient care in 2020 more than ever before, bolstered by synergies in research, practice and education. Mayo Clinics Center for Regenerative Medicine is at the forefront of a biotherapy revolution in which health care advances from treating disease to restoring health.
The centrality of the body to regenerate itself is paving the way for new horizons in regenerative care. The triad of protecting against disease, preventing disease progression and promoting healing is at the core of the regenerative vision, says Andre Terzic, M.D., Ph.D., director of Mayo Clinics Center for Regenerative Medicine. To this end, the regenerative toolkit has grown more robust over the past year with new technologies now available to boost the bodys ability to repair and restore health of an organ and importantly of the patient as a whole.
The convergence of research, practice and education, empowered by strong innovation and advanced biomanufacturing, is creating an increased level of readiness for applying validated regenerative science to new areas of health care, Dr. Terzic says.
Practice advancement
A deeper understanding of the biology of health and disease is driving the ongoing regenerative medicine evolution.
The remarkable progress in science that is advancing our fundamental comprehension of both health and disease has guided the informed and responsible development of patient-ready curative strategies, says Dr. Terzic.
New discoveries at Mayo Clinic that may shape future practice include:
Validating safety and efficacy of
stem cell therapy for heart failure. The largest regenerative medicine clinical trial to date for heart failure, spanning 39 medical centers and 315 patients from 10 countries, validated the long-term safety of stem cell therapy. The late-stage research found stem cell therapy shows particular benefit for patients with advanced left ventricular enlargement. This Mayo Clinic-led study offers guidance on which patients are most likely
to respond to stem cell therapy for heart failure.
Uncovering stem cell activation of healing. Mayo Clinic researchers uncovered stem cell-activated molecular mechanisms of healing after a heart attack. Stem cells restored the makeup of failing cardiac muscle back to its condition before the heart attack, providing an intimate blueprint of how they may work to heal diseased tissue. This research offers utility to delineate and interpret complex regenerative outcomes.
Discovering a molecular light switch. Mayo Clinic research discovered a molecular switch that turns on a substance that repairs neurological damage. This early research could bolster a therapy approved by the Food and Drug Administration, and that could lead to new strategies for treating diseases of the central nervous system such as multiple sclerosis.
The federal regulatory environment is making it possible to more seamlessly integrate new discoveries into the practice. The 21st Century Cures Act, for example, seeks to create an accelerated path to market for safe, validated procedures that could provide new therapies for patients with serious conditions.
To read the rest of this article on the Center for Regenerative Medicine blog, visit http://www.regenerativemedicineblog.mayoclinic.org.
Original post:
Regenerative medicine is advancing health care in diverse ways - Hometown Focus
Controlling the immune system with ‘invisible stem’ cells – BioNews
By daniellenierenberg
18 January 2021
A new way of controlling the immune system's 'natural killer' cells has been identified, which could help prevent rejection of transplanted cells.
Natural killer cells act as a front-line defence against foreign cells in the body. Overcoming this defence has represented a major challenge to transplant, cancer immunotherapy and regenerative medicine. The new research provides a possibility to disguise transplanted cells so that they are 'invisible' to this immune defence.
'As a cardiac surgeon, I would love to put myself out of business by being able to implant healthy cardiac cells to repair heart disease', said the study's lead author Professor Tobias Deuse, from the Department of Surgery at University of California, San Francisco. 'And there are tremendous hopes to one day have the ability to implant insulin-producing cells in patients with diabetes or to inject cancer patients with immune cells engineered to seek and destroy tumours. The major obstacle is how to do this in a way that avoids immediate rejection by the immune system'.
Professor Deuse and his colleagues genetically engineered cells to express the protein CD47 and found that these were not attacked by natural killer cells. They discovered that this was because the CD47 protein activates another protein found in the natural killer cells called SIRP.
SIRP was known to be important in other immune cell responses, but scientists had not previously been able to identify it in natural killer cells. 'All the literature said that natural killer cells don't have this checkpoint, but when we looked at cells from human patients in the lab we found SIRP there, clear as day', said corresponding author Professor Sonja Schrepfer.
The team investigated whether this finding could be used to help transplanted stem cells to avoid immune rejection. To do this, they genetically engineered human cells to express rhesus monkey CD47 and transplanted these cells into monkeys. They found that the engineered cells activated the SIRP on natural killer cells, which prevented them from being attacked.
In the future the same procedure could be performed in reverse, expressing human CD47 in pig cardiac cells, for instance, to prevent them from activating natural killer cells when transplanted into human patients.
The research team aims to create a 'hypoimmune' cell line for use in regenerative medicine that will be able to avoid immune rejection.
'Currently engineered cell therapies for cancer and fledgling forms of regenerative medicine all rely on being able to extract cells from the patient, modify them in the lab, and then put them back in the patient. This avoids rejection of foreign cells, but is extremely laborious and expensive', said Professor Schrepfer. 'Our goal in establishing a hypoimmune cell platform is to create off-the shelf products that can be used to treat disease in all patients everywhere'.
The research was recently published in the Journal of Experimental Medicine.
Read more:
Controlling the immune system with 'invisible stem' cells - BioNews
DiNAQOR Acquires EHT Technologies GmbH to Advance Engineered Heart Tissue R&D Capabilities – PRNewswire
By daniellenierenberg
PFFFIKON, Switzerland, Jan. 19, 2021 /PRNewswire/ -- DiNAQOR, a gene therapy platform company,today announcedthat it has acquired EHT Technologies GmbH, a Germany-based engineered heart tissue (EHT) technology platform company. Financial terms of the transaction were not disclosed.
EHT Technologies was founded in 2015 based upon research on human induced pluripotent stem cells (hiPSC) at the University Medical Center Hamburg-Eppendorf. Cardiomyocytes derived from hiPSC are an innovative research technology for cardiac drug development programs. Engineered heart tissues are three-dimensional, hydrogel-based muscle constructs that can be generated from isolated heart cells of chicken, rat, mouse, human embryonic stem cells and hiPSC. Proof-of-concept studies have shown that EHT can be transduced efficiently with adeno-associated virus (AAV) vectors, including AAV9, validating the use of this platform for gene therapy applications.
"EHT Technologies' proprietary hiPSC platform for disease modeling is a perfect complement to DiNAQOR's research and development efforts and leaps forward our ability to develop creative approaches for treating heart diseases in the future. EHT's intellectual property and know-how is industry-leading and we are excited to be able to harness its platform at DiNAQOR," commented Johannes Holzmeister, M.D., Chairman and CEO at DiNAQOR.
"After more than 25 years of development, I'm very excited that our engineered heart tissue technology is making the transition from an academic research model to a drug development tool. The combined application of human cardiomyocytes and a versatile, 3D in vitro assay will facilitate development and reduce reliance on animal studies. The hiPSC-derived EHT assay has great potential for the development of innovative cardiovascular therapeutics and DiNAQOR is the perfect fit for this enterprise," commented Professor Thomas Eschenhagen, M.D., co-founder of EHT Technologies. Professor Eschenhagen serves on DiNAQOR's Scientific Advisory Board.
"The EHT technology will accelerate the advancement of our discovery pipeline and bridge the translational gap between the animal model and human disease. We are proud that DiNAQOR is on the forefront of implementing this innovative technology to expedite new therapies into the clinic," said Valeria Ricotti, M.D., Chief Medical Officer at DiNAQOR.
About DiNAQORFounded in 2019,DiNAQOR is a global gene therapy platform company focused on advancing novel solutions for patients suffering from heart disease.The company is headquartered in Pfffikon, Switzerland, with additional presence in London, England and Hamburg, Germany. For more information visitwww.dinaqor.com.
ContactKWM CommunicationsKellie Walsh[emailprotected] or Stephanie Marks[emailprotected]
SOURCE DiNAQOR
See the article here:
DiNAQOR Acquires EHT Technologies GmbH to Advance Engineered Heart Tissue R&D Capabilities - PRNewswire
Genmab Announces that Janssen has been Granted U.S. FDA Approval for DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) for Patients with Newly Dia…
By daniellenierenberg
Genmab Announces that Janssen has been Granted U.S. FDA Approval for DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) for Patients with Newly Diagnosed Light-chain (AL) Amyloidosis
Company Announcement
Copenhagen, Denmark; January 15, 2021 Genmab A/S (Nasdaq: GMAB) announced today that the U.S. Food and Drug Administration (U.S. FDA) has approved the use of DARZALEX FASPRO (daratumumab and hyaluronidase-fihj), a subcutaneous formulation of daratumumab, in combination with bortezomib, cyclophosphamide, and dexamethasone (VCd) for the treatment of adult patients with newly diagnosed light-chain (AL) amyloidosis. A supplemental Biologics License Application (sBLA) for this indication was submitted by Janssen Biotech, Inc. (Janssen), in September 2020. The U.S. FDA reviewed the submission of data for approval in this indication under their Real-Time Oncology Review (RTOR)1 pilot program and Project Orbis2. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial(s). DARZALEX FASPRO is not indicated and is not recommended for the treatment of patients with light-chain (AL) amyloidosis who have NYHA Class IIIB or Class IV cardiac disease or Mayo Stage IIIB outside of controlled clinical trials. In August 2012, Genmab granted Janssen an exclusive worldwide license to develop, manufacture and commercialize daratumumab.
AL amyloidosis is a devastating and potentially fatal blood disorder that, until now, did not have any U.S. FDA-approved therapies. This makes todays approval of DARZALEX FASPRO a critical step forward for patients in the U.S. in dire need of treatment options, said Jan van de Winkel, Ph.D., Chief Executive Officer of Genmab.
The approval was based on data from the Phase 3 ANDROMEDA (AMY3001) study of daratumumab and hyaluronidase-fihj in combination with VCd as treatment for patients with newly diagnosed AL amyloidosis.
The most common adverse reactions (20%) were upper respiratory tract infection, diarrhea, peripheral edema, constipation, fatigue, peripheral sensory neuropathy, nausea, insomnia, dyspnea and cough. Serious adverse reactions occurred in 43% of patients who received DARZALEX FASPRO in combination with VCd. Serious adverse reactions that occurred in at least 5% of patients in the D-VCd arm were pneumonia (9%), cardiac failure (8%) and sepsis (5%). Fatal adverse reactions occurred in 11% of patients. Fatal adverse reactions that occurred in more than one patient included cardiac arrest (4%), sudden death (3%), cardiac failure (3%) and sepsis (1%).3
Among patients who received DARZALEX FASPRO in combination with VCd, 72% of patients had baseline cardiac involvement with Mayo Cardiac Stage I (3%), Stage II (46%) and Stage III (51%). Serious cardiac disorders occurred in 16% of patients (8% of patients with Mayo Cardiac Stage I and II and 28% of patients with Stage III). Serious cardiac disorders in more than 2% of patients included cardiac failure (8%), cardiac arrest (4%) and arrhythmia (4%). Fatal cardiac disorders occurred in 10% of patients (5% of patients with Mayo Cardiac Stage I and II and 19% of patients with Stage III) who received DARZALEX FASPRO in combination with VCd. Fatal cardiac disorders that occurred in more than one patient in the D-VCd arm included cardiac arrest (4%), sudden death (3%) and cardiac failure (3%).3
Full prescribing information will be available at http://www.DARZALEX.com.
Genmab will receive a milestone payment of USD 30 million in connection with the first commercial sale of DARZALEX FASPRO in this indication, which is expected to occur quickly after approval. The milestone will be reflected in Genmabs 2021 guidance, which will be published on February 23, 2021.
About the ANDROMEDA (AMY3001) studyThe Phase 3 study (NCT03201965) included 388 patients newly diagnosed with AL amyloidosis. Patients were randomized to receive treatment with either daratumumab and hyaluronidase-fihj in combination with bortezomib (a proteasome inhibitor), cyclophosphamide (a chemotherapy), and dexamethasone (a corticosteroid) or treatment with VCd alone. The primary endpoint of the study was the percentage of patients who achieve hematologic complete response.
About Light-chain (AL) AmyloidosisAmyloidosis is a disease that occurs when amyloid proteins, which are abnormal proteins, accumulate in tissues and organs. When the amyloid proteins cluster together, they form deposits that damage the tissues and organs. AL amyloidosis most frequently affects the heart, kidneys, liver, nervous system and digestive tract. Until now there were no approved therapies for AL amyloidosis in the U.S., though it is currently being treated with chemotherapy, dexamethasone, stem cell transplants and supportive therapies.4 It is estimated that there are approximately 3,000 to 4,000 new cases of AL amyloidosis diagnosed annually in the U.S.5
About DARZALEX (daratumumab)DARZALEX (daratumumab) has become a backbone therapy in the treatment of multiple myeloma. DARZALEX intravenous infusion is indicated for the treatment of adult patients in the United States: in combination with carfilzomib and dexamethasone for the treatment of patients with relapsed/refractory multiple myeloma who have received one to three previous lines of therapy; in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy; in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI); and as a monotherapy for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a PI and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.6 DARZALEX is the first monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (U.S. FDA) approval to treat multiple myeloma.
DARZALEX is indicated for the treatment of adult patients in Europe via intravenous infusion or subcutaneous administration: in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of adult patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; for use in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least one prior therapy; and as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a PI and an immunomodulatory agent and who have demonstrated disease progression on the last therapy7. Daratumumab is the first subcutaneous CD38 antibody approved in Europe for the treatment of multiple myeloma. The option to split the first infusion of DARZALEX over two consecutive days has been approved in both Europe and the U.S.
In Japan, DARZALEX intravenous infusion is approved for the treatment of adult patients: in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone for the treatment of relapsed or refractory multiple myeloma. DARZALEX is the first human CD38 monoclonal antibody to reach the market in the United States, Europe and Japan. For more information, visit http://www.DARZALEX.com.
DARZALEX FASPRO (daratumumab and hyaluronidase-fihj), a subcutaneous formulation of daratumumab, is approved in the United States for the treatment of adult patients with newly diagnosed light-chain (AL) amyloidosis in combination with bortezomib, cyclophosphamide, and dexamethasone. It is also approved in the U.S. for the treatment of adult patients with multiple myeloma: in combination with bortezomib, thalidomide, and dexamethasone in newly diagnosed patients who are eligible for ASCT; in combination with bortezomib, melphalan and prednisone in newly diagnosed patients who are ineligible for ASCT; in combination with lenalidomide and dexamethasone in newly diagnosed patients who are ineligible for ASCT and in patients with relapsed or refractory multiple myeloma who have received at least one prior therapy; in combination with bortezomib and dexamethasone in patients who have received at least one prior therapy; and as monotherapy, in patients who have received at least three prior lines of therapy including a PI and an immunomodulatory agent or who are double-refractory to a PI and an immunomodulatory agent.8 DARZALEX FASPRO is co-formulated with recombinant human hyaluronidase PH20 (rHuPH20), Halozyme's ENHANZE drug delivery technology. .DARZALEX FASPRO is the first subcutaneous CD38 antibody approved in the U.S. for the treatment of multiple myeloma and the first and only approved treatment for patients with AL amyloidosis in the U.S.
Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. Daratumumab triggers a persons own immune system to attack the cancer cells, resulting in rapid tumor cell death through multiple immune-mediated mechanisms of action and through immunomodulatory effects, in addition to direct tumor cell death, via apoptosis (programmed cell death).6,9,10,11,12
Daratumumab is being developed by Janssen Biotech, Inc. under an exclusive worldwide license to develop, manufacture and commercialize daratumumab from Genmab. A comprehensive clinical development program for daratumumab is ongoing, including multiple Phase III studies in smoldering, relapsed and refractory and frontline multiple myeloma settings. Additional studies are ongoing or planned to assess the potential of daratumumab in other malignant and pre-malignant diseases in which CD38 is expressed, such as amyloidosis and T-cell acute lymphocytic leukemia (ALL). Daratumumab has received two Breakthrough Therapy Designations from the U.S. FDA for certain indications of multiple myeloma, including as a monotherapy for heavily pretreated multiple myeloma and in combination with certain other therapies for second-line treatment of multiple myeloma.
About Genmab Genmab is an international biotechnology company with a core purpose to improve the lives of patients with cancer. Founded in 1999, Genmab is the creator of multiple approved antibody therapeutics that are marketed by its partners. The company aims to create, develop and commercialize differentiated therapies by leveraging next-generation antibody technologies, expertise in antibody biology, translational research and data sciences and strategic partnerships. To create novel therapies, Genmab utilizes its next-generation antibody technologies, which are the result of its collaborative company culture and a deep passion for innovation. Genmabs proprietary pipeline consists of modified antibody candidates, including bispecific T-cell engagers and next-generation immune checkpoint modulators, effector function enhanced antibodies and antibody-drug conjugates. The company is headquartered in Copenhagen, Denmark with locations in Utrecht, the Netherlands, Princeton, New Jersey, U.S. and Tokyo, Japan. For more information, please visit Genmab.com.
Contact: Marisol Peron, Corporate Vice President, Communications & Investor Relations T: +1 609 524 0065; E: mmp@genmab.com
For Investor Relations: Andrew Carlsen, Senior Director, Investor RelationsT: +45 3377 9558; E: acn@genmab.com
This Company Announcement contains forward looking statements. The words believe, expect, anticipate, intend and plan and similar expressions identify forward looking statements. Actual results or performance may differ materially from any future results or performance expressed or implied by such statements. The important factors that could cause our actual results or performance to differ materially include, among others, risks associated with pre-clinical and clinical development of products, uncertainties related to the outcome and conduct of clinical trials including unforeseen safety issues, uncertainties related to product manufacturing, the lack of market acceptance of our products, our inability to manage growth, the competitive environment in relation to our business area and markets, our inability to attract and retain suitably qualified personnel, the unenforceability or lack of protection of our patents and proprietary rights, our relationships with affiliated entities, changes and developments in technology which may render our products or technologies obsolete, and other factors. For a further discussion of these risks, please refer to the risk management sections in Genmabs most recent financial reports, which are available on http://www.genmab.com and the risk factors included in Genmabs most recent Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission (SEC), which are available at http://www.sec.gov. Genmab does not undertake any obligation to update or revise forward looking statements in this Company Announcement nor to confirm such statements to reflect subsequent events or circumstances after the date made or in relation to actual results, unless required by law.
Genmab A/S and/or its subsidiaries own the following trademarks: Genmab; the Y-shaped Genmab logo; Genmab in combination with the Y-shaped Genmab logo; HuMax; DuoBody; DuoBody in combination with the DuoBody logo; HexaBody; HexaBody in combination with the HexaBody logo; DuoHexaBody; HexElect; and UniBody. DARZALEX and DARZALEX FASPRO are trademarks of Janssen Pharmaceutica NV.
1 Real-Time Oncology Review Pilot Program. https://www.fda.gov/about-fda/oncology-center-excellence/real-time-oncology-review-pilot-program Accessed September 20202 Project Orbis. U.S. Food and Drug Administration. https://www.fda.gov/about-fda/oncology-center-excellence/project-orbis. Accessed September 2020.3DARZALEX FASPRO Prescribing Information. Horsham, PA: Janssen Biotech, Inc.4 Mayo Clinic website: http://www.mayoclinic.com/health/amyloidosis/DS004315 Research and Markets, Amyloidosis Treatment Market Size, Share & Trends Analysis Report by Treatment (Stem Cell Transplant, Chemotherapy, Supportive Care, Surgery, Targeted Therapy), By Country, And Segment Forecasts, 2018 - 20256 DARZALEX Prescribing information, August 2020 https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761036s029lbl.pdf Last accessed August 20207 DARZALEX Summary of Product Characteristics, available at https://www.ema.europa.eu/en/medicines/human/EPAR/darzalex Last accessed June 20208 DARZALEX FASPRO Prescribing information, May 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761145s000lbl.pdf Last accessed May 20209 De Weers, M et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. The Journal of Immunology. 2011; 186: 1840-1848.10 Overdijk, MB, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015; 7: 311-21.11 Krejcik, MD et al. Daratumumab Depletes CD38+ Immune-regulatory Cells, Promotes T-cell Expansion, and Skews T-cell Repertoire in Multiple Myeloma. Blood. 2016; 128: 384-94.12 Jansen, JH et al. Daratumumab, a human CD38 antibody induces apoptosis of myeloma tumor cells via Fc receptor-mediated crosslinking. Blood. 2012; 120(21): abstract 2974
Global Autologous Stem Cell Based Therapies Market 2020 Key Drivers and Restraints, Regional Outlook, End-User Applicants by 2025 – The Pinstripe…
By daniellenierenberg
Global Autologous Stem Cell Based Therapies Market 2020 by Company, Type and Application, Forecast to 2025 has been updated by MarketsandResearch.biz replete with a precise analysis of the market, specifically that approach market size, trends, share, outlook, production, and futuristic development trends and present and future market status from 2020 to 2025. The report comprises of a comprehensive investigation into the geographical landscape, industry size along with the revenue estimation of the business. The report supplies a point by point analysis dependent on the exhaustive research of the global Autologous Stem Cell Based Therapies market elements like development situation, potential opportunities, and operation landscape and trend analysis. The study recognizes the factors behind the growth of certain segments and focuses on business models expected to create new revenue for market players. The report also offers insight into emerging trends and restraints.
About Manufacturers And Growing Competition:
The report highlights crucial details on specific areas comprising a detailed analytical review of the competition spectrum. Each of the leading players is thoroughly identified and profiled in the global Autologous Stem Cell Based Therapies report with their product portfolio as well as company status and portfolio. The report is a complete representation of all the major initiatives initiated by various market players across diverse geographical areas. After studying key companies, the report focuses on the new entrants contributing to the growth of the market.
NOTE: Our report highlights the major issues and hazards that companies might come across due to the unprecedented outbreak of COVID-19.
DOWNLOAD FREE SAMPLE REPORT: https://www.marketsandresearch.biz/sample-request/67562
Some players from complete research coverage: Regeneus, US STEM CELL, INC., Mesoblast, Med cell Europe, Pluristem Therapeutics Inc, Tigenix, Brainstorm Cell Therapeutics
This report segments on the basis of types are: Embryonic Stem Cell, Resident Cardiac Stem Cells, Umbilical Cord Blood Stem Cells
This report segments on the basis of application are: Neurodegenerative Disorders, Autoimmune Diseases, Cardiovascular Diseases
For a comprehensive understanding of market dynamics, the global Autologous Stem Cell Based Therapies market analyzed across key geographies namely: North America (United States, Canada and Mexico), Europe (Germany, France, United Kingdom, Russia and Italy), Asia-Pacific (China, Japan, Korea, India, Southeast Asia and Australia), South America (Brazil, Argentina), Middle East & Africa (Saudi Arabia, UAE, Egypt and South Africa)
The study then investigates the important achievements of the market, Research & Development, new product launch, product responses, and regional growth of the most important competitors operating in the global Autologous Stem Cell Based Therapies market. The analysis also takes into account the existing and upcoming technological aspects of the market. Finally, the report describes the sales channel, distributors, traders, dealers, research findings and Conclusion, appendix, and data source. The data about producing base distribution, sales area, product kind, market competitive scenario, and trends, market concentration rate has been given further.
ACCESS FULL REPORT: https://www.marketsandresearch.biz/report/67562/global-autologous-stem-cell-based-therapies-market-2020-by-company-type-and-application-forecast-to-2025
This Comprehensive Report Will Provide:
Customization of the Report:
This report can be customized to meet the clients requirements. Please connect with our sales team ([emailprotected]), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.
About Us
Marketsandresearch.biz is a leading global Market Research agency providing expert research solutions, trusted by the best. We understand the importance of knowing what global consumers watch and buy, further using the same to document our distinguished research reports. Marketsandresearch.biz has worldwide presence to facilitate real market intelligence using latest methodology, best-in-class research techniques and cost-effective measures for worlds leading research professionals and agencies. We study consumers in more than 100 countries to give you the most complete view of trends and habits worldwide. Marketsandresearch.biz is a leading provider of Full-Service Research, Global Project Management, Market Research Operations and Online Panel Services.
Contact UsMark StoneHead of Business DevelopmentPhone: +1-201-465-4211Email: [emailprotected]Web: http://www.marketsandresearch.biz
Follow this link:
Global Autologous Stem Cell Based Therapies Market 2020 Key Drivers and Restraints, Regional Outlook, End-User Applicants by 2025 - The Pinstripe...
Coronavirus Impact Editon of Autologous Stem Cell Based Therapies Market Report Future Development, Top Manufacturers, Technological Advancement,…
By daniellenierenberg
Global Coronavirus pandemic has impacted all industries across the globe, Autologous Stem Cell Based Therapies market being no exception. As Global economy heads towards major recession post 2009 crisis, Cognitive Market Research has published a recent study which meticulously studies impact of this crisis on Global Autologous Stem Cell Based Therapies market and suggests possible measures to curtail them. This press release is a snapshot of research study and further information can be gathered by accessing complete report.
Checkout Inquiry for Buying or Customization of Report: https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report#download_report
The number of coronavirus cases is increasing rapidly which has not only taken a number of lives but has also affected the global economic structure. The Coronavirus Disease Pandemic (COVID-19) has affected all parts of the world. This virus has changed all the market conditions and hampers the growth of the various sectors of the global Autologous Stem Cell Based Therapies market. The report covers rapidly altering market scenario due to COVID-19 and market fluctuation during the forecast period. Cognitive Market Research has published Autologous Stem Cell Based Therapies market report accordingly.To Get Detailed Analysis Mail us @ [emailprotected] or call us on +1-312-376-8303.
The Autologous Stem Cell Based Therapies market report is an in-depth analysis of Autologous Stem Cell Based Therapies market which provides wide array of parameters, such as industry segments size & trends, inhibitors, dynamics, drivers, opportunities & challenges, environment & policy, cost overview, porters five force analysis, and key companies profiles including business overview and recent development. The research and analysis of complete report is done by our research expertise in order to provide holistic view on Autologous Stem Cell Based Therapies market.
Any query? Enquire Here For Discount (COVID-19 Impact Analysis Updated Sample): Click Here>https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report
The Autologous Stem Cell Based Therapies Market is Classified into:Based on Product Types:Embryonic Stem Cell, Resident Cardiac Stem Cells, Umbilical Cord Blood Stem Cells
Based on End-User/Application:{application)
Compitative Analysis
some of the key players are focusing on strategies such as new product development and acquisitions & mergers to increase their market presence. Key players operating in the market are Regeneus, Mesoblast, Pluristem Therapeutics Inc, U.S. STEM CELL INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe. The report additionally delivers detailed information of the key players (company profile, business overview, business strategy, product description, company revenue, SWOT analysis & other relevant information).
Autologous Stem Cell Based Therapies market report provides complete SWOT analysis of each and every company involved in Autologous Stem Cell Based Therapies market report. The market is further fragmented into geographical regions providing Autologous Stem Cell Based Therapies market share in various regions. It shows highest share of Autologous Stem Cell Based Therapies product in a particular region. The report has also included impact of COVID-19 on Autologous Stem Cell Based Therapies market and its further impact on market in coming years. Geographically, this report studies the top producers and consumers, focuses on product capacity, production, value, consumption, market share and growth opportunity.
Request Free Sample Copy @https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report
The research report categorically identifies product type and end-use applications to highlight the core developments simultaneously dominant across all regional areas and their subsequent implications on the holistic growth trajectory of Autologous Stem Cell Based Therapies Market. Additionally, report involves additional segments if required by our readers. Furthermore, Autologous Stem Cell Based Therapies market report delivers competitive analysis based on major players involved in the market. It includes prominent players with business overview, their basic information, product description as well as their recent key developments and moves. We also provide company's revenue for two consecutive years along with their research and development investment and geographical presence. The company profiling of top players includes their strategy that help new entrants to take decision more efficiently.
Important Points that are covered in the Global Autologous Stem Cell Based Therapies Market: Deep analysis of the investment scenario of the global Autologous Stem Cell Based Therapies market Information related to the ongoing research and development projects and pipeline research and development projects Business overview and business strategies of key players Impact of COVID-19 pandemic on the growth of the Autologous Stem Cell Based Therapies market Growth map on technology improvement and with an impact on market analysisCustomization of the Report: This report can be customized to meet the clients requirements. Please connect with our sales team so that we can meet your requirements.
Get A Free Sample of Autologous Stem Cell Based Therapies Market Report: https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report#download_report
Additional pointers from the global Autologous Stem Cell Based Therapies market report: The valuation and assessment of the industry chain for the global Autologous Stem Cell Based Therapies market report is performed, which is based on distribution channels and upstream raw materials & equipment suppliers. Moreover, the market research report study also offers an overview for investigating the viability of a new project with reference to specifics concerning the project schedules, project production solutions, investment budget, and project name.
Key Questions Answered by the Report
Impact of the Covid-19 on the global Autologous Stem Cell Based Therapies market growth and sizing The top players of the global Autologous Stem Cell Based Therapies market The performance of the global Autologous Stem Cell Based Therapies market in the coming years with the current status of the market. The key factors that are driving the growth of the global Autologous Stem Cell Based Therapies market The opportunities that will drive the growth of the global Autologous Stem Cell Based Therapies market in the forecast period The structure of the global Autologous Stem Cell Based Therapies marketFor better and effective understanding of Autologous Stem Cell Based Therapies market, report has been depicted by various graphs, tables, stat charts and pie charts.
For purchasing the entire report mail us @:https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report#download_report
About Us:Cognitive Market Research is one of the finest and most efficient Market Research and Consulting firm. The company strives to provide research studies which include syndicate research, customized research, round the clock assistance service, monthly subscription services, and consulting services to our clients. We focus on making sure that based on our reports, our clients are enabled to make most vital business decisions in easiest and yet effective way. Hence, we are committed to delivering them outcomes from market intelligence studies which are based on relevant and fact-based research across the global market.Contact Us: +1-312-376-8303Email: [emailprotected]Web: https://www.cognitivemarketresearch.com/
Go here to read the rest:
Coronavirus Impact Editon of Autologous Stem Cell Based Therapies Market Report Future Development, Top Manufacturers, Technological Advancement,...
Global Cardiovascular Drug Delivery Technologies, Companies & Markets to 2028: Focus on Cell Therapy, Gene Therapy, Drug-Eluting Stents – WFMZ…
By daniellenierenberg
DUBLIN, Jan. 11, 2021 /PRNewswire/ --
The "Cardiovascular Drug Delivery - Technologies, Markets & Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.
The cardiovascular drug delivery markets are estimated for the years 2018 to 2028 on the basis of epidemiology and total markets for cardiovascular therapeutics. The estimates take into consideration the anticipated advances and availability of various technologies, particularly drug delivery devices in the future. Markets for drug-eluting stents are calculated separately. The role of drug delivery in developing cardiovascular markets is defined and unmet needs in cardiovascular drug delivery technologies are identified.
Drug delivery to the cardiovascular system is different from delivery to other systems because of the anatomy and physiology of the vascular system; it supplies blood and nutrients to all organs of the body. Drugs can be introduced into the vascular system for systemic effects or targeted to an organ via the regional blood supply. In addition to the usual formulations of drugs such as controlled release, devices are used as well. This report starts with an introduction to molecular cardiology and discusses its relationship to biotechnology and drug delivery systems.
Drug delivery to the cardiovascular system is approached at three levels: (1) routes of drug delivery; (2) formulations; and finally (3) applications to various diseases. Formulations for drug delivery to the cardiovascular system range from controlled release preparations to delivery of proteins and peptides. Cell and gene therapies, including antisense and RNA interference, are described in full chapters as they are the most innovative methods of delivery of therapeutics. Various methods of improving the systemic administration of drugs for cardiovascular disorders are described including the use of nanotechnology.
Cell-selective targeted drug delivery has emerged as one of the most significant areas of biomedical engineering research, to optimize the therapeutic efficacy of a drug by strictly localizing its pharmacological activity to a pathophysiologically relevant tissue system. These concepts have been applied to targeted drug delivery to the cardiovascular system. Devices for drug delivery to the cardiovascular system are also described.
The role of drug delivery in various cardiovascular disorders such as myocardial ischemia, hypertension, and hypercholesterolemia is discussed. Cardioprotection is also discussed. Some of the preparations and technologies are also applicable to peripheral arterial diseases. Controlled release systems are based on chronopharmacology, which deals with the effects of circadian biological rhythms on drug actions. A full chapter is devoted to drug-eluting stents as treatment for restenosis following stenting of coronary arteries.Fifteen companies are involved in drug-eluting stents.
New cell-based therapeutic strategies are being developed in response to the shortcomings of available treatments for heart disease. Potential repair by cell grafting or mobilizing endogenous cells holds particular attraction in heart disease, where the meager capacity for cardiomyocyte proliferation likely contributes to the irreversibility of heart failure. Cell therapy approaches include attempts to reinitiate cardiomyocyte proliferation in the adult, conversion of fibroblasts to contractile myocytes, conversion of bone marrow stem cells into cardiomyocytes, and transplantation of myocytes or other cells into injured myocardium.
Advances in the molecular pathophysiology of cardiovascular diseases have brought gene therapy within the realm of possibility as a novel approach to the treatment of these diseases. It is hoped that gene therapy will be less expensive and affordable because the techniques involved are simpler than those involved in cardiac bypass surgery, heart transplantation and stent implantation. Gene therapy would be a more physiologic approach to deliver vasoprotective molecules to the site of vascular lesions. Gene therapy is not only a sophisticated method of drug delivery; it may at times need drug delivery devices such as catheters for transfer of genes to various parts of the cardiovascular system.
Selected 80+ companies that either develop technologies for drug delivery to the cardiovascular system or products using these technologies are profiled and 80 collaborations between companies are tabulated. The bibliography includes 200 selected references from recent literature on this topic. The report is supplemented with 31 tables and 9 figures.
Key Topics Covered:
Executive Summary
1. Cardiovascular Diseases
2. Methods for Drug Delivery to the Cardiovascular System
3. Cell Therapy for Cardiovascular Disorders
4. Gene Therapy for Cardiovascular Disorders
5. Drug-Eluting Stents
6. Markets for Cardiovascular Drug Delivery
7. Companies involved in Cardiovascular Drug Delivery
8. References
For more information about this report visit https://www.researchandmarkets.com/r/eizl23
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Media Contact:
Research and MarketsLaura Wood, Senior Managerpress@researchandmarkets.com
For E.S.T Office Hours Call +1-917-300-0470For U.S./CAN Toll Free Call +1-800-526-8630For GMT Office Hours Call +353-1-416-8900
U.S. Fax: 646-607-1907Fax (outside U.S.): +353-1-481-1716
Stem Cell Therapy Market Latest Report with Forecast to 2025 – Jumbo News
By daniellenierenberg
Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.
Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787
One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.
It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.
Global Stem Cell Therapy Market: Overview
Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.
Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.
Buy This Report @https://www.tmrresearch.com/checkout?rep_id=1787<ype=S
Global Stem Cell Therapy Market: Key Trends
The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.
On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.
Global Stem Cell Therapy Market: Market Potential
A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.
In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.
Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.
Global Stem Cell Therapy Market: Regional Outlook
The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.
Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.
Global Stem Cell Therapy Market: Competitive Analysis
Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.
Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.
To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787
About TMR Research
TMR Research is a premier provider of customized market research and consulting services to busi-ness entities keen on succeeding in todays supercharged economic climate. Armed with an experi-enced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Read the original:
Stem Cell Therapy Market Latest Report with Forecast to 2025 - Jumbo News
Worldwide Industry for Biopreservation to 2026 – Key Drivers, Restraints and Opportunities – Yahoo Finance
By daniellenierenberg
DUBLIN, Jan. 4, 2021 /PRNewswire/ -- The "Biopreservation Market by Type, Application, End-user, and Geography - Global Forecast to 2026" report has been added to ResearchAndMarkets.com's offering.
Biopreservation is a process that assists in the conservation of biospecimens such as DNA, saliva, and plasma. This process of biopreservation generally increases the durability, shelf life, and purity of the biosamples. The types of equipment in this process include freezers, liquid nitrogen, consumables, and also media & laboratory information management systems.
This process is also used to preserve food and extend its shelf life, specifically by using lactic acid bacteria. Growth in healthcare spending is assumed for better access to quality healthcare and advanced technology products such as biopreservation facilities, thereby widening the growth expectations. Moreover, the bio-banks, hospitals, and gene banks, which are major end-users for this market, are stimulating the key providers to establish technologically advanced biopreservation products to improve patient outcomes. The Biopreservation Market is projected to grow at a rate of 9.2% CAGR by 2026.
The biopreservation market has been analyzed by utilizing the optimum combination of secondary sources and in-house methodology, along with an irreplaceable blend of primary insights. The real-time assessment of the market is an integral part of our market sizing and forecasting methodology. Our industry experts and panel of primary participants have helped in compiling relevant aspects with realistic parametric estimations for a comprehensive study. The participation share of different categories of primary participants is given below:
In the market for biopreservation, the application of biopreservation consists of therapeutic applications, research applications, clinical trials, and other applications. The biopreservation is primarily applied in therapeutics due to the advancements in regenerative medicine & customized medicine, an increase in the shift of cord blood banking, and the rising incidence of chronic diseases.
The end-users of the biopreservation market include biobanks, gene banks, hospitals, and other end users. The biobanks segment is expected to have a major share in the market. The major share of this segment is attributed to the increasing preference for the preservation of stem cells and the rising numbers of sperm and egg banks.
Further, according to the regional market of biopreservation, the North American region is recorded for the colossal share in the market. This is due to the continuous drug developments and the arrival of advanced therapies in the domain of biomedical research. Additionally, the increasing requirement of expensive and improved treatment for patients' chronic diseases is the key factor.
The rising incidence of chronic diseases, including cardiac, renal diseases, diabetes, and obesity, is the crucial factor that will propel the biopreservation market growth in the prevailing period. Government initiatives to encourage stem cell therapies to treat the disease, which will again propel market growth. Conversely, the strict regulations for producing biopreservation products and the evolution of room temperature storage procedures may limit the biopreservation market growth.
Merck KGaA, Avantor, Inc., Bio-Techne Corporation, BioLife Solutions, Inc., Thermo Fisher Scientific Inc, ThermoGenesis Holdings, Inc., Worthington Industries, Inc., Chart Industries, Inc, So-Low Environmental Equipment Co., Inc., Princeton BioCision, LLC, Shanghai Genext Medical Technology Co. Ltd, Exact Sciences Corporation, Helmer Scientific, Inc., CryoTech, Inc., Arctiko, Nippon Genetics Europe, PHC Holdings Corporation, STEMCELL Technologies, Inc., AMS Biotechnology, and OPS Diagnostics. These are the few companies list of the biopreservation market.
Since the rapid increase in the number of research and developments gives the way of potentials for market growth, the biopreservation of biological samples has become a crucial segment. This helps the researchers to access the data of the number of people by the preserved biological samples.
This research presents a thorough analysis of market share, the present trends, and forthcoming evaluations to explain the approaching investment pockets.
This research provides market insights from 2020 to 2026, which is predicted to allow the shareholders to capitalize on the forthcoming opportunities.
This report further offers comprehensive insights into the region, which helps to understand the geographical market and assist in strategic business planning and ascertain future opportunities.
Key Topics Covered:
1. Executive Summary
2. Industry Outlook2.1. Industry Overview2.2. Industry Trends
3. Market Snapshot3.1. Market Definition3.2. Market Outlook3.2.1. PEST Analysis3.2.2. Porter Five Forces3.3. Related Markets
4. Market characteristics4.1. Market Evolution4.2. Market Trends and Impact4.3. Advantages/Disadvantages of Market4.4. Regulatory Impact4.5. Market Offerings4.6. Market Segmentation4.7. Market Dynamics4.7.1. Drivers4.7.2. Restraints4.7.3. Opportunities4.8. DRO - Impact Analysis
5. Type: Market Size & Analysis5.1. Overview5.2. Biopreservation Media5.2.1. Nutrient Media5.2.2. Sera5.2.3. Growth Factors & Supplements5.3. Biospecimen Equipment5.3.1. Temperature Control Systems5.4. Freezers5.5. Cryogenic Storage Systems5.6. Thawing Equipment5.7. Refrigerators5.7.1. Accessories5.7.2. Alarms & Monitoring systems5.7.3. Incubators5.7.4. Centrifuges5.7.5. Other Equipment
6. Application: Market Size & Analysis6.1. Overview6.2. Therapeutic Applications6.3. Research Applications6.4. Clinical Trials6.5. Other Applications
7. End User: Market Size & Analysis7.1. Overview7.2. Biobanks7.3. Gene Banks7.4. Hospitals7.5. Other End Users
8. Geography: Market Size & Analysis8.1. Overview8.2. North America8.3. Europe8.4. Asia Pacific8.5. Rest of the World
9. Competitive Landscape9.1. Competitor Comparison Analysis9.2. Market Developments9.2.1. Mergers and Acquisitions, Legal, Awards, Partnerships9.2.2. Product Launches and execution
10. Vendor Profiles10.1. Merck KGaA10.1.1. Overview10.1.2. Financials10.1.3. Products & Services10.1.4. Recent Developments10.1.5. Business Strategy10.2. Avantor, Inc10.2.1. Overview10.2.2. Financials10.2.3. Products & Services10.2.4. Recent Developments10.2.5. Business Strategy10.3. Bio-Techne Corporation10.3.1. Overview10.3.2. Financials10.3.3. Products & Services10.3.4. Recent Developments10.3.5. Business Strategy10.4. BioLife Solutions, Inc10.4.1. Overview10.4.2. Financials10.4.3. Products & Services10.4.4. Recent Developments10.4.5. Business Strategy10.5. Thermo Fisher Scientific Inc10.5.1. Overview10.5.2. Financials10.5.3. Products & Services10.5.4. Recent Developments10.5.5. Business Strategy10.6. ThermoGenesis Holdings, Inc10.6.1. Overview10.6.2. Financials10.6.3. Products & Services10.6.4. Recent Developments10.6.5. Business Strategy10.7. Worthington Industries, Inc10.7.1. Overview10.7.2. Financials10.7.3. Products & Services10.7.4. Recent Developments10.7.5. Business Strategy10.8. Chart Industries, Inc10.8.1. Overview10.8.2. Financials10.8.3. Products & Services10.8.4. Recent Developments10.8.5. Business Strategy10.9. So-Low Environmental Equipment Co.,Inc10.9.1. Overview10.9.2. Financials10.9.3. Products & Services10.9.4. Recent Developments10.9.5. Business Strategy10.10. Princeton BioCision, LLC10.10.1. Overview10.10.2. Financials10.10.3. Products & Services10.10.4. Recent Developments10.10.5. Business Strategy
11. Companies to Watch11.1. Shanghai Genext Medical Technology Co. Ltd11.1.1. Overview11.1.2. Products & Services11.1.3. Business Strategy11.2. Exact Sciences Corporation11.2.1. Overview11.2.2. Products & Services11.2.3. Business Strategy11.3. Helmer Scientific, Inc11.3.1. Overview11.3.2. Products & Services11.3.3. Business Strategy11.4. CryoTech, Inc11.4.1. Overview11.4.2. Products & Services11.4.3. Business Strategy11.5. Arctiko11.5.1. Overview11.5.2. Products & Services11.5.3. Business Strategy11.6. Nippon Genetics Europe11.6.1. Overview11.6.2. Products & Services11.6.3. Business Strategy11.7. PHC Holdings Corporation11.7.1. Overview11.7.2. Products & Services11.7.3. Business Strategy11.8. STEMCELL Technologies, Inc11.8.1. Overview11.8.2. Products & Services11.8.3. Business Strategy11.9. AMS Biotechnology11.9.1. Overview11.9.2. Products & Services11.9.3. Business Strategy11.10. OPS Diagnostics11.10.1. Overview11.10.2. Products & Services11.10.3. Business Strategy
12. Analyst Opinion
13. Annexure13.1. Report Scope13.2. Market Definitions13.3. Research Methodology13.3.1. Data Collation and In-house Estimation13.3.2. Market Triangulation13.3.3. Forecasting13.4. Report Assumptions13.5. Declarations13.6. Stakeholders13.7. Abbreviations
For more information about this report visit https://www.researchandmarkets.com/r/711zgr
Story continues
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Media Contact:
Research and Markets Laura Wood, Senior Manager press@researchandmarkets.com
For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900
U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716
View original content:http://www.prnewswire.com/news-releases/worldwide-industry-for-biopreservation-to-2026---key-drivers-restraints-and-opportunities-301200103.html
SOURCE Research and Markets
Originally posted here:
Worldwide Industry for Biopreservation to 2026 - Key Drivers, Restraints and Opportunities - Yahoo Finance
Stem Cell Therapy Market Estimated to Expand at a Robust CAGR over 2025 – The Monitor
By daniellenierenberg
Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.
Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787
One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.
It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.
Global Stem Cell Therapy Market: Overview
Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.
Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.
Buy This Report @https://www.tmrresearch.com/checkout?rep_id=1787<ype=S
Global Stem Cell Therapy Market: Key Trends
The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.
On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.
Global Stem Cell Therapy Market: Market Potential
A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.
In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.
Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.
Global Stem Cell Therapy Market: Regional Outlook
The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.
Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.
Global Stem Cell Therapy Market: Competitive Analysis
Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.
Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.
To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787
About TMR Research
TMR Research is a premier provider of customized market research and consulting services to busi-ness entities keen on succeeding in todays supercharged economic climate. Armed with an experi-enced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
View post:
Stem Cell Therapy Market Estimated to Expand at a Robust CAGR over 2025 - The Monitor
Vape Flavorings Are Cardiotoxic and Can Damage the Heart – SciTechDaily
By daniellenierenberg
The vape flavorings so popular with kids and young adults are cardiotoxic and disrupt the hearts normal electrical activity, a University of South Florida Health preclinical study finds.
The appealing array of fruit and candy flavors that entice millions of young people take up vaping can harm their hearts, a preclinical study by University of South Florida Health (USF Health) researchers found.
Mounting studies indicate that the nicotine and other chemicals delivered by vaping, while generally less toxic than conventional cigarettes, can damage the lungs and heart. But so far there has been no clear understanding about what happens when the vaporized flavoring molecules in flavored vaping products, after being inhaled, enter the bloodstream and reach the heart, said the studys principal investigator Sami Noujaim, PhD, an associate professor of molecular pharmacology and physiology at the USF Health Morsani College of Medicine.
In their study published on November 20, 2020, in the American Journal of Physiology- Heart and Circulatory Physiology, Dr. Noujaim and colleagues report on a series of experiments assessing the toxicity of vape flavorings in cardiac cells and in young mice.
The flavored electronic nicotine delivery systems widely popular among teens and young adults are not harm-free, Dr. Noujaim said. Altogether, our findings in the cells and mice indicate that vaping does interfere with the normal functioning of the heart and can potentially lead to cardiac rhythm disturbances.
Dr. Noujaims laboratory is among the first beginning to investigate the potential cardiotoxic effects of the many flavoring chemicals added to the e-liquids in electronic nicotine delivery systems, or ENDS. He recently received a five-year, $2.2-million grant from the NIHs National Institute of Environmental Health Sciences to carry out this laboratory research. Commonly called e-cigarettes, ENDS include different products such as vape pens, mods, and pods.
Sami Noujaim, PhD, associate professor of molecular pharmacology and physiology at the University of South Florida Health (USF Health) Morsani College of Medicine, has begun investigating preclinically the potential cardiotoxic effects of many flavoring chemicals added to the e-liquids in electronic nicotine delivery systems. Credit: Photo courtesy of USF Health
Vaping involves inhaling an aerosol created by heating an e-liquid containing nicotine, solvents such as propylene glycol and vegetable glycerin, and flavorings. The vaping devices battery-powered heat converts this e-liquid into a smoke-like aerosolized mixture (e-vapor). Manufacturers tout e-cigarettes as a tool to help quit smoking, but evidence of their effectiveness for smoking cessation is limited, and they are not FDA approved for this use. E-cigarettes contain the same highly addictive nicotine found in tobacco products, yet many teens and young adults assume they are safe.
Among the USF Health study key findings:
Whether the mouse findings will translate to people is unknown. Dr. Noujaim emphasizes that more preclinical and human studies are needed to further determine the safety profile of flavored ENDS and their long-term health effects.
A partial government ban on flavored e-cigarettes aimed at stopping young people from vaping focused on enforcement against flavored e-cigarettes with pre-filled cartridges, like those produced by industry leader JUUL. However, teens quickly switched to newer disposable e-cigarettes still sold in a staggering assortment of youth-appealing fruity and dessert-like flavors.
Our research matters because regulation of the vaping industry is a work in progress, Dr. Noujaim said. The FDA needs input from the scientific community about all the possible risks of vaping in order to effectively regulate electronic nicotine delivery systems and protect the publics health. At USF Health, in particular, we will continue to examine how vaping may adversely affect cardiac health.
In 2020, 3.6 million U.S. youths still used e-cigarettes, and among current users, more than eight in 10 reported using flavored varieties, according to the Centers for Disease Control and Prevention.
Reference: In Vitro and In Vivo Cardiac Toxicity of Flavored Electronic Nicotine Delivery Systems by Obada Abou-Assali, Mengmeng Chang, Bojjibabu Chidipi, Jose L. Martinez-de-Juan, Michelle Reiser, Manasa Kanithi, Ravi Soni, Thomas Vincent McDonald, Bengt Herweg, Javier Saiz, Laurent Calcul and Sami F. Noujaim, 20 November 2020, American Journal of Physiology-Heart and Circulatory Physiology.DOI: 10.1152/ajpheart.00283.2020
More:
Vape Flavorings Are Cardiotoxic and Can Damage the Heart - SciTechDaily
Outlook on the Biopreservation Global Market to 2026 – Profiling Avantor, BioLife Solutions and ThermoGenesis Among Others – GlobeNewswire
By daniellenierenberg
Dublin, Dec. 21, 2020 (GLOBE NEWSWIRE) -- The "Biopreservation Market by Type, Application, End-user, and Geography - Global Forecast to 2026" report has been added to ResearchAndMarkets.com's offering.
Biopreservation is a process that assists in the conservation of biospecimens such as DNA, saliva, and plasma. This process of biopreservation generally increases the durability, shelf life, and purity of the biosamples. The types of equipment in this process include freezers, liquid nitrogen, consumables, and also media & laboratory information management systems.
This process is also used to preserve food and extend its shelf life, specifically by using lactic acid bacteria. Growth in healthcare spending is assumed for better access to quality healthcare and advanced technology products such as biopreservation facilities, thereby widening the growth expectations. Moreover, the bio-banks, hospitals, and gene banks, which are major end-users for this market, are stimulating the key providers to establish technologically advanced biopreservation products to improve patient outcomes. The Biopreservation Market is projected to grow at a rate of 9.2% CAGR by 2026.
The biopreservation market has been analyzed by utilizing the optimum combination of secondary sources and in-house methodology, along with an irreplaceable blend of primary insights. The real-time assessment of the market is an integral part of our market sizing and forecasting methodology. Our industry experts and panel of primary participants have helped in compiling relevant aspects with realistic parametric estimations for a comprehensive study. The participation share of different categories of primary participants is given below:
In the market for biopreservation, the application of biopreservation consists of therapeutic applications, research applications, clinical trials, and other applications. The biopreservation is primarily applied in therapeutics due to the advancements in regenerative medicine & customized medicine, an increase in the shift of cord blood banking, and the rising incidence of chronic diseases.
The end-users of the biopreservation market include biobanks, gene banks, hospitals, and other end users. The biobanks segment is expected to have a major share in the market. The major share of this segment is attributed to the increasing preference for the preservation of stem cells and the rising numbers of sperm and egg banks.
Further, according to the regional market of biopreservation, the North American region is recorded for the colossal share in the market. This is due to the continuous drug developments and the arrival of advanced therapies in the domain of biomedical research. Additionally, the increasing requirement of expensive and improved treatment for patients' chronic diseases is the key factor.
The rising incidence of chronic diseases, including cardiac, renal diseases, diabetes, and obesity, is the crucial factor that will propel the biopreservation market growth in the prevailing period. Government initiatives to encourage stem cell therapies to treat the disease, which will again propel market growth. Conversely, the strict regulations for producing biopreservation products and the evolution of room temperature storage procedures may limit the biopreservation market growth.
Merck KGaA, Avantor, Inc., Bio-Techne Corporation, BioLife Solutions, Inc., Thermo Fisher Scientific Inc, ThermoGenesis Holdings, Inc., Worthington Industries, Inc., Chart Industries, Inc, So-Low Environmental Equipment Co., Inc., Princeton BioCision, LLC, Shanghai Genext Medical Technology Co. Ltd, Exact Sciences Corporation, Helmer Scientific, Inc., CryoTech, Inc., Arctiko, Nippon Genetics Europe, PHC Holdings Corporation, STEMCELL Technologies, Inc., AMS Biotechnology, and OPS Diagnostics. These are the few companies list of the biopreservation market.
Since the rapid increase in the number of research and developments gives the way of potentials for market growth, the biopreservation of biological samples has become a crucial segment. This helps the researchers to access the data of the number of people by the preserved biological samples.
This research presents a thorough analysis of market share, the present trends, and forthcoming evaluations to explain the approaching investment pockets.
This research provides market insights from 2020 to 2026, which is predicted to allow the shareholders to capitalize on the forthcoming opportunities.
This report further offers comprehensive insights into the region, which helps to understand the geographical market and assist in strategic business planning and ascertain future opportunities.
Key Topics Covered:
1. Executive Summary
2. Industry Outlook2.1. Industry Overview2.2. Industry Trends
3. Market Snapshot3.1. Market Definition3.2. Market Outlook3.2.1. PEST Analysis3.2.2. Porter Five Forces3.3. Related Markets
4. Market characteristics4.1. Market Evolution4.2. Market Trends and Impact4.3. Advantages/Disadvantages of Market4.4. Regulatory Impact4.5. Market Offerings4.6. Market Segmentation4.7. Market Dynamics4.7.1. Drivers4.7.2. Restraints4.7.3. Opportunities4.8. DRO - Impact Analysis
5. Type: Market Size & Analysis5.1. Overview5.2. Biopreservation Media5.2.1. Nutrient Media5.2.2. Sera5.2.3. Growth Factors & Supplements5.3. Biospecimen Equipment5.3.1. Temperature Control Systems5.4. Freezers5.5. Cryogenic Storage Systems5.6. Thawing Equipment5.7. Refrigerators5.7.1. Accessories5.7.2. Alarms & Monitoring systems5.7.3. Incubators5.7.4. Centrifuges5.7.5. Other Equipment
6. Application: Market Size & Analysis6.1. Overview6.2. Therapeutic Applications6.3. Research Applications6.4. Clinical Trials6.5. Other Applications
7. End User: Market Size & Analysis7.1. Overview7.2. Biobanks7.3. Gene Banks7.4. Hospitals7.5. Other End Users
8. Geography: Market Size & Analysis8.1. Overview8.2. North America8.3. Europe8.4. Asia Pacific8.5. Rest of the World
9. Competitive Landscape9.1. Competitor Comparison Analysis9.2. Market Developments9.2.1. Mergers and Acquisitions, Legal, Awards, Partnerships9.2.2. Product Launches and execution
10. Vendor Profiles10.1. Merck KGaA10.1.1. Overview10.1.2. Financials10.1.3. Products & Services10.1.4. Recent Developments10.1.5. Business Strategy10.2. Avantor, Inc10.2.1. Overview10.2.2. Financials10.2.3. Products & Services10.2.4. Recent Developments10.2.5. Business Strategy10.3. Bio-Techne Corporation10.3.1. Overview10.3.2. Financials10.3.3. Products & Services10.3.4. Recent Developments10.3.5. Business Strategy10.4. BioLife Solutions, Inc10.4.1. Overview10.4.2. Financials10.4.3. Products & Services10.4.4. Recent Developments10.4.5. Business Strategy10.5. Thermo Fisher Scientific Inc10.5.1. Overview10.5.2. Financials10.5.3. Products & Services10.5.4. Recent Developments10.5.5. Business Strategy10.6. ThermoGenesis Holdings, Inc10.6.1. Overview10.6.2. Financials10.6.3. Products & Services10.6.4. Recent Developments10.6.5. Business Strategy10.7. Worthington Industries, Inc10.7.1. Overview10.7.2. Financials10.7.3. Products & Services10.7.4. Recent Developments10.7.5. Business Strategy10.8. Chart Industries, Inc10.8.1. Overview10.8.2. Financials10.8.3. Products & Services10.8.4. Recent Developments10.8.5. Business Strategy10.9. So-Low Environmental Equipment Co.,Inc10.9.1. Overview10.9.2. Financials10.9.3. Products & Services10.9.4. Recent Developments10.9.5. Business Strategy10.10. Princeton BioCision, LLC10.10.1. Overview10.10.2. Financials10.10.3. Products & Services10.10.4. Recent Developments10.10.5. Business Strategy
11. Companies to Watch11.1. Shanghai Genext Medical Technology Co. Ltd11.1.1. Overview11.1.2. Products & Services11.1.3. Business Strategy11.2. Exact Sciences Corporation11.2.1. Overview11.2.2. Products & Services11.2.3. Business Strategy11.3. Helmer Scientific, Inc11.3.1. Overview11.3.2. Products & Services11.3.3. Business Strategy11.4. CryoTech, Inc11.4.1. Overview11.4.2. Products & Services11.4.3. Business Strategy11.5. Arctiko11.5.1. Overview11.5.2. Products & Services11.5.3. Business Strategy11.6. Nippon Genetics Europe11.6.1. Overview11.6.2. Products & Services11.6.3. Business Strategy11.7. PHC Holdings Corporation11.7.1. Overview11.7.2. Products & Services11.7.3. Business Strategy11.8. STEMCELL Technologies, Inc11.8.1. Overview11.8.2. Products & Services11.8.3. Business Strategy11.9. AMS Biotechnology11.9.1. Overview11.9.2. Products & Services11.9.3. Business Strategy11.10. OPS Diagnostics11.10.1. Overview11.10.2. Products & Services11.10.3. Business Strategy
12. Analyst Opinion
13. Annexure13.1. Report Scope13.2. Market Definitions13.3. Research Methodology13.3.1. Data Collation and In-house Estimation13.3.2. Market Triangulation13.3.3. Forecasting13.4. Report Assumptions13.5. Declarations13.6. Stakeholders13.7. Abbreviations
For more information about this report visit https://www.researchandmarkets.com/r/pl06wm
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Go here to see the original:
Outlook on the Biopreservation Global Market to 2026 - Profiling Avantor, BioLife Solutions and ThermoGenesis Among Others - GlobeNewswire
Stem Cell Therapy for Heart Failure Treatment
By daniellenierenberg
In this Article In this Article In this Article
Most treatment for heart failure can only slow it down or ease your symptoms. Soon, it may be possible to fix what causes it. Doctors are testing whether stem cells can repair or replace damaged heart cells.
Stem cells can grow into many different kinds of cells. You have them in organs and tissues all over your body. They divide to replace worn-out or damaged cells, and to become new stem cells.
In the lab, scientists have turned stem cells into ones that make up blood vessel walls and linings, and into actual beating heart cells. Now theyre trying to translate that into a treatment.
Scientists have zeroed in on a few specific kinds of cells that may be helpful:
Bone marrow mononuclear cells: A mixture of cells that comes from your own bone marrow.
Cardiac-derived stem cells: Ones found in heart tissue.
Mesenchymal stromal cells: They're usually taken from bone marrow, fat, or umbilical cord blood.
Proangiogenic progenitor cells: These are in blood and bone marrow.
It's not approved to treat heart failure, yet. You can get it through a clinical trial. Thats when the research moves from the lab to the hospital to see if a treatment is safe and if it works.
If you want to try stem cell therapy, ask your doctors if there are studies that may be a good fit for you. The National Library of Medicine has a website that helps you search for all kinds of clinical trials.
Not all experimental treatments are part of a clinical trial, so make sure you understand what youre signing up for. If its a legitimate study, you shouldnt have to pay for treatment or follow-ups.
Most people testing stem cell therapy for heart failure get one treatment. Then theyre checked every few months for a year or more.
Not everyone in a trial actually gets stem cells. Researchers need to compare the results of the new treatment against what happens with a group of people who dont get it.
Doctors are testing several different methods of giving people stem cells:
Intramyocardial injection: Cells go right into the heart muscle, usually during another procedure like open-heart surgery, bypass surgery, or implanting a pacemaker.
Intracoronary infusion: A catheter puts cells into your coronary artery. It goes into a large blood vessel in your groin and threaded through your heart.
Intravenously: Cells go right into the bloodstream through a needle placed in a vein.
With any of these methods, most stem cells leave the body quickly. Researchers are looking for better ways to make them stick. One possibility is growing them into a patch that goes directly to the damaged part of the heart.
Theres no way to fix heart damage that leads to heart failure. Stem cell therapy could change that. Still, its too early to call any treatment a success. The studies done so far have been too small. They've also used very different methods.
But it does look like stem cells could help repair heart tissue. In most studies, people who got them were less likely to die or go to the hospital during the study. Their hearts worked better and their quality of life was better than for people who didnt get them.
It isnt clear how stem cells help. Doctors hope clinical trials and research will help them discover that. They're also hoping to answer many other questions, including:
If you are interested in joining a trial, talk to your doctor.
SOURCES:
International Society for Stem Cell Research: Heart Disease, Types of Stem Cells, About Clinical Trials, Stem Cell Research: What to Ask.
National Institutes of Health: Mending a Broken Heart: Stem Cells and Cardiac Repair, Can Stem Cells Repair a Damaged Heart? Stem Cell Basics, NIH Clinical Research Trials and You.
Current Cardiology Reviews: Cellular Therapy for Heart Failure.
U.S. National Library of Medicine: ClinicalTrials.gov.
U.S. Food and Drug Administration: Consumer Information on Stem Cells.
Circulation Research: Cell Therapy for Heart Failure, Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial).
The Lancet: Ixmyelocel-T for patients with ischaemic heart failure: a prospective randomised double-blind trial.
Pagination
Read the rest here:
Stem Cell Therapy for Heart Failure Treatment
Flavors added to vaping devices damage the heart, vanilla custard the most toxic of all – Study Finds
By daniellenierenberg
TAMPA, Fla. While health officials and lawmakers continue trying to steer young people away from vaping, the wide variety of enticing flavors added to these products make that a tough task. Although most of the worry over vaping comes from the risk of addiction, lung damage, and threat of switching to conventional cigarettes, a new study finds the flavoring chemicals these products use may be just as harmful as anything else. Researchers from the University of South Florida Health say vaporized flavoring molecules are toxic to the heart and damage the organs ability to beat correctly.
While other studies find that vaping is generally less harmful than smoking traditional tobacco products, the nicotine and other chemicals in e-cigarettes still damages the heart and lungs. Until now however, researchers say the impact of flavoring additives inhaled into the bloodstream remained unclear.
The flavored electronic nicotine delivery systems widely popular among teens and young adults are not harm-free, says principal investigator Dr. Sami Noujaim in a university release. Altogether, our findings in the cells and mice indicate that vaping does interfere with the normal functioning of the heart and can potentially lead to cardiac rhythm disturbances.
Dr. Noujaims study is one of the first to investigate the cardiotoxic effects of flavoring chemicals added to the e-liquids in electronic nicotine delivery systems (ENDS). ENDS include a variety of different vaping products like vape pens, mods, and pods.
Researchers define vaping as inhaling aerosols (tiny droplets) which e-cigarettes create by heating liquid nicotine and solvents like propylene glycol and vegetable glycerin. A vaping devices battery-powered heater converts this liquid into a smoke-like mix, or vapor.
The study tested how three popular e-liquid flavors fruit, cinnamon, and vanilla custard affect cardiac muscle cells (HL-1) of mice. After being exposed to e-vapor in a lab dish, the results reveal all three flavors are toxic to HL-1 cells.
The USF team also examined what happens to cardiac cells grown from human stem cells that are exposed to three types of e-vapors. The first substance containing only solvents interfered with the cells electrical activity and beating rate. The second substance, containing both nicotine and solvents, proved to be even more toxic to the heart cells.
The third substance however, containing nicotine, solvents, and vanilla custard flavoring, caused the most damage to the heart and its ability to spontaneously beat correctly. Researchers also determined that vanilla custard flavoring is the most toxic of the varieties tested.
This experiment told us that the flavoring chemicals added to vaping devices can increase harm beyond what the nicotine alone can do, Dr. Noujaim says.
The study also tested flavored vapings impact on live mice. Researchers implanted each subject with a tiny electrocardiogram device before exposing them to 60 puffs of vanilla-flavored e-vapor five days a week for 10 weeks.
Study authors looked at how this exposure impacted heart rate variability (HRV), which is the change in time intervals between successive heartbeats. The results show that HRV decreased in vaping mice compared to those only exposed to puffs of clean air.
The USF team finds vaping interferes with normal HRV by disrupting the autonomic nervous system and its control over heart rate. Mice exposed to flavored vaping are also more prone to a dangerous heart rhythm problem called ventricular tachycardia.
Researchers say they still have to confirm these results in humans. Dr. Noujaim urges policymakers to continue looking at the growing evidence that vaping is not a particularly safer alternative to smoking.
Our research matters because regulation of the vaping industry is a work in progress, Dr. Noujaim explains. The FDA needs input from the scientific community about all the possible risks of vaping in order to effectively regulate electronic nicotine delivery systems and protect the publics health. At USF Health, in particular, we will continue to examine how vaping may adversely affect cardiac health.
The study appears in the American Journal of Physiology- Heart and Circulatory Physiology.
I Peace, Inc. and Avery Therapeutics announce collaboration to bring iPSC derived cell therapy for heart failure to the clinic – PRNewswire
By daniellenierenberg
Avery Therapeutics is projected to be one of the first companies in the US to seek approval for a clinical trial using iPSC-derived technology for heart failure. The goal of this collaboration is to develop a new off-the-shelf treatment to improve the quality of life of patients suffering from heart failure, a debilitating disease that affects tens of millions of people worldwide.
The iPSCs are manufactured at I Peace's state-of-the-art GMP facility in Kyoto, Japan, under comprehensive validation programs of the facility, equipment, and processes including donor recruiting, screening, blood draw, iPSC generation, storage, and distribution. I Peace has obtained a US-based independent institutional review board (IRB) approval for its process of donor sourcing for commercial-use iPSCs. The facility is designed to be PMDA and USFDA compliant.
As Avery Therapeutics expects to expand the application of its regenerative medicine technology to various types of heart diseases and beyond, iPSCs are the key enabling technology for quality and future scalability. This agreement provides a solid foundation to improve the welfare of those suffering from diseases through advancement of tissue-engineered therapeutics.
"We are thrilled to announce this collaboration with I Peace. It is a big step forward in the development of novel cell-based therapeutics for unmet medical needs. Through this collaboration, I Peace brings deep iPSC development and manufacturing expertise to enable Avery's proprietary MyCardia cell delivery platform technology. Together we hope to positively impact millions of patients worldwide in the near future," Said Jordan Lancaster, PhD, Avery Therapeutics' CEO.
This agreement reflects an innovative collaboration involving multiple locations internationally and marks a significant milestone for both I Peace, Inc. and Avery Therapeutics to pursue one of the first US clinical trials using iPSC technology in the area of heart diseases. Koji Tanabe, PhD, founder and CEO of I Peace stated: "By combining I Peace's proprietary clinical grade iPSC technology and Avery's tissue engineering technology, we can bring the regenerative medicine dream closer to reality. We are very excited by Avery's technology and look forward to continue working together."
About I Peace, Inc
I Peace, Inc. is a global supplier of clinical and research grade iPSCs. It was founded in 2015 in Palo Alto, California, USA by Dr. Tanabe, who earned his doctorate at Kyoto University under Nobel laureate Dr. Shinya Yamanaka. I Peace's mission is to alleviate the suffering of diseased patients and help healthy people maintain a high quality of life by making cell therapy accessible to all. I Peace's state-of-the-art GMP facility and proprietary manufacturing platform enables the fully-automated mass production of discrete iPSCs from multiple donors in a single room. Increasing the available number of clinical-grade iPSC lines allows I Peace customers to take differentiation propensity into account to select the most appropriate iPSC line for their clinical research at significantly reduced cost. I Peace aims to create iPSCs for every individual that become their stem cell for life.
Founder, CEO: Koji TanabeSince: 2015Head Quarter: Palo Alto, CaliforniaJapan subsidiary: I Peace, Ltd. (Kyoto, Japan)Cell Manufacturing Facility: Kyoto, JapanWeb: https://www.ipeace.com
About Avery Therapeutics
Avery Therapeutics is a company developing advanced therapies for patients suffering from cardiovascular diseases. Avery's lead candidate is an allogeneic tissue engineered cardiac graft, MyCardia in development for treatment of chronic heart failure. Using Avery's proprietary manufacturing process MyCardia can be manufactured at scale, cryopreserved, and shipped ready to use. Avery is leveraging its proprietary tissue platform to pursue other cardiovascular indications. For more information visit: AveryThera.com. Follow Avery Therapeutics on LinkedInand Twitter.Since: 2016Headquarter: Tucson, AZWebsite: https://www.AveryThera.com
SOURCE I Peace, Inc.
Network of Genes Involved in Congenital Heart Disease Identified – Technology Networks
By daniellenierenberg
Over two million babies, children, and adults in the United States are living with congenital heart disease--a range of birth defects affecting the heart's structure or function. Now, researchers at Gladstone Institutes and UC San Francisco (UCSF) have made inroads into understanding how a broad network of genes and proteins go awry in a subset of congenital heart diseases.
"We now have a better understanding of what genes are improperly deployed in some cases of congenital heart disease," says Benoit Bruneau, PhD, director of the Gladstone Institute of Cardiovascular Disease and a senior author of the new study. "Eventually, this might help us get a handle on how to modulate genetic networks to prevent or treat the disease."
Congenital heart disease encompasses a wide variety of heart defects, ranging from mild structural problems that cause no symptoms to severe malformations that disrupt or block the normal flow of blood through the heart. A handful of genetic mutations have been implicated in contributing to congenital heart disease; the first to be identified was in a gene known as TBX5. The TBX5 protein is a transcription factor--it controls the expression of dozens of others genes, giving it far-reaching effects.
Bruneau has spent the last 20 years studying the effect of TBX5 mutations on developing heart cells, mostly conducting research in mice. In the new study published inDevelopmental Cell, he and his colleagues turned instead to human cells, using novel approaches to follow what happens in individual cells when TBX5 is mutated.
"This is really the first time we've been able to study this genetic mutation in a human context," says Bruneau, who is also a professor in the Department of Pediatrics at UCSF. "The mouse heart is a good proxy for the human heart, but it's not exactly the same, so it's important to be able to carry out these experiments in human cells."
The scientists began with human induced pluripotent stem cells (iPS cells), which have been reprogrammed to an embryonic-like state, giving them--like embryonic stem cells--the ability to become nearly every cell type in the body.
Then, Bruneau's group used CRISPR-Cas9 gene-editing technology to mutate TBX5 in the cells and began coaxing the iPS cells to become heart cells. As the cells became more like heart cells, the researchers used a method called single-cell RNA sequencing to track how the TBX5 mutation changed which genes were switched on and off in tens of thousands of individual cells.
The experiment revealed many genes that were expressed at higher or lower levels in cells with mutated TBX5. Importantly, not all cells responded to the TBX5 mutation in the same way; some had drastic changes in gene expression while other were less affected. This diversity, the researchers say, reflects the fact that the heart is composed of many different cell types.
"It makes sense that some are more affected than others, but this is the first experimental data in human cells to show that diversity," says Bruneau.
Bruneau's team then collaborated with computational researchers to analyze how the impacted genes and proteins were related to each other. The new data let them sketch out a complex and interconnected network of molecules that work together during heart development.
"We've not only provided a list of genes that are implicated in congenital heart disease, but we've offered context in terms of how those genes are connected," says Irfan Kathiriya, MD, PhD, a pediatric cardiac anesthesiologist at UCSF Benioff Children's Hospital, an associate professor in the Department of Anesthesia and Perioperative Care at UCSF, a visiting scientist at Gladstone, and the first author of the study.
Several genes fell into known pathways already associated with heart development or congenital heart disease. Some genes were among those directly regulated by TBX5's function as a transcription factor, while others were affected in a less direct way, the study revealed. In addition, many of the altered genes were relevant to heart function in patients with congenital heart disease as they control the rhythm and relaxation of the heart, and defects in these genes are often found together with the structural defects.
The new paper doesn't point toward any individual drug target that can reverse a congenital heart disease after birth, but a better understanding of the network involved in healthy heart formation, as well as congenital heart disease may lead to ways to prevent the defects, the researchers say. In the same way that folate taken by pregnant women is known to help prevent neural tube defects, there may be a compound that can help ensure that the network of genes and proteins related to congenital heart disease stays balanced during embryonic development.
"Our new data reveal that the genes are really all part of one network--complex but singular--which needs to stay balanced during heart development," says Bruneau. "That means if we can figure out a balancing factor that keeps this network functioning, we might be able to help prevent congenital heart defects."
Reference: Kathiriya IS, Rao KS, Iacono G, et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Developmental Cell. 2020. doi:10.1016/j.devcel.2020.11.020.
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
Continue reading here:
Network of Genes Involved in Congenital Heart Disease Identified - Technology Networks
Industry News: Hamamatsu Photonics UK Ltd and the Medical Technologies Innovation Facility enter into a partnership agreement – SelectScience
By daniellenierenberg
The agreement will accelerate the development and availability of new medical and pharmaceutical therapies to improve patients lives
Hamamatsu Photonics UK Ltd and Medical Technologies Innovation Facility (MTIF) are pleased to announce they have entered into a partnership agreement enabling customers the ability to view and utilize Hamamatsus Functional Drug Screening System (FDSS) CELL. This is the first FDSS/CELL to be made available in the UK in this way.
This new collaboration aims to leverage the photonics expertise, novel proprietary technology and applications of Hamamatsu, with the significant medical technology research and development capabilities of MTIF.
This is a high-end specialist piece of equipment utilised in the development of innovative medicines around the world. We are very excited to be able to provide customers with this capability, that complements our own research using this technically superb equipment. Says Professor John Hunt, Head of Strategic Research at MTIF and within Nottingham Trent University.
This partnership provides companies with a unique opportunity to use cutting edge high through-put technology to screen compounds for pharmacological activity. These capabilities are usually unavailable to all but the largest organisations. This collaboration allows organisations of every size the opportunity to accelerate their drug discovery programme. Says Professor Mike Hannay, Managing Director of the Medical Technologies Innovation Facility (MTIF) .
Hamamatsu has a long history in developing cutting edge scientific equipment for the life science market; our FDSS/CELL enables scientists, such as those working at MTIF, to make breakthroughs in the field of drug discovery and compound research. We are really excited about this new partnership between Hamamatsu and the team at MTIF helping to make such advanced instrumentation available to hundreds of potential users throughout the UK research community. Tim Stokes, Managing Director of Hamamatsu Photonics UK Ltd.
The FDSS/CELL is a compact, easy to use screening system that enables monitoring of GPCRs and ion channels for drug discovery and life science research. Screening various compounds at high throughput (96 / 384 well assays) is enabled by fluorescence or luminescence measurements using a highly sensitive Hamamatsu camera, which captures cell dynamics under the same conditions with no time lag between wells. It is also capable of recording changes in electrical potential in iPSC-derived neuronal and cardiac stem cells to gain a better understanding of toxic compound effects.
Through this new technical collaboration, HPUK and MTIF will organically integrate their respective advanced technologies and development capabilities to showcase this novel laboratory screening technology onsite at MTIF in Nottingham, UK.
Hamamatsu Photonics and MTIF aim to benefit the UK life science sector by accelerating the availability of new medical and pharmaceutical therapies. By aligning capabilities and ambitions, the parties will deliver benefit to clients by helping them to successfully navigate the complexities of discovering drug and cell therapy candidates.
Want the latest science news straight to your inbox? Become a SelectScience member today >>
See the original post:
Industry News: Hamamatsu Photonics UK Ltd and the Medical Technologies Innovation Facility enter into a partnership agreement - SelectScience
Covid-19 can have impact on heart too, say experts – Hindustan Times
By daniellenierenberg
The Covid-19 can damage the heart both directly and indirectly, and lead to complications ranging from inflammation of the heart (myocarditis), injury to heart cells (necrosis), heart rhythm disorders (arrhythmias), heart attack, and muscle dysfunction that can lead to acute or protracted heart failure, experts said.
Covid-19 is a vascular disease that injures heart cells and muscle. It also leads to the formation of blood clots, both in the microvasculature and large vessels, which can block blood supply to the heart, brain and lungs and lead to stroke, heart attack and respiratory failure, said Dr Ravi R Kasliwal, chairman of clinical and preventive cardiology department at Medanta -The Medicity Hospital.
Also Read: Few Covid-19 deaths in Indias old-age homes, survey finds
A US study using MRI found cardiac abnormalities in 78 of 100 patients who had recently recovered from Covid-19, including 12 of 18 asymptomatic patients. Sixty patients had ongoing myocardial inflammation consistent with myocarditis, found the study, which was published in the Journal of American Medical Association Cardiology in July.
Even people with mild disease or no symptoms can develop life-threatening cardiovascular complications. Whats worrying is that this holds true for healthy adults with no pre-existing risk factors, which raise their risk of complications, said Dr Kasliwal, who recommends that everyone who has recovered from Covid-19 be screened for heart damage
Cardiac trouble
Extensive cardiac involvement is what differentiates Sars-CoV-2, the virus that causes Covid-19, from the six other coronaviruses that cause infection in humans, writes cardiologist Dr Eric J Topol, founder, director and professor of molecular medicine at the Scripps Research Translational Institute in La Jolla, California, in the journal Science.
The four human coronaviruses that cause cold-like symptoms have not been associated with heart abnormalities, though there have been isolated reports linking the Middle East Respiratory Syndrome (MERS) caused by MERS-CoV) with myocarditis, and cardiac disease with the Severe Acute Respiratory Syndrome (SARS) caused by Sars-CoV.
Also Read| Extraordinary uncertainties: Harvard prof on Covid-19, impact on mental health
Sars-CoV-2 is structurally different from Sars-CoV. The virus targets the angiotensin-converting enzyme 2 (Ace2) receptor throughout the body, facilitating cell entry by way of its spike protein, along with the cooperation of proteases. The heart is one of the many organs with high expression of Ace2. The affinity of Sars-CoV-2 to Ace2 is significantly greater than that of SARS, according to Dr Topol.
Topol notes the ease with which Sars-CoV-2 infects heart cells derived from induced pluripotent stem cells (iPSCs) in vitro, leading to a distinctive pattern of heart muscle cell fragmentation evident in autopsy reports. Besides directly infecting heart muscle cells, Sars-CoV-2 also enters and infects the endothelial cells that line the blood vessels to the heart and multiple vascular beds, leading to a secondary immune response. This causes blood pressure dysregulation, and activation of a proinflammatory response leading to a cytokine storm, which is a potentially fatal systemic inflammatory syndrome associated with Covid-19.
Persisting problems
Studies have found that injury to heart cells reflected in blood concentrations of a cardiac muscle-specific enzyme called troponin affects at least one in five hospitalised patients and more than half of those with pre-existing heart conditions, which raises the risk of death. Patients with higher troponin amounts also have high markers of inflammation (including C-reactive protein, interleukin-6, ferritin, lactate dehydrogenase), high neutrophil count, and heart dysfunction, all of which heighten immune response.
The heightened systemic inflammatory responses and diminished blood supply because of clotting, endotheliitis (blood vessel inflammation), sepsis, or hypoxemia (oxygen deprivation) because of acute lung infection leads to indirect cardiac damage, said Dr Kasliwal.
The cardiovascular damage associated with Sars-CoV-2 infection can persist beyond recovery. Since the virus affects the heart as much as the respiratory tract, further research is needed to understand why some people are more vulnerable to heart damage than others.
View original post here:
Covid-19 can have impact on heart too, say experts - Hindustan Times
Flavours added to vaping devices can damage the heart: Study – Sify News
By daniellenierenberg
New York, Dec 12 (IANS) Researchers have revealed the appealing array of fruit and candy flavours that entice millions of young people to take up vaping are cardiotoxic and disrupt the heart's normal electrical activity.
Mounting studies indicate that the nicotine and other chemicals delivered by vaping, while generally less toxic than conventional cigarettes, can damage the lungs and heart.
"But so far there has been no clear understanding about what happens when the vaporized flavouring molecules in flavoured vaping products, after being inhaled, enter the bloodstream and reach the heart," said study author Sami Noujaim from the University of South Florida in the US.
In the study, published in the American Journal of Physiology-Heart and Circulatory Physiology, the research team reported on a series of experiments assessing the toxicity of vape flavourings in cardiac cells and in young mice.
The flavoured electronic nicotine delivery systems widely popular among teens and young adults are not harm-free.
"Altogether, our findings in the cells and mice indicate that vaping does interfere with the normal functioning of the heart and can potentially lead to cardiac rhythm disturbances," Noujaim said.
In mouse cardiac muscle cells (HL-1 cells), the researchers tested the toxicity of three different popular flavours of e-liquid: fruit flavour, cinnamon, and vanilla custard.
All three were toxic to HL-1 cells exposed to e-vapour bubbled into the laboratory dish where the cells were cultured.
Cardiac cells derived from human pluripotent stem cells were exposed to three distinct e-vapours.
The first e-vapour containing the only solvent interfered with the electrical activity and beating rate of cardiac cells in the dish. A second e-vapour with nicotine added to the solvent increased the toxic effects on these cells.
The third e-vapour comprised of nicotine, solvent, and vanilla custard flavouring (the flavour previously identified as most toxic) augmented damage to the spontaneously beating cells even more.
"This experiment told us that the flavouring chemicals added to vaping devices can increase harm beyond what the nicotine alone can do," Noujaim said.
The findings showed that mice exposed to vaping were more prone to an abnormal and dangerous heart rhythm disturbance known as ventricular tachycardia compared to control mice.
"Our research matters because regulation of the vaping industry is a work in progress," Noujaim noted.
--IANS
bu/bg
See original here:
Flavours added to vaping devices can damage the heart: Study - Sify News