ADL live: Matters of the Heart Monash University – Monash Lens
By daniellenierenberg
With all the attention still focused on the devastating COVID-19 pandemic despite Australia slowly moving towards a new normal heart disease remains the countrys leading cause of death. It kills one person every 12 minutes, and causes one in four deaths in Australia and beyond.
The heart beats without our active thought, which is why, perhaps, we take for granted the health of this rhythmic, ticking pump; our most vital organ.
Watchthe 'A Different Lens' live event viaFacebookorLinkedInat 7.30pm on Thursday, 5 November
With the launch now of Monash Universitys Victorian Heart Institute (VHI), and the Victorian Heart Hospital (VHH) also opening on campus in 2022, the focus from the experts involved will be on this one-organ system, although from an expansive range of medical and other disciplines. When the under-construction hospital opens, the two new heart hubs will be housed in the same building, making it the centre of heart research, teaching and cardiac care in Australia. It will be the first and only dedicated heart hospital in the country.
Every year, 50,000 Australians will suffer a heart attack, killing 20 people a day, with one person dying every 12 minutes.
Professor Steve Nicholls, a world-renowned cardiologist originally from Adelaide, heads both. The work of the new institute is already underway, and is expected to break down barriers between research, teaching and clinical care.
There is something incredibly exciting about the fact that biomedical research will be happening in the same building that we will treat patients, Professor Nicholls says.
He's outlined what he calls the "five grand challenges"for the next decade of heart research, with the ambition of shifting the status quo in heart disease.
They are:
Living well is understanding that we need to take a more holistic approach to treating heart health, Professor Nicholls says.
We need to consider diet, sleep, mindfulness and wellbeing, but also survivorship. People who survive other diseases like cancer now find themselves at a great risk of heart disease. How do we improve health, and the patient experience for them?
Dr Emily Kotschet, a Monash cardiologist and electrophysiologist, is a specialist in the technology and "mechanical intervention"(pacemaker) side of the equation.
Technology is best when you are advancing in terms of treatment, not just prevention, she says.
The advances right now are miniaturisation and digital technology for managing patients remotely implantables that are remote-accessed, self-sufficient and patient driven. With the patients in more control than ever, their experience is continually improving.
Technologically, the old pacemaker was a big can on your shoulder with leads to the heart, she says.
The new ones are like AAA batteries that sit beside the heart. As we miniaturise for treatment, there will be way more engagement with patients to pick up their symptoms early and get on top of them early. Discussions with IT academics at Monash will bridge the gap between our method and the digital platforms that are emerging.
Dr Kotschet also says womens heart health has not had the media profile and reach that breast cancer has, so public awareness is low.
I think breast cancer really got cancer into the spotlight 15 or 20 years ago with celebrities and endorsements, and they are now well-funded. Their [clinical]trials are travelling quite nicely. Now I think its time for heart disease as a big killer to find its spotlight.
This ability to more freely collaborate across university disciplines on an ostensibly "medical"issue is a priority for the heart specialists and clinicians.
The head of the School of Public Health and Preventive Medicine, Professor Sophia Zoungas, is a leading expert in screening and managing cardiovascular disease. She likens the new institute and hospital to a forward-thinking company such as Google that, when presented with a problem, draws in the best minds available to help solve it.
Despite the fact the institute and hospital have a physical location, it also provides a forum for virtual, broader work, bringing in areas across the University that may not be co-located, she says.
Whether thats public health, engineering, science hopefully it will also provide that core clinical training for clinicians and researchers in the one place. We will be able to track the best people, the best minds.
She says COVID-19 has put heart disease further under the radar.
People forget heart disease is still our biggest killer. We have all been a little distracted this year with the global pandemic but even within the context of this pandemic, one of the most serious outcomes of it [for patients]has been the cardiovascular complications.
For Professor Peter Currie, the head of Monashs renowned Australian Regenerative Medicine Institute (ARMI), the future of heart health relies on scientists understanding the fundamental building blocks of the heart. Despite the heart being unable to repair itself (unlike other organs), and the fact that stem cells do not work, Professor Currie has an optimistic view of how regenerative medicine can create the heart disease solutions of the future. He sees this is as the challenge, and the new institute and hospital as the place to do it.
I think the great opportunity is to cherry-pick interested and dedicated researchers who have an interest in this area of biology and medicine to work on these big problems.
Everyone thinks cardiovascular disease has been hit on the head because weve got a few drugs, he says, but nothing could be further from the truth.
Originally posted here:
ADL live: Matters of the Heart Monash University - Monash Lens
Autologous Stem Cell Based Therapies Market to Witness Increase in Revenues by 2020-2026 – PRnews Leader
By daniellenierenberg
Beathan Report has released the International report on The Autologous Stem Cell Based Therapies market, which is made up of advice about each of the essential parameters of this market like ingestion and the manufacturing patterns coupled with all the earnings patterns for the prediction period. Concerning creation aspect, the report provides complete detailed analysis about the manufacturing procedures combined with the gross financials accumulated by the very best most producers working within this business. The main facet of this Autologous Stem Cell Based Therapies market thats covered in the report helps the customers and the associations to better comprehend the company profile concerning drivers, restraints, challenges, and opportunities affecting and pertaining the market dynamics.
Request Sample Report @ https://beathanreports.com/request-for-sample-report/9820
Key market players
Major competitors identified in this market include Regeneus, Mesoblast, Pluristem Therapeutics Inc, US STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe, etc.
Based on the Region:
Asia-Pacific (China, Japan, South Korea, India and ASEAN)
North America (US and Canada)
Europe (Germany, France, UK and Italy)
Rest of World (Latin America, Middle East & Africa)
COVID-19 has affected the Overall worldwide companies and itll have a enormous time for the company recovery. Vast majority of the business sectors have realigned their company plans, priorities, and have amended their economic planning so as to stay in the company and keep their standing on the international platform. The thorough evaluation of this Autologous Stem Cell Based Therapies market will enable the brand new market entrants to acquire reliable market approaches and strategy powerful action plans for the prediction period.
Based on the Type:
Embryonic Stem Cell
Resident Cardiac Stem Cells
Umbilical Cord Blood Stem Cells
Based on the Application:
Neurodegenerative Disorders
Autoimmune Diseases
Cardiovascular Diseases
Request Discount About This Report @ https://beathanreports.com/discount-request-on-report/9820
Important highlights of this Autologous Stem Cell Based Therapies market report:
* COVID-19 effect on the earnings Streams of the Autologous Stem Cell Based Therapies market players.
* Statistics of the overall sales quantity And general market earnings.
* Business trends breakdowns.
* Estimated expansion rate of this Autologous Stem Cell Based Therapies Market.
* In-depth Information Regarding the important Distributors, traders, and dealers.
Key Benefits of the report:
-This report provides an extensive analysis of the current and emerging market trends and dynamics in the global Autologous Stem Cell Based Therapies market.
-In-depth analysis is conducted by constructing market estimations for the key market segments between 2020 and 2027.
-This report entails the detailed quantitative analysis of the current market and estimations through 2020-2027, which assists in identifying the prevailing market opportunities.
-Extensive analysis of the market is conducted by following key product positioning and monitoring the top competitors within the market framework
-Comprehensive analysis of all regions is provided that determines the prevailing opportunities in these geographies.
Request For Customization About This Report @ https://beathanreports.com/request-for-customization/9820
Contact Us
Beathan Report,
4004 W Lake Sammamish,
Pkway B9 Redmond,
WA 98052 United States.
Tel: +44 115 888 3028
Web: http://www.beathanreports.com
About Us
At Beathan Report, we understand that the research we provide is only as good as the outcome it inspires. These reports are generated by well-renowned publishers on the basis of the data acquired from an extensive research and credible business statistics. Thats why we are proud to provide the widest range of research products, multilingual 24/7 customer support and dedicated custom research services to deliver the insights you need to achieve your goals. Take a look at few of our aspects that makes Beathan Report an asset to your business.
Originally posted here:
Autologous Stem Cell Based Therapies Market to Witness Increase in Revenues by 2020-2026 - PRnews Leader
Orphan Drug Designation Granted for CSL Behring’s Investigational Plasma-Derived Hemopexin Therapy for Sickle Cell Disease – PRNewswire
By daniellenierenberg
KING OF PRUSSIA, Pa., Nov. 2, 2020 /PRNewswire/ --Global biotherapeutics leader CSL Behring announced today that its investigational, plasma-derived hemopexin therapy (CSL889) received orphan drug designation from both the European Commission and the U.S. Food and Drug Administration (FDA) Office of Orphan Products Development for the treatment of sickle cell disease (SCD). These designations grant special status to drugs and biological products intended to treat a rare disease, affecting less than 200,000 patients in the US or affecting not more than five in 10,000 people in the European Union.
CSL889 is a form of plasma-derived hemopexin, an important, naturally occurring protein produced in the body whose levels are decreased in patients with SCD. Low levels of hemopexin have been associated with increased symptoms in SCD, particularly acute vaso-occlusive crises (VOC). VOC, the most common manifestation in SCD, are severe, debilitating episodes characterized by severe pain. There is no approved treatment for acute VOC, so episodes can only be managed with supportive measures such as fluids and pain killers.
"Having treated hundreds of adults and children living with sickle cell disease over 30 years, I'm intensely aware of the need for novel and effective therapies, especially to relieve the tremendous pain from VOC," said Professor Greg Kato, who is leading the clinical development of CSL 889 at CSL Behring. "This newly granted orphan status recognizes the urgency for progressing new treatment options into the clinic."
CSL Behring has two Phase I SCD programs poised to evolve the treatment paradigm for patients: CSL889 hemopexin therapy for the treatment of VOC and CSL200 lentiviral stem cell gene therapy for long-term disease management.
About Sickle Cell Disease
Sickle Cell Disease is a hereditary blood disorder in which red blood cells contain an abnormal type of hemoglobin, causing some of the cells to become distorted into a crescent, or sickle-shape. These misshapen red blood cells have difficulty passing through small blood vessels, slowing and blocking blood flow to areas of the body, damaging tissue that isn't receiving a normal flow of blood. Sickle Cell Disease can lead to episodes of severe pain, strokes, kidney, lung and heart problems, slow growth, vision problems and infection vulnerability. While frequency of Sickle Cell Disease varies globally, it is estimated to impact 100,000 people in the US and 1 in 10,000 persons in the European Union.
About CSL Behring
CSL Behringis a global biotherapeutics leader driven by its promise to save lives. Focused on serving patients' needs by using the latest technologies, we develop and deliver innovative therapies that are used to treat coagulation disorders, primary immune deficiencies, hereditary angioedema, respiratory disease, and neurological disorders. The company's products are also used in cardiac surgery, burn treatment and to prevent hemolytic disease of the newborn.
CSL Behring operates one of the world's largest plasma collection networks, CSL Plasma. The parent company, CSL Limited (ASX:CSL;USOTC:CSLLY), headquartered in Melbourne, Australia, employs more than 27,000 people, anddelivers its life-saving therapies to people in more than 100 countries. For inspiring stories about the promise of biotechnology, visit Vita CSLBehring.com/vita and follow us on Twitter.com/CSLBehring.
SOURCE CSL Behring
See the original post here:
Orphan Drug Designation Granted for CSL Behring's Investigational Plasma-Derived Hemopexin Therapy for Sickle Cell Disease - PRNewswire
Ready To Use Autologous Stem Cell Based Therapies Market Industry Analysis, Trend and Growth, 2020-2020 – Royal Sutton News
By daniellenierenberg
The Autologous Stem Cell Based Therapies Market report makes available Today and Forthcoming technical and financial details of this industry. Few of those chief insights of this business report include; different analysis of the market drivers & restraints, major market players engaged like industry, detailed analysis of their market segmentation & aggressive evaluation. It quotes CAGR values in percentages which help to be familiar with increase or fall occurring in the market for particular product for the particular forecast period. Global Autologous Stem Cell Based Therapies Market report also encompasses tactical profiling of important players on the market, systematic analysis of the core competencies & brings a competitive landscape for the market.
Request Sample Report @ https://beathanreports.com/request-for-sample-report/8263
The Autologous Stem Cell Based Therapies Market report can be employed by both Conventional and new players from the market for whole knowhow of this marketplace. The business analysis report brings into consideration important industry trends, market size, market share estimates, and revenue volume that assist industry to speculate the strategies to increase return on investment (ROI). In addition, the market document holds a considerable significance as it is all about describing market definition, classifications, software and engagements. Together with the study of competitor analysis conducted in this Autologous Stem Cell Based Therapies Market report, industry can get fluency of these plans of key players on the market which includes new product launches, expansions, arrangements, joint ventures, partnerships, and acquisitions.
Market Evaluation: Global Autologous Stem Cell Based Therapies Market
Global Autologous Stem Cell Based Therapies economy is set to see a substantial CAGR Of XX percent in the forecasted period of 2019-2026. This increase in the market can be attributed because of improvement in autoimmune identification and technology advancement in the business.
The following players are covered in this report:
Regeneus
Mesoblast
Pluristem Therapeutics Inc
US STEM CELL, INC.
Brainstorm Cell Therapeutics
Tigenix
Med cell Europe
Autologous Stem Cell Based Therapies
Request Discount About This Report @ https://beathanreports.com/discount-request-on-report/8263
Breakdown Data by Type
Embryonic Stem Cell
Resident Cardiac Stem Cells
Umbilical Cord Blood Stem Cells
Autologous Stem Cell Based Therapies Breakdown Data by Application
Neurodegenerative Disorders
Autoimmune Diseases
Cardiovascular Diseases
Table of Contents : Autologous Stem Cell Based Therapies Market
Part 01: Executive Summary
Part 02: Scope Of The Report
Part 03: Research Methodology
Part 04: Market Landscape
Part 05: Pipeline Analysis
Part 06: Market Sizing
Part 07: Five Forces Analysis
Part 08: Market Segmentation
Part 09: Customer Landscape
Part 10: Regional Landscape
Part 11: Decision Framework
Part 12: Drivers And Challenges
Part 13: Market Trends
Part 14: Vendor Landscape
Part 15: Vendor Analysis
Part 16: Appendix
Request For Customization About This Report @ https://beathanreports.com/request-for-customization/8263
Contact Us
Beathan Report,
4004 W Lake Sammamish,
Pkway B9 Redmond,
WA 98052 United States.
Tel: +44 115 888 3028
Web: http://www.beathanreports.com
About Us
At Beathan Report, we understand that the research we provide is only as good as the outcome it inspires. These reports are generated by well-renowned publishers on the basis of the data acquired from an extensive research and credible business statistics. Thats why we are proud to provide the widest range of research products, multilingual 24/7 customer support and dedicated custom research services to deliver the insights you need to achieve your goals. Take a look at few of our aspects that makes Beathan Report an asset to your business.
Novartis expands Kymriah manufacturing footprint with first-ever approved site for commercial CAR-T cell therapy manufacturing in Asia – GlobeNewswire
By daniellenierenberg
Basel, October 30, 2020 Novartis today announced the receipt of marketing authorization from Japans Ministry of Health, Labor and Welfare (MHLW) for Foundation for Biomedical Research and Innovation at Kobe ("FBRI") to manufacture and supply commercial Kymriah (tisagenlecleucel) for patients in Japan. This approval makes FBRI the first and only approved commercial manufacturing site for CAR-T cell therapy in Asia.
Behind our efforts to reimagine medicine with CAR-T cell therapy lies a commitment to build a manufacturing network that brings treatment closer to patients, commented Steffen Lang, Global Head of Novartis Technical Operations. The expertise and infrastructure of FBRI, a world-leading manufacturing organization, allows us to bring CAR-T manufacturing to Asia. With the Japan MHLW commercial manufacturing approval, the recent capacity expansion in the US and our ongoing efforts to optimize and evolve our processes, we are well-positioned to deliver this potentially curative treatment option to more patients around the world.
Novartis has the largest geographical CAR-T cell therapy manufacturing network in the world, including seven CAR-T manufacturing facilities, across four continents. Commercial manufacturing for Kymriah now takes place at five sites globally including at the Morris Plains, New Jersey facility, where the US Food and Drug Administration (FDA) recently approved a further increase in manufacturing capacity.
Kymriah is the first-ever FDA-approved CAR-T cell therapy, and the first-ever CAR-T to be approved in two distinct indications. It is a one-time treatment designed to empower patients immune systems to fight their cancer. Kymriah is currently approved for the treatment of r/r pediatric and young adult (up to 25 years of age) acute lymphoblastic leukemia (ALL), and r/r adult diffuse large B-cell lymphoma (DLBCL)1. Kymriah, approved in both indications by the Japan MHLW in 2019, is currently the only CAR-T cell therapy approved in Asia. Clinical manufacturing began at FBRI in 2019 and will continue alongside commercial manufacturing.
Kymriah was developed in collaboration with the Perelman School of Medicine at the University of Pennsylvania, a strategic alliance between industry and academia, which was first-of-its-kind in CAR-T research and development.
About Novartis Commitment to Oncology Cell & Gene Novartis has a mission to reimagine medicine by bringing curative cell & gene therapies to patients worldwide. Novartis has a deep CAR-T pipeline and ongoing investment in manufacturing and supply chain process improvements. With active research underway to broaden the impact of cell and gene therapy in oncology, Novartis is going deeper in hematological malignancies, reaching patients with other cancer types and evaluating next-generation CAR-T cell therapies that focus on new targets and utilize new technologies.
Novartis was the first pharmaceutical company to significantly invest in pioneering CAR-T research and initiate global CAR-T trials. Kymriah, the first approved CAR-T cell therapy, developed in collaboration with the Perelman School of Medicine at the University of Pennsylvania, is the foundation of Novartis commitment to CAR-T cell therapy. Kymriah is currently approved for use in at least one indication in 26 countries and at more than 260 certified treatment centers, with the ambition for further expansion to help fulfill the ultimate goal of bringing CAR-T cell therapy to every patient in need.
The Novartis global CAR-T manufacturing footprint spans seven facilities, across four continents. This comprehensive, integrated footprint strengthens the flexibility, resilience and sustainability of the Novartis manufacturing and supply chain. Commercial and clinical trial manufacturing is now ongoing at Novartis-owned facilities in Stein, Switzerland, Les Ulis, France and Morris Plains, New Jersey, USA, as well as at the contract manufacturing sites at Fraunhofer-Institut for cell therapy and immunology (Fraunhofer-Institut fr Zelltherapie und Immunologie) facility in Leipzig, Germany, and now FBRI in Kobe, Japan. Manufacturing production at Cell Therapies in Australia and Cellular Biomedicine Group in China is forthcoming.
ImportantSafety information from the Kymriah SmPC
EU Name of the medicinal product:
Kymriah 1.2 x 106 6 x 108 cells dispersion for infusion
Important note: Before prescribing, consult full prescribing information.
Presentation: Cell dispersion for infusion in 1 or more bags for intravenous use (tisagenlecleucel).
Indications: Treatment of pediatric and young adult patients up to and including 25 years of age with B-cell acute lymphoblastic leukemia (ALL) that is refractory, in relapse posttransplant or in second or later relapse. Treatment of adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) after two or more lines of systemic therapy.
Dosage and administration:
B-cell patients: For patients 50 kg and below: 0.2 to 5.0 x 106 CAR-positive viable T-cells/kg body weight. For patients above 50 kg: 0.1 to 2.5 x 108 CAR-positive viable T-cells (non-weight based).
DLBCL Patients: 0.6 to 6.0108 CAR-positive viable T-cells (non-weight based).
Pretreatment conditioning (lymphodepleting chemotherapy): Lymphodepleting chemotherapy is recommended to be administered before Kymriah infusion unless the white blood cell (WBC) count within one week prior to infusion is 1,000 cells/L. The availability of Kymriah must be confirmed prior to starting the lymphodepleting regimen.
Precautions before handling or administering Kymriah: Kymriah contains genetically modified human blood cells. Healthcare professionals handling Kymriah should therefore take appropriate precautions (wearing gloves and glasses) to avoid potential transmission of infectious diseases.
Preparation for infusionThe timing of thaw of Kymriah and infusion should be coordinated. Once Kymriah has been thawed and is at room temperature (20C 25C), it should be infused within 30minutes to maintain maximum product viability, including any interruption during the infusion.
Administration Kymriah should be administered as an intravenous infusion through latexfree intravenous tubing without a leukocyte depleting filter, at approximately 10 to 20mL per minute by gravity flow. If the volume of Kymriah to be administered is 20mL, intravenous push may be used as an alternative method of administration.
All contents of the infusion bag(s) should be infused.
Clinical assessment prior to infusion: Kymriah treatment should be delayed in some patient groups at risk (see Special warnings and precautions for use).
Monitoring after infusion: Patients should be monitored daily for the first 10 days following infusion for signs and symptoms of potential cytokine release syndrome, neurological events and other toxicities. Physicians should consider hospitalisation for the first 10 days post infusion or at the first signs/symptoms of CRS and/or neurological events. After the first 10 days following the infusion, the patient should be monitored at the physicians discretion. Patients should be instructed to remain within proximity of a qualified clinical facility for at least 4 weeks following infusion.
Elderly (above 65 years of age): Safety and efficacy have not been established in B-cell patients. No dose adjustment is required in patients over 65 years of age in DLBCL patients.
Paediatric patients: No formal studies have been performed in paediatric patients with B-cell ALL below 3 years of age. The safety and efficacy of Kymriah in children and adolescents below 18 years of age have not yet been established in DLBCL. No data are available.
Patients seropositive for hepatitis B virus (HBV), hepatitis C virus (HCV), or human immunodeficiency virus (HIV): There is no experience with manufacturing Kymriah for patients with a positive test for HIV, active HBV, or active HCV infection. Leukapheresis material from these patients will not be accepted for Kymriah manufacturing.
Contraindications: Hypersensitivity to the active substance or to any of the excipients of Kymriah. Contraindications of the lymphodepleting chemotherapy must be considered.
Warnings and precautions: Reasons to delay treatment: Due to the risks associated with Kymriah treatment, infusion should be delayed if a patient has any of the following conditions: Unresolved serious adverse reactions (especially pulmonary reactions, cardiac reactions or hypotension) from preceding chemotherapies, active uncontrolled infection, active graft versus host disease (GVHD), significant clinical worsening of leukaemia burden or rapid progression of lymphoma following lymphodepleting chemotherapy. Blood, organ, tissue and cell donation: Patients treated with Kymriah should not donate blood, organs, tissues or cells.
Active central nervous system (CNS) leukaemia or lymphoma: There is limited experience of use of Kymriah in patients with active CNS leukaemia and active CNS lymphoma. Therefore the risk/benefit of Kymriah has not been established in these populations. Risk of CRS: Occurred in almost all cases within 1 to 10 days post infusion with a median time to onset of 3 days and a median time to resolution of8 days. See full prescribing information for management algorithm of CRS. Risk of neurological events: Majority of events, in particular encephalopathy, confusional state or delirium, occurred within 8 weeks post infusion and were transient. The median time to onset of neurological events was 8 days in B-cell ALL and 6 days in DLBCL; the median time to resolution was 7 days for B-cell ALL and 13 days for DLBCL. Patients should be monitored for neurological events. Risk of infections: Delay start of therapy with Kymriah until active uncontrolled infections have resolved. As appropriate, administer prophylactic antibiotics and employ surveillance testing prior to and during treatment with Kymriah. Serious infections were observed in patients, some of which were life threatening or fatal. After Kymriah administration observe patient and ensure prompt management in case of signs of infection Risk of febrile neutropenia: Frequently observed after Kymriah infusion, may be concurrent with CRS. Appropriate management necessary. Risk of prolonged cytopenias: Appropriate management necessary. Prolonged cytopenia has been associated with increased risk of infections. Myeloid growth factors, particularly granulocyte macrophage colony stimulating factor (GM CSF), not recommended during the first 3 weeks after Kymriah infusion or until CRS has been resolved. Risk of secondary malignancies: Patients treated with Kymriah may develop secondary malignancies or recurrence of their cancer and should be monitored lifelong for secondary malignancies. Risk of hypogammaglobulinemia or agammaglobulinemia: Infection precautions, antibiotic prophylaxis and immunoglobulin replacement should be managed per age and standard guidelines. In patients with low immunoglobulin levels preemptive measures such as immunoglobulin replacement and rapid attention to signs and symptoms of infection should be implemented. Live vaccines: The safety of immunisation with live viral vaccines during or following Kymriah treatment was not studied. Vaccination with live virus vaccines is not recommended at least 6 weeks prior to the start of lymphodepleting chemotherapy, during Kymriah treatment, and until immune recovery following treatment with Kymriah. Risk of tumor lysis syndrome (TLS): Patients with elevated uric acid or high tumor burden should receive allopurinol or alternative prophylaxis prior to Kymriah infusion. Continued monitoring for TLS following Kymriah administration should also be performed. Concomitant disease: Patients with a history of active CNS disorder or inadequate renal, hepatic, pulmonary or cardiac function are likely to be more vulnerable to the consequences of the adverse reactions of Kymriah and require special attention. Prior stem cell transplantation: Kymriah infusion is not recommended within 4 months of undergoing an allogeneic stem cell transplant (SCT) because of potential risk of worsening GVHD. Leukapheresis for Kymriah manufacturing should be performed at least 12weeks after allogeneic SCT. Serological testing: There is currently no experience with manufacturing Kymriah for patients testing positive for HBV, HCV and HIV. Screening for HBV, HCV and HIV, must be performed before collection of cells for manufacturing. Hepatitis B virus (HBV) reactivation, can occur in patients treated with medicinal products directed against B cells and could result in fulminant hepatitis, hepatic failure and death. Prior treatment with anti CD19 therapy: There is limited experience with Kymriah in patients exposed to prior CD19 directed therapy. Kymriah is not recommended if the patient has relapsed with CD19 negative leukaemia after prior anti-CD19 therapy. Interference with serological testing: Due to limited and short spans of identical genetic information between the lentiviral vector used to create Kymriah and HIV, some commercial HIV nucleic acid tests (NAT) may give a false positive result. Sodium and potassium content: This medicinal product contains 24.3 to 121.5mg sodium per dose, equivalent to 1 to 6% of the WHO recommended maximum daily intake of 2g sodium for an adult. This medicinal product contains potassium, less than 1mmol (39mg) per dose, i.e. essentially potassium free. Content of dextran 40 and dimethyl sulfoxide (DMSO): Contains 11 mg dextran 40 and 82.5 mg dimethyl sulfoxide (DMSO) per mL. Each of these excipients are known to possibly cause anaphylactic reaction following parenteral administration. Patients not previously exposed to dextran and DMSO should be observed closely during the first minutes of the infusion period.
Interaction with other medicinal products and other forms of interaction
Live vaccines: The safety of immunisation with live viral vaccines during or following Kymriah treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during Kymriah treatment, and until immune recovery following treatment with Kymriah.
Fertility, pregnancy and lactation
Women of childbearing potential/Contraception in males and females: Pregnancy status for females of reproductive potential should be verified prior to starting treatment with Kymriah. Consider the need for effective contraception in patients who receive the lymphodepleting chemotherapy. There are insufficient exposure data to provide a recommendation concerning duration of contraception following treatment with Kymriah.
Pregnancy: There are no data from the use of Kymriah in pregnant women. It is not known whether Kymriah has the potential to be transferred to the foetus via the placenta and could cause foetal toxicity, including B cell lymphocytopenia. Kymriah is not recommended during pregnancy and in women of childbearing potential not using contraception. Pregnant women should be advised on the potential risks to the foetus. Pregnancy after Kymriah therapy should be discussed with the treating physician. Pregnant women who have received Kymriah may have hypogammaglobulinaemia. Assessment of immunoglobulin levels is indicated in newborns of mothers treated with Kymriah.
Breast feeding: It is unknown whether Kymriah cells are excreted in human milk, a risk to the breast fed infant cannot be excluded. Women who are breast feeding should be advised of the potential risk to the breast fed infant. Breast-feeding should be discussed with the treating physician.
Fertility: There are no data on the effect of Kymriah on fertility.
Effects on ability to drive and use machinesDriving and engaging in hazardous activities in the 8 weeks following infusion should be refrained due to risks for altered or decreased consciousness or coordination.
Adverse drug reactions:
B-Cell ALL patients and DLBCL patients:
Very common (10%): Infections - pathogen unspecified, viral infections, bacterial infections, fungal infections, anaemia, haemorrhage, febrile neutropenia, neutropenia, thrombocytopenia, cytokine release syndrome, hypogammaglobulinaemia, decreased appetite, hypokalaemia, hypophosphataemia, hypomagnesaemia, hypocalcaemia, anxiety, delirium, sleep disorder, headache, encephalopathy, arrhythmia, hypotension, hypertension, cough, dyspnoea, hypoxia, diarrhoea, nausea, vomiting, constipation, abdominal pain, rash, arthralgia, acute kidney injury, pyrexia, fatigue, oedema, pain, chills, lymphocyte count decreased, white blood cell count decreased, haemoglobin decreased, neutrophil count decreased, platelet count decreased, aspartate aminotransferase increased.
Common (1 to 10%): Haemophagocytic lymphohistiocytosis, leukopenia, pancytopenia, coagulopathy, lymphopenia, infusion-related reactions, graft versus host disease, hypoalbuminaemia, hyperglycaemia, hyponatraemia, hyperuricaemia, fluid overload, hypercalcemia, tumor lysis syndrome, hyperkalaemia, hyperphosphataemia, hypernatraemia, hypermagnesaemia, dizziness, peripheral neuropathy, tremor, motor dysfunction, seizure, speech disorder, neuralgia, ataxia, visual impairment, cardiac failure, cardiac arrest, thrombosis, capillary leak syndrome, oropharyngeal pain, pulmonary oedema, nasal congestion, pleural effusion, tachypnea, acute respiratory distress syndrome, stomatitis, abdominal distension, dry mouth, ascites, hyperbilirubinaemia, pruritus, erythema, hyperhidrosis, night sweats, back pain, myalgia, muscolosceletal pain, influenza-like illness, asthenia, multiple organ dysfunction syndrome, alanine aminotransferase increased, blood bilirubin increased, weight decreased, serum ferritin increased, blood fibrinogen decreased, international normalized ratio increased, fibrin D dimer increased, activated partial thromboplastin time prolonged, blood alkaline phosphate increased, prothrombin time prolonged.
Uncommon: B-cell aplasia, ischaemic cerebral infarction, flushing, lung infiltration.
Packs and prices: Country-specific.
Legal classification: Country-specific.
DisclaimerThis press release contains forward-looking statements within the meaning of the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements can generally be identified by words such as potential, can, will, plan, may, could, would, expect, anticipate, seek, look forward, believe, committed, investigational, pipeline, launch, or similar terms, or by express or implied discussions regarding potential marketing approvals, new indications or labeling for the investigational or approved products described in this press release, or regarding potential future revenues from such products. You should not place undue reliance on these statements. Such forward-looking statements are based on our current beliefs and expectations regarding future events, and are subject to significant known and unknown risks and uncertainties. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those set forth in the forward-looking statements. There can be no guarantee that the investigational or approved products described in this press release will be submitted or approved for sale or for any additional indications or labeling in any market, or at any particular time. Nor can there be any guarantee that such products will be commercially successful in the future. In particular, our expectations regarding such products could be affected by, among other things, the uncertainties inherent in research and development, including clinical trial results and additional analysis of existing clinical data; regulatory actions or delays or government regulation generally; global trends toward health care cost containment, including government, payor and general public pricing and reimbursement pressures and requirements for increased pricing transparency; our ability to obtain or maintain proprietary intellectual property protection; the particular prescribing preferences of physicians and patients; general political, economic and business conditions, including the effects of and efforts to mitigate pandemic diseases such as COVID-19; safety, quality, data integrity or manufacturing issues; potential or actual data security and data privacy breaches, or disruptions of our information technology systems, and other risks and factors referred to in Novartis AGs current Form 20-F on file with the US Securities and Exchange Commission. Novartis is providing the information in this press release as of this date and does not undertake any obligation to update any forward-looking statements contained in this press release as a result of new information, future events or otherwise.
About NovartisNovartis is reimagining medicine to improve and extend peoples lives. As a leading global medicines company, we use innovative science and digital technologies to create transformative treatments in areas of great medical need. In our quest to find new medicines, we consistently rank among the worlds top companies investing in research and development. Novartis products reach nearly 800 million people globally and we are finding innovative ways to expand access to our latest treatments. About 110,000 people of more than 140 nationalities work at Novartis around the world. Find out more at https://www.novartis.com.
Novartis is on Twitter. Sign up to follow @Novartis at https://twitter.com/novartisnewsFor Novartis multimedia content, please visithttps://www.novartis.com/news/media-libraryFor questions about the site or required registration, please contact media.relations@novartis.com
References
1.Kymriah (tisagenlecleucel) Summary of Product Characteristics (SmPC), 2018.
# # #
Novartis Media RelationsE-mail: media.relations@novartis.com
Novartis Investor RelationsCentral investor relations line: +41 61 324 7944E-mail: investor.relations@novartis.com
Originally posted here:
Novartis expands Kymriah manufacturing footprint with first-ever approved site for commercial CAR-T cell therapy manufacturing in Asia - GlobeNewswire
Regenerative Medicine Market Poised to Garner Maximum Revenues During 2025 – The Think Curiouser
By daniellenierenberg
Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.
Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1889
Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.
There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.
Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.
Buy This Report @https://www.tmrresearch.com/checkout?rep_id=1889<ype=S
Global Regenerative Medicine Market: Overview
The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.
Global Regenerative Medicine Market: Key Trends
The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.
On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.
Global Regenerative Medicine Market: Market Potential
The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.
Global Regenerative Medicine Market: Regional Outlook
In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.
Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.
Global Regenerative Medicine Market: Competitive Analysis
The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.
Some of the key players operating in the regenerative medicine market across the globe are Vericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc. A large number of players are anticipated to enter the global market throughout the forecast period.
To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1889
About TMR Research
TMR Research is a premier provider of customized market research and consulting services to busi-ness entities keen on succeeding in todays supercharged economic climate. Armed with an experi-enced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Excerpt from:
Regenerative Medicine Market Poised to Garner Maximum Revenues During 2025 - The Think Curiouser
Role of Trop-2 as an Actionable Biomarker in Solid Tumors – OncLive
By daniellenierenberg
Trophoblast cell surface antigen 2 (Trop-2) is a glycoprotein that spans the epithelial membrane surface and plays a role in cell self-renewal, proliferation, and transformation.1,2 Encoded by the TACSTD2 gene, Trop-2 is a 35-kDa protein composed of a large extracellular domain, a single transmembrane domain, and a short intracellular tail that is the functionally dominant part of the protein.1-4
Under physiological conditions, Trop-2 plays an essential role in embryonic development, placental tissue formation, embryo implantation, stem cell proliferation, and organ development.2 A low basal expression level of Trop-2 is found on the surface of multiple normal epithelial tissues, including skin and oral mucosa.1,3 Trop-2 can promote tumor growth and its overexpression is common in many types of malignant epithelial tumors.1,2,4
Expression of Trop-2 is regulated by several pro-oncogenic transcription factors (eg, CREB1, nuclear factor [NF]B, and HOXA10) via positive feedback relationships.2 Trop-2 expression may be upregulated because of the inactivation of several transcription factors (eg, HNF4A, TP63/TP53L, ERG, HNF1A/TCF-1, and FOXP3).1,2 Overexpression of Trop-2 accelerates the cancer cell cycle and drives cancer growth. Knocking out the TACSTD2 gene disturbs the proliferation of tumor cells, further validating the role of Trop-2 in tumorigenesis.1
Trop-2 was first elucidated as a transducer of intracellular calcium signals; however, it is now known to function in a variety of cell signaling pathways associated with tumorigenesis (Figure 1).1,2,4 Expression of Trop-2, as a calcium signal transducer, causes calcium to be mobilized from internal stores. Increased intracellular calcium levels activate MAPK, which in turn increases levels of phosphorylated ERK1 and ERK2.2,4 ERK1 and ERK2 are important mediators of cell cycle progression, angiogenesis, cell proliferation, cell invasion, and metastasis.2,4 Intracellular calcium also activates the NF-B pathway, which is involved in stimulation of cell growth, and the RAF pathway, which is essential for the upregulation of FOXM1, one of the most commonly overexpressed genes in human solid tumors.2
In addition to stimulating calcium release and MAPK signaling, Trop-2 is involved in several other pro-oncogenic signaling pathways, leading to tumor cell growth and proliferation. Activation of cyclin E and D further promotes cell cycle progression.4Alteration of the Notch, Hedgehog, and Wnt pathways may discourage appropriate stem cell proliferation and differentiation.2,4 Trop-2 signaling also appears to be dependent on -catenin.5 Direct interaction between -catenin and the intracellular domain of Trop-2, through -catenin signaling, enhances stem celllike properties (eg, self-renewal and transformation) of cancer cells.5 Attenuation of IGF-1 receptor signaling by Trop-2 encourages cancer growth and malignancy, particularly in lung cancers.2
Trop-2 is inextricably linked to cancer progression and metastasis because of its role as a key regulator of the hallmarks of cancer, including cell growth, proliferation, migration, invasion, and survival.4 A variety of human epithelial cancer cells are characterized by Trop-2 overexpression, including breast, lung, urothelial, gastric, colorectal, pancreatic, prostatic, cervical, head and neck, and ovarian carcinomas.2,3 In an analysis of 702 tissue samples from patients with breast cancer, Trop-2 expression was detected via immunohistochemistry (IHC) across a wide range of breast cancer subtypes.6 Trop-2 expression is substantially higher in hormone receptorpositive/HER2-negative (HR+/HER2-) disease and triple-negative breast cancer (TNBC) compared with other breast cancer subtypes, including HER2-positive disease.7
Trop-2 overexpression is also common in nonsmall cell lung cancer (NSCLC).8 Using IHC on tissues collected from the tumors of 68 patients with NSCLC, Trop-2 expression was significantly higher in NSCLC tissues compared with matched healthy tissues (P < .05). Moreover, its overexpression was associated with worse tumor, node, metastasis stage (P = .012), lymph node metastasis (P = .038), and histologic grade (P = .013).9
Bladder cancer, the most common urothelial cancer, is also marked by elevated Trop-2 expression.10,11 In a study of 102 transitional cell bladder cancer samples, IHC staining for Trop-2 demonstrated increased Trop-2 expression compared with noncancerous samples, and this expression pattern was significantly associated with worsened tumor grade (P = .001), stage (P < .0 01), and bladder cancer recurrence (P = .0 3).11
Molecular markers that influence the biological progress of tumors often serve as important prognostic indicators. Overexpression of Trop-2 has been associated with more aggressive disease, poorer overall survival (OS), and worse disease-free survival in patients with solid tumors.4 A meta-analysis conducted in 2016 explored the association of Trop-2 expression and prognosis in patients with a variety of solid tumors (N = 2569). Results from the study showed that high Trop-2 expression negatively affected OS (hazard ratio, 1.896; 95% CI, 1.599-2.247; P < .001) and disease-free survival (pooled hazard ratio, 2.336; 95% CI, 1.596-3.419; P < .0 01).12
Specific to breast cancers, increased Trop-2 mRNA is a strong predictor of lymph node involvement, distant metastasis, and poor OS.13,14 Trop-2 is expressed across all breast cancer subtypes; however, overexpression appears more common in aggressive disease subtypes, including HR+/HER2- disease and TNBC.7
Trop-2 overexpression is also associated with poor outcomes in patients with urothelial cancer. In an analysis of 102 tissue samples collected from patients with noninvasive bladder cancer, Trop-2 expression was higher in samples from patients who experienced disease recurrence compared with those who did not have recurrent disease (P = .0 3). Additionally, patients with Trop-2 overexpression had significantly lower rates of recurrence-free survival (P = .0 01).11 In a separate study, high Trop-2 expression analyzed by IHC was strongly correlated with bladder cancer severity and worsened disease prognosis, with particularly strong Trop-2 expression in muscle-invasive bladder cancer tissues compared with normal bladder tissues (P < .0 01).15
Taken together, the data indicate that Trop-2 is a potentially valuable therapeutic target, given the connection between its overexpression and poor prognosis in various solid tumors.4,15 Its value as a prognostic indicator and potential target for therapeutic development is particularly evident in advanced cancers that have limited or few treatment options available, such as TNBC and metastatic urothelial cancers.
Metastatic TNBC
TNBC is an aggressive form of invasive breast cancer that accounts for 15% to 20% of all breast cancers and a disproportionate number of deaths due to breast cancer.16-18 Its prevalence is particularly high in premenopausal women and those of African American and Hispanic descents.17,19 TNBC is characterized by a lack of estrogen and progesterone receptors and a low expression of HER2; therefore, TNBC cannot be effectively treated with standard hormone-based therapies and HER2-targeted agents.16, 20Although chemotherapy has shown promising results in early TNBC, the majority of patients relapse and progress to metastatic TNBC within the first 3 to 5 years after initial treatment.18 The treatment of metastatic TNBC remains a clinical challenge, as no standard-of-care chemotherapy exists for previously treated patients.17,18 There is an urgent unmet need for effective treatment options in patients with metastatic TNBC.18
Metastatic Urothelial Cancer
In the United States, an estimated 81,400 new cases of urothelial cancer will be diagnosed in 2020, and approximately 18,000 Americans will die from the disease.21 The majority of urothelial cancers arise in the bladder, and established risk factors for bladder cancer include older age, male gender, Caucasian race, family history, and smoking.22,23 Muscle-invasive and meta-static urothelial cancers represent 25% of urothelial carcinoma cases and are characterized by substantially worse prognostic outcomes.23,24 Current chemotherapeutic options for metastatic disease offer a modest median OS of 15 months and a 5-year survival of less than 5%.23,24 Long-term survival is infrequent, and newer treatment modalities that target distinct molecular biomarkers are warranted.24,25
As Trop-2 is a clinically relevant cell surface antigen among several solid tumor types, its overexpression on cancer cells makes it an ideal candidate for targeting by specific therapies.26 One targeted approach involves the use of antibody-drug conjugates (ADCs), a technology that has revolutionized the approach to cancer chemo-therapy over the past 2 decades.26
An ADC is designed to contain 3 components: a monoclonal antibody (mAb), a cytotoxic drug called a payload, and a linker that connects the mAb to the cytotoxin. The mAb binds specifically to its tumor-associated antigen (eg, Trop-2), thereby delivering the cytotoxin to the surface of the tumor cell. Once bound, the ADC is internalized through receptor-mediated endocytosis. Lysosomal degradation of the ADC ensues, facilitating the release of the cytotoxin and enabling it to bind to its intracellular target and induce apoptotic cell death (Figure 2).26,27 The targeted nature of ADCs allows potent therapy to be delivered to the cancer cell itself, limiting systemic exposure. The result is fewer adverse effects (AEs), a wider therapeutic window, and reduced exposure of the drug to efflux mechanisms that can increase drug resistance.26,27
Sacituzumab govitecan-hziy is the only FDA-approved Trop-2targeted ADC, and several other agents are under preclinical and clinical development.28
Sacituzumab govitecan-hziy is an ADC that binds to Trop-2 and delivers a potent cytotoxic drug into tumor cells.29,30 The FDA recently granted it accelerated approval for the treatment of metastatic TNBC, and it has also received fast track designation for metastatic urothelial carcinoma, NSCLC, and small cell lung cancer.28,30-32
The composition of sacituzumab govitecan-hziy has been optimized to effectively target tumors expressing Trop-2. A humanized monoclonal antibody (hRS7) binds to Trop-2 and delivers govitecan (SN-38) to the cell surface. SN-38 is the active metabolite of irinotecan and functions as a DNA topoisomerase I inhibitor. A hydrolysable CL2a linker covalently binds SN-38 to h R S 7.30 When released intracellularly, SN-38 causes double-stranded DNA breaks that lead to apoptosis.29 Additionally, the hydrolysable linker allows a portion of the SN-38 payload to be released into the tumor microenvironment, leading adjacent tumor cells to be killed via a bystander effect.31,32
Sacituzumab govitecan-hziy delivers SN-38 in its most active nonglucuronidated form. Because of its moderate toxicity profile, SN-38 is conjugated to hRS7 at a high drug-to-antibody ratio of up to 8 SN-38 molecules per antibody, allowing for greater drug delivery than systemic irinotecan can achieve.29,32 Irinotecan causes grade 3 to 4 diarrhea in approximately one-third of patients, whereas the lower toxicity of SN-38 may confer an improved therapeutic index.29,30 This high level of drug delivery may overcome the ability of Trop-2expressing tumors to repair DNA breaks.30
On April 22, 2020, sacituzumab govitecan-hziy received accelerated approval from the FDA for the treatment of adult patients with metastatic TNBC who have received at least 2 prior therapies for metastatic disease.28 Approval was based on findings of the phase 1/2, single-arm, multicenter IM-T-IMMU-132-01 trial (NCT01631552), in which sacituzumab govitecan-hziy produced durable responses in a subset of patients with heavily pretreated metastatic TNBC.31,33
The IM-T-IMMU-132-01 trial enrolled 108 patients with metastatic TNBC who had received at least 2 prior treatments for metastatic disease. In the study population, the median number of prior systemic therapies in the metastatic setting was 3, and the majority of patients received prior taxanes (98%) and anthracyclines (86%) in the neoadjuvant or metastatic setting. The median age of study patients was 55 years (range 31-80); 99% were female, and 76% were Caucasian.31Brain metastases were present in 23% of patients, and visceral metastases were present in 77% of patients; these included metastases in the lung/pleura (57%), the liver (42%), and other visceral organs (adrenal glands, pancreas, and kidney; 7%).31
Patients received sacituzumab govitecan-hziy 10 mg/kg administered intravenously on days 1 and 8 of 21-day cycles. Treatment continued until disease progression or unacceptable toxicity. The primary efficacy end point was objective response rate (ORR) assessed according to RECIST 1.1 tumor criteria. The secondary efficacy end points included time to response, duration of response, clinical benefit rate (defined as a complete or partial response or stable disease for 6 months), progression-free survival (PFS), and OS.31
After a median follow-up duration of 9.7 months, an objective response occurred in 36 of 108 patients (ORR, 33.3%; 95% CI, 24.6%-43.1%), including a complete response in 3 patients.31 The median time to response was 2 months (range 1.6-13.5). The median response duration was 7.7 months (95% CI, 4.9-10.8), with 55.6% of patients responding at 6 months and 16.7% of patients still responding at 12 months.31,34 An independent central review of the data found a similar ORR and median response duration (34.3% and 9.1 months, respectively).31 The clinical benefit rate, including stable disease for at least 6 months, was 45.4%. Median PFS was 5.5 months; the estimated probability of PFS at 6 and 12 months was 41.9% and 15.1%, respectively. Median OS was 13 months (95% CI, 11.2-13.7); the estimated probability of survival at 6 and 12 months was 78.5% and 51.3%, respectively.31
The most common AEs of any grade were nausea (67%), neutropenia (64%), diarrhea (62%, predominantly grade 1), and fatigue (55%). Of grade 3 or 4 AEs, the most common were neutropenia, decreased white cell count, and anemia (occurring in 42%, 11%, and 11% of patients, respectively).31 Serious AEs occurred in 32% of patients, with the most common being febrile neutropenia (7%), vomiting (6%), nausea (4%), diarrhea (3%), and dyspnea (3%). Occurrence of AEs led to treatment interruption in 44% of patients, dose reductions in 34%, and discontinuation of treatment in 3%.31,34
IM-T-IMMU-132-01 Trial HR+/HER2- Subpopulation Analysis
Treatment with sacituzumab govitecan-hziy showed encouraging results in a prespecified subpopulation of patients with histologically confirmed HR+/HER2- metastatic breast cancer from the IM-T-IMMU-132-01 trial.32
A total of 54 patients with histologically confirmed HR+/HER2- metastatic breast cancer were enrolled. Eligible patients had received at least 1 line of hormone-based therapy and at least 1 prior chemotherapy in the metastatic setting. The median age of enrollees was 54 years (range, 33-79); aside from required prior hormone-based therapy, previous chemotherapies included a taxane (85%), an anthracycline (67%), capecitabine (65%), a CDK4/6 inhibitor (61%), an mTOR inhibitor (44%), and an immune checkpoint inhibitor (1.9%). After a washout period of at least 2 weeks since prior treatment, sacituzumab govitecan-hziy was dosed at 10 mg/kg via intravenous infusion on days 1 and 8 of 21-day cycles.32
The primary efficacy end point was ORR. Of the 54 patients enrolled, 17 patients achieved partial responses during a median follow-up duration of 11.5 months (ORR, 31.5%; 95% CI, 19.5%-45.6%). In the key secondary outcomes, patients experienced a median PFS of 5.5 months (95% CI, 3.6-7.6) and a median OS of 12.0 months (95% CI, 9.0-18.2). The median time to response was 2.1 months (95% CI, 1.4-7.8), and median duration of response was 8.7 months (95% CI, 3.7-12.7). Of the 17 responders, 4 achieved a response lasting more than 12 months (24%). The clinical benefit rate was 44.4% (95% CI, 30.9%-58.6%), with 7 patients showing stable disease for at least 6 months.32
Safety analyses showed a manageable AE profile for sacituzumab govitecan-hziy. There were no reports of cardiac toxicity or severe peripheral neuropathy. The most common grade 3 or higher treatment-related AE was neutropenia, which occurred in 50% of patients. The incidence of diarrhea was 46% and was mild overall. Grade 3 diarrhea was reported in 4 patients, with no reports of grade 4.32 Serious AEs occurred in 2 patients, who experienced febrile neutropenia and 1 case each of neutropenia, viral pneumonia, sepsis, diarrhea, nausea, vomiting, dehydration, and acute respiratory failure.32
ESMO 2020 Data: ASCENTTrial in Metastatic TNBC (NCT02574455)
Final results of the international, multicenter, open-label ASCENT trial (NCT02574455) were presented at the European Society for Medical Oncology (ESMO) Virtual Congress 2020. ASCENT was the first phase 3 study of an ADC to show improvement in PFS and OS compared with standard-of-care chemotherapy in patients with previously treated metastatic TNBC.35,36
A total of 529 patients with metastatic TNBC were randomized 1:1 to receive either sacituzumab govitecan-hziy or physicians choice of single-agent chemotherapy (capecitabine, eribulin, vinorelbine, or gemcitabine). The dose of sacituzumab govitecan-hziy was 10 mg/kg intravenously on days 1 and 8 of 21-day cycles. All patients had histologically or cytologically confirmed TNBC refractory to or relapsed after at least 2 prior chemotherapies including a taxane. The median age of the study population was 54 years, and the median number of prior chemotherapies received was 4.
In the primary end point, sacituzumab govitecan-hziy significantly improved median PFS (hazard ratio, 0.41; P< .0001) compared with chemotherapy. The sacituzumab govitecan-hziy treatment group achieved a median PFS of 5.6 months compared with 1.7 months in the chemotherapy treatment group. Compared with chemotherapy, sacituzumab govitecan-hziy treatment also significantly improved key secondary end points of OS (12.1 vs 6.7 months; hazard ratio, 0.48; P < .0001) and ORR (35% vs 5%; P < .0001).35,36
The most common treatment-related grade 3 or higher AEs with sacituzumab govitecan-hziy compared with chemotherapy were neutropenia (51% vs 33%, respectively), diarrhea (10.5% vs < 1.0%), anemia (8% vs 5%), and febrile neutropenia (6% vs 2%). No treatment-related deaths were reported, and no cases of neuropathy or interstitial lung disease greater than grade 3 occurred with sacituzumab govitecan-hziy.35
ESMO 2020 Data: Sacituzumab Govitecan-hziy in Combination with Talazoparib for Patients with Metastatic TNBC (NCT04039230)
At the ESMO Virtual Congress 2020, investigators presented the trial design, objectives, and status of a phase 1/2, open-label study that will investigate the efficacy and safety of sacituzumab govitecan-hziy in combination with the PARP inhibitor talazoparib for patients with metastatic TNBC.37 PARP is involved in repairing damaged DNA and is required for clearance of Trop-2 cleavage complexes; thus, PARP inhibitors may be complementary therapeutic partners with sacituzumab govitecan-hziy.37, 38
This study will include a dose escalation in phase 1b followed by a dose expansion in phase 2. Patients will receive sacituzumab govitecan-hziy on days 1 and 8 of 21-day cycles and talazoparib daily on days 15 to 21 of each cycle.38 The primary objective of phase 1b is to assess the dose-limiting toxicity rate and maximum tolerated dose of sacituzumab govitecan-hziy when given in combination with talazoparib. From these data, investigators will determine the recommended phase 2 dose. During phase 2, investigators will assess the ORR, PFS, OS, and clinical benefit rate. As of August 30, 2020, the trial was undergoing active recruitment, and a total of 20 patients were enrolled.37, 38
ESMO 2020 Data: Sacituzumab Govitecan-hziy for Breast Cancer Brain Metastases (NCT03995706)
SN-38, the cytotoxic payload delivered by sacituzumab govitecan-hziy, crosses the blood-brain barrier and is often included in central nervous system (CNS) cancer regimens.39 Investigators hypothesized that sacituzumab govitecan-hziy would yield therapeutically relevant SN-38 concentrations within the CNS of patients under-going craniotomy for breast cancer brain metastases or recurrent glioblastoma.39,40
In this single-center, nonrandomized, phase 0 study (NCT03995706), patients receive a single 10-mg/kg intravenous dose of sacituzumab govitecan-hziy the day prior to craniotomy and then resume therapy (on days 1 and 8 of 21-day cycles) after recovery. To date, 14 patients have been treated. For patients with recurrent glioblastoma (n = 7), the mean SN-38 concentration was 420 nM; for patients with breast cancer brain metastases (n = 7), the mean SN-38 concentration was 626 nM. Among those patients with residual measurable disease, 2 partial intracranial responses have been observed in each group after 12 weeks of treatment (ORR, 28% and 50% for glioblastoma and breast cancer brain metastases, respectively). As of September 2020, recruitment for this trial was ongoing.39,40
The metastatic urothelial cancer cohort of the IM-T-IMMU-132-01 trial reported encouraging activity with sacituzumab govitecan-hziy monotherapy (ORR, 31%; median PFS, 7.3 months; and median OS, 18.9 months).41Sacituzumab govitecan-hziy has FDA fast track desig-nation for metastatic urothelial cancer and is currently under further investigation in the phase 2 TROPHY U-01 trial (NCT03547973) and the upcoming phase 3 TROPiCS-04 trial (NCT04527991).42-45
Final data for cohort 1 and the trial design for cohort 3 were presented at the ESMO Virtual Congress 2020 for the pivotal phase 2, open-label, multicohort TROPHY U-01trial. The TROPHY U-01trial is investigating the safety and efficacy of sacituzumab govitecan-hziy in patients with heavily pretreated metastatic urothelial cancer across several cohorts. The study population across the TROPHY U-01 trial includes patients with disease progression despite treatment with platinum (PLT)-based chemotherapy, checkpoint inhibitors, or both. For all cohorts, the primary efficacy end point is ORR, and key secondary end points include PFS, OS, duration of response, and safety analyses.44,45
Cohort 1
Cohort 1 included a total of 113 patients who were treated with sacituzumab govitecan-hziy. The study population included patients who experienced disease progression after both PLT-based chemotherapy and checkpoint inhibitor therapy.44 Overall, patients in cohort 1 were previously treated with a median of 3 therapies and were a median of 66 years of age. In the results presented at ESMO 2020, a total of 31 patients had achieved an objective response (ORR, 27%; 95% CI, 19%-37%), of which 6 were complete responses and 25 were partial responses. The median duration of response was 5.9 months (95% CI, 4.7-8.6); median PFS and OS were 5.4 months (95% CI, 3.5-6.9) and 10.5 months (95% CI, 8.2-12.3), respectively. Sacituzumab govitecan-hziy demonstrated manageable toxicity. Key grade 3 or higher AEs were neutropenia (35%), anemia (14%), febrile neutropenia (10%), and diarrhea (10%).44
Cohort 3
As of March 2020, cohort 3 had started enrollment and is ongoing. The study plans to enroll a total of 61 patients with metastatic urothelial cancer who are nave to checkpoint inhibitor agents and have experienced disease progression or recurrence after PLT-based chemotherapy.45 As checkpoint inhibitors are the stan-dard-of-care therapy for patients who have failed on PLT-based chemotherapy, this study will investigate combination therapy with sacituzumab govitecan-hziy and the checkpoint inhibitor pembrolizumab. Exclusion criteria include active autoimmune disease or a history of interstitial lung disease, given the coadministration of pembrolizumab. A 10-patient lead-in cohort will determine standard the recommended phase 2 dose of sacituzumab govitecan-hziy (given on days 1 and 8 of 21-day cycles), to be given along with pembrolizumab 200 mg on day 1 of each cycle. The primary end point of ORR and secondary end points of PFS, OS, clinical benefit rate, duration of response, and safety will be assessed.45
The phase 3, global, open-label TROPiCS-04trial aims to enroll 482 patients to investigate the efficacy and safety of sacituzumab govitecan-hziy in patients with metastatic or locally advanced unresectable urothelial cancer who have progressed despite prior therapy with PLT-based chemotherapy and a PD-1 or PD-L1 checkpoint inhibitor. Sacituzumab govitecan-hziy will be compared with physicians choice of chemotherapy (paclitaxel, docetaxel, or vinflunine). The primary outcome measure will be OS; secondary outcomes will include PFS, ORR, safety, and quality of life. As of August 2020, the trial was not yet recruiting patients.43
Evaluation of novel and existing ADCs has revealed that success is not based on the use of any one particular cytotoxic compound or conjugate platform. Factors such as the consistency and level of target-antigen expression, tumor progression, and specific properties of the cancer and stage of disease also play important roles.46 Several additional Trop-2targeted ADCs are currently being investigated in solid tumors (Table).33,36,37,40,42,43,47-51
DS-1062a is a Trop-2directed ADC that contains the cytotoxic compound DXd, a derivative of exatecan that acts as a DNA topoisomerase I inhibitor.52 It is currently being investigated for the treatment of advanced NSCLC in an ongoing phase 1, multicenter, open-label study (NC T 03 401385).48
The study involves a dose-escalation phase and a dose-expansion phase. Dose-limiting toxicity, maximum tolerated dose, and AEs will be explored in both phases.47 Eligible patients have experienced disease progression or recurrence despite previous treatments, have measurable disease per RECIST 1.1 criteria, and are able to provide a sufficient tumor tissue sample for Trop-2 measurement. Patients with multiple primary malignancies or untreated brain metastases are ineligible for the study.48
As of November 2018, a total of 22 patients had been treated with 1 of 3 escalating doses of DS-1062a. Nearly 82% of patients experienced at least 1 treatment-emergent AE, with fatigue being the most common complaint. Fatigue was the only reported grade 3 or higher AE and was reported by 1 patient. Of 18 tumor-evaluable patients, 1 showed a partial response and 8 showed stable disease. Maximum-tolerated dose has not been achieved, and investigators will continue to monitor for safety and disease progression.47, 48
RN927C
RN927C, also known as PF-06664178, is an ADC composed of a Trop-2directed antibody conjugated with the cytotoxic microtubule inhibitor PF-06380101. Release of PF-06380101 leads to mitotic arrest, apoptosis, and cell death.3 Preclinical studies demonstrated the ability of RN927C to induce cell death among various tumor cell lines, including those from the skin, lung, head and neck, breast, ovary, and colon.3
RN927C was investigated in a phase 1, open-label, nonrandomized dose-escalation study (NCT02122146)of patients with advanced or metastatic solid tumors that were unresponsive to current therapies or for whom no standard therapy was available. The primary objective of the study was to determine the maximum tolerated dose and recommended phase 2 dose. Secondary outcomes included safety and preliminary evidence of antitumor activity. A total of 31 patients were enrolled and received treatment with escalating doses of RN927C. Stable disease was noted in 11 patients (39%), but no partial or complete responses were seen. Doses of 3.6 mg/kg, 4.2 mg/kg, and 4.8 mg/kg were considered intolerable, primarily because of skin reactions and development of neutropenia. The next-lower dose of 2.4 mg/kg was well tolerated, but the study was terminated early because of minimal anti-tumor activity and excessive toxicities.50
BAT8003
BAT8003 is an ADC composed of a Trop-2directed antibody conjugated to a potent cytotoxic maytansine derivative. The ADC has been optimized to facilitate site-specific conjugation, which allows for a more controllable drug-antibody ratio. In addition, a fucosylation of the Fc region of the antibody enhances its antibody-dependent cell-mediated cytotoxicity effect. In preclinical xenograft and primate models, BAT8003 demonstrated strong inhibition of tumor growth at doses of 5 mg/kg and 15 mg/kg, with a highest nonseverely toxic dose of 20 mg/kg given once every 3 weeks.51, 53
Given the promising preclinical data, a phase 1 dose-escalation study (NCT03884517) is currently investigating the safety, tolerability, and pharmacokinetics of BAT8003 in patients with advanced epithelial cancer who are either ineligible for standard therapy or have disease refractory to standard therapy.Eligible patients will receive escalating doses of BAT8003 (0.2-10.0 mg/kg) on day 1 of each 21-day cycle. The study will be divided into 3 periods: (1) the first 21-day cycle, which will examine the safety of a single BAT8003 administration, observe for dose-limiting toxicities, and establish preliminary pharmacokinetic parameters; (2) cycles 2 through 8, which will examine safety, immunogenicity, and preliminary efficacy of escalating doses of BAT8003; and (3) an expansion period, which could include an additional 10 to 30 cases to further assess safety and efficacy once a safe and effective dose has been established. As of the last update on March 21, 2019, the trial was actively recruiting patients.51
Trop-2 has established itself as a clinically meaningful biomarker among several types of solid malignancies. Its ability to promote self-renewal, proliferation, and cell invasion makes it an ideal candidate for targeted anti-tumor therapies, including ADCs.
Sacituzumab govitecan-hziy is the first Trop-2directed ADC to receive FDA approval for the treatment of metastatic TNBC. In the pivotal IM-T-IMMU-132-01 trial, sacituzumab govitecan-hziy showed encouraging results in patients with multiple difficult-to-treat solid tumor types, including TNBC, HR+/HER2- metastatic breast cancer, and metastatic urothelial cancer.31,32,41 Sacituzumab govitecan-hziy and other Trop-2directed ADCs represent a novel strategy to improve outcomes among these populations of patients with few therapeutic options. Data from additional trials of sacituzumab govitecan-hziy were presented at the ESMO Virtual Congress 2020. In the ASCENT trial, sacituzumab govitecan improved response rates and survival outcomes in patients with metastatic TNBC compared with standard-of-care therapy.35 Data from a cohort of patients with metastatic urothelial cancer in the TROPHY U-01 trial indicated positive survival impacts with manageable toxicity.44 Additional trials of sacituzumab-govitecan-hziy (as monotherapy or in combination with PARP inhibitors or checkpoint inhibitors) are under way in patients with metastatic TNBC, breast cancer brain metastases, and metastatic or locally advanced urothelial cancer.37,40,43,45 Other Trop-2directed ADCs are under investigation in NSCLC and advanced epithelial cancers.47, 51
See the rest here:
Role of Trop-2 as an Actionable Biomarker in Solid Tumors - OncLive
The Amniotic Fluid Stem Cell Therapy market to invigorate from 2018 to 2026 – TechnoWeekly
By daniellenierenberg
Stem cells are biological cells which have the ability to distinguish into specialized cells, which are capable of cell division through mitosis. Amniotic fluid stem cells are a collective mixture of stem cells obtained from amniotic tissues and fluid. Amniotic fluid is clear, slightly yellowish liquid which surrounds the fetus during pregnancy and is discarded as medical waste during caesarean section deliveries. Amniotic fluid is a source of valuable biological material which includes stem cells which can be potentially used in cell therapy and regenerative therapies. Amniotic fluid stem cells can be developed into a different type of tissues such as cartilage, skin, cardiac nerves, bone, and muscles. Amniotic fluid stem cells are able to find the damaged joint caused by rheumatoid arthritis and differentiate tissues which are damaged.
For more insights into the Market, request a sample of this report @https://www.persistencemarketresearch.com/samples/23101
Medical conditions where no drug is able to lessen the symptoms and begin the healing process are the major target for amniotic fluid stem cell therapy. Amniotic fluid stem cells therapy is a solution to those patients who do not want to undergo surgery. Amniotic fluid has a high concentration of stem cells, cytokines, proteins and other important components. Amniotic fluid stem cell therapy is safe and effective treatment which contain growth factor helps to stimulate tissue growth, naturally reduce inflammation. Amniotic fluid also contains hyaluronic acid which acts as a lubricant and promotes cartilage growth.
With increasing technological advancement in the healthcare, amniotic fluid stem cell therapy has more advantage over the other therapy. Amniotic fluid stem cell therapy eliminates the chances of surgery and organs are regenerated, without causing any damage. These are some of the factors driving the growth of amniotic fluid stem cell therapy market over the forecast period. Increasing prevalence of chronic diseases which can be treated with the amniotic fluid stem cell therapy propel the market growth for amniotic fluid stem cell therapy, globally. Increasing funding by the government in research and development of stem cell therapy may drive the amniotic fluid stem cell therapy market growth. But, high procedure cost, difficulties in collecting the amniotic fluid and lack of reimbursement policies hinder the growth of amniotic fluid stem cell therapy market.
For Information On The Research Methodology request here @https://www.persistencemarketresearch.com/methodology/23101
The global amniotic fluid stem cell therapy market is segmented on basis of treatment, application, end user and geography:
To receive extensive list of important regions, Request TOC here @https://www.persistencemarketresearch.com/toc/23101
Rapid technological advancement in healthcare, and favorable results of the amniotic fluid stem cells therapy will increase the market for amniotic fluid stem cell therapy over the forecast period. Increasing public-private investment for stem cells in managing disease and improving healthcare infrastructure are expected to propel the growth of the amniotic fluid stem cell therapy market.
However, on the basis of geography, global Amniotic Fluid Stem Cell Therapy Market is segmented into six key regionsviz. North America, Latin America, Europe, Asia Pacific Excluding China, China and Middle East & Africa. North America captured the largest shares in global Amniotic Fluid Stem Cell Therapy Market and is projected to continue over the forecast period owing to technological advancement in the healthcare and growing awareness among the population towards the new research and development in the stem cell therapy. Europe is expected to account for the second largest revenue share in the amniotic fluid stem cell therapy market. The Asia Pacific is anticipated to have rapid growth in near future owing to increasing healthcare set up and improving healthcare expenditure. Latin America and the Middle East and Africa account for slow growth in the market of amniotic fluid stem cell therapy due to lack of medical facilities and technical knowledge.
Some of the key players operating in global amniotic fluid stem cell therapy market are Stem Shot, Provia Laboratories LLC, Thermo Fisher Scientific Inc. Mesoblast Ltd., Roslin Cells, Regeneus Ltd. etc. among others.
Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape
Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.
To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.
Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.
Contact us:
Naved BegPersistence Market ResearchAddress 305 Broadway, 7th Floor New York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com
The rest is here:
The Amniotic Fluid Stem Cell Therapy market to invigorate from 2018 to 2026 - TechnoWeekly
The role of induction therapy before autologous stem cell transplantation in low disease burden AL amyloidosis patients – DocWire News
By daniellenierenberg
This article was originally published here
Amyloid. 2020 Oct 21:1-9. doi: 10.1080/13506129.2020.1835635. Online ahead of print.
ABSTRACT
BACKGROUND: Induction therapy is recommended before autologous stem cell transplantation (ASCT) for AL amyloidosis patients with high disease burden [bone marrow plasma cells (BMPCs) > 10%], but the role of induction therapy before ASCT in patients with low disease burden (BMPCs 10%) is still unknown.
METHODS: A total of 227 patients with AL amyloidosis were included in this study. Among 227 patients, 124 patients received bortezomib-based induction prior to ASCT and were defined as group A, 35 patients received other chemotherapeutic induction and were defined as group B, and the other 68 patients without induction were defined as group C. We compared the differences of efficacy and prognosis between the three groups.
RESULTS: The haematological overall response rates (ORR) of groups A, B and C were 91%, 67% and 75%, respectively. The complete response rates (CR) of groups A, B and C were 50%, 25% and 20%, respectively. Both the ORR and CR rates of group A were significantly higher than those of groups B and C. The renal response rates of groups A, B and C were 64%, 46% and 47%, respectively. The cardiac response rates of groups A, B and C were 74%, 45% and 40%, respectively. The renal and cardiac responses rates of group A were also significantly higher than those of the other two groups. After a median follow-up of 44 months, the median OS was not reached. The 5-year estimated overall survival (OS) rates of groups A, B and C were 81%, 57% and 67%, respectively. The median progression-free survival (PFS) was 83 months for all patients. The 5-year estimated PFS rates of groups A, B and C were 61%, 38% and 49%, respectively. Both the OS and PFS of group A were higher than those of both group B and group C. On multivariate analysis, baseline dFLC > 50 mg/L was associated with worse survival, but induction with bortezomib was associated with better survival.
CONCLUSION: Our study demonstrated that low disease burden AL patients who are eligible for ASCT may benefit from bortezomib-based induction therapy.
PMID:33084412 | DOI:10.1080/13506129.2020.1835635
COVID-19 can affect the heart – Science Magazine
By daniellenierenberg
The family of seven known human coronaviruses are known for their impact on the respiratory tract, not the heart. However, the most recent coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked tropism for the heart and can lead to myocarditis (inflammation of the heart), necrosis of its cells, mimicking of a heart attack, arrhythmias, and acute or protracted heart failure (muscle dysfunction). These complications, which at times are the only features of coronavirus disease 2019 (COVID-19) clinical presentation, have occurred even in cases with mild symptoms and in people who did not experience any symptoms. Recent findings of heart involvement in young athletes, including sudden death, have raised concerns about the current limits of our knowledge and potentially high risk and occult prevalence of COVID-19 heart manifestations.
The four common cold human coronavirusesHCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1have not been associated with heart abnormalities. There were isolated reports of patients with Middle East respiratory syndrome (MERS; caused by MERS-CoV) with myocarditis and a limited number of case series of cardiac disease in patients with SARS (caused by SARS-CoV) (1). Therefore, a distinct feature of SARS-CoV-2 is its more extensive cardiac involvement, which may also be a consequence of the pandemic and the exposure of tens of millions of people to the virus.
What appears to structurally differentiate SARS-CoV-2 from SARS is a furin polybasic site that, when cleaved, broadens the types of cells (tropism) that the virus can infect (2). The virus targets the angiotensin-converting enzyme 2 (ACE2) receptor throughout the body, facilitating cell entry by way of its spike protein, along with the cooperation of the cellular serine protease transmembrane protease serine 2 (TMPRSS2), heparan sulfate, and other proteases (3). The heart is one of the many organs with high expression of ACE2. Moreover, the affinity of SARS-CoV-2 to ACE2 is significantly greater than that of SARS (4). The tropism to other organs beyond the lungs has been studied from autopsy specimens: SARS-CoV-2 genomic RNA was highest in the lungs, but the heart, kidney, and liver also showed substantial amounts, and copies of the virus were detected in the heart from 16 of 22 patients who died (5). In an autopsy series of 39 patients dying from COVID-19, the virus was not detectable in the myocardium in 38% of patients, whereas 31% had a high viral load above 1000 copies in the heart (6).
Accordingly, SARS-CoV-2 infection can damage the heart both directly and indirectly (see the figure). SARS-CoV-2 exhibited a striking ability to infect cardiomyocytes derived from induced pluripotent stem cells (iPSCs) in vitro, leading to a distinctive pattern of heart muscle cell fragmentation, with complete dissolution of the contractile machinery (7). Some of these findings were verified from patient autopsy specimens. In another iPSC study, SARS-CoV-2 infection led to apoptosis and cessation of beating within 72 hours of exposure (8). Besides directly infecting heart muscle cells, viral entry has been documented in the endothelial cells that line the blood vessels to the heart and multiple vascular beds. A secondary immune response to the infected heart and endothelial cells (endothelitis) is just one dimension of many potential indirect effects. These include dysregulation of the renin-angiotensin-aldosterone system that modulates blood pressure, and activation of a proinflammatory response involving platelets, neutrophils, macrophages, and lymphocytes, with release of cytokines and a prothrombotic state. A propensity for clotting, both in the microvasculature and large vessels, has been reported in multiple autopsy series and in young COVID-19 patients with strokes.
There is a diverse spectrum of cardiovascular manifestations, ranging from limited necrosis of heart cells (causing injury), to myocarditis, to cardiogenic shock (an often fatal inability to pump sufficient blood). Cardiac injury, as reflected by concentrations of troponin (a cardiac musclespecific enzyme) in the blood, is common with COVID-19, occurring in at least one in five hospitalized patients and more than half of those with preexisting heart conditions. Such myocardial injury is a risk factor for in-hospital mortality, and troponin concentration correlates with risk of mortality. Furthermore, patients with higher troponin amounts have markers of increased inflammation [including C-reactive protein, interleukin-6 (IL-6), ferritin, lactate dehydrogenase (LDH), and high neutrophil count] and heart dysfunction (amino-terminal pro-Btype natriuretic peptide) (9).
More worrisome than the pattern of limited injury is myocarditis: diffuse inflammation of the heart, usually representing a variable admixture of injury and the inflammatory response to the injury that can extend throughout the three layers of the human heart to the pericardium (which surrounds the heart). Unlike SARS-associated myocarditis, which did not exhibit lymphocyte infiltration, this immune and inflammatory response is a typical finding at autopsy after SARS-CoV-2 infections. Involvement of myocytes, which orchestrate electrical conduction, can result in conduction block and malignant ventricular arrhythmias, both of which can lead to cardiac arrest.
Along with such in-hospital arrythmias, there have been reports of increased out-of-hospital cardiac arrest and sudden death in multiple geographic regions of high COVID-19 spread, such as the 77% increase in Lombardy, Italy, compared with the prior year (10). There have been many reports of myocarditis simulating a heart attack, owing to the cluster of chest pain symptoms, an abnormal electrocardiogram, and increased cardiac-specific enzymes in the blood, even in patients as young as a 16-year-old boy. When there is extensive and diffuse heart muscle damage, heart failure, acute cor pulmonale (right heart failure and possible pulmonary emboli), and cardiogenic shock can occur.
COVID-19associated heart dysfunction can also be attributed to other pathways, including Takotsubo syndrome (also called stress cardiomyopathy), ischemia from endothelitis and related atherosclerotic plaque rupture with thrombosis, and the multisystem inflammatory syndrome of children (MIS-C). The underlying mechanism of stress cardiomyopathy is poorly understood but has markedly increased during the pandemic. MIS-C is thought to be immune-mediated and manifests with a spectrum of cardiovascular features, including vasculitis, coronary artery aneurysms, and cardiogenic shock. This syndrome is not exclusive to children because the same clinical features have been the subject of case reports in adults, such as in a 45-year-old man (11).
Recent series of COVID-19 patients undergoing magnetic resonance imaging (MRI) or echocardiography of the heart have provided some new insights about cardiac involvement (1214). In a cohort of 100 patients recovered from COVID-19, 78 had cardiac abnormalities, including 12 of 18 patients without any symptoms, and 60 had ongoing myocardial inflammation, which is consistent with myocarditis (12). The majority of more than 1200 patients in a large prospective cohort with COVID-19 had echocardiographic abnormalities (13). This raises concerns about whether there is far more prevalent heart involvement than has been anticipated, especially because at least 30 to 40% of SARS-CoV-2 infections occur without symptoms. Such individuals may have underlying cardiac pathology.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has the potential to directly and indirectly induce cardiac damage.
To date, there have been four small series of asymptomatic individuals with bona fide infections who underwent chest computed tomography (CT) scans to determine whether there were lung abnormalities consistent with COVID-19. Indeed, half of the asymptomatic people showed lung CT features that were seen in patients with symptoms. But so far, there have been minimal cardiac imaging studies in people who test positive for SARS-CoV-2 or are seropositive but without symptoms. Furthermore, the time course of resolution or persistence of any organ abnormalities after SARS-CoV-2 infection has not yet been reported. With a high proportion of silent infections despite concurrent evidence of internal organ damage, there is a fundamental and large hole in our knowledge base.
In contrast to people without symptoms, there is a substantial proportion of people who suffer a long-standing, often debilitating illness, called long-COVID. Typical symptoms include fatigue, difficulty in breathing, chest pain, and abnormal heart rhythm. An immunologic basis is likely but has yet to be determined. Nor have such patients undergone systematic cardiovascular assessment for possible myocarditis or other heart abnormalities, such as fibrosis, which could account for some of the enduring symptoms. It would not be surprising in the future for patients to present with cardiomyopathy of unknown etiology and test positive for SARS-CoV-2 antibodies. However, attributing such cardiomyopathy to the virus may be difficult given the high prevalence of infections, and ultimately a biopsy might be necessary to identify virus particles to support causality.
Cardiac involvement in athletes has further elevated the concerns. A 27-year-old professional basketball player, recovered from COVID-19, experienced sudden death during training. Several college athletes have been found to have myocarditis (14), including 4 of 26 (15%) in a prospective study from Ohio State University (15), along with one of major league baseball's top pitchers. Collectively, these young, healthy individuals had mild COVID-19 but were subsequently found to have unsuspected cardiac pathology. This same demographic groupyoung and healthyare the most common to lack symptoms after SARS-CoV-2 infections, which raises the question of how many athletes have occult cardiac disease? Systematic assessment of athletes who test positive for SARS-CoV-2, irrespective of symptoms, with suitable controls through some form of cardiac imaging and arrhythmia screening seems prudent until more is understood.
The most intriguing question that arises is why do certain individuals have a propensity for heart involvement after SARS-CoV-2 infection? Once recognized a few months into the pandemic, the expectation was that cardiac involvement would chiefly occur in patients with severe COVID-19. Clearly, it is more common than anticipated, but the true incidence is unknown. It is vital to determine what drives this pathogenesis. Whether it represents an individual's inflammatory response, an autoimmune phenomenon, or some other explanation needs to be clarified. Beyond preventing SARS-CoV-2 infections, the goal of averting cardiovascular involvement is paramount. The marked heterogeneity of COVID-19, ranging from lack of symptoms to fatality, is poorly understood. A newly emerged virus, widely circulating throughout the human population, with a panoply of disease manifestations, all too often occult, has made this especially daunting to unravel.
Acknowledgments: E.J.T. is supported by National Institutes of Health grant UL1 TR001114.
Read the original here:
COVID-19 can affect the heart - Science Magazine
Exosome Therapeutic Market 2020-2026 Demand Analysis and Projected Huge Growth by Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH,…
By daniellenierenberg
To better structure this Exosome Therapeutic Market report, a nice blend of advanced industry insights, practical solutions, talent solutions and latest technology is utilized which gives an excellent experience to the readers or end users. The report is a valuable resource which provides current as well as upcoming technical and financial details of the industry to 2026. CAGR values for the market for an estimated forecast period of 2020 to 2026 are mentioned in the report which helps determine costing and investment For better understanding of the market and leading business growth, Exosome Therapeutic Market research report is the ideal solution.
Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp
Market Analysis and Insights:Global Exosome Therapeutic Market
Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.
The major players covered in theExosome Therapeutic Marketreport areevox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global.Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp
Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.
Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.
Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.
This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.
Global Exosome Therapeutic Market Scope and Market Size
Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.
Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.
Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.
Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.
Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.
Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.
Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.
Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.
The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.
Exosome therapeutic Market Country Level Analysis
The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.
The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.
Country Level Analysis, By Type
North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.
Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration
Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.
Competitive Landscape and Exosome Therapeutic Market Share Analysis
Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.
Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.
For instance,
Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.
Customization Available:Global Exosome Therapeutic Market
Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.
Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp
About Data Bridge Market Research :
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us :
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475
Mail:Corporatesales@databridgemarketresearch.com
Stem Cell Therapy Market to Witness Steady Expansion During 2025 KYT24 – KYT24
By daniellenierenberg
Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.
Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787
One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.
It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.
Global Stem Cell Therapy Market: Overview
Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.
Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.
Buy This Report @https://www.tmrresearch.com/checkout?rep_id=1787<ype=S
Global Stem Cell Therapy Market: Key Trends
The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.
On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.
Global Stem Cell Therapy Market: Market Potential
A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.
In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.
Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.
Global Stem Cell Therapy Market: Regional Outlook
The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.
Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.
Global Stem Cell Therapy Market: Competitive Analysis
Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.
Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.
To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787
About TMR Research
TMR Research is a premier provider of customized market research and consulting services to busi-ness entities keen on succeeding in todays supercharged economic climate. Armed with an experi-enced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Read more:
Stem Cell Therapy Market to Witness Steady Expansion During 2025 KYT24 - KYT24
Exosome Therapeutic Market 2020-2026 || Major Gaints Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc,…
By daniellenierenberg
In Exosome Therapeutic Market report, a systematic investment analysis has been performed which forecasts impending opportunities for the market players. The statistical and numerical data that has been included in this market report is represented with the tables, graphs and charts which eases the understanding of facts and figures. A proficient data and excellent forecasting techniques used in this report are synonymous with accurateness and correctness. Exosome Therapeutic Market report is a painstaking analysis of existing scenario of the market which covers several market dynamics. The market study of this global Exosome Therapeutic Market business report takes into consideration market attractiveness analysis where each segment is benchmarked based on its market size, growth rate & general attractiveness.
Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp
Market Analysis and Insights:Global Exosome Therapeutic Market
Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.
The major players covered in theExosome Therapeutic Marketreport areevox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global.Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp
Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.
Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.
Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.
This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.
Global Exosome Therapeutic Market Scope and Market Size
Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.
Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.
Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.
Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.
Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.
Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.
Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.
Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.
The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.
Exosome therapeutic Market Country Level Analysis
The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.
The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.
Country Level Analysis, By Type
North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.
Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration
Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.
Competitive Landscape and Exosome Therapeutic Market Share Analysis
Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.
Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.
For instance,
Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.
Customization Available:Global Exosome Therapeutic Market
Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.
Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp
About Data Bridge Market Research :
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us :
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475
Mail:[emailprotected]
The rest is here:
Exosome Therapeutic Market 2020-2026 || Major Gaints Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc,...
Five Indian American Researchers Named Among NIH 2020 New Innovator Awardees – India West
By daniellenierenberg
Five Indian American researchers and one Bangladeshi-American have been named among the 2020 Directors New Innovator Award recipients by the National Institutes of Health.
Among the recipients are Anindita Basu, Subhamoy Dasgupta, Deeptankar DeMazumder, Siddhartha Jaiswal, Shruti Naik, and Mekhail Anwar, according to the NIH website.
Basu, of the University of Chicago, was selected for the project, Profiling Transcriptional Heterogeneity in Microbial Cells at Single Cell Resolution and High-Throughput Using Droplet Microfluidics.
The Indian American is an assistant professor in genetic medicine at the University of Chicago and leads a multi-disciplinary research group that uses genomics, microfluidics, imaging and nano/bio-materials to develop new tools to aid in diagnosis and treatment of disease.
Basu obtained a B.S. in physics and computer engineering at the University of Arkansas, Ph.D. in soft matter physics at University of Pennsylvania, followed by post-doctoral studies in applied physics, molecular biology and bioinformatics at Harvard University and Broad Institute.
Her lab applies high-throughput single-cell and single-nucleus RNA-seq to map cell types and their function in different organs and organisms, using Drop-seq and DroNc-seq that Basu co-invented during her post-doctoral work.
Dasgupta is with the Roswell Park Comprehensive Cancer Center and was named for his project, Decoding the Nuclear Metabolic Processes Regulating Gene Transcription.
Dasgupta is an assistant professor in the Department of Cell Stress Biology at Roswell Park Comprehensive Cancer Center. He earned his B.S. from Bangalore University and M.S. in biochemistry from Banaras Hindu University, India before receiving his Ph.D. in biomedical sciences from University of North Texas Health Science Center at Fort Worth, where, as a Department of Defense predoctoral fellow, he characterized the functions of a novel gene MIEN1 in tumor progression and metastasis.
He then joined the laboratory of Bert W. O'Malley, M.D. at Baylor College of Medicine, where he studied the functions of transcriptional coregulators in tumor cell adaptation and survival, as a Susan G. Komen postdoctoral fellow.
DeMazumder, of the University of Cincinnati College of Medicine, was chosen for the project, Eavesdropping on Heart-Brain Conversations During Sleep for Early Detection and Prevention of Fatal Cardiovascular Disease.
DeMazumder joined the University of Cincinnati in 2017 as assistant professor of medicine, director of the Artificial Intelligence Center of Excellence and a Clinical Cardiac Electrophysiologist after completing his doctorate at SUNY Stony Brook in Synaptic Electrophysiology, a medical degree at Medical College of Virginia-Virginia Commonwealth University, internship at Mount Sinai and residency at University of Virginia in Internal Medicine, and clinical and research fellowships at Johns Hopkins University.
His longstanding goals are to transform clinical observations into testable research hypotheses, translate basic research findings into medical advances, and evaluate personalized treatment protocols in rigorous clinical trials, while caring for patients with heart rhythm disorders and improving their quality of life.
Jaiswal, of Stanford University, was named for his project, Clonal Hematopoiesis in Human Aging and Disease.
Jaiswal is an investigator at Stanford University in the Department of Pathology, where his lab focuses on understanding the biology of the aging hematopoietic system.
As a post-doctoral fellow, he identified a common, pre-malignant state for blood cancers by reanalysis of large sequencing datasets.
This condition, termed "clonal hematopoiesis, is characterized by the presence of stem cell clones harboring certain somatic mutations, primarily in genes involved in epigenetic regulation of hematopoiesis.
Clonal hematopoiesis is prevalent in the aging population and increases the risk of not only blood cancer, but also cardiovascular disease and overall mortality. Understanding the biology of these mutations and how they contribute to the development of cancer and other age-related diseases is the current focus of work in the lab.
Naik, of New York University School of Medicine, was named for her project, Decoding Microbe-Epithelial Stem Cell Interactions in Health and Disease.
Naik is an assistant professor at New York University School of Medicine. She received her doctorate in Immunology from the University of Pennsylvania-National Institutes of Health Graduate Partnership Program.
There she discovered that normal bacteria living on our skin, known as the commensal microbiota, educate the immune system and help protect us from harmful pathogens.
As a Damon Runyon Fellow at the Rockefeller University, Naik found that epithelial stem cells can harbor a memory of inflammation which boosts their regenerative abilities and established a new paradigm in inflammatory memory, her bio states.
The Naik lab studies the dynamic interactions between immune cells, epithelial stem cells, and microbes with a focus on 3 major areas of research: Tissue regeneration and cancer, host-microbe interactions, and early in life immunity.
Anwar, of U.C. San Francisco, was named for his project, Implantable Nanophotonic Sensors forIn VivoImmunoresponse.
Anwar, whose father is from Bangladesh, is a physician-scientist at UCSF, where he is an associate professor in the Department of Radiation Oncology. Driven by the challenges his patients face when fighting cancer specifically addressing the vast heterogeneity in treatment response by identifying the optimal treatment to pair with each patients unique biology he leads a laboratory focused on developing integrated circuits (or computer chips) forin vivocancer sensing.
After completing his bachelors in physics at U.C. Berkeley, where he was awarded the University Medal, he received his medical degree at UCSF, and doctorate in electrical engineering and computer science from the Massachusetts Institute of Technology where his research focused on using micro-fabricated devices for biological detection.
Read the original here:
Five Indian American Researchers Named Among NIH 2020 New Innovator Awardees - India West
Merck Presents Three-Year Survival Data for KEYTRUDA (pembrolizumab) in Combination With Chemotherapy and Updated Phase 1/2 Data for Investigational…
By daniellenierenberg
In KEYNOTE-021 (Cohort G), first-line treatment with KEYTRUDA in combination with chemotherapy (n=60) demonstrated a significant improvement in objective response rates (58% vs. 33%), progression-free survival (HR=0.54 [95% CI, 0.35-0.83]) and a sustained, long-term survival benefit (HR=0.71 [95% CI, 0.45-1.12]) versus chemotherapy alone (n=63) in patients with advanced nonsquamous non-small cell lung cancer (NSCLC) regardless of PDL1 expression (Featured Poster #OFP01.02). Patients in Cohort G had no EGFR or ALK genomic tumor aberrations. These findings represent the longest follow-up data for an anti-PD-1/PDL1 therapy in combination with chemotherapy for the first-line treatment of NSCLC. Additionally, updated follow-up data from a Phase 1/2 study of quavonlimab in combination with KEYTRUDA showed encouraging anti-tumor activity and an acceptable safety profile as first-line treatment in patients with advanced NSCLC (Poster #TS01.02).
Over the last five years, KEYTRUDA has become foundational in the treatment of metastatic lung cancer. The long-term data from KEYNOTE-021 (Cohort G) reinforce the use of KEYTRUDA in combination with chemotherapy in certain advanced lung cancer patients, while data from our oncology pipeline reflect our commitment to exploring a number of new combinations with KEYTRUDA that we believe could have a meaningful impact for more lung cancer patients, said Dr. Vicki Goodman, vice president, oncology clinical research, Merck Research Laboratories. Updated data from our anti-CTLA-4 antibody quavonlimab in combination with KEYTRUDA support the continued development of this new combination and a Phase 3 study of quavonlimab coformulated with KEYTRUDA in advanced non-small cell lung cancer is planned.
Results from both studies were presented at the IASLC 2020 North America Conference on Lung Cancer hosted by the International Association for the Study of Lung Cancer on Friday, Oct. 16. Follow Merck on Twitter via @Merck and keep up to date with NACLC news and updates by using the hashtag #NACLC20.
KEYTRUDA in Combination With Chemotherapy: Long-Term Data in Advanced NSCLC From KEYNOTE-021 (Cohort G) (Featured Poster #OFP01.02) New data from Cohort G of KEYNOTE-021 (NCT02039674) demonstrated a significant improvement in objective response rates (ORR), progression-free survival (PFS) and a sustained, long-term survival benefit with KEYTRUDA in combination with pemetrexed (ALIMTA) and platinum chemotherapy versus pemetrexed and platinum chemotherapy alone after four years of median study follow-up (49.4 months; range, 43.5 to 55.4). Cohort G of the Phase 1/2, multi-cohort, multi-center, open-label trial evaluated KEYTRUDA in combination with chemotherapy (n=60) versus chemotherapy alone (n=63) as first-line treatment in patients with advanced nonsquamous NSCLC. Patients in Cohort G had no EGFR or ALK genomic tumor aberrations.
Findings from KEYNOTE-021 (Cohort G) showed that 50% of patients treated with KEYTRUDA in combination with chemotherapy were alive at three years versus 37% of patients who received chemotherapy alone. KEYTRUDA in combination with chemotherapy also reduced the risk of death by 29% (HR=0.71 [95% CI, 0.45-1.12]) versus chemotherapy alone, with a median overall survival (OS) of 34.5 versus 21.1 months. The OS benefit was observed despite a 70% (n=43/61) effective crossover rate from chemotherapy to antiPD1/PDL1 therapy, including 28 patients who were treated with KEYTRUDA as part of the on-study crossover.
The ORR was 58% for KEYTRUDA in combination with chemotherapy versus 33% for chemotherapy alone. KEYTRUDA also reduced the risk of disease progression or death by 46% (HR=0.54 [95% CI, 0.35-0.83]) versus chemotherapy, with a median PFS of 24.5 months (range, 9.7 to 36.3) versus 9.9 months (range, 6.2 to 15.2). The estimated three-year PFS rate was 37% for patients who received KEYTRUDA in combination with chemotherapy versus 16% for those who received chemotherapy alone. The median duration of response (DOR) was more than one year longer with KEYTRUDA in combination with chemotherapy (36.3 months; range, 1.4+ to 49.3+) versus chemotherapy alone (22.8 months; range, 2.8+ to 47.2+). Additionally, 51% of patients treated with KEYTRUDA in combination with chemotherapy had responses lasting three years versus 47% with chemotherapy alone.
Notably, 92% of patients who completed two years of treatment with KEYTRUDA were alive at three years (n=11/12). All 12 patients experienced an objective response and the estimated three-year DOR rate was 100% (median DOR not reached [NR]; range, 11.7+ to 49.3+ months).
No new safety signals for KEYTRUDA in combination with chemotherapy were identified with long-term follow-up. Among all those treated, 39% of those who received KEYTRUDA in combination with chemotherapy and 31% of those who received chemotherapy alone experienced Grade 3-5 treatment-related adverse events (TRAEs). Grade 3-5 TRAEs that led to discontinuation occurred in 17% of patients who received KEYTRUDA in combination with chemotherapy and 16% of those who received chemotherapy alone. Grade 3-5 TRAEs that led to death occurred in 2% (n=1) of patients who received KEYTRUDA in combination with chemotherapy and 3% (n=2) of those who received chemotherapy alone.
The KEYNOTE-021 (Cohort G) trial was conducted in collaboration with Eli Lilly and Company, the makers of pemetrexed (ALIMTA).
Quavonlimab (anti-CLTA-4) in Combination With KEYTRUDA: Phase 1/2 Results in Advanced NSCLC (Poster #TS01.02) In this first-in-human, open-label, multi-arm Phase 1/2 study (NCT03179436), quavonlimab, Mercks novel anti-CTLA-4 therapy, was evaluated in combination with KEYTRUDA as a first-line treatment in patients with advanced NSCLC. In the dose-confirmation phase, patients received quavonlimab (25 mg or 75 mg) every three weeks (Q3W) or every six weeks (Q6W) in combination with KEYTRUDA (200 mg Q3W for up to 35 cycles). The primary objective of the study was safety and tolerability; secondary and exploratory objectives included ORR per RECIST v1.1 by blinded independent central review (BICR), PFS, OS and DOR. Response based on PD-L1 status was retrospectively evaluated using tumor proportion score (TPS) as a continuous variable.
Findings showed that quavonlimab in combination with KEYTRUDA had an acceptable safety profile with no unexpected toxicities and suggested encouraging anti-tumor activity. Any-grade adverse events occurred in 98% of patients; TRAEs occurred 85% of patients. Grade 3 TRAEs occurred in 36% of patients across all treatment arms and the most common TRAEs (>10% in any arm) were increased alanine aminotransferase (8%), pneumonitis (8%) and increased aspartate aminotransferase (6%).
With 16.9 months of median follow-up (range, 7.0 to 21.3), results from the study showed the effect of quavonlimab in combination with KEYTRUDA across secondary and exploratory endpoints, including ORR, PFS, OS and DOR. Responses to quavonlimab in combination with KEYTRUDA were observed regardless of PD-L1 expression with higher TPS scores significantly associated with better response (one-sided p=0.015). These safety and efficacy data support the 25 mg Q6W dose as the recommended Phase 2 dose of quavonlimab when used in combination with KEYTRUDA.
Quavonlimab25 mg Q6W + KEYTRUDAn=40
Quavonlimab25 mg Q3W + KEYTRUDAn=40
Quavonlimab75 mg Q6W + KEYTRUDAn=40
Quavonlimab75 mg Q3W + KEYTRUDAn=14
TotalN=134
ORR, %(95%, CI)
37.5(22.7-54.2)
40(24.9-56.7)
27.5(14.6-43.9)
35.7(12.8-64.9)
35.1(27.0-43.8)
PFS, median(95%, CI), mo
7.8(4.2-14.8)
6.0(2.0-8.3)
6.0(3.5-8.1)
3.4(1.8-NE)
6.1(4.2-7.3)
OS, median(95%, CI), mo
18.1(14.2-NE)
18.1(9.1-21.8)
17.1(9.0-NE)
13.7(3.5-NE)
16.5(14.2-21.8)
DOR, median(95%, CI), mo
NR(4.0 to 21.6+)
7.9(2.8 to 21.4+)
15.9(3.4 to 21.4+)
NR(8.8+ to 16.3+)
13.6(2.8 to 21.6+)
About Lung Cancer Lung cancer, which forms in the tissues of the lungs, usually within cells lining the air passages, is the leading cause of cancer death worldwide. Each year, more people die of lung cancer than die of colon and breast cancers combined. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all cases. Small cell lung cancer (SCLC) accounts for about 10% to 15% of all lung cancers. Before 2014, the five-year survival rate for patients diagnosed in the U.S. with NSCLC and SCLC was estimated to be 5% and 6%, respectively.
About KEYTRUDA (pembrolizumab) Injection, 100 mg KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
About Quavonlimab (MK-1308) Quavonlimab is a novel humanized IgG1 monoclonal antibody that binds to CTLA-4 and blocks interaction with its ligands, CD80 and CD86. Quavonlimab is currently being evaluated in combination with KEYTRUDA across multiple solid tumors as part of ongoing Phase 1 and 2 trials. A Phase 3 trial of quavonlimab coformulated with KEYTRUDA in advanced non-small cell lung cancer is planned.
Selected KEYTRUDA (pembrolizumab) Indications Melanoma KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Global Cell Based Assay & High Content Screening Markets to 2024: Updated Report – Understand Growth Expectations and the Potential Market Size -…
By daniellenierenberg
DUBLIN--(BUSINESS WIRE)--The "Cell Based Assay & High Content Screening Markets Market Forecasts by Application, With Executive and Consultant Guides and including Customized Forecasting and Analysis 2020 to 2024" report has been added to ResearchAndMarkets.com's offering.
This updated report will bring the entire management team up to speed, on both the technology and the opportunity.
Cell Based Assays are a mainstay of drug development and scientific research, but growth is now accelerating as new immuno-oncology markets create unprecedented investment in the race to cure cancer. On top of this new technology is allowing Cell Based Assays to be used to measure any aspect of cell function. This market just keeps on growing with no end in sight. The workhorse of the pharmaceutical industry is becoming a central player in biotechnology.
The technology is moving faster than the market. Genomics and Immunology are playing a role too. Find opportunities and pitfalls. Understand growth expectations and the ultimate potential market size.
Key Topics Covered:
1. Introduction and Market Definition
1.1 What are Cell Based Assays?
1.2 Clinical Trial Failures
1.2.1 Immuno-oncology Plays a Leading Role in Cell Based Assays
1.3 Market Definition
1.4 Methodology
1.5 U.S. Medical Market and Pharmaceutical Research Spending - Perspective
1.5.1 U.S. Expenditures for Pharmaceutical Research
2. Cell Based Assays - Guide to Technology
2.1 Cell Cultures
2.1.1 Cell Lines
2.1.2 Primary Cells
2.1.3 Stem Cells
2.1.3.1 iPSC's - The Special Case
2.2 Cell Assays
2.3 Cell Viability Assays
2.3 Cell Proliferation Assays
2.4 Cytotoxicity Assays
2.5 Cell Senescence Assays
2.6 Apoptosis
2.7 Autophagy
2.8 Necrosis
2.9 Oxidative Stress
2.10 2D vs. 3D
2.11 Signalling Pathways, GPCR
2.12 Immune Regulation & Inhibition
2.13 Reporter Gene Technology
2.14 CBA Design & Development
2.15 Cell Based Assays - The Takeaway
3. Industry Overview
3.1 Players in a Dynamic Market
3.1.1 Academic Research Lab
3.1.2 Contract Research Organization
3.1.3 Genomic Instrumentation Supplier
3.1.5 Cell Line and Reagent Supplier
3.1.6 Pharmaceutical Company
3.1.7 Audit Body
3.1.8 Certification Body
4. Market Trends
4.1 Factors Driving Growth
4.1.1 Candidate Growth
4.1.2 Immuno-oncology
4.1.3 Genomic Blizzard
4.1.4 Technology Convergence
4.1.5 The Insurance Effect
4.2 Factors Limiting Growth
4.2.1 CBA Development Challenges
4.2.2 Instrument Integration
4.2.3 Protocols
4.3 Technology Development
4.3.1 3D Assays
4.3.2 Automation
4.3.3 Software
4.3.4 Primary Cells
4.3.5 Signalling and Reporter Genes
4.3.6 The Next Five Years
5. Cell Based Assays Recent Developments
5.1 Recent Developments - Importance and How to Use This Section
5.1.1 Importance of These Developments
5.1.2 How to Use This Section
6. Profiles of Key Cell Based Assay Companies
7. Global Market Size
8. Global Market by User Type
8.1 Pharmaceutical Market
8.2 Basic Research Market
8.3 Industrial/Cosmetic Market
9. Cell Based Assay by Product Class
9.1 Instrument Market
9.2 Reagent Market
9.3 Services Market
9.4 Software Market
10. Appendices
10.1 FDA Cancer Drug Approvals by Year
10.2 Clinical Trials Started 2010 to 2016
10.3 Share of Pharma R&D by Country
For more information about this report visit https://www.researchandmarkets.com/r/1vziyy
Read the original:
Global Cell Based Assay & High Content Screening Markets to 2024: Updated Report - Understand Growth Expectations and the Potential Market Size -...
Banking wisdom: Teen saving stem cells in hopes of future treatment – LubbockOnline.com
By daniellenierenberg
Staff Writer| Lubbock Avalanche-Journal
By Elizabeth Herbert
A-J Media
A 16-year-old Lubbockite with rheumatoid arthritis recently banked her wisdom teeth for their high concentration of stem cells in the hope of using them in a future procedure.
Stem cells are undifferentiated cells, meaning they can become almost any specialized cell; researchers have been studying these cells to learn more about using them to treat ailments such as rheumatoid arthritis.
The oral and facial surgeon who removed the patients teeth, Dr. Robert Ioppolo, said there was virtually no downside to storing the teeth and cells because the procedure, which is necessary for most, is the same for the patient regardless.
Instead of putting (wisdom teeth) in a baggie, we put them in a vial; we put them in a little freezer-type cryopreservation box and off they go to the processing center, he said, so its very straightforward from our perspective, and it just provides an additional service to patients that we didnt have access to a few years ago.
Once the teeth have been sent to process at the Stemodontics lab, Ioppolo said specialists open the teeth and extrapolate the nerve tissue to obtain the stem cells.
The cool thing is that the stem cell population inside of wisdom teeth, especially in somebody thats young and healthy, is at its peak as far as the amount of cells, so the quantity, and also the quality of those cells, he said, so this is kind of a one-time opportunity that folks have to bank the best stem cells that they possibly can from their wisdom teeth.
Rheumatoid arthritis typically impacts adults. The Centers for Disease Control states 7.1% of people aged 18-44 years old report being diagnosed with arthritis; younger groups are not listed on the main, arthritis-related page.
Jamie Fields, the patients mother, said her daughter has undergone knee surgeries and is on medications but has not seen strong improvements in the seven months she has been receiving treatment.
Doctors tried a technique called microfracture in which tiny holes are drilled into the knee to produce new tissue, but this results in fibrocartilage and is more like scar tissue and less like the cushiony cartilage that joints need to function properly, according to an article from the Stanford Medicine News Center.
Preserving her daughters wisdom teeth and stem cells will cost Fields $2,000, but she said her alternative is to grow cells from the cartilage taken from a previous surgery which would cost about $46,000 for the graft alone and does not account for an accompanying procedure.
When I hear about these stem cells, Im like, Well, what if this would work, she said. If thats the route we have to take, then why not try this first?
Aside from surgeries, Fields said her daughters doctor prescribed medications to help slow or stop the dying cartilage behind her knee. There are many options, but medicines tend to have side effects and Fields said she does not want her daughter to have to use multiple, strong pharmaceuticals long-term.
He has a list, and he started her at the bottom of the list on the medications, and then he said we would just go up from there, but that way we dont do anything too harsh thats not needed, she said.
Rheumatoid arthritis tends to worsen with age, and Fields said her daughter, who already has a history of broken bones and surgeries, is impacted by her rheumatoid arthritis to the extent that she cannot participate in gymnastics, cheerleading or other fun activities she has enjoyed.
Fields could keep working down the line of medications most 16 year olds cannot pronounce, or she said she could save her daughters stem cells and wait for orthopedists to create a procedure that would use her daughters cells to help rejuvenate damaged areas.
This is a once-in-a-lifetime (opportunity), Fields said. If we dont do this now, where is she gonna get them from later, of her own?
Michael Longaker, Deane P. and Louise Mitchell Professor for the Department of Surgery and Co-Director for the Institute of Stem Cell Research and Regenerative Medicine at Stanford University, said using stem cells could help a number of issues due to the cells ability to change.
While we do some things really well, like cardiac bypass surgery or hip replacement et cetera, et cetera, itd be great if we could unlock the power of cells that can become other types of cells so that we could regenerate each of these things before they get to the point where they need a major operation, he said.
Stem cells can be found throughout the body, and removing wisdom teeth is a fairly routine procedure; the WebMD website states over 10 million wisdom teeth are removed annually.
Many of these teeth are disposed of, but Longaker pointed out that stem cells in wisdom teeth are unique to the individual and are great sources of stem cells.
In the soft part, the pulp, of those teeth are stem cells that - God forbid - that healthy, young patient whos having them removed, God forbid anything happens to them and they need something or they have a family history of disease - theyre all set and ready to go, he said.
Longakers teams research began with mice and found skeletal stem cells can be manipulated to become cartilage.
They used two major molecules, bone morphogenetic protein 2 and vascular endothelial growth factor, to help the cells start bone formation after microfracture yet stop the process halfway to create cartilage. Longaker said the next step in the research is to focus on larger animals; then human clinical trials can begin.
Stem cells from wisdom teeth would work best for things in the mouth such as bone and cartilage, but Longaker said the cells can be backed up, de-differentiated and guided in a dish to the point where the cell can become almost anything; once the cell is fully differentiated, or has changed into a specific type of cell the specialist intended, it can be implanted.
You take the stem cells from teeth and back them up, so to speak, so they can become almost any type of cell, and then you would guide them down the exit ramp, so to speak, to where you want them to go, he said.
It may be years before orthopedists use stem cells to improve arthritic conditions, but Longaker, who banked his own sons wisdom teeth, said advances happen regularly and that one never knows when their stem cells will be useful.
As a stem cell biologist, having someone already store stem cells that I could guide to become something else, God forbid they need it, that really makes sense to me, he said. I dont see a reason not to do it if a parent or patient wants to do it.
Although banking her daughters wisdom teeth will not yield immediate results, Fields said she believes god guided her on this path and that she has more to gain than to lose.
Our faith is really strong, and I believe that God has led us on this path to hopefully find something that we can do to help her because weve been on this path for so long and with no answers, she said.
Read this article:
Banking wisdom: Teen saving stem cells in hopes of future treatment - LubbockOnline.com
Human heart organoids provide unmatched insight into cardiac disease and dysfunction – BioWorld Online
By daniellenierenberg
Two teams of researchers have developed miniature models of the human heart that beat and function like the full-size organ. The team from Michigan State University (MSU) and Washington University in St. Louis developed a human heart organoid (hHO) that recapitulates embryonic heart development, providing an unmatched view into congenital heart defects. The organoid created by the researchers at the Medical University of South Carolina (MUSC) and Clemson University mimics the tissue dysfunction that occurs following a heart attack.
Organoids are self-assembling, 3D multicellular constructs that exhibit organ properties and structure to various degrees. Several processes have been developed to create them in recent years.
The MSU teams heart includes all the primary types of heart cells, as well as functional chambers and vascular tissues. These minihearts constitute incredibly powerful models in which to study all kinds of cardiac disorders with a degree of precision unseen before, said Aitor Aguirre, the studys senior author and assistant professor of biomedical engineering at MSUs Institute for Quantitative Health Science and Engineering.
Results of the groups work created quite a stir when it appeared on the preprint server bioRxiv and highlights were presented at the 2020 International Society for Stem Cell Research Annual Meeting. Weve received a lot of calls from researchers who want to use our process, Aguirre told BioWorld. The NIH and the American Heart Association provided funding for the study.
To create the approximately 1-mm diameter hHOs, the team combined several approaches developed over the last decade. They start with induced pluripotent cells ordinary cells from adults that are induced by the introduction of several genes to become pluripotent stem cells or master cells. The team then provides chemical signals that stimulate the cells to differentiate and mimic the process used in fetal development to create a heart.
In 15 to 20 days, the developmentally directed approach takes an undifferentiated ball of cells and gets to the point that the heart beats, has chambers, has cells organized in the way those cells are organized in the heart. At a molecular and cellular level, we are creating a heart, Aguirre noted.
The process is much simpler and easier to recreate than tissue engineering, as hundreds can be created simultaneously with minimal operator involvement and without the need for expensive machinery. Aguirre said the equipment required would be present already in any standard cell laboratory.
Currently, the team is using the miniaturized model heart to study developmental heart disorders. Thats crucial because, while congenital heart affects 1% of all newborns, there have been no good ways to study fetal heart development. You cant tell a pregnant woman, we want to take a biopsy, so its hard to study first-hand, Aguirre explained. With this process, the team can replicate much of fetal heart development without using fetal cells, bypassing all ethical concerns.
Since the publication of their initial results, Aguirre and his team have made further advances to more closely model the human heart. By further improving the development conditions, the researchers are now giving the organoids structural and locational cues needed to organize themselves better. Those new conditions have led to the formation of two chambers with heart looping, creating a shape that resembles a sausage more than a ball. In addition, they are growing hearts that are more sophisticated and demonstrate functioning of a somewhat older heart.
The researchers also are working on the development of vasculature that will enable the minihearts to grow larger and to create a multiorgan system in vitro that would be especially useful in studying pediatric cardiopulmonary development. Beyond gaining a better understanding of the basics of early heart development, the team hopes the model will provide greater insight into the impact of various chemicals and conditions, including environmental contaminants, maternal diabetes and medications.
The South Carolina process
Researchers at the MUSC and Clemson University took a somewhat different approach to creation of their human cardiac organoid. Like the MSU team, they began with induced pluripotent stem cells that divide and self-assemble. The spherical organoids are fabricated in vitro using four defined cell types that range in maturity from early stage to adult in ratios found in the heart. The process gives the microtissue a range of functionality but does not reproduce the developmental process of a heart.
The greater maturity of some of the tissue has an advantage for the teams research, however. The South Carolina contingent has focused on creating heart organoids that parallel the physiological conditions present during and immediately following a heart attack. Their work recently appeared in Nature Biomedical Engineering.
The model demonstrates the key features of pathological metabolic shifts, fibrosis and calcium handling. Furthermore, our transcriptomic analysis showed that there are comparable disease characteristics that are similar to that of the diseased adult heart, lead author Dylan Richards, a graduate of the MUSC Clemson bioengineering program and now a computational biologist at The Janssen Pharmaceutical Companies of Johnson & Johnson, told BioWorld.
To model the heart after a heart attack, we used low oxygen culture to create an oxygen-diffusion gradient in cardiac organoids combined with noradrenaline stimulation, Richards said. This method resulted in a structural and functional gradient, similar to that of a heart after a heart attack (dying tissue in the middle surrounded by dysfunctional regions surrounded by functional regions).
Using the model, the team found that the experimental drug JQ1 reduces the fibrotic and arrhythmic properties seen in diseased post-heart attack organoids. They also demonstrated that doxorubicin, commonly used in breast cancer treatment, had greater cardiotoxic impact in diseased hearts, in keeping with previous findings of greater risk associated with the chemotherapy in women with pre-existing cardiovascular disease.
The team is looking at drug-exacerbated cardiotoxicity and COVID-19-induced cardiac diseases. It will also be enhancing the model to include immune cells, to better understand the role the immune system plays in restructuring heart tissue after damage from oxygen-deprivation.
What is New in Cardiology? A Review of All Major Emerging Technologies for Heart Diseases – Diagnostic and Interventional Cardiology
By daniellenierenberg
This is an overview of some of the biggest cardiology technology advances. These innovations are covered in more detail in the two-volume set titled "Emerging Technologies in Heart Diseases." These innovative technologies mark the midway of a technological revolution in patient care. Here are a list of 10 noteworthy new cardiac technologies:
The emergence of a ventricular assist device (VAD) has revolutionized the care of patients with advanced heart failure. Primarily developed as a bridge to transplantation, the VAD has been shown to prolong life and to improve the quality of life when a donor heart is not found. Older versions required the implantation of a bulky pump and required patients to ambulate with heavy, large external batteries and control units. Yet, several revolutionary improvements in device size, battery reliability, and even wireless charging technologies might make these devices physically unnoticeable in the coming years, and possibly decrease patient susceptibility to infections. In addition, various mechanical modifications and newer modes of operation have limited the rates of hemolysis, thrombosis, and secondary aortic valve insufficiency.
Miniature VAD. Source: Watt et al. Artificial Mechanical Hearts and Ventricular Assist Devices. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 25-40.
Atrial fibrillation (AF or AFib) remains a leading cause of stroke, which in turn may be associated with devastating health consequences and mortality. Yet, oral anticoagulants and left atrial appendage (LAA) occlusion devices may not be appropriate for all patients or may be associated with life-threatening complications. In recent years, novel, device-based technologies for stoke prevention have evolved. Some focused on carotid implants, while newer devices have been designed for continuous embolic filtration at the level of the common aortic pathway. These approaches, which are currently being tested in preclinical studies, might be translated in the near future to treatments available for patients with increased bleeding risks.
Lariat LAA closure device device (SentreHeart Inc, Redwood, Calif.). Source: Goel et al. Percutaneous closure of the left atrial appendage for stroke prevention. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. 2020; Elsevier, Academic Press (AP). Pages 961-977.
Related LAA Occlusion Content:
VIDEO: Overview of Left Atrial Appendage (LAA) Closure Technology and New Innovations Interview with Horst Sievert, M.D.
COVID-19 Boosts Demand for Left Atrial Appendage Closure Devices Market
VIDEO: Overview of LAA Occlusion Using the Watchman FLX Interview with Devi Nair, M.D.
Conformal electronics are flexible, stretchy, electronic devices that can diagnose and treat tissue malfunctions. They have high spatiotemporal resolution and are comprised of a system of various sensors and transducers. Conformal electronics assess multiple parameters to monitor and regulate cardiac tissue functions by following the shape of the epicardium or endocardium. The technology of conformal electronics can transform the current model of cardiac diagnostics and therapeutics by enabling the development of new equipment. Also, new minimally invasive methods to access the epicardial tissue are likely to facilitate clinical adoption of this technology.
Flexible electronics attached to the heart for cardiac monitoringSource: Yin et al. Organ Conformal Electronics for Cardiac Therapeutics. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. 2020; Elsevier, Academic Press (AP). Pages 911-937.
Transcatheter Mitral Valve Repair (TMVR) technologies are expanding rapidly. They have the potential to become alternatives to surgery for specific patients. TMVR devices can be differentiated according to the portion of the mitral valve they are intended to repair: the leaflet, the annulus, or the chordae, and to remodel the ventricles. To date, early results of novel TMVR technologies seem promising but the long-term sustainability and effectiveness have not been determined. Yet, given the advancements in transcatheter technologies, it is convincible that in the future, mitral regurgitation will be treated mainly using a minimally invasive approach.
Carillon Mitral Contour System from Cardiac Dimensions can can be implanted for to reshape the annulus using TMVR. Source: Colli et al. Transcatheter Mitral Valve Therapies for Degenerative and Functional Mitral Regurgitation. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 417-461.
Tissue engineering techniques that use cells and regenerative medicine to treat heart disease, are promising new approaches in cardiovascular research. Scaffolds (i.e., biomaterials used as supports), cells and appropriate growth factors are needed to enable reconstruction of new tissue. Because the biomaterial is integral to the functional integrity and attachment of human cells, generating the ideal scaffold remains one of the most challenging aspect of tissue engineering. A decellularized heart composed of native extracellular matrix can provide a complex, unique, and natural scaffold that offers the physical and chemical signals required for cardiac function.
Isolated cadaveric heart prior to and following decellularization. Source: Taylor, et al. Decellularization of Whole Hearts for Cardiac Regeneration. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 291-310.
Patients with hemodynamic compromise may not be optimally balanced with an intra-aortic balloon pump (IABP). Therefore, various devices have been developed to provide other advanced measures of circulatory support. Although most centers have limited experience with these devices, they may be lifesaving in specific patients. Also, extracorporeal oxygenation (ECMO) provides patients the opportunity to avoid mechanical ventilation. This will prevent possible decreases in blood pressure due to anesthesia and reduced venous return. Small, portable devices aimed at providing ventilatory and circulatory support are being developed for these critical cases.
The Maquet CardioHelp ECMO system is an example of a small, lightweight, portable ECMO.
The global burden of congenital or acquired heart valve defects is high. Bioprosthetic or mechanical replacement valves are often used, although they have limitations. This is especially true for pediatric patients who continue to grow. A potential solution is developing an in situ tissue engineering approach. A synthetic, bioresorbable scaffold might lead to individualized replacements for heart valves. These might be less prone to infections and more suitable for pediatric populations.
Bioresorbable synthetic scaffold generated using electrospinning techniques. Source: Klouda et al. Heart Valve Tissue Engineering: Current Preclinical and Clinical approaches. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 383-398.
Cardiac arrhythmias are a leading cause of morbidity and mortality worldwide. Although rhythm disorders may be efficiently treated with implantable cardioverter defibrillators (ICDs), the ability to accurately determine which patients will benefit from these measures is currently limited. Also, in patients who do not have an intracardiac device, delivery of external defibrillatory shocks shortly after the onset of arrhythmia may be lifesaving. Therefore, many efforts are invested in increasing the ability to predict upcoming events and calling for medical assistance. Computational tools generally known as artificial intelligence (AI) may soon enhance our ability to predict the occurrence of life-threatening arrhythmias and thereby, provide earlier preventive and the therapeutic interventions. The increase in the use of wearable cardiac monitoring devices and the ability to provide advanced analysis of ECG and other electrophysiological data are expected to further revolutionize the field of machine learning-based diagnostics in cardiology.
The consumer-grade Fitbit Sense offers AI to automatically detect atrial fibrillation. Read more in the articleFitbit ECG App to Identify Atrial Fibrillation Receives Regulatory Clearance in U.S. and Europe.
Related Content on Wearables and Big Data in Healthcare:
Tracking Cardiovascular Health Population Trends Using Consumer Wearables
Bristol-Myers Squibb-Pfizer Alliance, Fitbit Team Up on Atrial Fibrillation Detection
Artificial Intelligence Detects AFib Using Apple Watch Heart Rate Sensor
Consumer Smart Watches Accurately Measure Paroxysmal Supraventricular Tachycardia
VIDEO: Use of Wearables to Track Electrophysiology Patients Interview with Khaldoun Tarakji, M.D.
VIDEO: The Future of Wearables in Healthcare Karl Poterack, M.D.
Catheter ablation is used to prevent ventricular arrhythmias by damaging or destroying the causative tissue. Due to difficulties targeting the appropriate tissue, advanced technologies are needed. Electrophysiologic mapping has advanced significantly along with the techniques and tools that can be used to effectively eliminate the arrhythmic substrate. Combining these tools in the electrophysiology (EP) lab with robotic navigation systems may lead to more precise ablation procedures for difficult cases, while reducing exposure to radiation.
Stereotaxis Genesis Robotic Magnetic Navigation System, the latest system from the vendor with its first two installs taking place in 2020. Source: AbdelWahab et al. Electrophysiologic Mapping and Cardiac Ablation therapy for Prevention of Ventricular Tachycardia. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. 2020; Elsevier, Academic Press (AP). Pages 683-723.
Related Robotic EP Lab Content:
VIDEO: Virtual Tour of the Robotic Electrophysiology Lab at Banner Health
VIDEO: Advantages of Robotic Ablation in the EP Lab Interview with Peter Weiss, M.D.
Time to Take Another Look at Robotics in Electrophysiology
Cardiac devices may be associated with complications including repeated need for battery replacement, lead failure, infections, and limited applicability in young patients. Recent, major breakthroughs in induced pluripotent stem cells technologies and transdifferentiation approaches may revolutionize treatment of bradyarrhythmias and heart failure. Ventricular and pacemaker cells have been generated both in vitro and in vivo in preclinical models. Upscaling technology based on cell (and gene) grafts to the organ level, ensuring graft survival, and guaranteeing long-term safety are needed before these innovative methods can be used to replace electrical cardiac pacemakers and to treat patients with heart failure.
TBX18 over expression induces transdifferentiation of cardiac myocytes towards pacemaker-like cells. Source: Vgh et al. Molecular therapies for bradyarrhythmias. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. Elsevier, Academic Press (AP). Pages 811-840.
About the author: Udi Nussinovitch M.D., Ph.D., is the editor of the two-volume set titled "Emerging Technologies in Heart Diseases Vol. 1" and "Emerging Technologies in Heart Diseases Vol. 2."The books cover all the major technologies in use or under development, for the treatment of cardiovascular disorders. The books present information systematically and are the only reference that attempts to address the technological aspects of cardiovascular treatments. They present a very interesting read for anyone involved in the biomedical field, cardiovascular researchers and cardiologists, who aspire to learn about currently available technologies as well those in the pipeline.
Nussinovitch graduated from the Sackler Faculty of Medicine, Tel Aviv University, and received training at the Sheba Medical Center, Rambam Healthcare Center and Meir Medical Center, while concurrently earning a Ph.D. in cardiac electrophysiology from the Technion Institute of Technology, Haifa, Israel. Dr. Nussinovitch has dedicated his research to investigating novel therapeutic approaches for cardiac disorders and modulating the cardiac electrophysiologic substrate for therapeutic purposes. He is the Director of the Applicative Cardiovascular Research Center (ACRC), affiliated with Tel Aviv University. Dr. Nussinovitch founded several biotech companies, including InVatin Technologies and InSpira Oxygenation Technologies. He performs his clinical work at Meir Medical Center, a medical facility and leading referral center in Israel.
Preclinical Study Shows Improvement In Recovery From Heart Attack With Exosomes – Anti Aging News
By daniellenierenberg
Recovery from experimental heart attacks can be improved with an injection of a mixture of heart muscle cells, endothelial cells and smooth muscle cells, but results are limited by poor engraftment and retention, plus there are concerns about potential tumorigenesis and heart arrhythmia.
Recent animal research in pigs has shown that using the exosomes naturally produced from a mixture of heart muscle cells, endothelial cells, and smooth muscle cells derived from human induced pluripotent stem cells yielded regenerative benefits that were the equivalent to the injected hiPSC-CCs.
Exosomes are membrane-bound extracellular vesicles that contain biologically active proteins, RNAs and microRNAs that are well known to participate in cell to cell communication, and are actively studied as potential clinical therapies for a wide range of conditions.
The hiPSC-CC exosomes are acellular and, consequently, may enable physicians to exploit the cardioprotective and reparative properties of hiPSC-derived cells while avoiding the complexities associated with tumorigenic risks, cell storage, transportation and immune rejection, said Ling Gao, Ph.D., and Jianyi Jay Zhang, M.D., Ph.D., University of Alabama at Birmingham corresponding authors of the study, published in Science Translational Medicine. Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.
Studies involving large animals are required to identify, characterize and quantify all responses to potential treatments, prior to this study the feasibility of hiPSC-CC exosomes for cariad therapy had only been shown to be effective in mouse models and in vitro work.
The UAB studies involving juvenile pigs with experimental heart attacks had 1 of 3 treatments injected into the damaged myocardium: a mixture of cardiomyocytes, endothelial cells, and smooth muscle cells derived from human induced pluripotent stems cells, exosomes extracted from three cell types, and homogenized fragments from the cell types.
There were 2 primary findings from this study. Measurements of left ventricle function, infarct size, wall stress, cardiac hypertrophy apoptosis and angiogenesis in the animals treated with hiPSC-CCS, hiPSC-cc fragments or hiPSC-cc exosomes were found to be similar and significantly improved compared to those that recovered without any of the 3 treatments. Additionally, exosome therapy was found not to increase the frequency of arrhythmia.
During experiments with cells or aortic rings that were grown in culture, exosomes produced by hiPSC-CCs were found to promote blood vessel growth in cultured endothelial cells and isolated aortic rings. The exosomes also protected the cultured hiPSC-cardiomyocytes from the cytotoxic effect of serum-free lox oxygen media by reducing the programmed apoptosis cell death and by maintaining intracellular calcium homeostasis which had a direct beneficial effect on heart conductivity. Additionally, the exosomes also increased cellular ATP content which is beneficial as deficiencies in cellular ATP metabolism are believed to contribute to the progressive decline in heart function in those with left ventricle hypertrophy and heart failure.
Some of the in vitro beneficial effects were found to also be mediated by synthetic mimics of the 15 most abundant microRNAs that were found in the hiPSC-cc exosomes. It was noted that knowledge of the potential role of microRNAs in clinical application requires more research as it is far from complete.
The study: Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine, co-authors with Gao and Zhang are Lu Wang, Yuhua Wei, Prasanna Krishnamurthy, Gregory P. Walcott and Philippe Menasch, UAB Department of Biomedical Engineering. Menasch also has an appointment at the Universit de Paris, France. Gao is now at Tongji University School of Medicine, Shanghai, China.
Read the original:
Preclinical Study Shows Improvement In Recovery From Heart Attack With Exosomes - Anti Aging News