Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients…
By daniellenierenberg
KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the Phase 3 KEYNOTE-361 trial evaluating KEYTRUDA, Mercks anti-PD-1 therapy, in combination with chemotherapy for the first-line treatment of patients with advanced or metastatic urothelial carcinoma (bladder cancer) did not meet its pre-specified dual primary endpoints of overall survival (OS) or progression-free survival (PFS), compared with standard of care chemotherapy. In the final analysis of the study, there was an improvement in OS and PFS for patients treated with KEYTRUDA in combination with chemotherapy (cisplatin or carboplatin plus gemcitabine) compared to chemotherapy alone; however, these results did not meet statistical significance per the pre-specified statistical plan. The monotherapy arm of the study was not formally tested, since superiority was not reached for OS or PFS in the KEYTRUDA combination arm. The safety profile of KEYTRUDA in this trial was consistent with previously reported studies, and no new safety signals were identified. Results will be presented at an upcoming medical meeting and will be discussed with regulatory authorities.
In this study, KEYTRUDA in combination with chemotherapy in previously untreated patients with advanced or metastatic bladder cancer was rigorously tested against an active control of the current standard of care chemotherapy combination regimen, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. While we are disappointed in these study results, KEYTRUDA has been established as an important option in the treatment of metastatic bladder cancer, and we are committed to continuing our research to help more patients with this disease. We are grateful to the patients and investigators for their participation in this study.
KEYTRUDA has three FDA-approved bladder cancer indications across multiple types and stages of bladder cancer. Additionally, Merck has an extensive clinical development program in bladder cancer and is continuing to evaluate KEYTRUDA as monotherapy and in combination with other anti-cancer therapies across several disease settings (i.e., metastatic, muscle invasive bladder cancer, and non-muscle invasive bladder cancer).
About KEYNOTE-361
KEYNOTE-361 (ClinicalTrials.gov, NCT02853305) is a randomized, open-label, Phase 3 trial evaluating KEYTRUDA as monotherapy and in combination with chemotherapy versus chemotherapy alone, the current standard of care, for the first-line treatment of advanced or metastatic urothelial carcinoma. The dual primary endpoints are OS and PFS. Secondary endpoints include duration of response, disease control rate, overall response rate and safety. The study enrolled 1,010 patients who were randomized to receive:
About Bladder Cancer
Bladder cancer begins when cells in the urinary bladder start to grow uncontrollably. As more cancer cells develop, they can form a tumor and spread to other areas of the body. Urothelial carcinoma, the most common type of bladder cancer, starts in the urothelial cells that line the inside of the bladder. It is estimated there were more than 549,000 new cases of bladder cancer and nearly 200,000 deaths from the disease globally in 2018. In the United States, it is estimated there will be more than 81,000 new cases of bladder cancer and nearly 18,000 deaths from the disease in 2020. The five-year survival rate for advanced or metastatic bladder cancer (stage IV) is estimated to be approximately 5%.
About KEYTRUDA (pembrolizumab) Injection, 100 mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
Selected KEYTRUDA (pembrolizumab) Indications
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Small Cell Lung Cancer
KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.
Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.
Microsatellite Instability-High (MSI-H) Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
Gastric Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.
Cervical Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).
Selected Important Safety Information for KEYTRUDA
Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.
Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)
Immune-Mediated Hepatitis
KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.
Hepatotoxicity in Combination With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.
Immune-Mediated Endocrinopathies
KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.
Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.
Immune-Mediated Nephritis and Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.
Immune-Mediated Skin Reactions
Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.
Other Immune-Mediated Adverse Reactions
Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.
The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.
Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.
Infusion-Related Reactions
KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.
Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.
In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.
Increased Mortality in Patients With Multiple Myeloma
In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.
Embryofetal Toxicity
Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.
Adverse Reactions
In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).
In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).
In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).
In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).
In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.
In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).
In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).
Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.
In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).
In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).
In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.
In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).
In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).
In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).
In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).
In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those 2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (20%) were fatigue (29%), diarrhea (24%), and rash (24%).
Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.
Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.
In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).
Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).
Originally posted here:
Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients...
Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea – Labmate Online
By daniellenierenberg
Nanion Technologies and Nexel are pleased to announce a partnership, focused on combining Nanions CardioExcyte 96 and FLEXcyte 96 cell monitoring technology with Nexels hiPSC-derived cells for demonstration purposes. Bringing together the two companies infrastructure and expertise serves to meet the growing demand for a reliable, high throughput cell monitoring technology in Asia.
The Nanion- Nexel partnership brings together profound skills in comprehensivein vitroelectrophysiology technology and development of human induced pluripotent stem cells (hiPSCs), with focus on cardiomyocytes. Under the partnership, Nexel opens a reference demonstration laboratory for Nanions systems at Nexels headquarters in Seoul, whereby both companies aim to significantly upscale support of their clients in Asia.
Dr Choong-Seong Han, CEO of Nexel, said: Nexel is proud to start this partnership with Nanion Technologies. We believe it will further build on the excellent relationship we have developed together in the last year. The Cardiosight-S cardiomyocytes have been fully validated on the CardioExcyte 96 and FLEXcyte 96 systems and our expert scientists are dedicated to provide the best demo settings as well as product experience for customers, as part of the collaboration. We hope interest in both Nanions and Nexels offerings will increase with our collaborative efforts.
Frank Henrichsen, Director of Global Sales of Nanion Technologies added: We are very eager to strengthen our position in the Asian market and especially in Korea. In Nexel, we see a valuable partner to help us develop our presence, in this case through opening their laboratories and enabling the use Nanions technology for demo purposes at their premises. Combining Nexels hiPSC-derived cardiomyocytes and cardiacin vitroassays with Nanions CardioExcyte 96 and FLEXcyte 96 systems, we are confident that our customers will get an excellent package solution for use in safety pharmacology and toxicology assays. We are also very happy that Nexel has already implemented the systems into their quality control procedure of Cardiosight-S cardiomyocytes.
See the article here:
Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea - Labmate Online
Who’s to blame? These three scientists are at the heart of the Surgisphere COVID-19 scandal – Science Magazine
By daniellenierenberg
By Charles PillerJun. 8, 2020 , 7:00 PM
Sciences COVID-19 reporting is supported by the Pulitzer Center.
Three unlikely collaborators are at the heart of the fast-moving COVID-19 research scandal, which led to retractions last week by The Lancet and The New England Journal of Medicine (NEJM), and the withdrawal of an online preprint, after the trove of patient data they all relied on was challenged. The three physician-scientists never were at the same institution nor had they ever before written together, but they are the only authors in common on the disputed papers, and the other co-authors all have ties to at least one of them. Their partnership, which seized a high-impact role during a global public health crisis, has now ended disastrously.
The first author for both retracted papers was cardiac surgeon Mandeep Mehra, an eminent Harvard University professor who works at Brigham and Womens Hospital (BWH) and is known internationally for cardiovascular medicine and heart transplants. He provided the kind of gravitas that can fast-track papers to leading journals. In a statement provided by BWH, Mehra said he had met another of the trio, cardiac surgeon Amit Patel, in academic and medical circles, and that Patel had introduced him to Sapan Desai, a vascular surgeon and founder of Surgisphere, the tiny company that supplied the data. Journal disclosures, however, also indicate Mehra received compensation from Triple-Gene, a gene therapy company Patel co-founded to develop cardiovascular treatments.
Desai publicly aspired to combine big data and artificial intelligence (AI) in ways that he said can replace randomized controlled clinical trials. For a brief moment, it seemed that Surgispheres enticing data set, said to include nearly 100,000 detailed patient records from about 700 hospitals on six continents, would settle questions about the possible benefits of various drugsincluding the controversial antimalarial hydroxychloroquinefor COVID-19 patients.
Patel once apparently headed cardiac surgery at the University of Miami Miller School of Medicine. A university press release announcing his arrival in 2016 is no longer posted on the university website, however, and the school has not confirmed his job duties there. More recently, he has been a volunteer adjunct professor at the University of Utah. But, as STAT first reported yesterday, Patel tweeted on Friday that he had severed his relationship with the university, which a school spokesperson confirmed. In recent years Patel has developed and commercialized experimental stem cell therapies purported to cure heart problems, reverse aging, or treat sexual dysfunction. He is also part of a network of physicians that just launched a trial to use stem cells from umbilical cord blood to treat COVID-19 patients.
Normally co-authors of high-profile papers share subject area expertise or have clear professional ties, says Jerome Kassirer, chief editor ofNEJMduring the 1990s. He calls the collaboration of the apparently disparate individuals completely bizarre, and a red flag that the studies warranted intensive scrutiny that the journals failed to provide.
None of the three co-authors responded to requests for comment. Patel spoke with aSciencereporter initially but said he wanted to wait for audits of the Surgisphere data to comment, and Desais spokesperson stopped communicating after the retractions. Still, interviews with former colleagues and a long paper trail shed some light on each of them.
Desai had a history of convincing respected researchers of his skill and integrity. One of them, Gilbert Upchurch, department of surgery chair at the University of Florida, wrote last year in a journal commentary that he had never met Desai but had nonetheless mentored him remotely and developed an online friendship with him. Upchurch placed the scientist in a group of amazing and talented young vascular surgeons.
Illinois court records show Desai is facing two medical malpractice lawsuits filed last year. He told The Scientist that he deems any lawsuit naming him to be unfounded.
Desai has a history of big aspirations and entrepreneurial venturessome short-lived. His science-fiction blog, corewardfront.com, was meant to find the most parsimonious route for mankind to establish a meaningful presence in space. In 2009, he wrote that the site would publish fiction grounded in facts and reality, adding, the scientific method must be followed religiously. The blog is no longer published.
As a student, Desai won several small National Institutes of Health (NIH) grants for studies of the vestibular system. He started Surgisphere in 2007, when he was a medical resident at Duke University. Surgispheres initial products were medical guides and textbooks, although Desai has said he was working on big data projects for the company from its birth. In 2010, under the firms auspices, he founded the Journal of Surgical Radiologywhose editors included researchers with well-established publishing records. It folded in January 2013. Articles from the journal were cited only 29 times in its history, according to Scimago, a journal rating service. Yet an undated Surgisphere web page, no longer accessible online, said the online-only publication had 50,000 subscribers and nearly 1 million page views monthlywhich would have placed it in elite company in academic publishing.
Surgisphere appears over time to have shifted its efforts into developing a database of hospital records that could be used for research. When the pandemic erupted, Desai declared that his data set could answer key questions about the efficacy and safety of treatments. Speaking about the finding that hydroxychloroquine increases mortality in COVID-19 patients, the main finding from the now retracted Lancet paper, he told a Turkish TV reporter, with data like this, do we even need a randomized controlled trial? Soon after, the World Health Organization temporarily suspended enrolling patients for its COVID-19 trial of the drug.
Immediately after the Lancet and NEJM studies appeared, however, critics identified anomalies in the data. And they doubted that a tiny firmwith a scant public track record in AI, few employees, and no publicly named scientific boardcould convince hundreds of unidentified hospitals in dozens of nations to share complex, protected, and legally fraught patient data. Ultimately, despite Desai promising repeatedly to allow an independent audit of Surgisphere, the firm refused to release the raw patient data and agreements with hospitals for an audit, so no one could validate the authenticity of its database.
No hospitals have come forward to acknowledge working with Surgisphere. Indeed, NHS Scotland, which is mentioned as a case study on the companys website, says none of its hospitals worked with Surgisphere and that it would ask the firm to remove an image of a Glasgow hospital from its website.
Science contacted several of Desais current or former employees or colleagues. Most would not comment. But Fred Rahimi, an Illinois podiatrist and co-author of a paper with Desai, praises the surgeon as highly capable for salvaging limbs, and easy to work with. Through his publicist, Desai cited Mark Melin, a University of Minnesota, Twin Cities, vascular surgeon, as a supporter. Before the retractions, Melin called Desai a gentleman of the highest integrity who has nothing to cover up.
But one physician-scientist who worked closely with Desai several years ago, says, Just about everyone who knew him would say: I just didnt have a good feeling about him. After theyd been with him, most people dissociated themselves from him, the scientist says, declining to be named to avoid personal and institutional embarrassment.
In the decade since completing his medical residency, Desai moved from job to jobat Duke, the University of Texas, Southern Illinois University, and two private Illinois hospitals, according to his LinkedIn profile. You might say we should have stopped him, which now seems obvious, Desais former colleague says. We should have found a way to get together and say, Whats going on here? rather than allowing him to move from place to place. We should have done better as a medical community. We looked the other way.
Before and after his stint at the University of Miami, which appears to have started in late 2016 or early 2017, Patels academic home was the University of Utah. He started as a full-time faculty member at Utah in 2008 and kept that position until he left for Miami. The website for Foldax, a heart valve company that he serves as medical adviser, describes him as a Tenured Professor of Surgery in the Division of Cardiothoracic Surgery at the University of Utah School of Medicine and Director of Clinical Regenerative Medicine and Tissue Engineering at the University of Utah.
The university confirmed Patel had tenure there, but says the directorship was an unofficial title. And among more than 100 publications listed on his University of Utah profile, nearly two-thirds were actually co-authored by other scientists who share the same surname. The page was removed from the university website after inquiries from Science.
According to the NIH database, Patel has never received funding from the agency. Before the recent COVID-19 papers, one of his most notable publications was a 2016 paper in The Lancet, which reported that extracting stem cells from the bone marrow of a person with end-stage heart failure and then reinjecting them could reduce the number of cardiac events that produced deaths or hospital admissions by 37%. The 126 patient, 31-site, phase II trial was billed in a press release, now not available on the University of Utah website but stored elsewhere, as the largest cell therapy trial for heart failure to date. Despite the apparent positive results, the sponsoring company Vericel no longer is developing stem cells for heart disease and, according to its webpage, is focused on advanced cell therapies for the sports medicine and severe burn care markets.
Patel left Miami under unclear circumstances, but has retained ties with Camillo Ricordi, an influential stem cell researcher at the University of Miami School of Medicine who is also the founder of a nonprofit called the Cure Alliance. The alliance previously focused on testing whether stem cells derived from umbilical cord blood could treat diabetes or Alzheimers, but has now pivoted to fighting COVID-19, according to its website. Ricordi is the principal investigator on a multisite trial to see whether the stem cells can treat lung inflammation in severe COVID-19 patients and Patel is listed in various references to the trial as a key contributor or coprincipal investigator. Ricordi did not reply to requests for comments on his relationship with Patel.
Patel recently tweeted that he is related to Dr. Desai by marriage but called that old news and added, Despite this I still do not have the information of what happened at Surgisphere. In addition to apparently connecting Mehra and Desai, Patel had prior connections with other authors of the NEJM paper and the preprint. David Grainger, co-author of the preprint, is a professor of biomedical engineering at the University of Utah and also works with Foldax. Grainger declined to comment.
Timothy Henry, a cardiovascular clinician and scientist at the Christ Hospital in Cincinnati and a co-author on the NEJM article, has written several scholarly articles with Patel, including the 2016 Lancet paper. Henry, who also declined to comment, advises Patels Triple-Gene, which develops cardiovascular gene therapy treatments. Henry and Patel adviseand Patel is a board member ofCreative Medical Technology Holdings, a Phoenix company that develops and markets stem cell therapies, including treatments purported to reverse aging and cure sexual disfunction.
Creative Medicals CaverStem and FemCelz kits are distributed to physicians who use them to extract stem cells from a patients bone marrow, then inject the cells into the penis or clitoral area to stimulate blood flow, according to a statement filed with the U.S. Securities and Exchange Commission. (As of the market close Friday, the publicly traded firms shares were valued at one-third of 1 cent.) The CaverStem treatments are advertised by the company as successful in more than 80% of patients, based on a 40-person phase I clinical trial that was not randomized or controlled, and on observations of 100 other patients. Phase I trials typically measure safety, not health benefits of a potential treatment.
Science contacted multiple colleagues or co-authors of Patel. None would comment. Before the retractions, two high-profile researchersDeepak Bhatt, who directs interventional cardiovascular programs at BWH; and Peter Gruber, a pediatric cardiothoracic surgeon at Yale Universityendorsed Patel on his LinkedIn page. Bhatt says he doesnt know Patel and attempted to remove his endorsement after being contacted by Science. Gruber says he overlapped with Patel at the University of Utah about a decade ago, but doesnt know his work in detail.
In contrast, Mehraauthor of more than 200 scholarly articles, editor of The Journal of Heart and Lung Transplantation, and head of the cardiology division of theUniversity of Maryland before moving to BWH in 2012enjoys considerable support even after the unraveling of the recent studies. Obviously, you dont rise to the position hes risen to without being ambitious, but Ive never had any indication whatsoever that he would do anything unethical, says Keith Aaronson, a cardiologist at the University of Michigan, Ann Arbor, who collaborated with Mehra on several studies, including a clinical trial of a mechanical pump for heart failure patients.
Mehra, the first author on both retracted papers, was the only one to issue a personal statement of apology, for failing to ensure that the data source was appropriate for this use. BWH and Harvard declined to say whether further investigation of Mehras roles in the papers would occur. (Mehra has written papers recently with another co-author of the Lancet paper, Frank Ruschitzka of University Hospital Zrich.)
I think he just fell into thisperhaps a little navely, says another former collaborator, cardiothoracic surgeon Daniel Goldstein of the Albert Einstein College of Medicine. Given the amount of data that was in the [Surgisphere] database, its just hard to believe someone would [fabricate] something like this.
Kassirer offers a harsher view: If youre a scientist and youre going to sign on to a project, by God you should know what the data are.
With reporting by Kelly Servick and John Travis.
This story was supported by theScienceFund for Investigative Reporting.
See the original post:
Who's to blame? These three scientists are at the heart of the Surgisphere COVID-19 scandal - Science Magazine
3D Cardiac Mapping Systems Market Segmentation Analysis and Global Industry Trends Forecast 2028 – Cole of Duty
By daniellenierenberg
Global 3D Cardiac Mapping Systems Market: Overview
Cardiac mapping is a special type of technique which helps in gathering and displaying the information from cardiac electrograms. Such technique is mainly used in the diagnosis of heart rhythms. Therefore, cardiac mapping technique has gained immense popularity in case of arrhythmia. The cardiac mapping procedure involves the percutaneous insertion of catheter into the heart chamber and recording the cardiac electrograms sequentially. Such procedure helps in correlating the cardiac anatomy with the electrograms. The latest 3D cardiac mapping systems provide the three dimensional model of hearts chamber, which further helps in tracking the exact location of the catheter. Such advantages are majorly driving the global 3D cardiac mapping systems market.
Get Sample Copy of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=5324
From the perspective of technology, the global 3D cardiac mapping systems market is segmented into basket catheter mapping, electroanatomical mapping, and real-time positional management (Cardiac pathways) EP system. Among these segments, electroanatomical mapping segment accounts for the maximum share in the global 3D cardiac mapping systems market. This mapping are extensively used in several healthcare industry due to its potential in increasing the safety, accuracy, and efficiency of catheter. A research report by TMR Research (TMR) thoroughly explains the new growth opportunities in the global 3D cardiac mapping systems market. Additionally, the report also provides a comprehensive analysis of the markets competitive landscape.
Global 3D Cardiac Mapping Systems Market: Notable Developments
Some of the recent developments are contouring the shape of the global 3D cardiac mapping systems market in a big way:
Key players operating in the global 3D cardiac mapping systems market include BioScience Webster, Boston Scientific Corporation, and Abbott.
Global 3D Cardiac Mapping Systems Market: Key Growth Drivers
Rising Number of Patients with Cardiac Disorders and Arrhythmia Fillips Market
The global 3D cardiac mapping systems market has grown steadily over the years, owing to the convenience it provides to the patients with heart problem. Growing number of people with cardiovascular diseases and rising cases of arrhythmia are the major factors fueling growth in the global 3D cardiac mapping systems market. Along with this, increasing pressure for reducing diagnosis errors and rapidly rising healthcare expenditure are also responsible for boosting the global 3D cardiac mapping systems market. However, above all such factors, the global 3D cardiac mapping systems market is majorly fueled by the accuracy and patient safety provided through real-time monitoring. Such 3D cardiac mapping systems are mainly designed to improve the resolution. This system also helps in gaining prompt of cardiac activation maps. All such advantages are also providing impetus to the growth of the global 3D cardiac mapping systems market.
Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=5324
Furthermore, rising ageing population who are prone to heart-attack and several chronic heart disorders and increasing diagnosis rate of cardiac illness are the factors stoking demand in the global 3D cardiac mapping systems market. Moreover, this 3D cardiac mapping helps in reducing the diagnosis time. Such factor is also contributing to the growth of the global 3D cardiac mapping systems market.
Global 3D Cardiac Mapping Systems Market: Regional Outlook
On the regional front, North America is leading the global 3D cardiac mapping systems market as the region has seen rapid growth in healthcare industry. Along with this, increasing prevalence of heart attacks, rising healthcare expenditure, and burgeoning population is also responsible for fueling growth in the 3D cardiac mapping systems market in this region.
About TMR Research:
TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
See the article here:
3D Cardiac Mapping Systems Market Segmentation Analysis and Global Industry Trends Forecast 2028 - Cole of Duty
CSL Behring and Seattle Children’s Research Institute to Advance Gene Therapy Treatments for Primary Immunodeficiency Diseases | DNA RNA and Cells |…
By daniellenierenberg
DetailsCategory: DNA RNA and CellsPublished on Wednesday, 03 June 2020 09:39Hits: 306
Initially, the alliance will develop treatment options for patients with two rare, life-threatening primary immunodeficiency diseases -- Wiskott-Aldrich Syndrome (WAS) and X-linked Agammaglobulinemia (XLA)
SEATTLE, WA and KING of PRUSSIA, PA, USA I June 2, 2020 I Seattle Children's Research Institute, one of the top pediatric research institutions in the world, and global biotechnology leader CSL Behring announced a strategic alliance to develop stem cell gene therapies for primary immunodeficiency diseases.
Initially, the alliance will focus on the development of treatment options for patients with two rare, life-threatening primary immunodeficiency diseases -- Wiskott-Aldrich Syndrome and X-linked Agammaglobulinemia. These are two of more than 400 identified primary immunodeficiency diseases in which a part of the body's immune system is missing or functions improperly.
"CSL Behring will collaborate with Seattle Children's experts to apply our novel gene therapy technology to their research pipeline, with an aim to address unmet needs for people living with certain rare primary immunodeficiency diseases," said Bill Mezzanotte, MD, Executive Vice President, Head of Research and Development for CSL Behring. "Expanding our gene therapy portfolio into an area of immunology well known to CSL exemplifies how we are strategically growing our capabilities in this strategic scientific platform and are collaborating with world class institutions to access innovation with the potential to vastly improve patients' lives."
"Stem cell gene therapies that correct the genetic abnormality driving a child's disease will transform the therapeutic options for children with Wiskott-Aldrich Syndrome, X-Linked Agammaglobulinemia and other immunodeficiency diseases,"said David J. Rawlings, MD, director of the Center for Immunity and Immunotherapies and division chief of immunology at Seattle Children's, and a professor of pediatrics and immunology at the University of Washington School of Medicine."The collaboration with CSL Behring supports our longstanding research programs for pediatric immunodeficiency diseases and will accelerate this research toward clinical trials, helping get these innovations to the children who need them."
CSL Behring researchers, working with researchers from Seattle Children's Research Institute, will investigate applying the proprietary platform technologies, Select+ and Cytegrity, to several pre-clinical gene therapy programs. These technologies, which have broad applications in ex vivo stem cell gene therapy, are designed to address some of the major challenges associated with the commercialization of stem cell therapy, including the ability to manufacture consistent, high-quality products, and to improve engraftment, efficacy and tolerability.
Wiskott-Aldrich Syndrome (WAS) has an estimated incidence between one and 10 cases per million males worldwide, according to the National Institutes of Health. WAS patients' immune systems function abnormally, making them susceptible to infections. They also experience eczema, autoimmunity and difficulty forming blood clots, leaving them vulnerable to life threatening bleeding complications. Today the only knowncurefor WAS is a stem cell transplant, if a suitable donor can be found.
X-linked Agammaglobulinemia (XLA) is another rare primary immunodeficiency in which patients have low levels of immunoglobulins (also known as antibodies), which are key proteins made by the immune system to help fight infections. Like WAS, XLA affects males almost exclusively, although females can be genetic carriers of the condition. While no cure exists for XLA, the goal of treatment is to boost the immune system by replacing missing antibodies and preventing or aggressively treating infections that occur, according to the Immune Deficiency Foundation.
About Seattle Children's
Seattle Children's mission is to provide hope, care and cures to help every child live the healthiest and most fulfilling life possible. Together, Seattle Children's Hospital, Research Institute and Foundation deliver superior patient care, identify new discoveries and treatments through pediatric research, and raise funds to create better futures for patients.
Ranked as one of the top children's hospitals in the country by U.S. News & World Report, Seattle Children's serves as the pediatric and adolescent academic medical center for Washington, Alaska, Montana and Idaho the largest region of any children's hospital in the country. As one of the nation's top five pediatric research centers, Seattle Children's Research Institute is internationally recognized for its work in neurosciences, immunology, cancer, infectious disease, injury prevention and much more. Seattle Children's Hospital and Research Foundation works with the Seattle Children's Guild Association, the largest all-volunteer fundraising network for any hospital in the country, to gather community support and raise funds for uncompensated care and research. Join Seattle Children's bold initiative It Starts With Yes: The Campaign for Seattle Children's to transform children's health for generations to come.
For more information, visit seattlechildrens.org or follow us on Twitter, Facebook, Instagram or on our On the Pulse blog.
About CSL Behring
CSL Behring is a global biotherapeutics leader driven by its promise to save lives. Focused on serving patients' needs by using the latest technologies, we develop and deliver innovative therapies that are used to treat coagulation disorders, primary immune deficiencies, hereditary angioedema, inherited respiratory disease, and neurological disorders. The company's products are also used in cardiac surgery, burn treatment and to prevent hemolytic disease of the newborn. CSL Behring operates one of the world's largest plasma collection networks, CSL Plasma. The parent company, CSL Limited (ASX:CSL;USOTC:CSLLY), headquartered in Melbourne, Australia, employs more than 26,000 people, and delivers its life-saving therapies to people in more than 70 countries. For more information, visit http://www.cslbehring.com and for inspiring stories about the promise of biotechnology, visit Vita http://www.cslbehring.com/Vita.
SOURCE: CSL Behring
Hesperos demonstrates innovative Human-on-a-Chip approach to modeling innate immune system response following tissue damage and acute inflammation -…
By daniellenierenberg
ORLANDO, Fla.--(BUSINESS WIRE)--Hesperos Inc., pioneers of the Human-on-a-Chip in vitro system, today announced the publication of a new peer-reviewed publication that describes how the companys technology can be used to investigate immune responses following treatment with biological therapeutics for multi-organ systemic diseases, including cancer, infectious diseases and inflammatory disorders. The study was part of a collaboration between Hesperos, Hoffman-La Roche Pharmaceuticals and the University of Central Florida. The manuscript, titled Differential Monocyte Actuation in a Three-Organ Functional Innate Immune System-on-a-Chip, was published today in the prestigious journal Advanced Science. Click here to view a multimedia version of the press release, including media-ready images, downloadable resources, and more.
The immune system plays an important role in coordinating with other organ systems to combat infection, eliminate damaged cells and repair tissue. However, modeling immune response following drug treatment in preclinical studies is challenging due to poor predictability, especially for the innate portion of the system. As the scientific community begins to turn more towards using multi-organ, human-on-a-chip systems as a cost-effective way to increase efficiency and lower toxicity, many of these models lack a systemic immune component.
Hesperos, in collaboration with Hoffmann-La Roche Pharmaceuticals, describe an in vitro, pumpless, three-organ system containing functional human cardiomyocytes, skeletal muscle and hepatocytes in a serum-free medium, along with recirculating human monocyte THP-1 immune cells. Monocytes are a vital immune system cells involved in wound healing, pathogen clearance and activation of the innate immune response, but are also responsible for the cytokine storm found in conditions such as sepsis.
One application where the immune-system-on-a-chip can be immediately useful is for uncovering how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly affects multi-organ systems by activating the cytokine storm from inflammatory macrophages and to support the rapid development of therapeutics. As the global pandemic of COVID-19 continues to grow, this system has the potential to quickly evaluate antiviral and repurposed drugs to help combat this devastating disease, said Michael L. Shuler, Ph.D., Chief Executive Officer of Hesperos.
In the study, the researchers evaluated two different innate immune responses: 1) targeted immune response following tissue-specific damage, which simulates indirect activation of THP-1 cells and, 2) pro-inflammatory immune response following direct activation of immune cells, mimicking acute inflammation and the cytokine storm. Though not reported in this study, Hesperos has also shown that peripheral blood mononuclear cells (PBMCs) and T-cells are sustainable in these multi-organs systems, which would allow some aspects of adaptive immunity to also be modeled.
In the targeted immune response experiments, the cardiotoxic compound amiodarone was used to selectively damage cardiac cells to evaluate how THP-1 immune cells affect the three-organ system. The presence of both amiodarone and THP-1 immune cells led to a more pronounced reduction in cardiac force, conduction velocity and beat frequency compared to amiodarone alone. THP-1 cells were also found to infiltrate the damaged cardiomyocytes and induce significantly increased cytokine IL-6 expression, indicating an M2 macrophage phenotype. No immune-activated damage was reported in the skeletal muscle or liver cells.
The most striking features of our immune-system-on-a-chip is that it emulates different immune reactions for direct tissue-damage and acute inflammation, as well as distinguishes between M1 vs. M2 macrophage phenotypes, said James Hickman, Ph.D., Chief Scientist at Hesperos and Professor at the University of Central Florida.
The study was initially funded by Roche Pharmaceuticals and completed under an NIH grant from National Center for Advancing Translational Sciences (NCATS) Small Business Innovation Research program, which supports studies to advance tissue chip technology toward commercialization.
Tissue chips are a promising technology for accelerating the preclinical timeline and getting treatments to patients more efficiently, said Danilo A. Tagle, Ph.D., associate director for special initiatives at NCATS. Finding improved ways to study immune responses has tremendous implications for drug discovery and the development of more effective personalized medicines in diseases that affect multiple organ systems.
In the pro-inflammatory response experiments, the three-organ system was exposed to lipopolysaccharide (LPS) and interferon gamma (IFN-) to stimulate acute inflammation/cytokine storm and provoke monocyte differentiation and activation. In the absence of THP-1 immune cells, LPS/IFN- treatment had no significant effect on function of the three-organ system. However, with the addition of THP-1 immune cells, LPS/IFN- treatment caused cellular damage to all three-organ components, including THP-1 cell infiltration in liver tissue, and led to significant alterations in cardiac force and beat frequency, as well as skeletal muscle force. Additionally, there was an upregulation of pro-inflammatory cytokines, including TNF-, IL-6 and IL-10, indicating an M1 macrophage phenotype, which is analogous to the cytokine storm found during certain reactions to biologic therapeutics and emulates what occurs during sepsis.
To read the full manuscript, please visit https://doi.org/10.1002/advs.202000323.
About Hesperos
Hesperos, Inc. is a leader in efforts to characterize an individuals biology with Human-on-a-Chip microfluidic systems. Founders Michael L. Shuler and James J. Hickman have been at the forefront of every major scientific discovery in this realm, from individual organ-on-a-chip constructs to fully functional, interconnected multi-organ systems. With a mission to revolutionize toxicology testing as well as efficacy evaluation for drug discovery, the company has created pumpless platforms with serum-free cellular mediums that allow multi-organ system communication and integrated computational PKPD modeling of live physiological responses utilizing functional readouts from neurons, cardiac, muscle, barrier tissues and neuromuscular junctions as well as responses from liver, pancreas and barrier tissues. Created from human stem cells, the fully human systems are the first in vitro solutions that accurately utilize these platforms to predict in vivo functions without the use of animal models, as featured in Science. More information is available at https://hesperosinc.com
Hesperos and Human-on-a-Chip are trademarks of Hesperos Inc. All other brands may be trademarks of their respective holders.
See the rest here:
Hesperos demonstrates innovative Human-on-a-Chip approach to modeling innate immune system response following tissue damage and acute inflammation -...
Canine Stem Cell Therapy Market Will Make a Huge Impact in Near Future – Cole of Duty
By daniellenierenberg
A synopsis of the global canine stem cell therapy market with reference to the global healthcare pharmaceutical industry
Despite the economic and political uncertainty in the recent past, the global healthcare industry has been receiving positive nudges from reformative and technological disruptions in medical devices, pharmaceuticals and biotech, in-vitro diagnostics, and medical imaging. Key markets across the world are facing a massive rise in demand for critical care services that are pushing global healthcare spending levels to unimaginable limits.
A rapidly multiplying geriatric population; increasing prevalence of chronic ailments such as cancer and cardiac disease; growing awareness among patients; and heavy investments in clinical innovation are just some of the factors that are impacting the performance of the global healthcare industry. Proactive measures such as healthcare cost containment, primary care delivery, innovation in medical procedures (3-D printing, blockchain, and robotic surgery to name a few), safe and effective drug delivery, and well-defined healthcare regulatory compliance models are targeted at placing the sector on a high growth trajectory across key regional markets.
Parent Indicators Healthcare Current expenditure on health, % of gross domestic product Current expenditure on health, per capita, US$ purchasing power parities (current prices, current PPPs) Annual growth rate of current expenditure on health, per capita, in real terms Out-of-pocket expenditure, % of current expenditure on health Out-of-pocket expenditure, per capita, US$ purchasing power parity (current prices, current PPPs) Physicians, Density per 1000 population (head counts) Nurses, Density per 1000 population (head counts) Total hospital beds, per 1000 population Curative (acute) care beds, per 1000 population Medical technology, Magnetic Resonance Imaging units, total, per million population Medical technology, Computed Tomography scanners, total, per million population
Research Methodology
Get Sample Copy of this report at https://www.xploremr.com/connectus/sample/2360
XploreMR utilizes a triangulation methodology that is primarily based on experimental techniques such as patient-level data, to obtain precise market estimations and insights on Molecule and Drug Classes, API Formulations and preferred modes of administration. Bottom-up approach is always used to obtain insightful data for the specific country/regions. The country specific data is again analysed to derive data at a global level. This methodology ensures high quality and accuracy of information.
Secondary research is used at the initial phase to identify the age specific disease epidemiology, diagnosis rate and treatment pattern, as per disease indications. Each piece of information is eventually analysed during the entire research project which builds a strong base for the primary research information.
Primary research participants include demand-side users such as key opinion leaders, physicians, surgeons, nursing managers, clinical specialists who provide valuable insights on trends and clinical application of the drugs, key treatment patterns, adoption rate, and compliance rate.
Quantitative and qualitative assessment of basic factors driving demand, economic factors/cycles and growth rates and strategies utilized by key players in the market is analysed in detail while forecasting, in order to project Year-on-Year growth rates. These Y-o-Y growth projections are checked and aligned as per industry/product lifecycle and further utilized to develop market numbers at a holistic level.
On the other hand, we also analyse various companies annual reports, investor presentations, SEC filings, 10k reports and press release operating in this market segment to fetch substantial information about the market size, trends, opportunity, drivers, restraints and to analyse key players and their market shares. Key companies are segmented at Tier level based on their revenues, product portfolio and presence.
Please note that these are the partial steps that are being followed while developing the market size. Besides this, forecasting will be done based on our internal proprietary model which also uses different macro-economic factors such as per capita healthcare expenditure, disposable income, industry based demand driving factors impacting the market and its forecast trends apart from disease related factors.
Browse Full Report at https://www.xploremr.com/report/2360/canine-stem-cell-therapy-market
Standard Report Structure Executive Summary Market Definition Macro-economic analysis Parent Market Analysis Market Overview Forecast Factors Segmental Analysis and Forecast Regional Analysis Competition Analysis
Target Audience Production Companies Suppliers Channel Partners Marketing Authorities Subject Matter Experts Research Institutions Financial Institutions Market Consultants Government Authorities
Market Taxonomy
The global canine stem cell therapy market has been segmented into:
Product Type: Allogeneic Stem Cells Autologous Stem cells
Application: Arthritis Dysplasia Tendonitis Lameness Others
End User: Veterinary Hospitals Veterinary Clinics Veterinary Research Institutes
Region: North America Latin America Europe Asia Pacific Japan Middle East & Africa
Buy Full Report at https://www.xploremr.com/cart/2360/SL
About Us
XploreMR is one of the worlds leading resellers of high-quality market research reports. We feature in-depth reports from some of the worlds most reputed market research companies and international organizations. We serve across a broad spectrum from Fortune 500 to small and medium businesses. Our clients trust us for our unwavering focus onquality and affordability. We believe high price should not be a bottleneck for organizations looking to gain access to quality information.
Contact us:XploreMR111 North Market Street, Suite 300,San Jose, CA 95113, United StatesPh.No: +16692840108
Originally posted here:
Canine Stem Cell Therapy Market Will Make a Huge Impact in Near Future - Cole of Duty
Photoaged Skin Therapy with Adipose-Derived Stem Cells – MedicalResearch.com
By daniellenierenberg
MedicalResearch.com Interview with:
Charles-de-SM.D., Ph.D.Rio de Janeiro, Brazil
MedicalResearch.com: What is the background for this study?
Response: Our clinical trial was based on our clinical skin observations in areas submitted to a lipotransfer previously, an ordinary practice in plastic surgery. These clinical observations lead us to investigate what will be the key element played in these findings. Our scientific support investigation addressed the Dardick1and Zuk, P2 studies, that demonstrated fibroblastic-like cells in adipose tissue with regenerative ability. Our clinical trial proposal is to investigate the adipose-derived stem cell (ADSC) role in the photoaged skin. The direct endpoint of the study was to assess the histological benefits provided by the subdermal ADSC injection. Mesenchymal stem cells were obtained from lipoaspirates, expanded in vitro, and introduced into the facial skin of 20 patients submitted after three to four months to a face-lifting surgery. In the retrieved skin, immunocytochemical and ultrastructural analysis quantified elastic matrix components, cathepsin-K, metalloprotease MMP-12, and the macrophage M2 markers: CD68, CD206 and heme-oxygenase-1.An overview of the trial steps is described in the infographic.
MedicalResearch.com: What are the main findings?
Response:A full de novo formation of oxytalan and elaunin fibers was observed in the subepidermal region, with a reconstitution of the papillary structure of the dermal-epidermal junction. Elastotic deposits in the deep dermis were substituted by a normal elastin fiber network. The coordinated removal of the pathologic deposits of old elastic fibers and their substitution by the normal ones was concomitant with activation of cathepsin-K and MPP12, and with expansion of the M2 macrophage infiltration.
MedicalResearch.com: What should readers take away from your report?
Response: This study has demonstrated ADSC to remodeling the skin extra cellular matrix, mainly in the elastic system.
MedicalResearch.com: What recommendations do you have for future research as a result of this study?
Response: Based on these findings, the future of thisresearch line aims to create new possibilities in regenerative cell therapy not only in skin diseases, but also in other clinical applicability in the case of organs and tissues with reduction and / or alteration in the elastic system (ex: aneurysms, cardiac valve disease and others), with a better understanding of the mechanisms involved and the control of these processes.
MedicalResearch.com: Is there anything else you would like to add? Any disclosures?
Response: It is interesting to be able, in future studies, to evaluate other mechanisms involved and the duration of effects regenerative effects on skin treated with ADSC. Another question could be considered: optimized ADSC (quantity) / area with the tissue effect found. We have not any to disclosure. This study was developed by federal university of Rio de Janeiro-Brasil and Verona University-Italy
Citation:
Charles-de-S, Luiz M.D., Ph.D.; Gontijo-de-Amorim, Natale Ferreira M.D., Ph.D.; Rigotti, Gino M.D., Ph.D.; Sbarbati, Andrea M.D., Ph.D.; Bernardi, Paolo Ph.D.; Benati, Donatella Ph.D.; Bizon Vieira Carias, Rosana Ph.D.; Maeda Takiya, Christina M.D., Ph.D.; Borojevic, Radovan Ph.D. Photoaged Skin Therapy with Adipose-Derived Stem Cells, Plastic and Reconstructive Surgery: June 2020 Volume 145 Issue 6 p 1037e-1049e doi: 10.1097/PRS.0000000000006867
References:
The information on MedicalResearch.com is provided for educational purposes only, and is in no way intended to diagnose, cure, or treat any medical or other condition. Always seek the advice of your physician or other qualified health and ask your doctor any questions you may have regarding a medical condition. In addition to all other limitations and disclaimers in this agreement, service provider and its third party providers disclaim any liability or loss in connection with the content provided on this website.
0
View post:
Photoaged Skin Therapy with Adipose-Derived Stem Cells - MedicalResearch.com
Stem Cell Assay Market to Witness Growth Acceleration During 2017-2025 – Cole of Duty
By daniellenierenberg
Stem Cell Assay Market: Snapshot
Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues andtumors, wherein their toxicity, impurity, and other aspects are studied.
Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40
With the growing number of successfulstem cell therapytreatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.
Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.
Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.
Global Stem Cell Assay Market: Overview
The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.
The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.
Buy This Report @https://www.tmrresearch.com/checkout?rep_id=40<ype=S
Global Stem Cell Assay Market: Key Market Segments
For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.
In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.
The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.
Global Stem Cell Assay Market: Regional Analysis
Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.
Global Stem Cell Assay Market: Vendor Landscape
A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.
Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).
To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40
About Us:
TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Read this article:
Stem Cell Assay Market to Witness Growth Acceleration During 2017-2025 - Cole of Duty
Cardiac Regeneration, Stem Cells
By daniellenierenberg
Content
C. Thomas Caskey, M.D. - FACP, FRSC Schizophrenia disease genes
Katarzyna Cieslik, Ph.D. - Cardiac mesenchymal progenitors
Austin Cooney, Ph.D. - Nuclear receptor regulation of embryonic stem cell function
Thomas Cooper, M.D. - Alternative splicing in cardiac development and disease
Mary Dickinson, Ph.D. - Role of fluid-derived mechanical forces in vascular remodeling and heart morphogenesis
Mark Entman, M.D. - Molecular mechanisms of cardiac injury and repair, inflammatory signaling
Charles Fraser, M.D. - Congenital heart surgery outcomes, bioengineering and assist devices
Peggy Goodell, M.D. - Hematopoietic stem cells, epigenetic modifications
Jeffrey Jacot, Ph.D. - Regenerative therapies for congenital heart disease
Sandra Haudek, Ph.D. - Circulating monocytic fibroblast precursors, cardiac hypertrophy
George Noon, M.D. - Transplant and assist devices
JoAnn Trial, Ph.D. - Origins of fibroblasts in cardiac injury healing
Peter Tsai, M.D., FACS - Custom-fenestrated endovascular stents to repair aortic transections or aneurysms
See original here:
Cardiac Regeneration, Stem Cells
Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimers Disease and Mild Cognitive Impairment – Yahoo Finance
By daniellenierenberg
-- Peer-reviewed publication in Alzheimer's & Dementia: Translational Research & Clinical Interventions validates potential of drug discovery platform and ability to study early stages of disease pathology --
Hesperos Inc., pioneers of the Human-on-a-Chip in vitro system, today announced a new peer-reviewed publication that describes how the companys functional Human-on-a-Chip system can be used as a drug discovery platform to identify therapeutic interventions targeting the preclinical stages of Alzheimers disease (AD) and mild cognitive impairment (MCI). The manuscript, titled "A human induced pluripotent stem cell-derived cortical neuron human-on-a-chip system to study A42 and tau-induced pathophysiological effects on long-term potentiation," was published this week in Alzheimer's & Dementia: Translational Research & Clinical Interventions. The work was conducted in collaboration with the University of Central Florida and with David G. Morgan, Ph.D., Professor of Translational Neuroscience at Michigan State University, and expert in AD pathology.
To date, more than 100 potential therapeutics in development for AD have been abandoned or failed during clinical trials. These therapeutics relied on research conducted in preclinical animal studies, which often are unable to accurately capture the full spectrum of the human disease phenotype, including differences in drug metabolism and excretion between humans and animals. Therefore, there is a need for human models, especially those that accurately recapitulate the functional impairments during the preclinical phases of AD and MCI.
"Hesperos offers a breakthrough technology that provides a human cell-based assay based on cognitive function metrics to evaluate drugs designed to restore cognition at early stages of the Alzheimers continuum," said Dr. Morgan. "This system can serve as a novel drug discovery platform to identify compounds that rescue or alleviate the initial neuronal deficits caused by A1-42 and/or tau oligomers, which is a main focus of clinical trials."
In 2018, Hesperos received a Phase I Small Business Innovation Research (SBIR) grant from the National Institute on Aging (NIA) division within the US National Institutes of Health (NIH) to help create a new multi-organ human-on-a-chip model for testing AD drugs. Research conducted under this grant included a study to assess therapeutic interventions based on functional changes in neurons, not neuronal death.
In the recent Alzheimer's & Dementia publication, Hesperos describes its in vitro human induced pluripotent stem cell (iPSC)-derived cortical neuron human-on-a-chip system for the evaluation of neuron morphology and function after exposure to toxic A and tau oligomers as well as brain extracts from AD transgenic mouse models.
"Researchers are now focusing on biomarker development and therapeutic intervention before symptoms arise in AD and MCI," said James Hickman, Ph.D., Chief Scientist at Hesperos and Professor at the University of Central Florida. "By studying functional disruption without extensive cell loss, we now have a screening methodology for drugs that could potentially evaluate therapeutic efficacy even before the neurodegeneration in MCI and AD occurs."
The researchers found that compared to controls, treatment with toxic A and tau oligomers or brain extracts on the iPSC cortical neurons significantly impaired information processing as demonstrated by reduction in high-frequency stimulation-induced long-term potentiation (LTP), a process that is thought to underlie memory formation and learning. Additionally, oligomer and brain extract exposure led to dysfunction in iPSC cortical neuron electrophysiological activity, including decreases in ion current and action potential firing.
While exposure to the toxic oligomers and brain extracts caused morphological defects in the iPSC cortical neurons, there was no significant loss in cell viability.
"Clinical success for AD therapies has been challenging since preclinical animal studies often do not translate to humans," said Michael L. Shuler, Ph.D., Chief Executive Officer of Hesperos. "With our recent study, we are now one step closer in developing an AD multi-organ model to better evaluate drug metabolism in the liver, penetration through the blood-brain barrier and the effects on neuronal cells."
Story continues
About Alzheimers Disease/Preclinical Stage AD
AD is a progressive disease that is characterized by memory loss and deterioration of cognitive function. Preclinical AD is the first stage of the disease, and it begins long before any symptoms become apparent. It is thought that symptoms do not manifest until there is a significant death of neuronal cells, which is caused by the aggregation of toxic amyloid beta (A) and tau oligomers, typically during the earliest stages of the disease. Unfortunately, treatment after the diagnosis of MCI may be too late to reverse or modify disease progression.
To read the full manuscript, please visit https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/trc2.12029.
About Hesperos
Hesperos, Inc. is a leading provider of Human-on-a-Chip microfluidic systems to characterize an individuals biology. Founders Michael L. Shuler and James J. Hickman have been at the forefront of every major scientific discovery in this realm, from individual organ-on-a-chip constructs to fully functional, interconnected multi-organ systems. With a mission to revolutionize toxicology testing as well as efficacy evaluation for drug discovery, the company has created pumpless platforms with serum-free cellular mediums that allow multi-organ system communication and integrated computational PKPD modeling of live physiological responses utilizing functional readouts from neurons, cardiac, muscle, barrier tissues and neuromuscular junctions as well as responses from liver, pancreas and barrier tissues. Created from human stem cells, the fully human systems are the first in vitro solutions to accurately predict in vivo functions without the use of animal models. More information is available at http://www.hesperosinc.com.
Hesperos and Human-on-a-Chip are trademarks of Hesperos Inc. All other brands may be trademarks of their respective holders.
View source version on businesswire.com: https://www.businesswire.com/news/home/20200529005128/en/
Contacts
Michelle LinnBioscribe774-696-3803michelle@bioscribe.com
The rest is here:
Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimers Disease and Mild Cognitive Impairment - Yahoo Finance
Merck’s KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer – BioSpace
By daniellenierenberg
For many years, the standard of care for the first-line treatment of patients with MSI-H colorectal cancer has been the combination of mFOLFOX6 plus bevacizumab. This is the first time a single-agent, anti-PD-1 therapy demonstrated a superior, statistically significant and clinically meaningful improvement in progression-free survival compared to chemotherapy for these patients, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. There is an unmet need for new treatment options in the first-line setting that may provide sustained, long-term improvements in outcomes for patients with MSI-H colorectal cancer. We are grateful to have the opportunity to present these practice-changing findings at the plenary session of this years ASCO.
KEYTRUDA monotherapy significantly reduced the risk of disease progression or death by 40% versus standard of care chemotherapy, with fewer treatment-related adverse events observed, in patients with MSI-H metastatic colorectal cancer. KEYTRUDA also demonstrated a long-term, durable response that lasted over two years for those who responded to treatment, said Thierry Andre, MD, professor of medical oncology, Sorbonne University, and Head of the Medical Oncology Department in St. Antoine Hospital, Assistance Publique Hpitaux de Paris. Data from KEYNOTE-177 show that KEYTRUDA monotherapy has the potential to become the new standard of care for first-line treatment of patients with MSI-H metastatic colorectal cancer.
In May 2017, KEYTRUDA became the first cancer therapy approved by the U.S. Food and Drug Administration for use based on a biomarker, regardless of tumor type, in previously treated patients with MSI-H or dMMR solid tumors.
As announced, more than 80 abstracts in nearly 20 types of solid tumors and blood cancers will be presented from Mercks broad oncology portfolio and investigational pipeline at ASCO. A compendium of presentations and posters of Merck-led studies will be posted by Merck on Friday, May 29 at 8 a.m. ET. Follow Merck on Twitter via @Merck and keep up to date with ASCO news and updates by using the hashtag #ASCO20.
KEYNOTE-177 Study Design and Additional Data (Abstract #LBA4)
KEYNOTE-177 is a randomized, open-label, Phase 3 trial evaluating KEYTRUDA monotherapy versus standard of care chemotherapy for the first-line treatment of patients with MSI-H or dMMR metastatic colorectal cancer (ClinicalTrials.gov, NCT02563002). The dual primary endpoints are PFS and OS. The study enrolled 307 patients, who were randomized to receive either KEYTRUDA (200 mg intravenously on Day 1 of each three-week cycle for up to 35 cycles) or investigators choice of one of the following chemotherapy-based regimens: mFOLFOX6; mFOLFOX6 plus bevacizumab (5 mg/kg IV on Day 1 of each two-week cycle); mFOLFOX6 plus cetuximab (400 mg/m2 IV, then 250 mg/m2 weekly in each two-week cycle); FOLFIRI; FOLFIRI plus bevacizumab (5 mg/kg IV on Day 1 of each two-week cycle); or FOLFIRI plus cetuximab (400 mg/m2 IV, then 250 mg/m2 weekly in each two-week cycle).
In this study, KEYTRUDA demonstrated a statistically significant and clinically meaningful improvement in PFS (HR=0.60 [95% CI, 0.45-0.80; p=0.0002]) and showed a median PFS of 16.5 months compared with 8.2 months for patients treated with chemotherapy. The two-year PFS rate was 48% with KEYTRUDA versus 19% with chemotherapy. The ORR was 43.8% with KEYTRUDA versus 33.1% with chemotherapy, with a complete response observed in 11.1% and 3.9% of patients, respectively; partial responses were observed in 32.7% and 29.2% of patients, respectively. Median duration of response was not reached with KEYTRUDA (range, 2.3+ to 41.4+) versus 10.6 months with chemotherapy (range, 2.8 to 37.5+). Additionally, 83% of patients had durable responses lasting at least two years with KEYTRUDA versus 35% with chemotherapy. In the study, 59% of patients in the intent-to-treat population received subsequent anti-PD-1/PD-L1 therapy after discontinuing study treatment in the chemotherapy arm.
The safety profile of KEYTRUDA demonstrated a lower incidence of Grade 3 treatment-related adverse events (AEs) versus chemotherapy (22% versus 66%, respectively), and no new toxicities were observed. Immune-mediated AEs and infusion reactions occurred in 31% of patients receiving KEYTRUDA and 13% of patients receiving chemotherapy. The most commonly reported immune-mediated AEswere hypothyroidism (12%) and colitis (7%) with KEYTRUDA, and infusion reactions (8%) with chemotherapy.
Merck Investor Event
Merck will hold a virtual investor event in conjunction with the ASCO Annual Meeting on Tuesday, June 2 at 2 p.m. ET. Details will be provided at a date closer to the event at http://investors.merck.com/home/default.aspx.
About Microsatellite Instability High (MSI-H)
Microsatellite instability (or MSI) is defined by the National Cancer Institute as a change that occurs in the DNA of certain cells (such as tumor cells) in which the number of repeats of microsatellites (short, repeated sequences of DNA) is different from the number of repeats that was in the DNA when it was inherited. The cause of MSI may be a defect in the ability to repair mistakes made when DNA is copied in the cell. This defect is also referred to as mismatch repair deficiency (dMMR). It is estimated that approximately 5-15% of colorectal cancer patients have tumors that score as either MSI-H or dMMR when testing is performed.
About Colorectal Cancer
Colorectal cancer starts in the colon or the rectum, and these cancers are referred to as colon cancer and rectal cancer depending on where the cancer starts. Colorectal cancer often begins with growths on the inner lining of the colon or rectum called polyps, which can change into cancer over time. Colorectal cancer is the third most commonly diagnosed cancer and the second most common cause of cancer-related death worldwide. It is estimated there were nearly 850,000 new cases of colorectal cancer and more than 880,000 deaths from the disease globally in 2018. In the United States, it is estimated there will be nearly 105,000 new cases of colon cancer and more than 43,000 new cases of rectal cancer, resulting in more than 53,000 deaths from colorectal cancer in 2020. The five-year survival rates for advanced/metastatic colon cancer and rectal cancer (stage IV) are estimated to be 14% and 15%, respectively.
About KEYTRUDA (pembrolizumab) Injection, 100 mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
Selected KEYTRUDA (pembrolizumab) Indications
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Small Cell Lung Cancer
KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.
Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.
Microsatellite Instability-High (MSI-H) Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
Gastric Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.
Cervical Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).
Selected Important Safety Information for KEYTRUDA
Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.
Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)
Immune-Mediated Hepatitis
KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.
Hepatotoxicity in Combination With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.
Immune-Mediated Endocrinopathies
KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.
Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.
Immune-Mediated Nephritis and Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.
Immune-Mediated Skin Reactions
Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.
Other Immune-Mediated Adverse Reactions
Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.
The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.
Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.
Infusion-Related Reactions
KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.
Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.
In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.
Increased Mortality in Patients With Multiple Myeloma
In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.
Embryofetal Toxicity
Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.
Adverse Reactions
In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).
In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).
In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).
In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).
In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.
In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).
In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).
Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.
In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).
In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).
In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.
In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).
In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).
Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimer’s Disease and Mild Cognitive Impairment – Business Wire
By daniellenierenberg
ORLANDO, Fla.--(BUSINESS WIRE)--Hesperos Inc., pioneers of the Human-on-a-Chip in vitro system, today announced a new peer-reviewed publication that describes how the companys functional Human-on-a-Chip system can be used as a drug discovery platform to identify therapeutic interventions targeting the preclinical stages of Alzheimers disease (AD) and mild cognitive impairment (MCI). The manuscript, titled A human induced pluripotent stem cell-derived cortical neuron human-on-a-chip system to study A42 and tau-induced pathophysiological effects on long-term potentiation, was published this week in Alzheimer's & Dementia: Translational Research & Clinical Interventions. The work was conducted in collaboration with the University of Central Florida and with David G. Morgan, Ph.D., Professor of Translational Neuroscience at Michigan State University, and expert in AD pathology.
To date, more than 100 potential therapeutics in development for AD have been abandoned or failed during clinical trials. These therapeutics relied on research conducted in preclinical animal studies, which often are unable to accurately capture the full spectrum of the human disease phenotype, including differences in drug metabolism and excretion between humans and animals. Therefore, there is a need for human models, especially those that accurately recapitulate the functional impairments during the preclinical phases of AD and MCI.
Hesperos offers a breakthrough technology that provides a human cell-based assay based on cognitive function metrics to evaluate drugs designed to restore cognition at early stages of the Alzheimers continuum, said Dr. Morgan. This system can serve as a novel drug discovery platform to identify compounds that rescue or alleviate the initial neuronal deficits caused by A1-42 and/or tau oligomers, which is a main focus of clinical trials.
In 2018, Hesperos received a Phase I Small Business Innovation Research (SBIR) grant from the National Institute on Aging (NIA) division within the US National Institutes of Health (NIH) to help create a new multi-organ human-on-a-chip model for testing AD drugs. Research conducted under this grant included a study to assess therapeutic interventions based on functional changes in neurons, not neuronal death.
In the recent Alzheimer's & Dementia publication, Hesperos describes its in vitro human induced pluripotent stem cell (iPSC)-derived cortical neuron human-on-a-chip system for the evaluation of neuron morphology and function after exposure to toxic A and tau oligomers as well as brain extracts from AD transgenic mouse models.
Researchers are now focusing on biomarker development and therapeutic intervention before symptoms arise in AD and MCI, said James Hickman, Ph.D., Chief Scientist at Hesperos and Professor at the University of Central Florida. By studying functional disruption without extensive cell loss, we now have a screening methodology for drugs that could potentially evaluate therapeutic efficacy even before the neurodegeneration in MCI and AD occurs.
The researchers found that compared to controls, treatment with toxic A and tau oligomers or brain extracts on the iPSC cortical neurons significantly impaired information processing as demonstrated by reduction in high-frequency stimulation-induced long-term potentiation (LTP), a process that is thought to underlie memory formation and learning. Additionally, oligomer and brain extract exposure led to dysfunction in iPSC cortical neuron electrophysiological activity, including decreases in ion current and action potential firing.
While exposure to the toxic oligomers and brain extracts caused morphological defects in the iPSC cortical neurons, there was no significant loss in cell viability.
Clinical success for AD therapies has been challenging since preclinical animal studies often do not translate to humans, said Michael L. Shuler, Ph.D., Chief Executive Officer of Hesperos. With our recent study, we are now one step closer in developing an AD multi-organ model to better evaluate drug metabolism in the liver, penetration through the blood-brain barrier and the effects on neuronal cells.
About Alzheimers Disease/Preclinical Stage AD
AD is a progressive disease that is characterized by memory loss and deterioration of cognitive function. Preclinical AD is the first stage of the disease, and it begins long before any symptoms become apparent. It is thought that symptoms do not manifest until there is a significant death of neuronal cells, which is caused by the aggregation of toxic amyloid beta (A) and tau oligomers, typically during the earliest stages of the disease. Unfortunately, treatment after the diagnosis of MCI may be too late to reverse or modify disease progression.
To read the full manuscript, please visit https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/trc2.12029.
About Hesperos
Hesperos, Inc. is a leading provider of Human-on-a-Chip microfluidic systems to characterize an individuals biology. Founders Michael L. Shuler and James J. Hickman have been at the forefront of every major scientific discovery in this realm, from individual organ-on-a-chip constructs to fully functional, interconnected multi-organ systems. With a mission to revolutionize toxicology testing as well as efficacy evaluation for drug discovery, the company has created pumpless platforms with serum-free cellular mediums that allow multi-organ system communication and integrated computational PKPD modeling of live physiological responses utilizing functional readouts from neurons, cardiac, muscle, barrier tissues and neuromuscular junctions as well as responses from liver, pancreas and barrier tissues. Created from human stem cells, the fully human systems are the first in vitro solutions to accurately predict in vivo functions without the use of animal models. More information is available at http://www.hesperosinc.com.
Hesperos and Human-on-a-Chip are trademarks of Hesperos Inc. All other brands may be trademarks of their respective holders.
Read more here:
Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimer's Disease and Mild Cognitive Impairment - Business Wire
progenitor cell product Market Latest trending report is booming globally by Top Leading Players NeuroNova AB, StemCells, ReNeuron Limited, Asterias…
By daniellenierenberg
Due to the pandemic, we have included a special section on the Impact of COVID 19 on the progenitor cell productMarket which would mention How the Covid-19 is Affecting the Industry, Market Trends and Potential Opportunities in the COVID-19 Landscape, Key Regions and Proposal for progenitor cell product Market Players to battle Covid-19 Impact.
The progenitor cell productMarket report is one of the most comprehensive and important data about business strategies, qualitative and quantitative analysis of Global Market. It offers detailed research and analysis of key aspects of the progenitor cell product market. The market analysts authoring this report have provided in-depth information on leading growth drivers, restraints, challenges, trends, and opportunities to offer a complete analysis of the progenitor cell product market.
Top Leading players covered in the progenitor cell product market report: NeuroNova AB, StemCells, ReNeuron Limited, Asterias Biotherapeutics, Thermo Fisher Scientific, STEMCELL Technologies, Axol Bio, R&D Systems, Lonza, ATCC, Irvine Scientific, CDI and More
Get PDF Sample Report With Impact of COVID-19 on progenitor cell product [emailprotected] https://www.marketinforeports.com/Market-Reports/Request-Sample/74653
The report offers clear guidelines for players to cement a position of strength in the global progenitor cell product market. It prepares them to face future challenges and take advantage of lucrative opportunities by providing a broad analysis of market conditions. the global progenitor cell product market will showcase a steadyCAGR in the forecast year 2020 to 2026.
On the basis of product, we research the production, revenue, price, market share and growth rate, primarily split into:Pancreatic progenitor cellsCardiac Progenitor CellsIntermediate progenitor cellsNeural progenitor cells (NPCs)Endothelial progenitor cells (EPC)OthersFor the end users/applications, this report focuses on the status and outlook for major applications/end users, consumption (sales), market share and growth rate of PROGENITOR CELL PRODUCT for each application, including:Medical careHospitalLaboratory
Our Complimentary Sample progenitor cell product market Report Accommodate a Brief Introduction of the research report, TOC, List of Tables and Figures, Competitive Landscape and Geographic Segmentation, Innovation and Future Developments Based on Research Methodology.
Inquire and Get Up to 30% DiscountBy Clicking Here!https://www.marketinforeports.com/Market-Reports/Request_discount/74653
Regions Covered in the Global progenitor cell product Market: The Middle East and Africa (GCC Countries and Egypt) North America (the United States, Mexico, and Canada) South America (Brazil etc.) Europe (Turkey, Germany, Russia UK, Italy, France, etc.) Asia-Pacific (Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)
Years Considered to Estimate the progenitor cell product Market Size:History Year: 2015-2019Base Year: 2019Estimated Year: 2020Forecast Year: 2020-2026
Highlights of the Report: Accurate market size and CAGR forecasts for the period 2019-2026 Identification and in-depth assessment of growth opportunities in key segments and regions Detailed company profiling of top players of the global progenitor cell product market Exhaustive research on innovation and other trends of the global progenitor cell product market Reliable industry value chain and supply chain analysis Comprehensive analysis of important growth drivers, restraints, challenges, and growth prospects
For More Information:https://www.marketinforeports.com/Market-Reports/74653/progenitor-cell-product-market
Customization of the Report:Market Info Reports provides customization of reports as per your need. This report can be personalized to meet your requirements. Get in touch with our sales team, who will guarantee you to get a report that suits your necessities.
Get Customization of the [emailprotected]:https://www.marketinforeports.com/Market-Reports/Request-Customization/74653/progenitor-cell-product-market
Contact Us:Mr. Marcus KelCall: +1 415 658 9988 (International)+91 84 839 65921 (IND)Email: [emailprotected]Website: http://www.marketinforeports.com
The rest is here:
progenitor cell product Market Latest trending report is booming globally by Top Leading Players NeuroNova AB, StemCells, ReNeuron Limited, Asterias...
Leonhardts Launchpads Announces Issuance of New U.S. Patent for Bioelectric Plus Biologics Platform for Organ Regeneration and Healing – Life Pulse…
By daniellenierenberg
United States, California, Irvine 05-27-2020 (PRDistribution.com) Latest Patent Further Strengthens Intellectual Property Portfolio Covering Novel Platform for Precisely ControllingRegenerative Protein Expressions Including Stem Cell Homing and Differentiation Control
Technology Has Key Potential Applications in Regeneration of Failing Heart, Brain, Kidney, Liver, Pancreas, Lungs, Aorta, Vision and Hearing as well as Transcutaneous Uses for Accelerated Wound Healing, Skin, Hair and Penile Function Regeneration (ED)Irvine, California, May 27th, 2020 Leonhardts Launchpads, an innovation and startup launch accelerator focused on developing novel therapeutics that harness the bodys innate mechanisms to regenerate failing organs and to heal tissues, today announced the issuance of a new U.S. patent providing broad protection for the companys first-of-its-kind combination bioelectrics and biologics technology platform, which has multiple potential therapeutic applications in organ regeneration and recovery. Previous stem cell therapies that delivered stem cells alone in a single application failed to regenerate organs fully. Electrical stimulation technologies to date have failed to zero in on and deliver the precise right bioelectric signaling sequences for controlling specific regenerative protein expressions when and where needed. This pioneering technology platform is the first to combine the powerful ability of bioelectric stimulation with repeat deliveries of not just stem cells but a whole host of support factors similar to an egg yolk designed to help cells survive, proliferate, engraft and differentiate with the intention of fully regenerating failing organs. stated primary inventor, Executive Chairman and CEO Howard J. Leonhardt. U.S. Patent 10,646,644 Issued May 12th, 2020 https://patents.justia.com/patent/10646644covers bioelectric stimulation controlled release of SDF1 and PDGF known stem cell homing and proliferation factors as well as use of a re-fillable micro infusion pump for slow infusion of a mixed composition of stem cells, exosomes, micro RNAs, nutrient hydrogel, growth factor cocktail, selected alkaloids and anti-inflammatory agents with the intention of regenerating organs and healing tissues. SDF1 and PDGF highlighted in these new patent claims also have strong capabilities in promoting arteriogenesis (mature blood vessel growth).The Leonhardt team has separately filed or acquired patent claims for bioelectric controlled expression of follistatin, klotho, tropoelastin, VEGF, IGF1, CXCL5, HIF1a, EGF, HGF, OPG, RANKL and COL17A1 all known to have a role in organ healing https://patents.justia.com/patent/20180064935. Separately the Leonhardts Launchpads startup CancerCell has 9 issued U.S. patents https://cancercellinc.com/list-of-the-issued-cancer-patents/ for bioelectric treatment of cancer and dozens of additional cancer treatment related claims pending https://patents.justia.com/patent/20190030330. The team has filed patent clams on the combination of bioelectric stimulation and PRF https://patents.justia.com/patent/20200000709. Other important patent filings have been submitted on bioelectric inflammation management https://patents.justia.com/patent/20190022389 and blood pressure management https://patents.justia.com/patent/20190022396The Leonhardts Launchpads technology platform is based on foundational scientific research that began in the late 1980s working with Dr. Race Kao and Dr. George Magovern Sr. in Pittsburgh when they injected satellite cells (myoblasts or muscle stem cells) to repair damaged heart tissue in dogs and published the results in The Physiologist in 1989. In 1995 Howard Leonhardt filed his first patent for a stem cell and biologics delivery system for organ repair ProCell https://patents.google.com/patent/US5693029A/en based on work that began in 1988. In 1998 the Leonhardt team began collaboration with Dr. Doris Taylor whom that year published a landmark paper in Nature Medicine https://www.nature.com/articles/nm0898-929 on repair of infarcted hearts with myoblast cells. Dr. Taylor currently still serves as co-chair of our Scientific Advisory Board today. In 1999 the Leonhardt team worked with Dr. Shinichi Kanno to publish in Circulation, the Journal of the American Heart Association, pioneering results with bioelectric stimulation driven VEGF protein expression for limb salvage via angiogenesis in animals https://www.ahajournals.org/doi/abs/10.1161/01.cir.99.20.2682 and filed a patent application for the same within a year. Since then the Leonhardt team and LeonhardtsLaunchpads and itsportfolio of startupshas had issued, pending,optioned orlicensed over 600patentclaims for organregeneration andrecovery. In 2001 Howard Leonhardt and Dr. Juan Chachques filed patents on bioelectric stimulation controlled myogenesis and dynamic cardiac support with an early less potent stem cell homing signal. That same year a Leonhardt led team working with Dr. Patrick Serruys completed the landmark first ever case of non-surgical cell based regeneration of a damaged human heart in The Netherlands. Howard Leonhardt began a collaboration at that time with Dr. Jorge Genovese co-inventor of this patent, and BioLeonhardts VP of Bioelectric Regeneration Research, that continues to this day. Over 200 dedicated talented people help Leonhardts Launchpads and its startups advance their developments almost every day see Team https://leonhardtventures.com/team/ and Scientific Advisory Board https://calxstars.com/scientific-advisory-board/.About Leonhardts Launchpads:Leonhardts Launchpads by Cal-X Stars Business Accelerator, Inc. in California, Leonhardts Launchpads Utah, Inc., Leonhardts Launchpads Australia PTY and Leonhardts Launchpads branches in Minneapolis, Pittsburgh and Brazil are the innovation and startup launch accelerator arms of Leonhardt Ventures (Leonhardt Vineyards LLC DBA Leonhardt Ventures). Leonhardt Ventures has been developing breakthrough medtech and biotech innovations since the 1980s. In the 1980s the team patented, developed and commercialized the PolyCath line of cardiovascular balloon catheters. In the 1990s they developed and completed the first non-surgical repair of an aortic aneurysm (Melbourne, Australia 1995) and patented what is still today the leading endovascular stent graft for aortic aneurysm repair. In that time period they also patented one of the first percutaneous heart valve systems. Since 2000 the team has been focused almost exclusively on stem cell, biologics and bioelectric based organ regeneration and healing. In May of 2001 the team completed the landmark first ever non-surgical case of cell therapy for heart damage recovery. In 2008 the team began exploring if what they had learned from research in regenerating hearts could be translated to other organs. The organization now has 30 related startups and organ specific innovations in its 2020 portfolio class https://leonhardtventures.com/development-pipeline/ in these groups (1) Heart & Cardiovascular, (2) Brain, (3) Cosmetic & Reproductive Health, (4) Major Organ Regeneration and (5) Cancer. The accelerator business model is to accelerate each organ specific innovation through first in human studies and then secure a strategic partner to advance the product through commercialization. Click on Leonhardt Ventures and Leonhardts Launchpads 2020 Annual Report for more information https://leonhardtventures.com/wp-content/uploads/2020/04/4_23_2020.pdfand our web site at http://www.leonhardtventures.comSee previous PDGF related press release https://www.biospace.com/article/releases/-b-leonhardt-b-and-b-genovese-b-file-patent-for-bioelectric-controlled-expression-of-pdgf-a-powerful-organ-regeneration-cytokine-/See previous KLOTHO anti-aging related press release https://www.biospace.com/article/leonhardt-s-launchpads-announces-filing-of-patent-for-bioelectric-stimulation-controlled-klotho-expression-powerful-anti-aging-and-regeneration-promoting-protein-/Contact See contact page on web site for contact information for all locations and phone numbers https://leonhardtventures.com/contact/Leonhardts Launchpads[emailprotected]Warning and Disclaimers: Product(s) are not yet proven safe or effective. Patents pending may not be issued. Patents licensed or optioned may not be maintained. Patents issued may be invalidated. Products are in early stage development. Forward looking statements may change without notice. As an investment these startups mentioned are in the highest risk category for total loss and only suitable for sophisticated experienced accredited investors. The company does not have on hand sufficient resources to bring these products through clinical studies and may not obtain these resources. The company is under staffed and under funded compared to most other participants in this space. Due to a small staff at the accelerator to maintain all web sites and other published materials they may not be fully up to date and there may be out date inaccurate information. If you have any questions on our products or our company please write us to ask.Leonhardts Launchpads by Cal-X Stars,18575 Jamboree Rd #6, Irvine, CA 92612Leonhardts Launchpads Utah, Inc.Research Lab @ 2500 S State St. #D249, Salt Lake City, UT 84115
Media Contacts:
Company Name: Leonhardts Launchpads by Cal-X Stars Business Accelerator, Inc.Full Name: Howard J. LeonhardtPhone: (424) 291-2133Email Address: Send EmailWebsite: http://www.leonhardtventures.com
For the original news story, please visit https://prdistribution.com/news/leonhardts-launchpadsannounces-issuance-of-newus-patent-forbioelectric-plus-biologics-platform-for-organ-regeneration-and-healing.html.
Powered by WPeMatico
Continue reading here:
Leonhardts Launchpads Announces Issuance of New U.S. Patent for Bioelectric Plus Biologics Platform for Organ Regeneration and Healing - Life Pulse...
Merck’s KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer – Maryville Daily Times
By daniellenierenberg
KENILWORTH, N.J.--(BUSINESS WIRE)--May 28, 2020--
Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced the first presentation of results from KEYNOTE-177, a Phase 3 trial evaluating KEYTRUDA, Mercks anti-PD-1 therapy, for the first-line treatment of patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) unresectable or metastatic colorectal cancer. In this pivotal study, KEYTRUDA monotherapy significantly reduced the risk of disease progression or death by 40% (HR=0.60 [95% CI, 0.45-0.80; p=0.0002]) and showed a median progression-free survival (PFS) of 16.5 months compared with 8.2 months for patients treated with chemotherapy (investigators choice of mFOLFOX6 or FOLFIRI, with or without bevacizumab or cetuximab), a current standard of care in this patient population. As previously announced, the study will continue without changes to evaluate overall survival (OS), the other dual primary endpoint. These results were selected for presentation on Sunday, May 31, 2020 in the plenary session of the virtual scientific program of the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (Abstract #LBA4).
For many years, the standard of care for the first-line treatment of patients with MSI-H colorectal cancer has been the combination of mFOLFOX6 plus bevacizumab. This is the first time a single-agent, anti-PD-1 therapy demonstrated a superior, statistically significant and clinically meaningful improvement in progression-free survival compared to chemotherapy for these patients, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. There is an unmet need for new treatment options in the first-line setting that may provide sustained, long-term improvements in outcomes for patients with MSI-H colorectal cancer. We are grateful to have the opportunity to present these practice-changing findings at the plenary session of this years ASCO.
KEYTRUDA monotherapy significantly reduced the risk of disease progression or death by 40% versus standard of care chemotherapy, with fewer treatment-related adverse events observed, in patients with MSI-H metastatic colorectal cancer. KEYTRUDA also demonstrated a long-term, durable response that lasted over two years for those who responded to treatment, said Thierry Andre, MD, professor of medical oncology, Sorbonne University, and Head of the Medical Oncology Department in St. Antoine Hospital, Assistance Publique Hpitaux de Paris. Data from KEYNOTE-177 show that KEYTRUDA monotherapy has the potential to become the new standard of care for first-line treatment of patients with MSI-H metastatic colorectal cancer.
In May 2017, KEYTRUDA became the first cancer therapy approved by the U.S. Food and Drug Administration for use based on a biomarker, regardless of tumor type, in previously treated patients with MSI-H or dMMR solid tumors.
As announced, more than 80 abstracts in nearly 20 types of solid tumors and blood cancers will be presented from Mercks broad oncology portfolio and investigational pipeline at ASCO. A compendium of presentations and posters of Merck-led studies will be posted by Merck on Friday, May 29 at 8 a.m. ET. Follow Merck on Twitter via @Merck and keep up to date with ASCO news and updates by using the hashtag #ASCO20.
KEYNOTE-177 Study Design and Additional Data (Abstract #LBA4)
KEYNOTE-177 is a randomized, open-label, Phase 3 trial evaluating KEYTRUDA monotherapy versus standard of care chemotherapy for the first-line treatment of patients with MSI-H or dMMR metastatic colorectal cancer (ClinicalTrials.gov, NCT02563002 ). The dual primary endpoints are PFS and OS. The study enrolled 307 patients, who were randomized to receive either KEYTRUDA (200 mg intravenously on Day 1 of each three-week cycle for up to 35 cycles) or investigators choice of one of the following chemotherapy-based regimens: mFOLFOX6; mFOLFOX6 plus bevacizumab (5 mg/kg IV on Day 1 of each two-week cycle); mFOLFOX6 plus cetuximab (400 mg/m2 IV, then 250 mg/m2 weekly in each two-week cycle); FOLFIRI; FOLFIRI plus bevacizumab (5 mg/kg IV on Day 1 of each two-week cycle); or FOLFIRI plus cetuximab (400 mg/m2 IV, then 250 mg/m2 weekly in each two-week cycle).
In this study, KEYTRUDA demonstrated a statistically significant and clinically meaningful improvement in PFS (HR=0.60 [95% CI, 0.45-0.80; p=0.0002]) and showed a median PFS of 16.5 months compared with 8.2 months for patients treated with chemotherapy. The two-year PFS rate was 48% with KEYTRUDA versus 19% with chemotherapy. The ORR was 43.8% with KEYTRUDA versus 33.1% with chemotherapy, with a complete response observed in 11.1% and 3.9% of patients, respectively; partial responses were observed in 32.7% and 29.2% of patients, respectively. Median duration of response was not reached with KEYTRUDA (range, 2.3+ to 41.4+) versus 10.6 months with chemotherapy (range, 2.8 to 37.5+). Additionally, 83% of patients had durable responses lasting at least two years with KEYTRUDA versus 35% with chemotherapy. In the study, 59% of patients in the intent-to-treat population received subsequent anti-PD-1/PD-L1 therapy after discontinuing study treatment in the chemotherapy arm.
The safety profile of KEYTRUDA demonstrated a lower incidence of Grade 3 treatment-related adverse events (AEs) versus chemotherapy (22% versus 66%, respectively), and no new toxicities were observed. Immune-mediated AEs and infusion reactions occurred in 31% of patients receiving KEYTRUDA and 13% of patients receiving chemotherapy. The most commonly reported immune-mediated AEswere hypothyroidism (12%) and colitis (7%) with KEYTRUDA, and infusion reactions (8%) with chemotherapy.
Merck will hold a virtual investor event in conjunction with the ASCO Annual Meeting on Tuesday, June 2 at 2 p.m. ET. Details will be provided at a date closer to the event at http://investors.merck.com/home/default.aspx.
About Microsatellite Instability High (MSI-H)
Microsatellite instability (or MSI) is defined by the National Cancer Institute as a change that occurs in the DNA of certain cells (such as tumor cells) in which the number of repeats of microsatellites (short, repeated sequences of DNA) is different from the number of repeats that was in the DNA when it was inherited. The cause of MSI may be a defect in the ability to repair mistakes made when DNA is copied in the cell. This defect is also referred to as mismatch repair deficiency (dMMR). It is estimated that approximately 5-15% of colorectal cancer patients have tumors that score as either MSI-H or dMMR when testing is performed.
Colorectal cancer starts in the colon or the rectum, and these cancers are referred to as colon cancer and rectal cancer depending on where the cancer starts. Colorectal cancer often begins with growths on the inner lining of the colon or rectum called polyps, which can change into cancer over time. Colorectal cancer is the third most commonly diagnosed cancer and the second most common cause of cancer-related death worldwide. It is estimated there were nearly 850,000 new cases of colorectal cancer and more than 880,000 deaths from the disease globally in 2018. In the United States, it is estimated there will be nearly 105,000 new cases of colon cancer and more than 43,000 new cases of rectal cancer, resulting in more than 53,000 deaths from colorectal cancer in 2020. The five-year survival rates for advanced/metastatic colon cancer and rectal cancer (stage IV) are estimated to be 14% and 15%, respectively.
About KEYTRUDA (pembrolizumab) Injection, 100 mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
Selected KEYTRUDA (pembrolizumab) Indications
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.
Microsatellite Instability-High (MSI-H) Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).
Selected Important Safety Information for KEYTRUDA
Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.
Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)
Immune-Mediated Hepatitis
KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.
Hepatotoxicity in Combination With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.
Immune-Mediated Endocrinopathies
KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.
Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.
Immune-Mediated Nephritis and Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.
Immune-Mediated Skin Reactions
Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.
Other Immune-Mediated Adverse Reactions
Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.
The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.
Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.
Infusion-Related Reactions
KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.
Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.
In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.
Increased Mortality in Patients With Multiple Myeloma
In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.
Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.
In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).
In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).
In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).
In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).
In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.
In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).
In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).
Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.
In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).
In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).
In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.
In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).
In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).
In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).
In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).
In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those 2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (20%) were fatigue (29%), diarrhea (24%), and rash (24%).
Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.
Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.
In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).
Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).
Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).
In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).
Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.
There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 117 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).
Mercks Focus on Cancer
Read more here:
Merck's KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer - Maryville Daily Times
Regenerative Medicine Market to Witness a Pronounce Growth During 2017 to 2025 – 3rd Watch News
By daniellenierenberg
Regenerative Medicine Market: Snapshot
Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.
Get Sample Copy of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1889
Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.
There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.
Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.
Global Regenerative Medicine Market: Overview
The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.
Global Regenerative Medicine Market: Key Trends
The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.
On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.
Global Regenerative Medicine Market: Market Potential
The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.
Global Regenerative Medicine Market: Regional Outlook
In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.
Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.
Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1889
Global Regenerative Medicine Market: Competitive Analysis
The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.
Some of the key players operating in the regenerative medicine market across the globe areVericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc.A large number of players are anticipated to enter the global market throughout the forecast period.
About TMR Research:
TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Originally posted here:
Regenerative Medicine Market to Witness a Pronounce Growth During 2017 to 2025 - 3rd Watch News
Autologous Stem Cell Based Therapies Market Segmentation Along With Regional Outlook, Competitive Strategies, Factors Contributing To Growth 2020-2026…
By daniellenierenberg
QY Research as of late produced a research report titled, Autologous Stem Cell Based Therapies . The research report speak about the potential development openings that exist in the worldwide market. The report is broken down on the basis of research procedures procured from historical and forecast information. The global Autologous Stem Cell Based Therapies market is relied upon to develop generously and flourish as far as volume and incentive during the gauge time frame. The report will give a knowledge about the development openings and controls that will build the market. Pursuers can increase important perception about the eventual fate of the market.
Key companies that are operating in the global Autologous Stem Cell Based Therapies market are: Regeneus, Mesoblast, Pluristem Therapeutics Inc, US STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe, etc.
Get PDF Sample Copy of the Report to understand the structure of the complete report: (Including Full TOC, List of Tables & Figures, Chart) :
Segmental Analysis
The report incorporates significant sections, for example, type and end user and a variety of segments that decide the prospects of the market. Each type provide data with respect to the business esteem during the conjecture time frame. The application area likewise gives information by volume and consumption during the estimate time frame. The comprehension of this segment direct the readers in perceiving the significance of variables that shape the market development.
Global Autologous Stem Cell Based Therapies Market Segment By Type:
, Embryonic Stem Cell, Resident Cardiac Stem Cells, Umbilical Cord Blood Stem Cells
Global Autologous Stem Cell Based Therapies Market Segment By Application:
, Neurodegenerative Disorders, Autoimmune Diseases, Cardiovascular Diseases
Competitive Landscape
The report incorporates various key players and producers working in the local and worldwide market. This segment shows the procedures received by players in the market to remain ahead in the challenge. New patterns and its reception by players assist readers with understanding the elements of the business and how it very well may be utilized to their own benefit. The readers can likewise recognize the strides of players to comprehend the global market better.
Key companies operating in the global Autologous Stem Cell Based Therapies market include Regeneus, Mesoblast, Pluristem Therapeutics Inc, US STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe, etc.
Key questions answered in the report:
For Discount, Customization in the Report: https://www.qyresearch.com/customize-request/form/1787822/covid-19-impact-on-autologous-stem-cell-based-therapies-market
TOC
1.1 Research Scope1.2 Market Segmentation1.3 Research Objectives1.4 Research Methodology1.4.1 Research Process1.4.2 Data Triangulation1.4.3 Research Approach1.4.4 Base Year1.5 Coronavirus Disease 2019 (Covid-19) Impact Will Have a Severe Impact on Global Growth1.5.1 Covid-19 Impact: Global GDP Growth, 2019, 2020 and 2021 Projections1.5.2 Covid-19 Impact: Commodity Prices Indices1.5.3 Covid-19 Impact: Global Major Government Policy1.6 The Covid-19 Impact on Autologous Stem Cell Based Therapies Industry1.7 COVID-19 Impact: Autologous Stem Cell Based Therapies Market Trends 2 Global Autologous Stem Cell Based Therapies Quarterly Market Size Analysis2.1 Autologous Stem Cell Based Therapies Business Impact Assessment COVID-192.1.1 Global Autologous Stem Cell Based Therapies Market Size, Pre-COVID-19 and Post- COVID-19 Comparison, 2015-20262.2 Global Autologous Stem Cell Based Therapies Quarterly Market Size 2020-20212.3 COVID-19-Driven Market Dynamics and Factor Analysis2.3.1 Drivers2.3.2 Restraints2.3.3 Opportunities2.3.4 Challenges 3 Quarterly Competitive Assessment, 20203.1 By Players, Global Autologous Stem Cell Based Therapies Quarterly Market Size, 2019 VS 20203.2 By Players, Autologous Stem Cell Based Therapies Headquarters and Area Served3.3 Date of Key Players Enter into Autologous Stem Cell Based Therapies Market3.4 Key Players Autologous Stem Cell Based Therapies Product Offered3.5 Mergers & Acquisitions, Expansion Plans 4 Impact of Covid-19 on Autologous Stem Cell Based Therapies Segments, By Type4.1 Introduction1.4.1 Embryonic Stem Cell1.4.2 Resident Cardiac Stem Cells1.4.3 Umbilical Cord Blood Stem Cells4.2 By Type, Global Autologous Stem Cell Based Therapies Market Size, 2019-2021 5 Impact of Covid-19 on Autologous Stem Cell Based Therapies Segments, By Application5.1 Overview5.5.1 Neurodegenerative Disorders5.5.2 Autoimmune Diseases5.5.3 Cardiovascular Diseases5.2 By Application, Global Autologous Stem Cell Based Therapies Market Size, 2019-20215.2.1 By Application, Global Autologous Stem Cell Based Therapies Market Size by Application, 2019-2021 6 Geographic Analysis6.1 Introduction6.2 North America6.2.1 Macroeconomic Indicators of US6.2.2 US6.2.3 Canada6.3 Europe6.3.1 Macroeconomic Indicators of Europe6.3.2 Germany6.3.3 France6.3.4 UK6.3.5 Italy6.4 Asia-Pacific6.4.1 Macroeconomic Indicators of Asia-Pacific6.4.2 China6.4.3 Japan6.4.4 South Korea6.4.5 India6.4.6 ASEAN6.5 Rest of World6.5.1 Latin America6.5.2 Middle East and Africa 7 Company Profiles7.1 Regeneus7.1.1 Regeneus Business Overview7.1.2 Regeneus Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.1.3 Regeneus Autologous Stem Cell Based Therapies Product Introduction7.1.4 Regeneus Response to COVID-19 and Related Developments7.2 Mesoblast7.2.1 Mesoblast Business Overview7.2.2 Mesoblast Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.2.3 Mesoblast Autologous Stem Cell Based Therapies Product Introduction7.2.4 Mesoblast Response to COVID-19 and Related Developments7.3 Pluristem Therapeutics Inc7.3.1 Pluristem Therapeutics Inc Business Overview7.3.2 Pluristem Therapeutics Inc Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.3.3 Pluristem Therapeutics Inc Autologous Stem Cell Based Therapies Product Introduction7.3.4 Pluristem Therapeutics Inc Response to COVID-19 and Related Developments7.4 US STEM CELL, INC.7.4.1 US STEM CELL, INC. Business Overview7.4.2 US STEM CELL, INC. Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.4.3 US STEM CELL, INC. Autologous Stem Cell Based Therapies Product Introduction7.4.4 US STEM CELL, INC. Response to COVID-19 and Related Developments7.5 Brainstorm Cell Therapeutics7.5.1 Brainstorm Cell Therapeutics Business Overview7.5.2 Brainstorm Cell Therapeutics Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.5.3 Brainstorm Cell Therapeutics Autologous Stem Cell Based Therapies Product Introduction7.5.4 Brainstorm Cell Therapeutics Response to COVID-19 and Related Developments7.6 Tigenix7.6.1 Tigenix Business Overview7.6.2 Tigenix Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.6.3 Tigenix Autologous Stem Cell Based Therapies Product Introduction7.6.4 Tigenix Response to COVID-19 and Related Developments7.7 Med cell Europe7.7.1 Med cell Europe Business Overview7.7.2 Med cell Europe Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.7.3 Med cell Europe Autologous Stem Cell Based Therapies Product Introduction7.7.4 Med cell Europe Response to COVID-19 and Related Developments 8 Key Findings 9 Appendix9.1 About US9.2 Disclaimer
About Us:
QYResearch always pursuits high product quality with the belief that quality is the soul of business. Through years of effort and supports from huge number of customer supports, QYResearch consulting group has accumulated creative design methods on many high-quality markets investigation and research team with rich experience. Today, QYResearch has become the brand of quality assurance in consulting industry.
See the article here:
Autologous Stem Cell Based Therapies Market Segmentation Along With Regional Outlook, Competitive Strategies, Factors Contributing To Growth 2020-2026...
Study: Heart Problems in SMA May Be Tied to Calcium Dysregulation – SMA News Today
By daniellenierenberg
Heart problems associated with spinal muscular atrophy(SMA) may be caused partially by calcium dysregulation in heart muscle cells in the absence of the survival motor neuron(SMN) protein, a study suggests.
These findings shed light not only on the underlying mechanisms of heart problems in SMA which may open new therapeutic avenues but also support the monitoring of heart function in this patient population.
The study, SMN-deficiency disrupts SERCA2 expression and intracellular Ca2+ signaling in cardiomyocytes from SMA mice and patient-derived iPSCs, was published in the journal Skeletal Muscle.
SMA is caused by the loss of SMN, a protein produced in several cell types throughout the body and involved inmultiple and fundamental cellular processes. While SMN deficiency in motor nerve cells is considered the diseases root cause, increasing evidence suggests that other cells and organs in the body also are particularly affected, including the heart.
Cardiovascular problems have been reported in patients with the most severe severeforms of SMA and in mouse models of the disease. Moreover, a previous study supported by theSMA Foundation showed that SMA patients have higher-than-normal levels of several heart failure markers, suggesting that sufficient levels of SMN are essential for normal heart function.
However, the mechanisms behind these SMA-associated heart problems remain largely unknown and no study has established that SMN deficiency directly affects heart function.
Researchers have now evaluated whether SMN deficiency compromised the contractile function of heart cells isolated from a mouse model of a severe form of SMA and also those generated from SMA patients-derived induced pluripotent stem cells (iPSCs).
iPSCs are fully matured cells that researchers can reprogram in a lab dish to revert them back to a stem cell state that has the capacity to differentiate into almost any type of cell.
Results showed that the levels of three heart failure markers atrial natriuretic peptide, brain natriuretic peptide, and skeletal alpa-actin were significantly increased in heart tissue from SMA mice prior to considerable neuromuscular degeneration, compared with that from healthy mice.
This suggested that mechanical function of the heart may be altered early in the disease progression of this severe SMA mouse model, the researchers wrote.
In agreement, heart cells from SMA mice showed impaired contractile function, compared with cells from healthy mice. The team noted that contraction problems in the heart often are associated with calcium dysregulation and lower levels of SERCA2, an enzyme that controls calcium levels inside cells.
Further analysis showed that SMN-deficient heart cells, from both SMA mice and SMA patients, had a significant drop in SERCA2 levels and impaired calcium dynamics, compared with healthy cells.
Notably, these deficits were at least partially corrected when patient-derived cells were modified to increase their production of SMN protein. Conversely, heart cells derived from healthy individuals and forced to lower their SMN production mimicked the deficits seen in SMN-deficient heart cells.
These results demonstrate that SMN regulates SERCA2 [levels] and intracellular [calcium dynamics] in [heart cells] that may impair cardiac function and lead to elevation of heart failure markers, as observed in mice and patients with SMA, the researchers wrote.
The data also suggest that heart cell dysfunction occurs early in the disease course and therefore is likely to be a direct result of SMN loss and not secondary to neurodegeneration, the team noted.
Since deficits in calcium dynamics also were previously reported to occur in SMN-deficient motor nerve cells, the researchers hypothesized that calcium dysregulation may be a common disease mechanism in SMA.
Finally, while neuromuscular degeneration remains the hallmark feature of the disease, impaired heart function may be a contributing factor in disease progression that will require monitoring in light of new therapies that are improving motor function and extending survival, the researchers wrote.
Marta Figueiredo holds a BSc in Biology and a MSc in Evolutionary and Developmental Biology from the University of Lisbon, Portugal. She is currently finishing her PhD in Biomedical Sciences at the University of Lisbon, where she focused her research on the role of several signalling pathways in thymus and parathyroid glands embryonic development.
Total Posts: 85
Ana holds a PhD in Immunology from the University of Lisbon and worked as a postdoctoral researcher at Instituto de Medicina Molecular (iMM) in Lisbon, Portugal. She graduated with a BSc in Genetics from the University of Newcastle and received a Masters in Biomolecular Archaeology from the University of Manchester, England. After leaving the lab to pursue a career in Science Communication, she served as the Director of Science Communication at iMM.
Link:
Study: Heart Problems in SMA May Be Tied to Calcium Dysregulation - SMA News Today
Global Stem Cell Reconstructive Market- Industry Analysis and Forecast… – Azizsalon News
By daniellenierenberg
Global Stem Cell Reconstructive Marketwas valued US$ XX Mn in 2019 and is expected to reach US$ XX Mn by 2027, at a CAGR of 24.5% during a forecast period.
Market Dynamics
The Research Report gives an in-depth account of the drivers and restraints in the stem cell reconstructive market. Stem cell reconstructive surgery includes the treatment of injured or dented part of body. Stem cells are undifferentiated biological cells, which divide to produce more stem cells. Growing reconstructive surgeries led by the rising number of limbs elimination and implants and accidents are boosting the growth in the stem cell reconstructive market. Additionally, rising number of aged population, number of patients suffering from chronic diseases, and unceasing development in the technology, these are factors which promoting the growth of the stem cell reconstructive market. Stem cell reconstructive is a procedure containing the use of a patients own adipose tissue to rise the fat volume in the area of reconstruction and therefore helping 3Dimentional reconstruction in patients who have experienced a trauma or in a post-surgical event such as a mastectomy or lumpectomy, brain surgery, or reconstructive surgery as a result of an accident or injury. Stem cell reconstructive surgeries are also used in plastic or cosmetic surgeries as well. Stem cell and regenerative therapies gives many opportunities for development in the practice of medicine and the possibility of an array of novel treatment options for patients experiencing a variety of symptoms and conditions. Stem cell therapy, also recognised as regenerative medicine, promotes the repair response of diseased, dysfunctional or injured tissue using stem cells or their derivatives.
REQUEST FOR FREE SAMPLE REPORT:https://www.maximizemarketresearch.com/request-sample/54666/
The common guarantee of all the undifferentiated embryonic stem cells (ESCs), foetal, amniotic, UCB, and adult stem cell types is their indefinite self-renewal capacity and high multilineage differentiation potential that confer them a primitive and dynamic role throughout the developmental process and the lifespan in adult mammal.However, the high expenditure of stem cell reconstructive surgeries and strict regulatory approvals are restraining the market growth.
The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.
Global Stem Cell Reconstructive Market Segment analysis
Based on Cell Type, the embryonic stem cells segment is expected to grow at a CAGR of XX% during the forecast period. Embryonic stem cells (ESCs), derived from the blastocyst stage of early mammalian embryos, are distinguished by their capability to distinguish into any embryonic cell type and by their ability to self-renew. Owing to their plasticity and potentially limitless capacity for self-renewal, embryonic stem cell therapies have been suggested for regenerative medicine and tissue replacement after injury or disease. Additionally, their potential in regenerative medicine, embryonic stem cells provide a possible another source of tissue/organs which serves as a possible solution to the donor shortage dilemma. Researchers have differentiated ESCs into dopamine-producing cells with the hope that these neurons could be used in the treatment of Parkinsons disease. Upsurge occurrence of cardiac and malignant diseases is promoting the segment growth. Rapid developments in this vertical contain protocols for directed differentiation, defined culture systems, demonstration of applications in drug screening, establishment of several disease models, and evaluation of therapeutic potential in treating incurable diseases.
Global Stem Cell Reconstructive Market Regional analysis
The North American region has dominated the market with US$ XX Mn. America accounts for the largest and fastest-growing market of stem cell reconstructive because of the huge patient population and well-built healthcare sector. Americas stem cell reconstructive market is segmented into two major regions such as North America and South America. More than 80% of the market is shared by North America due to the presence of the US and Canada.
DO INQUIRY BEFORE PURCHASING REPORT HERE:https://www.maximizemarketresearch.com/inquiry-before-buying/54666/
Europe accounts for the second-largest market which is followed by the Asia Pacific. Germany and UK account for the major share in the European market due to government support for research and development, well-developed technology and high healthcare expenditure have fuelled the growth of the market. This growing occurrence of cancer and diabetes in America is the main boosting factor for the growth of this market.
The objective of the report is to present a comprehensive analysis of the Global Stem Cell Reconstructive Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all the aspects of the industry with a dedicated study of key players that includes market leaders, followers and new entrants. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors of the market has been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analysed, which will give a clear futuristic view of the industry to the decision-makers.
The report also helps in understanding Global Stem Cell Reconstructive Market dynamics, structure by analysing the market segments and projects the Global Stem Cell Reconstructive Market size. Clear representation of competitive analysis of key players by Application, price, financial position, Product portfolio, growth strategies, and regional presence in the Global Stem Cell Reconstructive Market make the report investors guide.Scope of the Global Stem Cell Reconstructive Market
Global Stem Cell Reconstructive Market, By Sources
Allogeneic Autologouso Bone Marrowo Adipose Tissueo Blood Syngeneic OtherGlobal Stem Cell Reconstructive Market, By Cell Type
Embryonic Stem Cell Adult Stem CellGlobal Stem Cell Reconstructive Market, By Application
Cancer Diabetes Traumatic Skin Defect Severe Burn OtherGlobal Stem Cell Reconstructive Market, By End-User
Hospitals Research Institute OthersGlobal Stem Cell Reconstructive Market, By Regions
North America Europe Asia-Pacific South America Middle East and Africa (MEA)Key Players operating the Global Stem Cell Reconstructive Market
Osiris Therapeutics NuVasives Cytori Therapeutics Takeda (TiGenix) Cynata Celyad Medi-post Anterogen Molmed Baxter Eleveflow Mesoblast Ltd. Micronit Microfluidics TAKARA BIO INC. Tigenix Capricor Therapeutics Astellas Pharma US, Inc. Pfizer Inc. STEMCELL Technologies Inc.
MAJOR TOC OF THE REPORT
Chapter One: Stem Cell Reconstructive Market Overview
Chapter Two: Manufacturers Profiles
Chapter Three: Global Stem Cell Reconstructive Market Competition, by Players
Chapter Four: Global Stem Cell Reconstructive Market Size by Regions
Chapter Five: North America Stem Cell Reconstructive Revenue by Countries
Chapter Six: Europe Stem Cell Reconstructive Revenue by Countries
Chapter Seven: Asia-Pacific Stem Cell Reconstructive Revenue by Countries
Chapter Eight: South America Stem Cell Reconstructive Revenue by Countries
Chapter Nine: Middle East and Africa Revenue Stem Cell Reconstructive by Countries
Chapter Ten: Global Stem Cell Reconstructive Market Segment by Type
Chapter Eleven: Global Stem Cell Reconstructive Market Segment by Application
Chapter Twelve: Global Stem Cell Reconstructive Market Size Forecast (2019-2026)
Browse Full Report with Facts and Figures of Stem Cell Reconstructive Market Report at:https://www.maximizemarketresearch.com/market-report/global-stem-cell-reconstructive-market/54666/
About Us:
Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.
Contact info:
Name: Vikas Godage
Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.
Email: sales@maximizemarketresearch.com
Contact: +919607065656/ +919607195908
Website:www.maximizemarketresearch.com
Read more:
Global Stem Cell Reconstructive Market- Industry Analysis and Forecast... - Azizsalon News