The Amniotic Fluid Stem Cell Therapy market to invigorate from 2018 to 2026 – TechnoWeekly
By daniellenierenberg
Stem cells are biological cells which have the ability to distinguish into specialized cells, which are capable of cell division through mitosis. Amniotic fluid stem cells are a collective mixture of stem cells obtained from amniotic tissues and fluid. Amniotic fluid is clear, slightly yellowish liquid which surrounds the fetus during pregnancy and is discarded as medical waste during caesarean section deliveries. Amniotic fluid is a source of valuable biological material which includes stem cells which can be potentially used in cell therapy and regenerative therapies. Amniotic fluid stem cells can be developed into a different type of tissues such as cartilage, skin, cardiac nerves, bone, and muscles. Amniotic fluid stem cells are able to find the damaged joint caused by rheumatoid arthritis and differentiate tissues which are damaged.
For more insights into the Market, request a sample of this report @https://www.persistencemarketresearch.com/samples/23101
Medical conditions where no drug is able to lessen the symptoms and begin the healing process are the major target for amniotic fluid stem cell therapy. Amniotic fluid stem cells therapy is a solution to those patients who do not want to undergo surgery. Amniotic fluid has a high concentration of stem cells, cytokines, proteins and other important components. Amniotic fluid stem cell therapy is safe and effective treatment which contain growth factor helps to stimulate tissue growth, naturally reduce inflammation. Amniotic fluid also contains hyaluronic acid which acts as a lubricant and promotes cartilage growth.
With increasing technological advancement in the healthcare, amniotic fluid stem cell therapy has more advantage over the other therapy. Amniotic fluid stem cell therapy eliminates the chances of surgery and organs are regenerated, without causing any damage. These are some of the factors driving the growth of amniotic fluid stem cell therapy market over the forecast period. Increasing prevalence of chronic diseases which can be treated with the amniotic fluid stem cell therapy propel the market growth for amniotic fluid stem cell therapy, globally. Increasing funding by the government in research and development of stem cell therapy may drive the amniotic fluid stem cell therapy market growth. But, high procedure cost, difficulties in collecting the amniotic fluid and lack of reimbursement policies hinder the growth of amniotic fluid stem cell therapy market.
For Information On The Research Methodology request here @https://www.persistencemarketresearch.com/methodology/23101
The global amniotic fluid stem cell therapy market is segmented on basis of treatment, application, end user and geography:
To receive extensive list of important regions, Request TOC here @https://www.persistencemarketresearch.com/toc/23101
Rapid technological advancement in healthcare, and favorable results of the amniotic fluid stem cells therapy will increase the market for amniotic fluid stem cell therapy over the forecast period. Increasing public-private investment for stem cells in managing disease and improving healthcare infrastructure are expected to propel the growth of the amniotic fluid stem cell therapy market.
However, on the basis of geography, global Amniotic Fluid Stem Cell Therapy Market is segmented into six key regionsviz. North America, Latin America, Europe, Asia Pacific Excluding China, China and Middle East & Africa. North America captured the largest shares in global Amniotic Fluid Stem Cell Therapy Market and is projected to continue over the forecast period owing to technological advancement in the healthcare and growing awareness among the population towards the new research and development in the stem cell therapy. Europe is expected to account for the second largest revenue share in the amniotic fluid stem cell therapy market. The Asia Pacific is anticipated to have rapid growth in near future owing to increasing healthcare set up and improving healthcare expenditure. Latin America and the Middle East and Africa account for slow growth in the market of amniotic fluid stem cell therapy due to lack of medical facilities and technical knowledge.
Some of the key players operating in global amniotic fluid stem cell therapy market are Stem Shot, Provia Laboratories LLC, Thermo Fisher Scientific Inc. Mesoblast Ltd., Roslin Cells, Regeneus Ltd. etc. among others.
Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape
Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.
To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.
Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.
Contact us:
Naved BegPersistence Market ResearchAddress 305 Broadway, 7th Floor New York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com
The rest is here:
The Amniotic Fluid Stem Cell Therapy market to invigorate from 2018 to 2026 - TechnoWeekly
The role of induction therapy before autologous stem cell transplantation in low disease burden AL amyloidosis patients – DocWire News
By daniellenierenberg
This article was originally published here
Amyloid. 2020 Oct 21:1-9. doi: 10.1080/13506129.2020.1835635. Online ahead of print.
ABSTRACT
BACKGROUND: Induction therapy is recommended before autologous stem cell transplantation (ASCT) for AL amyloidosis patients with high disease burden [bone marrow plasma cells (BMPCs) > 10%], but the role of induction therapy before ASCT in patients with low disease burden (BMPCs 10%) is still unknown.
METHODS: A total of 227 patients with AL amyloidosis were included in this study. Among 227 patients, 124 patients received bortezomib-based induction prior to ASCT and were defined as group A, 35 patients received other chemotherapeutic induction and were defined as group B, and the other 68 patients without induction were defined as group C. We compared the differences of efficacy and prognosis between the three groups.
RESULTS: The haematological overall response rates (ORR) of groups A, B and C were 91%, 67% and 75%, respectively. The complete response rates (CR) of groups A, B and C were 50%, 25% and 20%, respectively. Both the ORR and CR rates of group A were significantly higher than those of groups B and C. The renal response rates of groups A, B and C were 64%, 46% and 47%, respectively. The cardiac response rates of groups A, B and C were 74%, 45% and 40%, respectively. The renal and cardiac responses rates of group A were also significantly higher than those of the other two groups. After a median follow-up of 44 months, the median OS was not reached. The 5-year estimated overall survival (OS) rates of groups A, B and C were 81%, 57% and 67%, respectively. The median progression-free survival (PFS) was 83 months for all patients. The 5-year estimated PFS rates of groups A, B and C were 61%, 38% and 49%, respectively. Both the OS and PFS of group A were higher than those of both group B and group C. On multivariate analysis, baseline dFLC > 50 mg/L was associated with worse survival, but induction with bortezomib was associated with better survival.
CONCLUSION: Our study demonstrated that low disease burden AL patients who are eligible for ASCT may benefit from bortezomib-based induction therapy.
PMID:33084412 | DOI:10.1080/13506129.2020.1835635
COVID-19 can affect the heart – Science Magazine
By daniellenierenberg
The family of seven known human coronaviruses are known for their impact on the respiratory tract, not the heart. However, the most recent coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked tropism for the heart and can lead to myocarditis (inflammation of the heart), necrosis of its cells, mimicking of a heart attack, arrhythmias, and acute or protracted heart failure (muscle dysfunction). These complications, which at times are the only features of coronavirus disease 2019 (COVID-19) clinical presentation, have occurred even in cases with mild symptoms and in people who did not experience any symptoms. Recent findings of heart involvement in young athletes, including sudden death, have raised concerns about the current limits of our knowledge and potentially high risk and occult prevalence of COVID-19 heart manifestations.
The four common cold human coronavirusesHCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1have not been associated with heart abnormalities. There were isolated reports of patients with Middle East respiratory syndrome (MERS; caused by MERS-CoV) with myocarditis and a limited number of case series of cardiac disease in patients with SARS (caused by SARS-CoV) (1). Therefore, a distinct feature of SARS-CoV-2 is its more extensive cardiac involvement, which may also be a consequence of the pandemic and the exposure of tens of millions of people to the virus.
What appears to structurally differentiate SARS-CoV-2 from SARS is a furin polybasic site that, when cleaved, broadens the types of cells (tropism) that the virus can infect (2). The virus targets the angiotensin-converting enzyme 2 (ACE2) receptor throughout the body, facilitating cell entry by way of its spike protein, along with the cooperation of the cellular serine protease transmembrane protease serine 2 (TMPRSS2), heparan sulfate, and other proteases (3). The heart is one of the many organs with high expression of ACE2. Moreover, the affinity of SARS-CoV-2 to ACE2 is significantly greater than that of SARS (4). The tropism to other organs beyond the lungs has been studied from autopsy specimens: SARS-CoV-2 genomic RNA was highest in the lungs, but the heart, kidney, and liver also showed substantial amounts, and copies of the virus were detected in the heart from 16 of 22 patients who died (5). In an autopsy series of 39 patients dying from COVID-19, the virus was not detectable in the myocardium in 38% of patients, whereas 31% had a high viral load above 1000 copies in the heart (6).
Accordingly, SARS-CoV-2 infection can damage the heart both directly and indirectly (see the figure). SARS-CoV-2 exhibited a striking ability to infect cardiomyocytes derived from induced pluripotent stem cells (iPSCs) in vitro, leading to a distinctive pattern of heart muscle cell fragmentation, with complete dissolution of the contractile machinery (7). Some of these findings were verified from patient autopsy specimens. In another iPSC study, SARS-CoV-2 infection led to apoptosis and cessation of beating within 72 hours of exposure (8). Besides directly infecting heart muscle cells, viral entry has been documented in the endothelial cells that line the blood vessels to the heart and multiple vascular beds. A secondary immune response to the infected heart and endothelial cells (endothelitis) is just one dimension of many potential indirect effects. These include dysregulation of the renin-angiotensin-aldosterone system that modulates blood pressure, and activation of a proinflammatory response involving platelets, neutrophils, macrophages, and lymphocytes, with release of cytokines and a prothrombotic state. A propensity for clotting, both in the microvasculature and large vessels, has been reported in multiple autopsy series and in young COVID-19 patients with strokes.
There is a diverse spectrum of cardiovascular manifestations, ranging from limited necrosis of heart cells (causing injury), to myocarditis, to cardiogenic shock (an often fatal inability to pump sufficient blood). Cardiac injury, as reflected by concentrations of troponin (a cardiac musclespecific enzyme) in the blood, is common with COVID-19, occurring in at least one in five hospitalized patients and more than half of those with preexisting heart conditions. Such myocardial injury is a risk factor for in-hospital mortality, and troponin concentration correlates with risk of mortality. Furthermore, patients with higher troponin amounts have markers of increased inflammation [including C-reactive protein, interleukin-6 (IL-6), ferritin, lactate dehydrogenase (LDH), and high neutrophil count] and heart dysfunction (amino-terminal pro-Btype natriuretic peptide) (9).
More worrisome than the pattern of limited injury is myocarditis: diffuse inflammation of the heart, usually representing a variable admixture of injury and the inflammatory response to the injury that can extend throughout the three layers of the human heart to the pericardium (which surrounds the heart). Unlike SARS-associated myocarditis, which did not exhibit lymphocyte infiltration, this immune and inflammatory response is a typical finding at autopsy after SARS-CoV-2 infections. Involvement of myocytes, which orchestrate electrical conduction, can result in conduction block and malignant ventricular arrhythmias, both of which can lead to cardiac arrest.
Along with such in-hospital arrythmias, there have been reports of increased out-of-hospital cardiac arrest and sudden death in multiple geographic regions of high COVID-19 spread, such as the 77% increase in Lombardy, Italy, compared with the prior year (10). There have been many reports of myocarditis simulating a heart attack, owing to the cluster of chest pain symptoms, an abnormal electrocardiogram, and increased cardiac-specific enzymes in the blood, even in patients as young as a 16-year-old boy. When there is extensive and diffuse heart muscle damage, heart failure, acute cor pulmonale (right heart failure and possible pulmonary emboli), and cardiogenic shock can occur.
COVID-19associated heart dysfunction can also be attributed to other pathways, including Takotsubo syndrome (also called stress cardiomyopathy), ischemia from endothelitis and related atherosclerotic plaque rupture with thrombosis, and the multisystem inflammatory syndrome of children (MIS-C). The underlying mechanism of stress cardiomyopathy is poorly understood but has markedly increased during the pandemic. MIS-C is thought to be immune-mediated and manifests with a spectrum of cardiovascular features, including vasculitis, coronary artery aneurysms, and cardiogenic shock. This syndrome is not exclusive to children because the same clinical features have been the subject of case reports in adults, such as in a 45-year-old man (11).
Recent series of COVID-19 patients undergoing magnetic resonance imaging (MRI) or echocardiography of the heart have provided some new insights about cardiac involvement (1214). In a cohort of 100 patients recovered from COVID-19, 78 had cardiac abnormalities, including 12 of 18 patients without any symptoms, and 60 had ongoing myocardial inflammation, which is consistent with myocarditis (12). The majority of more than 1200 patients in a large prospective cohort with COVID-19 had echocardiographic abnormalities (13). This raises concerns about whether there is far more prevalent heart involvement than has been anticipated, especially because at least 30 to 40% of SARS-CoV-2 infections occur without symptoms. Such individuals may have underlying cardiac pathology.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has the potential to directly and indirectly induce cardiac damage.
To date, there have been four small series of asymptomatic individuals with bona fide infections who underwent chest computed tomography (CT) scans to determine whether there were lung abnormalities consistent with COVID-19. Indeed, half of the asymptomatic people showed lung CT features that were seen in patients with symptoms. But so far, there have been minimal cardiac imaging studies in people who test positive for SARS-CoV-2 or are seropositive but without symptoms. Furthermore, the time course of resolution or persistence of any organ abnormalities after SARS-CoV-2 infection has not yet been reported. With a high proportion of silent infections despite concurrent evidence of internal organ damage, there is a fundamental and large hole in our knowledge base.
In contrast to people without symptoms, there is a substantial proportion of people who suffer a long-standing, often debilitating illness, called long-COVID. Typical symptoms include fatigue, difficulty in breathing, chest pain, and abnormal heart rhythm. An immunologic basis is likely but has yet to be determined. Nor have such patients undergone systematic cardiovascular assessment for possible myocarditis or other heart abnormalities, such as fibrosis, which could account for some of the enduring symptoms. It would not be surprising in the future for patients to present with cardiomyopathy of unknown etiology and test positive for SARS-CoV-2 antibodies. However, attributing such cardiomyopathy to the virus may be difficult given the high prevalence of infections, and ultimately a biopsy might be necessary to identify virus particles to support causality.
Cardiac involvement in athletes has further elevated the concerns. A 27-year-old professional basketball player, recovered from COVID-19, experienced sudden death during training. Several college athletes have been found to have myocarditis (14), including 4 of 26 (15%) in a prospective study from Ohio State University (15), along with one of major league baseball's top pitchers. Collectively, these young, healthy individuals had mild COVID-19 but were subsequently found to have unsuspected cardiac pathology. This same demographic groupyoung and healthyare the most common to lack symptoms after SARS-CoV-2 infections, which raises the question of how many athletes have occult cardiac disease? Systematic assessment of athletes who test positive for SARS-CoV-2, irrespective of symptoms, with suitable controls through some form of cardiac imaging and arrhythmia screening seems prudent until more is understood.
The most intriguing question that arises is why do certain individuals have a propensity for heart involvement after SARS-CoV-2 infection? Once recognized a few months into the pandemic, the expectation was that cardiac involvement would chiefly occur in patients with severe COVID-19. Clearly, it is more common than anticipated, but the true incidence is unknown. It is vital to determine what drives this pathogenesis. Whether it represents an individual's inflammatory response, an autoimmune phenomenon, or some other explanation needs to be clarified. Beyond preventing SARS-CoV-2 infections, the goal of averting cardiovascular involvement is paramount. The marked heterogeneity of COVID-19, ranging from lack of symptoms to fatality, is poorly understood. A newly emerged virus, widely circulating throughout the human population, with a panoply of disease manifestations, all too often occult, has made this especially daunting to unravel.
Acknowledgments: E.J.T. is supported by National Institutes of Health grant UL1 TR001114.
Read the original here:
COVID-19 can affect the heart - Science Magazine
Exosome Therapeutic Market 2020-2026 Demand Analysis and Projected Huge Growth by Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH,…
By daniellenierenberg
To better structure this Exosome Therapeutic Market report, a nice blend of advanced industry insights, practical solutions, talent solutions and latest technology is utilized which gives an excellent experience to the readers or end users. The report is a valuable resource which provides current as well as upcoming technical and financial details of the industry to 2026. CAGR values for the market for an estimated forecast period of 2020 to 2026 are mentioned in the report which helps determine costing and investment For better understanding of the market and leading business growth, Exosome Therapeutic Market research report is the ideal solution.
Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp
Market Analysis and Insights:Global Exosome Therapeutic Market
Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.
The major players covered in theExosome Therapeutic Marketreport areevox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global.Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp
Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.
Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.
Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.
This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.
Global Exosome Therapeutic Market Scope and Market Size
Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.
Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.
Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.
Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.
Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.
Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.
Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.
Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.
The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.
Exosome therapeutic Market Country Level Analysis
The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.
The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.
Country Level Analysis, By Type
North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.
Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration
Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.
Competitive Landscape and Exosome Therapeutic Market Share Analysis
Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.
Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.
For instance,
Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.
Customization Available:Global Exosome Therapeutic Market
Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.
Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp
About Data Bridge Market Research :
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us :
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475
Mail:Corporatesales@databridgemarketresearch.com
Stem Cell Therapy Market to Witness Steady Expansion During 2025 KYT24 – KYT24
By daniellenierenberg
Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.
Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787
One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.
It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.
Global Stem Cell Therapy Market: Overview
Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.
Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.
Buy This Report @https://www.tmrresearch.com/checkout?rep_id=1787<ype=S
Global Stem Cell Therapy Market: Key Trends
The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.
On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.
Global Stem Cell Therapy Market: Market Potential
A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.
In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.
Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.
Global Stem Cell Therapy Market: Regional Outlook
The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.
Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.
Global Stem Cell Therapy Market: Competitive Analysis
Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.
Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.
To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787
About TMR Research
TMR Research is a premier provider of customized market research and consulting services to busi-ness entities keen on succeeding in todays supercharged economic climate. Armed with an experi-enced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Read more:
Stem Cell Therapy Market to Witness Steady Expansion During 2025 KYT24 - KYT24
Exosome Therapeutic Market 2020-2026 || Major Gaints Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc,…
By daniellenierenberg
In Exosome Therapeutic Market report, a systematic investment analysis has been performed which forecasts impending opportunities for the market players. The statistical and numerical data that has been included in this market report is represented with the tables, graphs and charts which eases the understanding of facts and figures. A proficient data and excellent forecasting techniques used in this report are synonymous with accurateness and correctness. Exosome Therapeutic Market report is a painstaking analysis of existing scenario of the market which covers several market dynamics. The market study of this global Exosome Therapeutic Market business report takes into consideration market attractiveness analysis where each segment is benchmarked based on its market size, growth rate & general attractiveness.
Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp
Market Analysis and Insights:Global Exosome Therapeutic Market
Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.
The major players covered in theExosome Therapeutic Marketreport areevox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global.Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp
Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.
Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.
Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.
This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.
Global Exosome Therapeutic Market Scope and Market Size
Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.
Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.
Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.
Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.
Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.
Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.
Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.
Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.
The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.
Exosome therapeutic Market Country Level Analysis
The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.
The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.
Country Level Analysis, By Type
North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.
Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration
Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.
Competitive Landscape and Exosome Therapeutic Market Share Analysis
Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.
Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.
For instance,
Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.
Customization Available:Global Exosome Therapeutic Market
Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.
Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp
About Data Bridge Market Research :
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us :
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475
Mail:[emailprotected]
The rest is here:
Exosome Therapeutic Market 2020-2026 || Major Gaints Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc,...
Five Indian American Researchers Named Among NIH 2020 New Innovator Awardees – India West
By daniellenierenberg
Five Indian American researchers and one Bangladeshi-American have been named among the 2020 Directors New Innovator Award recipients by the National Institutes of Health.
Among the recipients are Anindita Basu, Subhamoy Dasgupta, Deeptankar DeMazumder, Siddhartha Jaiswal, Shruti Naik, and Mekhail Anwar, according to the NIH website.
Basu, of the University of Chicago, was selected for the project, Profiling Transcriptional Heterogeneity in Microbial Cells at Single Cell Resolution and High-Throughput Using Droplet Microfluidics.
The Indian American is an assistant professor in genetic medicine at the University of Chicago and leads a multi-disciplinary research group that uses genomics, microfluidics, imaging and nano/bio-materials to develop new tools to aid in diagnosis and treatment of disease.
Basu obtained a B.S. in physics and computer engineering at the University of Arkansas, Ph.D. in soft matter physics at University of Pennsylvania, followed by post-doctoral studies in applied physics, molecular biology and bioinformatics at Harvard University and Broad Institute.
Her lab applies high-throughput single-cell and single-nucleus RNA-seq to map cell types and their function in different organs and organisms, using Drop-seq and DroNc-seq that Basu co-invented during her post-doctoral work.
Dasgupta is with the Roswell Park Comprehensive Cancer Center and was named for his project, Decoding the Nuclear Metabolic Processes Regulating Gene Transcription.
Dasgupta is an assistant professor in the Department of Cell Stress Biology at Roswell Park Comprehensive Cancer Center. He earned his B.S. from Bangalore University and M.S. in biochemistry from Banaras Hindu University, India before receiving his Ph.D. in biomedical sciences from University of North Texas Health Science Center at Fort Worth, where, as a Department of Defense predoctoral fellow, he characterized the functions of a novel gene MIEN1 in tumor progression and metastasis.
He then joined the laboratory of Bert W. O'Malley, M.D. at Baylor College of Medicine, where he studied the functions of transcriptional coregulators in tumor cell adaptation and survival, as a Susan G. Komen postdoctoral fellow.
DeMazumder, of the University of Cincinnati College of Medicine, was chosen for the project, Eavesdropping on Heart-Brain Conversations During Sleep for Early Detection and Prevention of Fatal Cardiovascular Disease.
DeMazumder joined the University of Cincinnati in 2017 as assistant professor of medicine, director of the Artificial Intelligence Center of Excellence and a Clinical Cardiac Electrophysiologist after completing his doctorate at SUNY Stony Brook in Synaptic Electrophysiology, a medical degree at Medical College of Virginia-Virginia Commonwealth University, internship at Mount Sinai and residency at University of Virginia in Internal Medicine, and clinical and research fellowships at Johns Hopkins University.
His longstanding goals are to transform clinical observations into testable research hypotheses, translate basic research findings into medical advances, and evaluate personalized treatment protocols in rigorous clinical trials, while caring for patients with heart rhythm disorders and improving their quality of life.
Jaiswal, of Stanford University, was named for his project, Clonal Hematopoiesis in Human Aging and Disease.
Jaiswal is an investigator at Stanford University in the Department of Pathology, where his lab focuses on understanding the biology of the aging hematopoietic system.
As a post-doctoral fellow, he identified a common, pre-malignant state for blood cancers by reanalysis of large sequencing datasets.
This condition, termed "clonal hematopoiesis, is characterized by the presence of stem cell clones harboring certain somatic mutations, primarily in genes involved in epigenetic regulation of hematopoiesis.
Clonal hematopoiesis is prevalent in the aging population and increases the risk of not only blood cancer, but also cardiovascular disease and overall mortality. Understanding the biology of these mutations and how they contribute to the development of cancer and other age-related diseases is the current focus of work in the lab.
Naik, of New York University School of Medicine, was named for her project, Decoding Microbe-Epithelial Stem Cell Interactions in Health and Disease.
Naik is an assistant professor at New York University School of Medicine. She received her doctorate in Immunology from the University of Pennsylvania-National Institutes of Health Graduate Partnership Program.
There she discovered that normal bacteria living on our skin, known as the commensal microbiota, educate the immune system and help protect us from harmful pathogens.
As a Damon Runyon Fellow at the Rockefeller University, Naik found that epithelial stem cells can harbor a memory of inflammation which boosts their regenerative abilities and established a new paradigm in inflammatory memory, her bio states.
The Naik lab studies the dynamic interactions between immune cells, epithelial stem cells, and microbes with a focus on 3 major areas of research: Tissue regeneration and cancer, host-microbe interactions, and early in life immunity.
Anwar, of U.C. San Francisco, was named for his project, Implantable Nanophotonic Sensors forIn VivoImmunoresponse.
Anwar, whose father is from Bangladesh, is a physician-scientist at UCSF, where he is an associate professor in the Department of Radiation Oncology. Driven by the challenges his patients face when fighting cancer specifically addressing the vast heterogeneity in treatment response by identifying the optimal treatment to pair with each patients unique biology he leads a laboratory focused on developing integrated circuits (or computer chips) forin vivocancer sensing.
After completing his bachelors in physics at U.C. Berkeley, where he was awarded the University Medal, he received his medical degree at UCSF, and doctorate in electrical engineering and computer science from the Massachusetts Institute of Technology where his research focused on using micro-fabricated devices for biological detection.
Read the original here:
Five Indian American Researchers Named Among NIH 2020 New Innovator Awardees - India West
Merck Presents Three-Year Survival Data for KEYTRUDA (pembrolizumab) in Combination With Chemotherapy and Updated Phase 1/2 Data for Investigational…
By daniellenierenberg
In KEYNOTE-021 (Cohort G), first-line treatment with KEYTRUDA in combination with chemotherapy (n=60) demonstrated a significant improvement in objective response rates (58% vs. 33%), progression-free survival (HR=0.54 [95% CI, 0.35-0.83]) and a sustained, long-term survival benefit (HR=0.71 [95% CI, 0.45-1.12]) versus chemotherapy alone (n=63) in patients with advanced nonsquamous non-small cell lung cancer (NSCLC) regardless of PDL1 expression (Featured Poster #OFP01.02). Patients in Cohort G had no EGFR or ALK genomic tumor aberrations. These findings represent the longest follow-up data for an anti-PD-1/PDL1 therapy in combination with chemotherapy for the first-line treatment of NSCLC. Additionally, updated follow-up data from a Phase 1/2 study of quavonlimab in combination with KEYTRUDA showed encouraging anti-tumor activity and an acceptable safety profile as first-line treatment in patients with advanced NSCLC (Poster #TS01.02).
Over the last five years, KEYTRUDA has become foundational in the treatment of metastatic lung cancer. The long-term data from KEYNOTE-021 (Cohort G) reinforce the use of KEYTRUDA in combination with chemotherapy in certain advanced lung cancer patients, while data from our oncology pipeline reflect our commitment to exploring a number of new combinations with KEYTRUDA that we believe could have a meaningful impact for more lung cancer patients, said Dr. Vicki Goodman, vice president, oncology clinical research, Merck Research Laboratories. Updated data from our anti-CTLA-4 antibody quavonlimab in combination with KEYTRUDA support the continued development of this new combination and a Phase 3 study of quavonlimab coformulated with KEYTRUDA in advanced non-small cell lung cancer is planned.
Results from both studies were presented at the IASLC 2020 North America Conference on Lung Cancer hosted by the International Association for the Study of Lung Cancer on Friday, Oct. 16. Follow Merck on Twitter via @Merck and keep up to date with NACLC news and updates by using the hashtag #NACLC20.
KEYTRUDA in Combination With Chemotherapy: Long-Term Data in Advanced NSCLC From KEYNOTE-021 (Cohort G) (Featured Poster #OFP01.02) New data from Cohort G of KEYNOTE-021 (NCT02039674) demonstrated a significant improvement in objective response rates (ORR), progression-free survival (PFS) and a sustained, long-term survival benefit with KEYTRUDA in combination with pemetrexed (ALIMTA) and platinum chemotherapy versus pemetrexed and platinum chemotherapy alone after four years of median study follow-up (49.4 months; range, 43.5 to 55.4). Cohort G of the Phase 1/2, multi-cohort, multi-center, open-label trial evaluated KEYTRUDA in combination with chemotherapy (n=60) versus chemotherapy alone (n=63) as first-line treatment in patients with advanced nonsquamous NSCLC. Patients in Cohort G had no EGFR or ALK genomic tumor aberrations.
Findings from KEYNOTE-021 (Cohort G) showed that 50% of patients treated with KEYTRUDA in combination with chemotherapy were alive at three years versus 37% of patients who received chemotherapy alone. KEYTRUDA in combination with chemotherapy also reduced the risk of death by 29% (HR=0.71 [95% CI, 0.45-1.12]) versus chemotherapy alone, with a median overall survival (OS) of 34.5 versus 21.1 months. The OS benefit was observed despite a 70% (n=43/61) effective crossover rate from chemotherapy to antiPD1/PDL1 therapy, including 28 patients who were treated with KEYTRUDA as part of the on-study crossover.
The ORR was 58% for KEYTRUDA in combination with chemotherapy versus 33% for chemotherapy alone. KEYTRUDA also reduced the risk of disease progression or death by 46% (HR=0.54 [95% CI, 0.35-0.83]) versus chemotherapy, with a median PFS of 24.5 months (range, 9.7 to 36.3) versus 9.9 months (range, 6.2 to 15.2). The estimated three-year PFS rate was 37% for patients who received KEYTRUDA in combination with chemotherapy versus 16% for those who received chemotherapy alone. The median duration of response (DOR) was more than one year longer with KEYTRUDA in combination with chemotherapy (36.3 months; range, 1.4+ to 49.3+) versus chemotherapy alone (22.8 months; range, 2.8+ to 47.2+). Additionally, 51% of patients treated with KEYTRUDA in combination with chemotherapy had responses lasting three years versus 47% with chemotherapy alone.
Notably, 92% of patients who completed two years of treatment with KEYTRUDA were alive at three years (n=11/12). All 12 patients experienced an objective response and the estimated three-year DOR rate was 100% (median DOR not reached [NR]; range, 11.7+ to 49.3+ months).
No new safety signals for KEYTRUDA in combination with chemotherapy were identified with long-term follow-up. Among all those treated, 39% of those who received KEYTRUDA in combination with chemotherapy and 31% of those who received chemotherapy alone experienced Grade 3-5 treatment-related adverse events (TRAEs). Grade 3-5 TRAEs that led to discontinuation occurred in 17% of patients who received KEYTRUDA in combination with chemotherapy and 16% of those who received chemotherapy alone. Grade 3-5 TRAEs that led to death occurred in 2% (n=1) of patients who received KEYTRUDA in combination with chemotherapy and 3% (n=2) of those who received chemotherapy alone.
The KEYNOTE-021 (Cohort G) trial was conducted in collaboration with Eli Lilly and Company, the makers of pemetrexed (ALIMTA).
Quavonlimab (anti-CLTA-4) in Combination With KEYTRUDA: Phase 1/2 Results in Advanced NSCLC (Poster #TS01.02) In this first-in-human, open-label, multi-arm Phase 1/2 study (NCT03179436), quavonlimab, Mercks novel anti-CTLA-4 therapy, was evaluated in combination with KEYTRUDA as a first-line treatment in patients with advanced NSCLC. In the dose-confirmation phase, patients received quavonlimab (25 mg or 75 mg) every three weeks (Q3W) or every six weeks (Q6W) in combination with KEYTRUDA (200 mg Q3W for up to 35 cycles). The primary objective of the study was safety and tolerability; secondary and exploratory objectives included ORR per RECIST v1.1 by blinded independent central review (BICR), PFS, OS and DOR. Response based on PD-L1 status was retrospectively evaluated using tumor proportion score (TPS) as a continuous variable.
Findings showed that quavonlimab in combination with KEYTRUDA had an acceptable safety profile with no unexpected toxicities and suggested encouraging anti-tumor activity. Any-grade adverse events occurred in 98% of patients; TRAEs occurred 85% of patients. Grade 3 TRAEs occurred in 36% of patients across all treatment arms and the most common TRAEs (>10% in any arm) were increased alanine aminotransferase (8%), pneumonitis (8%) and increased aspartate aminotransferase (6%).
With 16.9 months of median follow-up (range, 7.0 to 21.3), results from the study showed the effect of quavonlimab in combination with KEYTRUDA across secondary and exploratory endpoints, including ORR, PFS, OS and DOR. Responses to quavonlimab in combination with KEYTRUDA were observed regardless of PD-L1 expression with higher TPS scores significantly associated with better response (one-sided p=0.015). These safety and efficacy data support the 25 mg Q6W dose as the recommended Phase 2 dose of quavonlimab when used in combination with KEYTRUDA.
Quavonlimab25 mg Q6W + KEYTRUDAn=40
Quavonlimab25 mg Q3W + KEYTRUDAn=40
Quavonlimab75 mg Q6W + KEYTRUDAn=40
Quavonlimab75 mg Q3W + KEYTRUDAn=14
TotalN=134
ORR, %(95%, CI)
37.5(22.7-54.2)
40(24.9-56.7)
27.5(14.6-43.9)
35.7(12.8-64.9)
35.1(27.0-43.8)
PFS, median(95%, CI), mo
7.8(4.2-14.8)
6.0(2.0-8.3)
6.0(3.5-8.1)
3.4(1.8-NE)
6.1(4.2-7.3)
OS, median(95%, CI), mo
18.1(14.2-NE)
18.1(9.1-21.8)
17.1(9.0-NE)
13.7(3.5-NE)
16.5(14.2-21.8)
DOR, median(95%, CI), mo
NR(4.0 to 21.6+)
7.9(2.8 to 21.4+)
15.9(3.4 to 21.4+)
NR(8.8+ to 16.3+)
13.6(2.8 to 21.6+)
About Lung Cancer Lung cancer, which forms in the tissues of the lungs, usually within cells lining the air passages, is the leading cause of cancer death worldwide. Each year, more people die of lung cancer than die of colon and breast cancers combined. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all cases. Small cell lung cancer (SCLC) accounts for about 10% to 15% of all lung cancers. Before 2014, the five-year survival rate for patients diagnosed in the U.S. with NSCLC and SCLC was estimated to be 5% and 6%, respectively.
About KEYTRUDA (pembrolizumab) Injection, 100 mg KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
About Quavonlimab (MK-1308) Quavonlimab is a novel humanized IgG1 monoclonal antibody that binds to CTLA-4 and blocks interaction with its ligands, CD80 and CD86. Quavonlimab is currently being evaluated in combination with KEYTRUDA across multiple solid tumors as part of ongoing Phase 1 and 2 trials. A Phase 3 trial of quavonlimab coformulated with KEYTRUDA in advanced non-small cell lung cancer is planned.
Selected KEYTRUDA (pembrolizumab) Indications Melanoma KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Global Cell Based Assay & High Content Screening Markets to 2024: Updated Report – Understand Growth Expectations and the Potential Market Size -…
By daniellenierenberg
DUBLIN--(BUSINESS WIRE)--The "Cell Based Assay & High Content Screening Markets Market Forecasts by Application, With Executive and Consultant Guides and including Customized Forecasting and Analysis 2020 to 2024" report has been added to ResearchAndMarkets.com's offering.
This updated report will bring the entire management team up to speed, on both the technology and the opportunity.
Cell Based Assays are a mainstay of drug development and scientific research, but growth is now accelerating as new immuno-oncology markets create unprecedented investment in the race to cure cancer. On top of this new technology is allowing Cell Based Assays to be used to measure any aspect of cell function. This market just keeps on growing with no end in sight. The workhorse of the pharmaceutical industry is becoming a central player in biotechnology.
The technology is moving faster than the market. Genomics and Immunology are playing a role too. Find opportunities and pitfalls. Understand growth expectations and the ultimate potential market size.
Key Topics Covered:
1. Introduction and Market Definition
1.1 What are Cell Based Assays?
1.2 Clinical Trial Failures
1.2.1 Immuno-oncology Plays a Leading Role in Cell Based Assays
1.3 Market Definition
1.4 Methodology
1.5 U.S. Medical Market and Pharmaceutical Research Spending - Perspective
1.5.1 U.S. Expenditures for Pharmaceutical Research
2. Cell Based Assays - Guide to Technology
2.1 Cell Cultures
2.1.1 Cell Lines
2.1.2 Primary Cells
2.1.3 Stem Cells
2.1.3.1 iPSC's - The Special Case
2.2 Cell Assays
2.3 Cell Viability Assays
2.3 Cell Proliferation Assays
2.4 Cytotoxicity Assays
2.5 Cell Senescence Assays
2.6 Apoptosis
2.7 Autophagy
2.8 Necrosis
2.9 Oxidative Stress
2.10 2D vs. 3D
2.11 Signalling Pathways, GPCR
2.12 Immune Regulation & Inhibition
2.13 Reporter Gene Technology
2.14 CBA Design & Development
2.15 Cell Based Assays - The Takeaway
3. Industry Overview
3.1 Players in a Dynamic Market
3.1.1 Academic Research Lab
3.1.2 Contract Research Organization
3.1.3 Genomic Instrumentation Supplier
3.1.5 Cell Line and Reagent Supplier
3.1.6 Pharmaceutical Company
3.1.7 Audit Body
3.1.8 Certification Body
4. Market Trends
4.1 Factors Driving Growth
4.1.1 Candidate Growth
4.1.2 Immuno-oncology
4.1.3 Genomic Blizzard
4.1.4 Technology Convergence
4.1.5 The Insurance Effect
4.2 Factors Limiting Growth
4.2.1 CBA Development Challenges
4.2.2 Instrument Integration
4.2.3 Protocols
4.3 Technology Development
4.3.1 3D Assays
4.3.2 Automation
4.3.3 Software
4.3.4 Primary Cells
4.3.5 Signalling and Reporter Genes
4.3.6 The Next Five Years
5. Cell Based Assays Recent Developments
5.1 Recent Developments - Importance and How to Use This Section
5.1.1 Importance of These Developments
5.1.2 How to Use This Section
6. Profiles of Key Cell Based Assay Companies
7. Global Market Size
8. Global Market by User Type
8.1 Pharmaceutical Market
8.2 Basic Research Market
8.3 Industrial/Cosmetic Market
9. Cell Based Assay by Product Class
9.1 Instrument Market
9.2 Reagent Market
9.3 Services Market
9.4 Software Market
10. Appendices
10.1 FDA Cancer Drug Approvals by Year
10.2 Clinical Trials Started 2010 to 2016
10.3 Share of Pharma R&D by Country
For more information about this report visit https://www.researchandmarkets.com/r/1vziyy
Read the original:
Global Cell Based Assay & High Content Screening Markets to 2024: Updated Report - Understand Growth Expectations and the Potential Market Size -...
Banking wisdom: Teen saving stem cells in hopes of future treatment – LubbockOnline.com
By daniellenierenberg
Staff Writer| Lubbock Avalanche-Journal
By Elizabeth Herbert
A-J Media
A 16-year-old Lubbockite with rheumatoid arthritis recently banked her wisdom teeth for their high concentration of stem cells in the hope of using them in a future procedure.
Stem cells are undifferentiated cells, meaning they can become almost any specialized cell; researchers have been studying these cells to learn more about using them to treat ailments such as rheumatoid arthritis.
The oral and facial surgeon who removed the patients teeth, Dr. Robert Ioppolo, said there was virtually no downside to storing the teeth and cells because the procedure, which is necessary for most, is the same for the patient regardless.
Instead of putting (wisdom teeth) in a baggie, we put them in a vial; we put them in a little freezer-type cryopreservation box and off they go to the processing center, he said, so its very straightforward from our perspective, and it just provides an additional service to patients that we didnt have access to a few years ago.
Once the teeth have been sent to process at the Stemodontics lab, Ioppolo said specialists open the teeth and extrapolate the nerve tissue to obtain the stem cells.
The cool thing is that the stem cell population inside of wisdom teeth, especially in somebody thats young and healthy, is at its peak as far as the amount of cells, so the quantity, and also the quality of those cells, he said, so this is kind of a one-time opportunity that folks have to bank the best stem cells that they possibly can from their wisdom teeth.
Rheumatoid arthritis typically impacts adults. The Centers for Disease Control states 7.1% of people aged 18-44 years old report being diagnosed with arthritis; younger groups are not listed on the main, arthritis-related page.
Jamie Fields, the patients mother, said her daughter has undergone knee surgeries and is on medications but has not seen strong improvements in the seven months she has been receiving treatment.
Doctors tried a technique called microfracture in which tiny holes are drilled into the knee to produce new tissue, but this results in fibrocartilage and is more like scar tissue and less like the cushiony cartilage that joints need to function properly, according to an article from the Stanford Medicine News Center.
Preserving her daughters wisdom teeth and stem cells will cost Fields $2,000, but she said her alternative is to grow cells from the cartilage taken from a previous surgery which would cost about $46,000 for the graft alone and does not account for an accompanying procedure.
When I hear about these stem cells, Im like, Well, what if this would work, she said. If thats the route we have to take, then why not try this first?
Aside from surgeries, Fields said her daughters doctor prescribed medications to help slow or stop the dying cartilage behind her knee. There are many options, but medicines tend to have side effects and Fields said she does not want her daughter to have to use multiple, strong pharmaceuticals long-term.
He has a list, and he started her at the bottom of the list on the medications, and then he said we would just go up from there, but that way we dont do anything too harsh thats not needed, she said.
Rheumatoid arthritis tends to worsen with age, and Fields said her daughter, who already has a history of broken bones and surgeries, is impacted by her rheumatoid arthritis to the extent that she cannot participate in gymnastics, cheerleading or other fun activities she has enjoyed.
Fields could keep working down the line of medications most 16 year olds cannot pronounce, or she said she could save her daughters stem cells and wait for orthopedists to create a procedure that would use her daughters cells to help rejuvenate damaged areas.
This is a once-in-a-lifetime (opportunity), Fields said. If we dont do this now, where is she gonna get them from later, of her own?
Michael Longaker, Deane P. and Louise Mitchell Professor for the Department of Surgery and Co-Director for the Institute of Stem Cell Research and Regenerative Medicine at Stanford University, said using stem cells could help a number of issues due to the cells ability to change.
While we do some things really well, like cardiac bypass surgery or hip replacement et cetera, et cetera, itd be great if we could unlock the power of cells that can become other types of cells so that we could regenerate each of these things before they get to the point where they need a major operation, he said.
Stem cells can be found throughout the body, and removing wisdom teeth is a fairly routine procedure; the WebMD website states over 10 million wisdom teeth are removed annually.
Many of these teeth are disposed of, but Longaker pointed out that stem cells in wisdom teeth are unique to the individual and are great sources of stem cells.
In the soft part, the pulp, of those teeth are stem cells that - God forbid - that healthy, young patient whos having them removed, God forbid anything happens to them and they need something or they have a family history of disease - theyre all set and ready to go, he said.
Longakers teams research began with mice and found skeletal stem cells can be manipulated to become cartilage.
They used two major molecules, bone morphogenetic protein 2 and vascular endothelial growth factor, to help the cells start bone formation after microfracture yet stop the process halfway to create cartilage. Longaker said the next step in the research is to focus on larger animals; then human clinical trials can begin.
Stem cells from wisdom teeth would work best for things in the mouth such as bone and cartilage, but Longaker said the cells can be backed up, de-differentiated and guided in a dish to the point where the cell can become almost anything; once the cell is fully differentiated, or has changed into a specific type of cell the specialist intended, it can be implanted.
You take the stem cells from teeth and back them up, so to speak, so they can become almost any type of cell, and then you would guide them down the exit ramp, so to speak, to where you want them to go, he said.
It may be years before orthopedists use stem cells to improve arthritic conditions, but Longaker, who banked his own sons wisdom teeth, said advances happen regularly and that one never knows when their stem cells will be useful.
As a stem cell biologist, having someone already store stem cells that I could guide to become something else, God forbid they need it, that really makes sense to me, he said. I dont see a reason not to do it if a parent or patient wants to do it.
Although banking her daughters wisdom teeth will not yield immediate results, Fields said she believes god guided her on this path and that she has more to gain than to lose.
Our faith is really strong, and I believe that God has led us on this path to hopefully find something that we can do to help her because weve been on this path for so long and with no answers, she said.
Read this article:
Banking wisdom: Teen saving stem cells in hopes of future treatment - LubbockOnline.com
Human heart organoids provide unmatched insight into cardiac disease and dysfunction – BioWorld Online
By daniellenierenberg
Two teams of researchers have developed miniature models of the human heart that beat and function like the full-size organ. The team from Michigan State University (MSU) and Washington University in St. Louis developed a human heart organoid (hHO) that recapitulates embryonic heart development, providing an unmatched view into congenital heart defects. The organoid created by the researchers at the Medical University of South Carolina (MUSC) and Clemson University mimics the tissue dysfunction that occurs following a heart attack.
Organoids are self-assembling, 3D multicellular constructs that exhibit organ properties and structure to various degrees. Several processes have been developed to create them in recent years.
The MSU teams heart includes all the primary types of heart cells, as well as functional chambers and vascular tissues. These minihearts constitute incredibly powerful models in which to study all kinds of cardiac disorders with a degree of precision unseen before, said Aitor Aguirre, the studys senior author and assistant professor of biomedical engineering at MSUs Institute for Quantitative Health Science and Engineering.
Results of the groups work created quite a stir when it appeared on the preprint server bioRxiv and highlights were presented at the 2020 International Society for Stem Cell Research Annual Meeting. Weve received a lot of calls from researchers who want to use our process, Aguirre told BioWorld. The NIH and the American Heart Association provided funding for the study.
To create the approximately 1-mm diameter hHOs, the team combined several approaches developed over the last decade. They start with induced pluripotent cells ordinary cells from adults that are induced by the introduction of several genes to become pluripotent stem cells or master cells. The team then provides chemical signals that stimulate the cells to differentiate and mimic the process used in fetal development to create a heart.
In 15 to 20 days, the developmentally directed approach takes an undifferentiated ball of cells and gets to the point that the heart beats, has chambers, has cells organized in the way those cells are organized in the heart. At a molecular and cellular level, we are creating a heart, Aguirre noted.
The process is much simpler and easier to recreate than tissue engineering, as hundreds can be created simultaneously with minimal operator involvement and without the need for expensive machinery. Aguirre said the equipment required would be present already in any standard cell laboratory.
Currently, the team is using the miniaturized model heart to study developmental heart disorders. Thats crucial because, while congenital heart affects 1% of all newborns, there have been no good ways to study fetal heart development. You cant tell a pregnant woman, we want to take a biopsy, so its hard to study first-hand, Aguirre explained. With this process, the team can replicate much of fetal heart development without using fetal cells, bypassing all ethical concerns.
Since the publication of their initial results, Aguirre and his team have made further advances to more closely model the human heart. By further improving the development conditions, the researchers are now giving the organoids structural and locational cues needed to organize themselves better. Those new conditions have led to the formation of two chambers with heart looping, creating a shape that resembles a sausage more than a ball. In addition, they are growing hearts that are more sophisticated and demonstrate functioning of a somewhat older heart.
The researchers also are working on the development of vasculature that will enable the minihearts to grow larger and to create a multiorgan system in vitro that would be especially useful in studying pediatric cardiopulmonary development. Beyond gaining a better understanding of the basics of early heart development, the team hopes the model will provide greater insight into the impact of various chemicals and conditions, including environmental contaminants, maternal diabetes and medications.
The South Carolina process
Researchers at the MUSC and Clemson University took a somewhat different approach to creation of their human cardiac organoid. Like the MSU team, they began with induced pluripotent stem cells that divide and self-assemble. The spherical organoids are fabricated in vitro using four defined cell types that range in maturity from early stage to adult in ratios found in the heart. The process gives the microtissue a range of functionality but does not reproduce the developmental process of a heart.
The greater maturity of some of the tissue has an advantage for the teams research, however. The South Carolina contingent has focused on creating heart organoids that parallel the physiological conditions present during and immediately following a heart attack. Their work recently appeared in Nature Biomedical Engineering.
The model demonstrates the key features of pathological metabolic shifts, fibrosis and calcium handling. Furthermore, our transcriptomic analysis showed that there are comparable disease characteristics that are similar to that of the diseased adult heart, lead author Dylan Richards, a graduate of the MUSC Clemson bioengineering program and now a computational biologist at The Janssen Pharmaceutical Companies of Johnson & Johnson, told BioWorld.
To model the heart after a heart attack, we used low oxygen culture to create an oxygen-diffusion gradient in cardiac organoids combined with noradrenaline stimulation, Richards said. This method resulted in a structural and functional gradient, similar to that of a heart after a heart attack (dying tissue in the middle surrounded by dysfunctional regions surrounded by functional regions).
Using the model, the team found that the experimental drug JQ1 reduces the fibrotic and arrhythmic properties seen in diseased post-heart attack organoids. They also demonstrated that doxorubicin, commonly used in breast cancer treatment, had greater cardiotoxic impact in diseased hearts, in keeping with previous findings of greater risk associated with the chemotherapy in women with pre-existing cardiovascular disease.
The team is looking at drug-exacerbated cardiotoxicity and COVID-19-induced cardiac diseases. It will also be enhancing the model to include immune cells, to better understand the role the immune system plays in restructuring heart tissue after damage from oxygen-deprivation.
What is New in Cardiology? A Review of All Major Emerging Technologies for Heart Diseases – Diagnostic and Interventional Cardiology
By daniellenierenberg
This is an overview of some of the biggest cardiology technology advances. These innovations are covered in more detail in the two-volume set titled "Emerging Technologies in Heart Diseases." These innovative technologies mark the midway of a technological revolution in patient care. Here are a list of 10 noteworthy new cardiac technologies:
The emergence of a ventricular assist device (VAD) has revolutionized the care of patients with advanced heart failure. Primarily developed as a bridge to transplantation, the VAD has been shown to prolong life and to improve the quality of life when a donor heart is not found. Older versions required the implantation of a bulky pump and required patients to ambulate with heavy, large external batteries and control units. Yet, several revolutionary improvements in device size, battery reliability, and even wireless charging technologies might make these devices physically unnoticeable in the coming years, and possibly decrease patient susceptibility to infections. In addition, various mechanical modifications and newer modes of operation have limited the rates of hemolysis, thrombosis, and secondary aortic valve insufficiency.
Miniature VAD. Source: Watt et al. Artificial Mechanical Hearts and Ventricular Assist Devices. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 25-40.
Atrial fibrillation (AF or AFib) remains a leading cause of stroke, which in turn may be associated with devastating health consequences and mortality. Yet, oral anticoagulants and left atrial appendage (LAA) occlusion devices may not be appropriate for all patients or may be associated with life-threatening complications. In recent years, novel, device-based technologies for stoke prevention have evolved. Some focused on carotid implants, while newer devices have been designed for continuous embolic filtration at the level of the common aortic pathway. These approaches, which are currently being tested in preclinical studies, might be translated in the near future to treatments available for patients with increased bleeding risks.
Lariat LAA closure device device (SentreHeart Inc, Redwood, Calif.). Source: Goel et al. Percutaneous closure of the left atrial appendage for stroke prevention. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. 2020; Elsevier, Academic Press (AP). Pages 961-977.
Related LAA Occlusion Content:
VIDEO: Overview of Left Atrial Appendage (LAA) Closure Technology and New Innovations Interview with Horst Sievert, M.D.
COVID-19 Boosts Demand for Left Atrial Appendage Closure Devices Market
VIDEO: Overview of LAA Occlusion Using the Watchman FLX Interview with Devi Nair, M.D.
Conformal electronics are flexible, stretchy, electronic devices that can diagnose and treat tissue malfunctions. They have high spatiotemporal resolution and are comprised of a system of various sensors and transducers. Conformal electronics assess multiple parameters to monitor and regulate cardiac tissue functions by following the shape of the epicardium or endocardium. The technology of conformal electronics can transform the current model of cardiac diagnostics and therapeutics by enabling the development of new equipment. Also, new minimally invasive methods to access the epicardial tissue are likely to facilitate clinical adoption of this technology.
Flexible electronics attached to the heart for cardiac monitoringSource: Yin et al. Organ Conformal Electronics for Cardiac Therapeutics. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. 2020; Elsevier, Academic Press (AP). Pages 911-937.
Transcatheter Mitral Valve Repair (TMVR) technologies are expanding rapidly. They have the potential to become alternatives to surgery for specific patients. TMVR devices can be differentiated according to the portion of the mitral valve they are intended to repair: the leaflet, the annulus, or the chordae, and to remodel the ventricles. To date, early results of novel TMVR technologies seem promising but the long-term sustainability and effectiveness have not been determined. Yet, given the advancements in transcatheter technologies, it is convincible that in the future, mitral regurgitation will be treated mainly using a minimally invasive approach.
Carillon Mitral Contour System from Cardiac Dimensions can can be implanted for to reshape the annulus using TMVR. Source: Colli et al. Transcatheter Mitral Valve Therapies for Degenerative and Functional Mitral Regurgitation. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 417-461.
Tissue engineering techniques that use cells and regenerative medicine to treat heart disease, are promising new approaches in cardiovascular research. Scaffolds (i.e., biomaterials used as supports), cells and appropriate growth factors are needed to enable reconstruction of new tissue. Because the biomaterial is integral to the functional integrity and attachment of human cells, generating the ideal scaffold remains one of the most challenging aspect of tissue engineering. A decellularized heart composed of native extracellular matrix can provide a complex, unique, and natural scaffold that offers the physical and chemical signals required for cardiac function.
Isolated cadaveric heart prior to and following decellularization. Source: Taylor, et al. Decellularization of Whole Hearts for Cardiac Regeneration. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 291-310.
Patients with hemodynamic compromise may not be optimally balanced with an intra-aortic balloon pump (IABP). Therefore, various devices have been developed to provide other advanced measures of circulatory support. Although most centers have limited experience with these devices, they may be lifesaving in specific patients. Also, extracorporeal oxygenation (ECMO) provides patients the opportunity to avoid mechanical ventilation. This will prevent possible decreases in blood pressure due to anesthesia and reduced venous return. Small, portable devices aimed at providing ventilatory and circulatory support are being developed for these critical cases.
The Maquet CardioHelp ECMO system is an example of a small, lightweight, portable ECMO.
The global burden of congenital or acquired heart valve defects is high. Bioprosthetic or mechanical replacement valves are often used, although they have limitations. This is especially true for pediatric patients who continue to grow. A potential solution is developing an in situ tissue engineering approach. A synthetic, bioresorbable scaffold might lead to individualized replacements for heart valves. These might be less prone to infections and more suitable for pediatric populations.
Bioresorbable synthetic scaffold generated using electrospinning techniques. Source: Klouda et al. Heart Valve Tissue Engineering: Current Preclinical and Clinical approaches. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 383-398.
Cardiac arrhythmias are a leading cause of morbidity and mortality worldwide. Although rhythm disorders may be efficiently treated with implantable cardioverter defibrillators (ICDs), the ability to accurately determine which patients will benefit from these measures is currently limited. Also, in patients who do not have an intracardiac device, delivery of external defibrillatory shocks shortly after the onset of arrhythmia may be lifesaving. Therefore, many efforts are invested in increasing the ability to predict upcoming events and calling for medical assistance. Computational tools generally known as artificial intelligence (AI) may soon enhance our ability to predict the occurrence of life-threatening arrhythmias and thereby, provide earlier preventive and the therapeutic interventions. The increase in the use of wearable cardiac monitoring devices and the ability to provide advanced analysis of ECG and other electrophysiological data are expected to further revolutionize the field of machine learning-based diagnostics in cardiology.
The consumer-grade Fitbit Sense offers AI to automatically detect atrial fibrillation. Read more in the articleFitbit ECG App to Identify Atrial Fibrillation Receives Regulatory Clearance in U.S. and Europe.
Related Content on Wearables and Big Data in Healthcare:
Tracking Cardiovascular Health Population Trends Using Consumer Wearables
Bristol-Myers Squibb-Pfizer Alliance, Fitbit Team Up on Atrial Fibrillation Detection
Artificial Intelligence Detects AFib Using Apple Watch Heart Rate Sensor
Consumer Smart Watches Accurately Measure Paroxysmal Supraventricular Tachycardia
VIDEO: Use of Wearables to Track Electrophysiology Patients Interview with Khaldoun Tarakji, M.D.
VIDEO: The Future of Wearables in Healthcare Karl Poterack, M.D.
Catheter ablation is used to prevent ventricular arrhythmias by damaging or destroying the causative tissue. Due to difficulties targeting the appropriate tissue, advanced technologies are needed. Electrophysiologic mapping has advanced significantly along with the techniques and tools that can be used to effectively eliminate the arrhythmic substrate. Combining these tools in the electrophysiology (EP) lab with robotic navigation systems may lead to more precise ablation procedures for difficult cases, while reducing exposure to radiation.
Stereotaxis Genesis Robotic Magnetic Navigation System, the latest system from the vendor with its first two installs taking place in 2020. Source: AbdelWahab et al. Electrophysiologic Mapping and Cardiac Ablation therapy for Prevention of Ventricular Tachycardia. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. 2020; Elsevier, Academic Press (AP). Pages 683-723.
Related Robotic EP Lab Content:
VIDEO: Virtual Tour of the Robotic Electrophysiology Lab at Banner Health
VIDEO: Advantages of Robotic Ablation in the EP Lab Interview with Peter Weiss, M.D.
Time to Take Another Look at Robotics in Electrophysiology
Cardiac devices may be associated with complications including repeated need for battery replacement, lead failure, infections, and limited applicability in young patients. Recent, major breakthroughs in induced pluripotent stem cells technologies and transdifferentiation approaches may revolutionize treatment of bradyarrhythmias and heart failure. Ventricular and pacemaker cells have been generated both in vitro and in vivo in preclinical models. Upscaling technology based on cell (and gene) grafts to the organ level, ensuring graft survival, and guaranteeing long-term safety are needed before these innovative methods can be used to replace electrical cardiac pacemakers and to treat patients with heart failure.
TBX18 over expression induces transdifferentiation of cardiac myocytes towards pacemaker-like cells. Source: Vgh et al. Molecular therapies for bradyarrhythmias. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. Elsevier, Academic Press (AP). Pages 811-840.
About the author: Udi Nussinovitch M.D., Ph.D., is the editor of the two-volume set titled "Emerging Technologies in Heart Diseases Vol. 1" and "Emerging Technologies in Heart Diseases Vol. 2."The books cover all the major technologies in use or under development, for the treatment of cardiovascular disorders. The books present information systematically and are the only reference that attempts to address the technological aspects of cardiovascular treatments. They present a very interesting read for anyone involved in the biomedical field, cardiovascular researchers and cardiologists, who aspire to learn about currently available technologies as well those in the pipeline.
Nussinovitch graduated from the Sackler Faculty of Medicine, Tel Aviv University, and received training at the Sheba Medical Center, Rambam Healthcare Center and Meir Medical Center, while concurrently earning a Ph.D. in cardiac electrophysiology from the Technion Institute of Technology, Haifa, Israel. Dr. Nussinovitch has dedicated his research to investigating novel therapeutic approaches for cardiac disorders and modulating the cardiac electrophysiologic substrate for therapeutic purposes. He is the Director of the Applicative Cardiovascular Research Center (ACRC), affiliated with Tel Aviv University. Dr. Nussinovitch founded several biotech companies, including InVatin Technologies and InSpira Oxygenation Technologies. He performs his clinical work at Meir Medical Center, a medical facility and leading referral center in Israel.
Preclinical Study Shows Improvement In Recovery From Heart Attack With Exosomes – Anti Aging News
By daniellenierenberg
Recovery from experimental heart attacks can be improved with an injection of a mixture of heart muscle cells, endothelial cells and smooth muscle cells, but results are limited by poor engraftment and retention, plus there are concerns about potential tumorigenesis and heart arrhythmia.
Recent animal research in pigs has shown that using the exosomes naturally produced from a mixture of heart muscle cells, endothelial cells, and smooth muscle cells derived from human induced pluripotent stem cells yielded regenerative benefits that were the equivalent to the injected hiPSC-CCs.
Exosomes are membrane-bound extracellular vesicles that contain biologically active proteins, RNAs and microRNAs that are well known to participate in cell to cell communication, and are actively studied as potential clinical therapies for a wide range of conditions.
The hiPSC-CC exosomes are acellular and, consequently, may enable physicians to exploit the cardioprotective and reparative properties of hiPSC-derived cells while avoiding the complexities associated with tumorigenic risks, cell storage, transportation and immune rejection, said Ling Gao, Ph.D., and Jianyi Jay Zhang, M.D., Ph.D., University of Alabama at Birmingham corresponding authors of the study, published in Science Translational Medicine. Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.
Studies involving large animals are required to identify, characterize and quantify all responses to potential treatments, prior to this study the feasibility of hiPSC-CC exosomes for cariad therapy had only been shown to be effective in mouse models and in vitro work.
The UAB studies involving juvenile pigs with experimental heart attacks had 1 of 3 treatments injected into the damaged myocardium: a mixture of cardiomyocytes, endothelial cells, and smooth muscle cells derived from human induced pluripotent stems cells, exosomes extracted from three cell types, and homogenized fragments from the cell types.
There were 2 primary findings from this study. Measurements of left ventricle function, infarct size, wall stress, cardiac hypertrophy apoptosis and angiogenesis in the animals treated with hiPSC-CCS, hiPSC-cc fragments or hiPSC-cc exosomes were found to be similar and significantly improved compared to those that recovered without any of the 3 treatments. Additionally, exosome therapy was found not to increase the frequency of arrhythmia.
During experiments with cells or aortic rings that were grown in culture, exosomes produced by hiPSC-CCs were found to promote blood vessel growth in cultured endothelial cells and isolated aortic rings. The exosomes also protected the cultured hiPSC-cardiomyocytes from the cytotoxic effect of serum-free lox oxygen media by reducing the programmed apoptosis cell death and by maintaining intracellular calcium homeostasis which had a direct beneficial effect on heart conductivity. Additionally, the exosomes also increased cellular ATP content which is beneficial as deficiencies in cellular ATP metabolism are believed to contribute to the progressive decline in heart function in those with left ventricle hypertrophy and heart failure.
Some of the in vitro beneficial effects were found to also be mediated by synthetic mimics of the 15 most abundant microRNAs that were found in the hiPSC-cc exosomes. It was noted that knowledge of the potential role of microRNAs in clinical application requires more research as it is far from complete.
The study: Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine, co-authors with Gao and Zhang are Lu Wang, Yuhua Wei, Prasanna Krishnamurthy, Gregory P. Walcott and Philippe Menasch, UAB Department of Biomedical Engineering. Menasch also has an appointment at the Universit de Paris, France. Gao is now at Tongji University School of Medicine, Shanghai, China.
Read the original:
Preclinical Study Shows Improvement In Recovery From Heart Attack With Exosomes - Anti Aging News
Treatment Options Expand Beyond JAK Inhibition for Patients With Myelofibrosis – Targeted Oncology
By daniellenierenberg
The only curative approach to treating myelofibrosis (MF) at this time is hematopoietic stem cell transplant, but the treatment landscape for this patient population continues to expand, particularly since the identification of the JAK-STAT pathway as a potential target in 2005. Although the introduction of novel agents like JAK inhibitors have been promising for the treatment of patients with MF, there are more agents coming down the pipeline as well that will impact the way physicians treat this population.1
During the National Comprehensive Cancer Network (NCCN) 2020 Virtual Congress: Hematologic Malignancies, Aaron Gerds, MD, MS, assistant professor of medicine (hematology and medical oncology), Cleveland Clinic Taussig Cancer Institute, reviewed the current treatment landscape for patients with MF and whats to come for the treatment of this patient population as clinical trials continue to advance the field.
Treatments of MF focus on the symptoms of the disease. This is a very symptom-forward disease, Gerds explained during his presentation, pointing toward the 4 biggest challenges in treating MF.
Overall, 80% of patients have splenomegaly, 70% experience MF-associated symptoms, 60% to 85% have anemia or cytopenia, and the life expectancy is shortened, with the average time from diagnosis to death being 5 to 6 years in all comers.
Currently, the treatment landscape includes hydroxyurea to control counts, while the JAK inhibitors like ruxolitinib (Jakafi) and fedratinib (Inrebic) are known to control the symptoms and splenomegaly. Patients with lower grades of fibrosis can be treated with interferons as well.
For patients who are anemic, some of the available treatment options include lenalidomide (Revlimid), thalidomide (Thalomid), and danazol, and patients who are moving from MF into an acute leukemia can be treated currently with chemotherapy agents such as azacitidine and decitabine.
A promising advancement in the treatment landscape of MF includes the identification of the JAK-STAT pathway, which is targeted with JAK inhibitors. The first JAK inhibitor to receive approval from the FDA was ruxolitinib, followed by fedratinib. Additional agents from this class of drugs are in development as well, which are showing different clinical benefits than what have been observed with these initial agents.
Targeting the JAK-STAT has really been the centerpiece for the treatment of MF," said Gerds, "and you can see JAK inhibitors are all over the place, from low risk to high risk, from the top to the bottom, it's everywhere. It has really become a cornerstone treatment for MF.
Ruxolitinib received its approval in 2011 on the basis of the COMFORT-1 and COMFORT-2 studies, in which ruxolitinib was compared with placebo or best available therapy (BAT), respectively, in intermediate-2 and high-risk patients with MF. Overall, the agent was able to induce spleen volume reduction of 35% in 41.9% of patients by week 24 compared with 0.7% with placebo (P <.0001), while spleen volume was reduced in 28.5% by week 48 in the COMFORT-2 study versus 0% with BAT (P <.0001).2,3
Although ruxolitinib does not kill MF cells, a survival benefit has also been associated with ruxolitinib. According to a pooled analysis from both the COMFORT-1 and COMFORT-2 studies, the median overall survival (OS) in the ruxolitinib arms was 5.3 years (95% CI, 4.7-not evaluable [NE]) compared with 3.8 years (95% CI, 3.2-4.6) in the control arm (HR, 0.70; 95% CI, 0.54-0.91; P = .0065).
Fedratinib received approval in 2019 based on findings from the open-label phase 2 JAKARTA-2 and the randomized placebo-controlled phase 3 JAKARTA clinical trials. JAKARTA demonstrated that 47% of patients receiving 400 mg fedratinib and 49% receiving 500 mg had spleen volume reduction 35% at week 24, while in JAKARTA-2, this was achieved in 53% of patients with intermediate/high-risk MF who were resistant to prior ruxolitinib treatment and 63% of those who were intolerant to the therapy.4,5
Among other JAK inhibitors coming done the pipeline now for the treatment of MF, the 2 agents that are furthest along include pacritinib and momelotinib, which have also demonstrated interesting activity in clinical trials. However, no 2 JAK inhibitors are alike, Gerds explained during his presentation.
Ruxolitinib is a JAK1/2 inhibitor, while fedratinib targets JAK2 and also hits other targets, including FLT3, which may be the cause of some of the particular off-target effects observed with this agent, like diarrhea and nausea. Pacritinib is a JAK2 inhibitor that has very little sensitivity for JAK1, but it is known to have some off-target effects due to also hitting FLT3 and IRAK1, which may be important in this agent. Momelotinib, on the other hand, is a JAK1/2 inhibitor, but it also has off-target effects in ACVR1, which is suspected to help with anemia in some patients.
We can say that there's room for all these JAK inhibitors in the treatment of MF because they all are a little bit different, and they can be applied to different populations of patients with MF, Gerds explained. For example, momelotinib has a positive effect on patients with anemia.
Momelotinib has been evaluated in 2 large randomized phase 3 studies, the SIMPLIFY 1 and SIMPLIFY 2 clinical trials, in which momelotinib was evaluated in patients who were nave to JAK inhibition (n = 432) and those who were previously treated with ruxolitinib (n = 156), respectively.
Spleen volume reductions of 35% at week 24 were observed in 26.5% receiving momelotinib versus 29% with ruxolitinib (P = .011) in the SIMPLIFY 1 study and in 7% who received momelotinib versus 6% with BAT (P= .90) in the SIMPLIFY 2 study. The total symptom score reduction at week 24 with momelotinib was 28.4% versus 42.2% with ruxolitinib (P = .98) in the SIMPLIFY 1 study and 26% with momelotinib versus 6% with BAT (P = .0006) in the SIMPLIFY 2 study.6,7
The JAK1/2 inhibitor momelotinib appears to have the potential to improve anemia via suppression of hepcidin, Gerds said. Momelotinib has been shown to decrease production of hepcidin and to increase serum iron and erythropoiesis, which leads to transfusion independence and an increase in hemoglobin. This served as the rationale for a phase 2 study of 41 transfusion-dependent patients with MF, in which 41% of patients converted to transfusion independence and 78% of nontransfusion-independent patients achieved 50% decrease in transfusions with momelotinib.8
The phase 3 MOMENTUM (NCT04173494) study has been initiated to evaluate momelotinib at 200 mg daily plus placebo against danazol, which is a therapeutic approach for treating anemia, at 600 mg daily plus placebo. Patients enrolled in the study are randomized 2:1 to either the momelotinib or danazol arm. After spleen progression in the control arm, patients are able to cross over to receive momelotinib. This is a global study being conducted in North America, the European Union, and Asia Pacific. Patients must have received prior JAK inhibitor therapy and have symptomatic disease to be included in the study, as well as have anemia. This trial will be able to validate the value of momelotinib in treating anemic patients with MF.
Pacritinib has been evaluated in 3 key studies, including the phase 2 PAC203 study, and the phase 3 PERSIST-1 and PERSIST-2 studies. PAC203 was a dose-finding study in higher-risk patients with MF who previously received ruxolitinib, while PERSIST-1 included higher-risk JAK inhibitornave patients with any degree of anemia or thrombocytopenia and PERSIST-2 included patients with platelet counts 100,000/mcL, allowing for prior JAK inhibitor treatment as well.
Spleen volume reduction 35% at week 24 occurred in 19% of patients in the pacritinib arm versus 5% with BAT (P =.0003) in PERSIST-1, 18% in the pacritinib arm versus 3% with BAT (P =.001) in PERSIST-2. The spleen volume reduction 35% at week 24 in 18% of patients who received pacritinib in PAC203, and the total symptom scores reduced 50% in 7.4% of patients, which was also observed in PERSIST-2 in 25% of those receiving pacritinib and 14% BAT.9,10
Pacritinib was temporarily placed on a clinical hold due to an increased signal for potential cardiac and bleeding complications, but upon a second look at the data from the PERSIST studies, investigators determined that this was a very high-risk population that are very thrombocytopenic and prone to bleeding events.11
Without the JAK1 inhibition in pacritinib, thrombocytopenia is not as concerning as with other JAK inhibitors, Gerds said. The aim of the ongoing PACIFICA (NCT03165734) study is to potentially fulfill the unmet need for patients with MF who have platelet counts less than 50,000 and who are at risk for thrombocytopenic events.
PACIFICA, a randomized phase 3 study, is now ongoing to determine the efficacy of pacritinib compared with the physicians choice of therapy. The primary end point for the trial is spleen volume reduction at 24 weeks, and secondary end points include total symptom score at 24 weeks, OS, and patient global impression change at 24 weeks. Crossover is not allowed in this study.
In the COMFORT studies, the median time on ruxolitinib was around 3 years, but a real-world analysis demonstrated that the average may be much shorter, Gerds explained. Patients who discontinue treatment with ruxolitinib tend to do poorly, and the median OS is short. New treatments are needed to improve outcomes in this patient population.
Unlike in a disease like chronic myeloid leukemia, in which a single mutation could be targeted with a type of agent that would give significant long-term disease control, there are many other pathways outside of the JAK-STAT pathway that could also be targeted in MF, which is where research is now looking to. Momelotinib and pacritinib remain under evaluation in large randomized trials now, and these agents, as well as luspatercept for anemia, appear most promising in terms of becoming available for the treatment of patients with MF in the near future. However, other agents are coming down the pipeline as well that Gerds noted during his presentation.
Novel agent PRM-151 works well in reversing fibrosis in the bone marrow, and bromodomain and extraterminal (BET) inhibitors are also under evaluation in some ongoing studies that are heading into phase 3, such as CPI-0610 for the upfront and post-JAK inhibitor setting. BET inhibitors reduce inflammatory cytokine production in MF, and LSD1 inhibitors have been associated with epigenetic reprograming.
Another promising class of drugs coming down the pipeline for the treatment of MF include JAK2type 2 inhibitors, which hit a different target than the known JAK inhibitors. PI3K inhibitors appear to suppress neoplastic clonal hematopoiesis via cell arrest and apoptosis, while SMAC activation, MDM2, and Aurora kinase A can potentially increase apoptosis.
There is some rationale for targeting the mutant CALR trap, which remains on the horizon for the treatment of patients with MF, as well as chimeric antigen receptor (CAR) T-cell therapies and other novel therapeutic approaches.
Beyond that, we are only limited by our creativity and work that is being done by our colleagues in the lab, both basic science and translational labs, Gerds concluded. More therapeutic treatments will be needed in order to delay progression in early disease, and lead to cure without transplant.
References
1. Gerds A. Myeloproliferative neoplasms: emerging treatment options for myelofibrosis. Presented at: NCCN 2020 Virtual Congress: Hematologic Malignancies; October 9-10, 2020.
2. Verstovsek S, Mesa RA, Gotlib J, et al.A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis.N Engl J Med. 2012;366(9):799-807. doi:10.1056/NEJMoa1110557
3. Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis.N Engl J Med. 2012;366(9):787-798. doi:10.1056/NEJMoa1110556
4. Pardanani A, Harrison C, Cortes JE, et al. Safety anf efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial.JAMA Oncol. 2015;1(5):643-51. doi:10.1001/jamaoncol.2015.1590
5. Harrison CN, Schaap N, Vannucchi AM, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study.Lancet Haematol. 2017;4(7):e317-e324. doi:10.1016/S2352-3026(17)30088-1
6. Mesa RA, Kiladjian JJ, Catalano JV, et al. Mesa R, et al. SIMPLIFY-1: a phase iii randomized trial of momelotinib versus ruxolitinib in janus kinase inhibitor-nave patients with myelofibrosis.J Clin Oncol. 2017;35(34):3844-3850. doi:10.1200/JCO.2017.73.4418
7. Harrison C, Vannucchi AM, Platzbecker U, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial.Lancet Haematol. 2018;5:e73-e81. doi:10.1016/S2352-3026(17)30237-5
8. Oh, ST Talpaz M, Gerds AT, et al. ACVR1/JAK1/JAK2 inhibitor momelotinib reverses transfusion dependency and suppresses hepcidin in myelofibrosis phase 2 trial.Blood Adv. 2020 Sep 22;4(18):4282-4291. doi: 10.1182/bloodadvances.2020002662
9.Mesa RA et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial.Lancet Haematol. 2017;4:e225-e236. doi: 10.1016/S2352-3026(17)30027-3
10. Mascarenhas J et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial.JAMA Oncol. 2018;4:652-659. doi: 10.1001/jamaoncol.2017.5818
11. CTI biopharma announces removal of full clinical hold on pacritinib. News Release. CTI BioPharma Corp. January 5, 2017. Accessed October 11, 2020. https://prn.to/2GT8PuD
Continue reading here:
Treatment Options Expand Beyond JAK Inhibition for Patients With Myelofibrosis - Targeted Oncology
COVID Drug Given to Trump Developed From Aborted Fetus Cells – Quint Fit
By daniellenierenberg
Embryonic stem cell research has been always disputed by the 2020 Republican party. In 2019, Trumps administration paused funding for government scientists to work on studies involving embryonic stem cells, affecting about $31m in research, according to Science Magazine.
Regeneron, on the other hand, doesnt consider these cells fetal tissue because the HEK-293T line of cells has been immortalized and they divide and regenerate themselves in the laboratory.
The investigational drug has been in clinical trials since June. Even though early results from a trial with around 300 non-hospitalised COVID patients showed the drug was safe and could reduce viral levels and improve symptoms, the data is yet to be peer-reviewed.
According to CNN, the treatment is not yet approved for any use from the US FDA. The company, however, is in talks for an emergency approval. Regeneron has also confirmed that it had provided the drug under a compassionate use request for President Trump from the doctors.
(Make sure you don't miss fresh news updates from us. Click here to stay updated)
See the rest here:
COVID Drug Given to Trump Developed From Aborted Fetus Cells - Quint Fit
Autologous Stem Cell Based Therapies Market Size, Business Revenue Forecast, Leading Competitors And Growth Trends 2026| Regeneus, Mesoblast,…
By daniellenierenberg
Autologous Stem Cell Based Therapies Market Report Delivering Growth Analysis with Key Trends of Top Companies (2020-2026)
A comprehensive research study on the Autologous Stem Cell Based Therapies Marketwas recently published by Market Report Expert. This is an up-to-date report, covering the current COVID-19 impact on the market. The Coronavirus (COVID-19) has affected every aspect of life globally and thus altering the global market scenario. The changes in the market conditions are drastic. The swiftly changing market scenario and initial and future assessment of the impact on Autologous Stem Cell Based Therapies market is covered in the report.The Autologous Stem Cell Based Therapies Market report is a precise and deep-dive study on the current state that aims at the major drivers, market strategies, and imposing growth of the key players. Worldwide Autologous Stem Cell Based Therapies Industry also offers a granular study of the dynamics, segmentation, revenue, share forecasts, and allows you to make superior business decisions. The report serves imperative statistics on the market stature of the prominent manufacturers and is an important source of guidance and advice for companies and individuals involved in the Autologous Stem Cell Based Therapies industry.
The Global Autologous Stem Cell Based Therapies Market poised to grow from US$ XX million in 2020 to US$ XX million by 2026 at a compound annual growth rate (CAGR) of XX% during the projection period of 2020-2026.
An Outline of the Major Key Players covered in this Report:
Regeneus, Mesoblast, Pluristem Therapeutics Inc, U.S. STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe
Get Free LatestPDF Template of this Report(Including Covid-19 impact analysis on overall industry Forecast, Size, Share, CAGR and more.)@ https://www.marketreportexpert.com/report/Autologous_Stem_Cell_Based_Therapies_/13849/sample
Note: We can also provide market report in German/French Language.
The report puts together a succinct analysis of the growth drivers influencing the current business scenario across various regions and countries. Substantial information pertaining to the industry analysis size, share, application, and statistics are summed in the report in order to present a collaborative prediction. Additionally, this report encompasses a precise competitive analysis of major market players, innovative companies, and their strategies during the projection timeline.
The latest report on the Autologous Stem Cell Based Therapies Market consists of an analysis of this industry and its type, application, and other segments. As per the report, the market is estimated to gain significant returns and register substantial y-o-y growth during the forecast period of 2020-2026.
Majortype, primarily split into
Embryonic Stem CellResident Cardiac Stem CellsUmbilical Cord Blood Stem Cells
Major applications/end users, including
Neurodegenerative DisordersAutoimmune DiseasesCardiovascular Diseases
According to the report, the study offers details regarding the valuable estimations of the market such as market size, sales capacity, and profit projections. The report documents factors such as drivers, restraints, and opportunities that impacts the remuneration of this market.
Feel Free! Ask Our Industry Expert For Discount on this Report(Note: Our reports include the analysis of the impact of COVID-19 on this industry. Our updated sample pages shows impact of Covid-19 on Industry trends. Also we are offering 20% discount.): https://www.marketreportexpert.com/report/Autologous_Stem_Cell_Based_Therapies_/13849/inquiry
The research offers an analysis of the geographical landscape of the Autologous Stem Cell Based Therapies Market, which is divided into regions such as North America, Europe, Asia Pacific, South America, and the Middle East & Africa. The segment includes data about several parameters related to the regional contribution such as market share, application share, type share, key companies in respective regions, market share of key companies in regional market, growth rate and revenue of the regional market, sales, production, and consumption of the respective Autologous Stem Cell Based Therapies market.
Major Highlights of TOC Covers:
Autologous Stem Cell Based Therapies Market 2020, Autologous Stem Cell Based Therapies Market size, Autologous Stem Cell Based Therapies Market share, Autologous Stem Cell Based Therapies Market analysis, Autologous Stem Cell Based Therapies Market forecast, Autologous Stem Cell Based Therapies Market trends, Autologous Stem Cell Based Therapies Market Research report, Autologous Stem Cell Based Therapies application, Autologous Stem Cell Based Therapies Trends, Autologous Stem Cell Based Therapies Market growing CAGR, Autologous Stem Cell Based Therapies Market Competitive Landscape, Autologous Stem Cell Based Therapies Market Growth
Information related to the growth rate, revenue, sales, production, consumption, during the forecast period is included in the report. The Autologous Stem Cell Based Therapies Market report claims that the industry is projected to generate significant revenue and sales during the forecast period. The report consists of information related to the market dynamics such as challenges involved in this vertical, growth opportunities, and driving factors affecting the market.
About Us
Market Report Expert is a futuristic market intelligence company, helping customers flourish their business strategies and make better decisions using actionable intelligence. With transparent information pool, we meet clients objectives, commitments on high standard and targeting possible prospects for SWOT analysis and market research reports.
Contact USJames ThompsonMarket Report ExpertPhone: +1-816-301-6258Email inquiry@marketreportexpert.comWeb:-https://www.marketreportexpert.com
Read more from the original source:
Autologous Stem Cell Based Therapies Market Size, Business Revenue Forecast, Leading Competitors And Growth Trends 2026| Regeneus, Mesoblast,...
Recording thousands of nerve cell impulses at high resolution – Newswise
By daniellenierenberg
Newswise For over 15 years, ETH Professor Andreas Hierlemann and his group have been developing microelectrode-array chips that can be used to precisely excite nerve cells in cell cultures and to measure electrical cell activity. These developments make it possible to grow nerve cells in cell-culture dishes and use chips located at the bottom of the dish to examine each individual cell in a connected nerve tissue in detail. Alternative methods for conducting such measurements have some clear limitations. They are either very time-consuming - because contact to each cell has to be individually established - or they require the use of fluorescent dyes, which influence the behaviour of the cells and hence the outcome of the experiments.
Now, researchers from Hierlemann's group at the Department of Biosystems Science and Engineering of ETH Zurich in Basel, together with Urs Frey and his colleagues from the ETH spin-off MaxWell Biosystems, developed a new generation of microelectrode-array chips. These chips enable detailed recordings of considerably more electrodes than previous systems, which opens up new applications.
Stronger signal required
As with previous chip generations, the new chips have around 20,000 microelectrodes in an area measuring 2 by 4 millimetres. To ensure that these electrodes pick up the relatively weak nerve impulses, the signals need to be amplified. Examples of weak signals that the scientists want to detect include those of nerve cells, derived from human pluripotent stem cells (iPS cells). These are currently used in many cell-culture disease models. Another reason to significantly amplify the signals is if the researchers want to track nerve impulses in axons (fine, very thin fibrous extensions of a nerve cell).
However, high-performance amplification electronics take up space, which is why the previous chip was able to simultaneously amplify and read out signals from only 1,000 of the 20,000 electrodes. Although the 1,000 electrodes could be arbitrarily selected, they had to be determined prior to every measurement. This meant that it was possible to make detailed recordings over only a fraction of the chip area during a measurement.
Background noise reduced
In the new chip, the amplifiers are smaller, permitting the signals of all 20,000 electrodes to be amplified and measured at the same time. However, the smaller amplifiers have higher noise levels. So, to make sure they capture even the weakest nerve impulses, the researchers included some of the larger and more powerful amplifiers into the new chips and employ a nifty trick: they use these powerful amplifiers to identify the time points, at which nerve impulses occur in the cell culture dish. At these time points, they then can search for signals on the other electrodes, and by taking the average of several successive signals, they can reduce the background noise. This procedure yields a clear image of the signal activity over the entire area being measured.
In first experiments, which the researchers published in the journalNature Communications, they demonstrated their method on human iPS-derived neuronal cells as well as on brain sections, retina pieces, cardiac cells and neuronal spheroids.
Application in drug development
With the new chip, the scientists can produce electrical images of not only the cells but also the extension of their axons, and they can determine how fast a nerve impulse is transmitted to the farthest reaches of the axons. "The previous generations of microelectrode array chips let us measure up to 50 nerve cells. With the new chip, we can perform detailed measurements of more than 1,000 cells in a culture all at once," Hierlemann says.
Such comprehensive measurements are suitable for testing the effects of drugs, meaning that scientists can now conduct research and experiments with human cell cultures instead of relying on lab animals. The technology thus also helps to reduce the number of animal experiments.
The ETH spin-off MaxWell Biosystems is already marketing the existing microelectrode technology, which is now in use around the world by over a hundred research groups at universities and in industry. At present, the company is looking into a potential commercialisation of the new chip.
###
More here:
Recording thousands of nerve cell impulses at high resolution - Newswise
Measuring chips amplify and record nerve cells – Futurity: Research News
By daniellenierenberg
Share this Article
You are free to share this article under the Attribution 4.0 International license.
New microelectrode-array chips for measuring nerve impulses could reveal how thousands of nerve cells interact with each other.
For over 15 years, ETH Zurich professor Andreas Hierlemann and his group have been developing microelectrode-array chips that can precisely excite nerve cells in cell cultures and to measure electrical cell activity. These developments make it possible to grow nerve cells in cell-culture dishes and use chips at the bottom of the dish to examine each individual cell in a connected nerve tissue in detail.
Alternative methods for conducting such measurements have some clear limitations. They are either very time-consumingbecause contact to each cell has to be individually establishedor they require the use of fluorescent dyes, which influence the behavior of the cells and so the outcome of the experiments.
Now, researchers from Hierlemanns group at the department of biosystems science and engineering of ETH Zurich in Basel, together with Urs Frey and his colleagues from the ETH spin-off MaxWell Biosystems, developed a new generation of microelectrode-array chips. These chips enable detailed recordings of considerably more electrodes than previous systems, which opens up new applications.
As with previous chip generations, the new chips have around 20,000 microelectrodes in an area measuring 2 by 4 millimeters. To ensure that these electrodes pick up the relatively weak nerve impulses, the signals need to be amplified. Examples of weak signals that the scientists want to detect include those of nerve cells derived from human pluripotent stem cells (iPS cells). These are currently used in many cell-culture disease models. Another reason to significantly amplify the signals is if the researchers want to track nerve impulses in axons (fine, very thin fibrous extensions of a nerve cell).
However, high-performance amplification electronics take up space, which is why the previous chip was able to simultaneously amplify and read out signals from only 1,000 of the 20,000 electrodes. Although the 1,000 electrodes could be arbitrarily selected, they had to be determined prior to every measurement. This meant that it was possible to make detailed recordings over only a fraction of the chip area during a measurement.
In the new chip, the amplifiers are smaller, permitting the signals of all 20,000 electrodes to be amplified and measured at the same time. However, the smaller amplifiers have higher noise levels. So, to make sure they capture even the weakest nerve impulses, the researchers included some of the larger and more powerful amplifiers into the new chips and employ a nifty trick: they use these powerful amplifiers to identify the points in time at which nerve impulses occur in the cell culture dish. At these time points, they then can search for signals on the other electrodes, and by taking the average of several successive signals, they can reduce the background noise. This procedure yields a clear image of the signal activity over the entire area being measured.
In first experiments, which the researchers report in Nature Communications, they demonstrated their method on human iPS-derived neuronal cells as well as on brain sections, retina pieces, cardiac cells, and neuronal spheroids.
With the new chip, the scientists can produce electrical images of not only the cells but also the extension of their axons, and they can determine how fast a nerve impulse is transmitted to the farthest reaches of the axons.
The previous generations of microelectrode array chips let us measure up to 50 nerve cells. With the new chip, we can perform detailed measurements of more than 1,000 cells in a culture all at once, Hierlemann says.
Such comprehensive measurements are suitable for testing the effects of drugs, meaning that scientists can now conduct research and experiments with human cell cultures instead of relying on lab animals. The technology then also helps to reduce the number of animal experiments.
MaxWell Biosystems is marketing the existing microelectrode technology, which university and industry research groups around the world are using.
Source: ETH Zurich
Go here to read the rest:
Measuring chips amplify and record nerve cells - Futurity: Research News
Researchers Discover Cells That Heal Cardiac Damage After Infarction – Technology Networks
By daniellenierenberg
Researchers at Cima and the Clinica Universidad de Navarra (Spain) have led an international study identifying the cardiac cells responsible for repairing the damage to this organ after infarction. These "restorative" cells are a subpopulation of cardiac fibroblasts that play a fundamental role in the creation of the collagen scar needed to avoid the rupture of the ventricular wall. The research also reveals the molecular mechanisms involved in the activation of these cells and the regulation of their function.
This finding, in which basic and clinical researchers have participated, will permit the identification of new therapeutic targets and the development of targeted therapies which will control the healing process of the heart after infarction.
The study has been published in the latest issue of the journal Circulation, the leading scientific journal of the American Heart Association.Characterization of the reparative cardiac fibroblasts
Cardiac fibroblasts are one of the fundamental components of the heart. These cells play an essential role in maintaining the structure and mechanism of this vital organ. "Recent studies have shown that fibroblasts do not respond homogeneously to heart injury. Therefore the object of our study was to determine their heterogeneity during the remodeling of the injured ventricle and to understand the mechanisms that regulate the function of these cells", said Dr Felipe Prsper, a researcher at Cima and the Clinica Universidad de Navarra, the leader of the study.
"Using single-cell transcription analysis techniques (single-cell RNA-seq), we identified a subpopulation within the cardiac fibroblasts, which we have named Reparative Cardiac Fibroblasts (RCF) due to their role after the cardiac injury. We have found that, when a patient has a heart attack, these RCF are activated and offer a fibrotic response due to which a collagen scar is generated to avoid the rupture of the cardiac tissue", stated Dr Prsper, who is also a member of the Red de Terapia Celular (TerCel) and the Instituto de Investigacin Sanitaria de Navarra (IdiSNA).
CTHRC1, a protein related to collagen and essential for the regenerative process
In the detailed molecular study, the researchers have found that the RCF have a unique transcriptional profile, that is to say, a specific information pattern for the expression of the genes involved in their cardiac function. "Among the main differential markers of the transcriptome of these cells, we have identified the CTHRC1 protein (Collagen Triple Helix Repeat Containing 1), a molecule with a fundamental role in the fibrotic response after myocardial infarction. Specifically, this protein participates in the collagen synthesis of the extracellular cardiac matrix and is crucial for the process of ventricular remodeling", in the words of Adrin Ruiz-Villalba, a researcher on the Regenerative Medicine Program at Cima and first author of the article.
These results "suggest that the RCF activates the healing scar process of the cardiac lesion by secreting the CTHRC1 protein. Thus, this molecule may be considered as a biomarker associated with the physiological condition of the injured heart and a potential therapeutic target for patients who have suffered a heart attack or have dilated cardiomyopathy", stated Ruiz-Villalba, who is also a researcher at IdiSNA. In addition to Cima and the Clinica Universidad de Navarra, basic and clinical researchers from the United States, Belgium and Austria have taken part in this research.
This work falls within the framework of the Cell Therapy and Regenerative Medicine research line being carried out at Cima and the Clinica Universidad de Navarra, aimed at understanding the regenerative potential of stem cells and their therapeutic application in different diseases such as cardiovascular ones. Specifically, this study is linked to the BRAV? project, an international research project combining bioengineering and cardiac stem cells to restore the function of an infarcted heart. BRAV? is an H2020 funded program by the European Union (H2020-SC1-BHC-07-2019-874827).
Reference: Ruiz-Villalba A, Romero JP, Hernandez SC, et al.Single-Cell RNA-seq Analysis Reveals a Crucial Role for Collagen Triple Helix Repeat Containing 1 (CTHRC1) Cardiac Fibroblasts after Myocardial Infarction. Circ, 2020. doi:10.1161/CIRCULATIONAHA.119.044557
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
Read the original post:
Researchers Discover Cells That Heal Cardiac Damage After Infarction - Technology Networks
Heart attack patches may save lives in US and beyond – Galveston County Daily News
By daniellenierenberg
A promising therapy for heart attacks uses stem cells to repair the damaged areas of the heart. However, getting the transplanted cells to stay at the site is a challenge. Now scientists have created a new type of off-the-shelf cardiac patch that overcomes these limitations.
The leading cause of death in the United States is coronary heart disease, which kills about 360,000 per year. Heart attacks result from the loss of blood flow to part of the heart muscle. This can be caused by fat, cholesterol and other substances forming plaque in the coronary arteries that supply oxygenated blood to the heart.
When the plaque breaks, a clot forms around it, which can prevent blood flow to a part of the heart and kill cells. The degree of damage depends on the area of the heart supplied by the blocked artery.
Treatments for a heart attack include limiting the original damage and blocking the secondary damage, which reduces long-term consequences and saves lives. As the heart heals, the damaged area forms scar tissue, which cannot pump blood like normal heart tissue, and it can affect the performance of the rest of the heart.
Cell therapy for heart attacks involves using cardiac stromal cells to encourage the heart to heal with muscle cells rather than scar tissue. Cardiac stromal cells interact with muscle cells and release chemical signals to encourage muscle cell growth.
This approach has only moderate benefits, because cardiac stromal cells are fragile and must be carefully stored and transported. Making matters worse, some stem cells can grow out of control and become tumors. Using a patients own cells has some advantages, but its expensive and time consuming. Theres also the problem of preventing the beating heart from washing the cells away.
Several types of scaffolds have been developed to keep the cardiac stromal cells at the proper location. However, these scaffolds dont overcome the cost and difficulties of isolating and expanding the stem cells.
Now a group of scientists has created a new type of artificial cardiac patch. It consists of a scaffolding matrix made from pig cardiac tissue, from which all cells have been removed. They then created artificial cardiac stromal cells by putting the important healing components from cardiac stromal cells into biodegradable microparticles within that matrix. The synthetic cardiac stromal cells mimic the therapeutic features of live stem cells while overcoming their storage and survival problems, and the matrix preserves the structures and activity found in cardiac tissue.
The artificial cardiac patch was shown to hold the synthetic cardiac stromal cells in place on the heart. In heart attack experiments in both rodents and pigs, the patch resulted in a 50 percent improvement in heart function and a 30 percent reduction in scarring when compared to no treatment.
Medical Discovery News is hosted by professors Norbert Herzog at Quinnipiac University, and David Niesel of the University of Texas Medical Branch. Learn more at http://www.medicaldiscoverynews.com.
See original here:
Heart attack patches may save lives in US and beyond - Galveston County Daily News