Page 40«..1020..39404142..5060..»

CDI ditches move to Verona – Madison.com

By JoanneRUSSELL25

Cellular Dynamics International, the stem cell company founded by UW-Madison stem cell pioneer James Thomson, is backing off on moving its headquarters to a big, new building in Verona and will stay in Madison, at least for now, as it prepares to push forward with its first potential stem cell-based treatment in early 2018.

CDI president Kaz Hirao said Thursday the company is shelving plans to shift operations to a $40 million, 133,700-square-foot building that was to be built for CDI on Kettle Moraine Trail in Verona. The building was expected to house 280 employees, with so-called clean rooms, quality-control labs, processing rooms and offices.

Instead, CDIs main offices and labs will remain at 525 Science Drive in University Research Park and the company will remodel an existing building whose site has not yet been determined to house several clean rooms that will meet government standards for manufacturing stem cells for use in clinical drug trials.

Fujifilm (CDIs parent company) has a very strong commitment and wants to see (the) Madison (site) grow in the future. Strategy-wise, that has not changed, Hirao said. Madison has a great ecosystem for our businesses.

He said the National Eye Institute plans to submit an application to the U.S. Food and Drug Administration in January 2018 for a retinal cell therapy it has been developing with CDI for age-related macular degeneration, an eye disease that can lead to blindness. The National Eye Institute has conducted animal studies on the drug, Hirao said.

It is the first of a series of stem cell-based drugs the company is working on. CDI expects to file investigational new drug applications for treating Parkinsons disease and for cardiac disease in 2019, he said.

In order to make stem cells that meet government standards for use in human clinical trials, Hirao said the company will establish clean rooms that meet regulations for current good manufacturing practices. He said he expects to designate a location in the next month or two, within about a 15-minute drive of CDI headquarters, to handle the companys stem cell manufacturing needs for the immediate future.

Next year, CDI will review its plans again, Hirao said, and will again consider a move to a larger, consolidated building. If it decides to go ahead with that, Verona would be one of the preferred options, he said.

CDI had obtained up to $6 million in financial incentives from the city of Verona for the building that was to be built and owned by developer John K. Livesey.

Verona planning and development director Adam Sayre called CDIs decision to pull back on the plans unfortunate, but said city officials will keep in contact with Cellular Dynamics over the coming months.

The city would continue to welcome them with open arms, Sayre said. Well see what the next year brings.

At University Research Park, CDI occupies about 55,000 square feet, director Aaron Olver said. Weve recently provided CDI with some additional space to help them grow, he said.

CDI is one of the true gems among companies powered by UW-Madison research, and we would certainly do anything we could to help them find clean room space to continue their work, Olver said.

Founded in 2004, CDI was acquired by Fujifilm Holdings Corp. for $307 million in April 2015.

The company has 165 employees, including about 125 in Madison. Hirao said he expects to add employees, but said its too soon to estimate how many, or how quickly the company will grow.

Original post:
CDI ditches move to Verona - Madison.com

To Read More: CDI ditches move to Verona – Madison.com
categoriaCardiac Stem Cells commentoComments Off on CDI ditches move to Verona – Madison.com | dataJuly 31st, 2017
Read All

J&J drops stem cell partner Capricor – BioPharma Dive

By Dr. Matthew Watson

Dive Brief:

While the loss of the deal has made a hole on the company's value, Capricor is looking on the bright side.

"Over the last few years, and during the term of the Janssen option period, we believe that significant value for our CAP-1002 asset has been created through the demonstration of clinical proof-of-concept to treat Duchenne muscular dystrophy (DMD) and also from the progress that has been made towards the development of a commercial-scale manufacturing process for the cells," said Linda Marbn, Capricor's president and CEO.

The company also suggested that a potential upside of the loss of the agreements is that it "resolves uncertainty concerning the scope of the license for CAP-1002 and provides Capricor the freedom to enter into new licensing and/or business development opportunities."

Although, as most investors know, it's generally a bad sign when your big pharma partner bails and, typically, hurts prospects for gaining another commercialization partner.

Capricor has faced some challenges in 2017. In February, it pulled out of an agreement with the Mayo Clinic, which included scrapping development of a Phase 2 heart failure drug, cenderitide, in order to focus on cell and exosome-based therapeutics. And then in May, it faced problems with CAP-1002 in the ALLSTAR Phase 1/2 trial. These topline results showed that CAP-1002 had only a small chance of meeting the primary endpoint of significantly reducing cardiac scarring in adults who had had a major heart attack. This resulted in a reduction in the scope of the company's options, including its workforce size.

The focus for this product, which is manufactured from donated heart tissue, is now in young men with Duchenne muscular dystrophy-associated cardiomyopathy, and the HOPE Phase 1/2 trial is ongoing. Six-month results were presented late last month at the 2017 Patient Project Muscular Dystrophy (PPMD) Annual Connect Conference, showing improved cardiac systolic wall thickening, and improved performance of upper limb in treated patients.

"We discussed potential product registration strategies for this indication at our recent meeting with the U.S. Food and Drug Administration. We expect to commence a randomized, double-blind, placebo-controlled clinical trial of repeat administrations of intravenous CAP-1002 in boys and young men with DMD in the second half of this year, subject to regulatory approval," said Marbn.

Here is the original post:
J&J drops stem cell partner Capricor - BioPharma Dive

To Read More: J&J drops stem cell partner Capricor – BioPharma Dive
categoriaCardiac Stem Cells commentoComments Off on J&J drops stem cell partner Capricor – BioPharma Dive | dataJuly 11th, 2017
Read All

Dragon splashes down in Pacific with time-critical experiments – SpaceFlight Insider

By daniellenierenberg

Derek Richardson

July 3rd, 2017

The CRS-11 Dragon capsule re-enters Earths atmosphere. Photo Credit: Jack Fischer / NASA

SpaceXs CRS-11 Dragon capsule splashed down at 8:12 a.m. EDT (12:12 GMT) on July 3, 2017, in the Pacific Ocean just off the coast of Baja California after some 28 days attached to the International Space Station.

After being unberthed using the robotic Canadarm2, the craft was moved to a location some 33 feet (10 meters) below the Destiny laboratory module. It was officially released at 2:41 a.m. EDT (6:41 GMT) on July 3 by Expedition 52 astronauts Jack Fischer and Peggy Whitson of NASA.

The CRS-11 Dragon capsule is positioned for release beneath the ISS. Photo Credit: Jack Fischer / NASA

Dragons been an incredible spacecraft, Fischer said after release. I could even say it was slathered in awesome sauce. This baby has had almost no problems, which is an incredible feat considering its the first reuse of a Dragon vehicle.

The CRS-11 Dragon capsule pressure vessel was the same one used during the CRS-4 mission in 2014.

And the science weve done oh my, the science, Fischer said. Most of the 6,000 pounds [2,700 kilograms] of cargo carried was science, and almost all of the return cargo are precious samples for discoveries we cant wait to see.

Fischer explained that Dragon also brought up various external experiments too, including an external platform for science, a neutron star analyzer and an experimental solar array that was rolled out like a party horn on New Years Eve.

The science on this mission has been non-stop, and we think the scientists will be extremely happy with the volumes of data we gathered for them up here in space in our floating world-class laboratory we call home, Fischer said. For the whole SpaceX team, thank you for building such a great vehicle and for finding us some good weather today to allow us to bring home the science on time. Godspeed and fair winds, Dragon-11.

The spacecraft had originally been planned to splash down on July 2, but due to a forecast of unacceptable sea conditions at the recovery zone, mission managers decided on June 30 to postpone the capsules departure from the station.

Three separate departure burns were performed by the Dragon capsule once the robotic arm released the spacecraft. This gradually pushed the vehicle away from the outpost and outside the 656-foot (200-meter) Keep-Out Sphere (KOS).

Some five hours later, Dragon, using its Draco thrusters, performed a 10-minute de-orbit burn. Minutes after that, its trunk, which is not recoverable, was jettisoned.

Moments after being released by the ISS crew, the CRS-11 Dragon capsule begins its journey back to Earth. Photo Credit: Jack Fischer / NASA

A few minutes before splashing down, the capsule released drogue chutes to slow the capsule a bit and to keep a specific attitude for the three main parachutes to bedeployed. Once that occurred, along with a successful splashdown, it ensured a successful mission for the first re-flight of a commercial spacecraft to and from the ISS.

Now that Dragon is back on Earth and on a recovery ship, it will now be transported to the port of Los Angeles to offload time-sensitive cargo. The most notable include the Fruit Fly Lab-02 experiment, the Systemic Therapy of NELL-1 for osteoporosis study, and the Cardiac Stem Cells experiment.

The Fruit Fly Lab-02 experiment aims to understand the effects of prolonged microgravity exposure on the heart. According to NASA, because flies are small, have a well-known genetic makeup, and age rapidly, thatmakes them good models for heart function studies.

For the Systemic Therapy of NELL-1 for osteoporosis study, a group of rodents were used as models to test a drug that can rebuild bone and block additional bone density loss. It is hoped that this can help reduce bone density loss for astronauts on extended stays in space. Additionally, it can potentially help people with osteoporosis.

According to NASA, in-flight countermeasures, like exercise, can prevent bone density loss from getting worse, but nothing on Earth or in space can restore bone density.

Finally, the Cardiac Stem Cells experiment aims to analyze how microgravity affects stem cells and factors that govern stem cell activity. NASA says the study focuses on cardiac stem cell functions and has numerous biomedical and commercial applications.

The CRS-11 Dragon was launched June 3 from Kennedy Space Centers Launch Complex 39A in Florida. After a two-day rendezvous profile, the capsule was berthed to the Earth-facing port of the Harmony module on June 5.

The next Dragon mission will be CRS-12 on Aug. 10, 2017. It is unclear if this capsule will also be a pre-flown vessel.

Video courtesy of NASA

Tagged: CRS-11 Dragon Expedition 52 International Space Station Lead Stories NASA SpaceX

Derek Richardson has a degree in mass media, with an emphasis in contemporary journalism, from Washburn University in Topeka, Kansas. While at Washburn, he was the managing editor of the student run newspaper, the Washburn Review. He also has a blog about the International Space Station, called Orbital Velocity. He met with members of the SpaceFlight Insider team during the flight of a United Launch Alliance Atlas V 551 rocket with the MUOS-4 satellite. Richardson joined our team shortly thereafter. His passion for space ignited when he watched Space Shuttle Discovery launch into space Oct. 29, 1998. Today, this fervor has accelerated toward orbit and shows no signs of slowing down. After dabbling in math and engineering courses in college, he soon realized his true calling was communicating to others about space. Since joining SpaceFlight Insider in 2015, Richardson has worked to increase the quality of our content, eventually becoming our managing editor.

Go here to see the original:
Dragon splashes down in Pacific with time-critical experiments - SpaceFlight Insider

To Read More: Dragon splashes down in Pacific with time-critical experiments – SpaceFlight Insider
categoriaCardiac Stem Cells commentoComments Off on Dragon splashes down in Pacific with time-critical experiments – SpaceFlight Insider | dataJuly 8th, 2017
Read All

Dragon Splashes Down to Complete Resupply Mission – Space Daily

By daniellenierenberg

SpaceX's Dragon cargo craft splashed down in the Pacific Ocean at 8:12 a.m. EDT, west of Baja California and the recovery process is underway, marking the end of the company's eleventh contracted cargo resupply mission to the International Space Station for NASA.

Expedition 52 astronauts Jack Fischer and Peggy Whitson of NASA released the SpaceX Dragon cargo spacecraft from the International Space Station's robotic arm right on schedule, at 2:41 a.m.

A variety of technological and biological studies are returning in Dragon. The Fruit Fly Lab-02 experiment seeks to better understand the effects of prolonged exposure to microgravity on the heart.

Flies are small, with a well-known genetic make-up, and age rapidly, making them good models for heart function studies. This experiment could significantly advance understanding of how spaceflight affects the cardiovascular system and could help develop countermeasures to help astronauts.

Samples from the Systemic Therapy of NELL-1 for osteoporosis will return as part of an investigation using rodents as models to test a new drug that can both rebuild bone and block further bone loss, improving crew health.

When people and animals spend extended periods of time in space, they experience bone density loss, or osteoporosis. In-flight countermeasures, such as exercise, prevent it from getting worse, but there isn't a therapy on Earth or in space that can restore bone density.

The results from this ISS National Laboratory-sponsored investigation is built on previous research also supported by the National Institutes for Health and could lead to new drugs for treating bone density loss in millions of people on Earth.

The Cardiac Stem Cells experiment investigated how microgravity affects stem cells and the factors that govern stem cell activity. The study focuses on understanding cardiac stem cell function, which has numerous biomedical and commercial applications. Scientists will also look to apply new knowledge to the design of new stem cell therapies to treat heart disease on Earth.

The Dragon spacecraft launched June 3 on a SpaceX Falcon 9 rocket from historic Launch Complex 39A at NASA's Kennedy Space Center in Florida, and arrived at the station June 5.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

Here is the original post:
Dragon Splashes Down to Complete Resupply Mission - Space Daily

To Read More: Dragon Splashes Down to Complete Resupply Mission – Space Daily
categoriaCardiac Stem Cells commentoComments Off on Dragon Splashes Down to Complete Resupply Mission – Space Daily | dataJuly 7th, 2017
Read All

NantWorks acquires majority stake in Integrity Healthcare, will take over 6 Los Angeles hospitals – Healthcare Finance News

By JoanneRUSSELL25

Photo of Patrick Soon-Shiong courtesy NHS Confederation

Billionaire physician Patrick Soon-Shiong's company NantWorks has acquired a majority stake in Integrity Healthcare, the company that manages nonprofit Verity Health System. Terms of the deal were disclosed, but the transaction puts Soon-Shiong's company in place as the new operator of Verity's six California hospitals.

Verity Health employs more than 6,000 staff statewide. Their hospitals include 1,650 inpatient beds, six active emergency rooms, a trauma center and medical specialties including tertiary and quaternary care.

The system's Southern California hospitals include St. Francis Medical Center in Lynwood and St. Vincent Medical Center in Los Angeles. Their Northern California facilities are O'Connor Hospital in San Jose, St. Louise Regional Hospital in Gilroy, Seton Medical Center in Daly City and Seton Coastside in Moss Beach, Verity said in a statement.

New York hedge fund BlueMountain Capital Management formed Integrity Healthcare and is their former majority owner. They, along with NantWorks have committed to continue investing in Verity's revitalization efforts. BlueMountain is making additional funds available for that effort, and will maintain a minority interest in Integrity, Verity said.

Soon-Shiong will join Verity's Board of Investors.

The collaboration between Integrity and NantWorks is expected to yield will include major technological improvements for the hospitals such as diagnostic and imaging services and next generation stem cell therapy. Expanded oncology, cardiac, orthopedic, neurology, urology, transplant and pediatric services are also forecasted, Verity said.

However, the billionaire doctor's activities, including his philanthropic efforts, have been under a cloud of suspicion.

Soon-Shiong and two other pharma executives are being sued by attorneys Boyden Gray and Adam Waldman of Washington, D.C., for allegedly attempting to acquire Altor Bioscience through a sweetheart deal. Altor is a 15-year-old immunotherapy company, with 12 ongoing human clinical trials.

The lawsuit, filed June 21, asserts the deal in place benefits Soon-Shiong, Hing C. Wong and Fred Middleton all board members of Altor Bioscience. The deal comes at the expense of the minority shareholders, which breaches their fiduciary duty.

The connections between his philanthropic efforts and his for-profit businesses have also been under scrutiny after STAT News and Politico investigations.

Both news outlets pointed to possible improprieties stemming from a $12 million dollar donation to the University of Utah made by Soon-Shiong's research foundation, the Chan Soon-Shiong NantHealth Foundation.

Politico's investigation foundthat the foundation contributed $3 million out of the $12 million donated by Soon-Shiong-controlled businesses to a university program to that sought to map the genomes of 1,000 state residents.

"University officials say they let Soon-Shiong's entities write the grant specifications. The specifications gave a major advantage to his for-profit firms, which got the $10 million gene-mapping contract," Politico said.

The investigation also showed that a large portion of the Foundation's expenditures from 2010 to 2015 went to Soon-Shiong-affiliated nonprofits and for-profits, as well as companies that do business with his for-profit entities.

Also, the investigation said six employees of Soon-Shiong's for-profit businesses were paid with Foundation money, which raises questions about the flow of money between the entities.

Soon-Shiong denied any wrongdoing to Politico and STAT.

U.S. House Speaker Paul Ryan appointed the biotech mogul to the Health IT Advisory Committee. The 25-member committee, established through the 21st Century Cures Act, will advise the president and his administration on health IT policy.

Bill Siwicki contributed to this report.

Twitter: @BethJSanborn

See the article here:
NantWorks acquires majority stake in Integrity Healthcare, will take over 6 Los Angeles hospitals - Healthcare Finance News

To Read More: NantWorks acquires majority stake in Integrity Healthcare, will take over 6 Los Angeles hospitals – Healthcare Finance News
categoriaCardiac Stem Cells commentoComments Off on NantWorks acquires majority stake in Integrity Healthcare, will take over 6 Los Angeles hospitals – Healthcare Finance News | dataJuly 6th, 2017
Read All

See SpaceX Dragon capsule reenter Earth’s atmosphere in this amazing photo – LA Daily News

By Sykes24Tracey

NASA says astronaut Jack Fischer shot this photo of the SpaceX Dragon capsule reentering Earths atmosphere before splashing down in the Pacific Ocean west of Baja California on at 5:12 a.m. Pacific time Monday July 3, 2017.

Heres more from NASAs statement:

Fischer commented, Beautiful expanse of stars-but the long orange one is SpaceX-11 reentering! Congrats team for a successful splashdown & great mission!

A variety of technological and biological studies conducted on the International Space Station are returning in Dragon. The Fruit Fly Lab-02 experiment seeks to better understand the effects of prolonged exposure to microgravity on the heart. Samples from the Systemic Therapy of NELL-1 for osteoporosis will return as part of an investigation using rodents as models to test a new drug that can both rebuild bone and block further bone loss, improving crew health. The Cardiac Stem Cells experiment investigated how microgravity affects stem cells and the factors that govern stem cell activity.

The Dragon spacecraft launched June 3 on a SpaceX Falcon 9 rocket from historic Launch Complex 39A at NASAs Kennedy Space Center in Florida, and arrived at the station June 5.

Advertisement

Read more here:
See SpaceX Dragon capsule reenter Earth's atmosphere in this amazing photo - LA Daily News

To Read More: See SpaceX Dragon capsule reenter Earth’s atmosphere in this amazing photo – LA Daily News
categoriaCardiac Stem Cells commentoComments Off on See SpaceX Dragon capsule reenter Earth’s atmosphere in this amazing photo – LA Daily News | dataJuly 4th, 2017
Read All

VistaGen Therapeutics Reports Fiscal 2017 Financial Results and Provides Corporate Update – Markets Insider

By raymumme

SOUTH SAN FRANCISCO, CA--(Marketwired - June 29, 2017) - VistaGen Therapeutics Inc.(NASDAQ: VTGN), a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders, today reported its financial results for its fiscal year ended March 31, 2017.

The Company also provided an update on its corporate progress, clinical status and anticipated milestones for AV-101, its orally available CNS prodrug candidate in Phase 2 development, initially as a new generation treatment for major depressive disorder (MDD).

"With a team of industry experts and a focused strategy in place, we have established a strong foundation and embarked on paths to achieve several key catalysts within the next 18 months. We anticipate our first catalyst within the next 9 months as the NIMH completes its AV-101 Phase 2 monotherapy study in MDD, a study being conducted and fully funded by the NIH. Additionally, we are working closely with the FDA and our Principal Investigator, Dr. Maurizio Fava of Harvard University Medical School, on our AV-101 Phase 2 adjunctive treatment study in MDD, which we anticipate will begin enrollment in the first quarter of 2018 and be completed by the end of 2018, with topline results available in the first quarter of 2019," commented Shawn Singh, Chief Executive Officer of VistaGen.

In addition to MDD, AV-101 may have therapeutic potential in several other CNS indications where modulation of NMDA receptors, activation of AMPA pathways and/or active metabolites of AV-101 play a key role, including for treatment of epilepsy, as a non-opioid alternative for management of neuropathic pain, and to address certain symptoms associated with Parkinson's disease and Huntington's disease.

Mr. Singh continued, "Our MDD clinical program is our top priority, and will remain so. Additionally, however, recent peer-reviewed publications suggest that AV-101 may have significant therapeutic potential as a non-opioid treatment alternative for pain management. We are also excited about AV-101's potential to reduce dyskinesia associated with standard levodopa, or L-DOPA, therapy for Parkinson's disease, based on results from previous non-clinical studies. Without diverting our priority focus on MDD, we plan to expand our AV-101 Phase 2 clinical program during the next year to include these important CNS indications with significant unmet need."

"We are also pleased to have advanced our cardiac stem cell program during fiscal 2017, through both our participation in the FDA's CiPA initiative focused on using novel human stem cell models to predict cardiac toxicity of new drug candidates long before animal and human studies, as well as our exclusive sublicense agreement with BlueRock Therapeutics, an emerging force in cardiac regenerative medicine, founded and funded by Bayer AG and Versant Ventures. Our initial revenue-generating milestone with BlueRock Therapeutics was completed during fiscal 2017. We are optimistic about this relationship's potential and the future of cardiac regenerative medicine. We believe these significant events over the past year have positioned us to create substantial value for our stakeholders in fiscal 2018 and beyond."

Potential Near-Term Milestones:

Operational Highlights During Fiscal 2017:Achievements Related to Stem Cell Technologies

Advancement of AV-101 as a Potential, Non-Opioid Treatment Alternative for Chronic Pain

Bolstered Team with Industry Experts

Intellectual Property Accomplishments

Capital Market Highlights

Financial Results for the Fiscal Year Ended March 31, 2017:

Revenue for the fiscal year ended March 31, 2017 totaled $1.25 million and was attributable to a sublicense agreement with BlueRock Therapeutics, for certain rights to the Company's proprietary technologies relating to the production of cardiac stem cells for the treatment of heart disease.

Research and development expense totaled $5.2 million for the fiscal year ended March 31, 2017, an increase of approximately 33% compared with the $3.9 million incurred for the fiscal year ended March 31, 2016. The increase in year-over-year research and development expense was attributable to increased focus on development of AV-101, including preparations to launch the Phase 2 Adjunctive Treatment Study in MDD.

General and administrative expense decreased to $6.3 million in the fiscal year ended March 31, 2017, from $13.9 million in the fiscal year ended March 31, 2016, primarily as a result of the decrease in non-cash stock compensation expense, partially offset by an increase in non-cash expense related to grants of equity securities in payment of certain professional services during fiscal 2017. Of the amounts reported, non-cash expenses, related primarily to grants or modifications of equity securities, totaled approximately $3.1 million in fiscal 2017 and $11.9 million in fiscal 2016.

Net loss for the fiscal years ended March 31, 2017 and 2016 was approximately $10.3 million and $47.2 million, respectively, the latter amount including a non-recurring, non-cash expense of approximately $26.7 million attributable to the extinguishment of approximately $15.9 million carrying value of prior indebtedness, including then-outstanding Senior Secured Convertible Notes, and conversion of such indebtedness into equity securities between May and September 2015 at a conversion price (stated value of the equity received) of $7.00 per share.

At March 31, 2017, the Company had a cash and cash equivalents balance of $2.9 million. Since late-March 2017, the Company sold units consisting of unregistered common stock and common stock warrants to accredited investors in a self-placed private placement, yielding approximately $1 million in cash proceeds to the Company.

About VistaGen

VistaGen Therapeutics, Inc. (NASDAQ: VTGN) is a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders. VistaGen's lead CNS product candidate, AV-101, is in Phase 2 development, initially as a new generation oral antidepressant drug candidate for major depressive disorder (MDD). AV-101's mechanism of action is fundamentally differentiated from all FDA-approved antidepressants and atypical antipsychotics used adjunctively to treat MDD, with potential to drive a paradigm shift towards a new generation of safer and faster-acting antidepressants. AV-101 is currently being evaluated by the U.S. National Institute of Mental Health (NIMH) in a Phase 2 monotherapy study in MDD being fully funded by the NIMH and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH. VistaGen is preparing to launch a 180-patient Phase 2 study of AV-101 as an adjunctive treatment for MDD patients with inadequate response to standard, FDA-approved antidepressants. Dr. Maurizio Fava of Harvard University will be the Principal Investigator of the Company's Phase 2 adjunctive treatment study. AV-101 may also have the potential to treat multiple CNS disorders and neurodegenerative diseases in addition to MDD, including neuropathic pain, epilepsy, Huntington's disease, L-Dopa-induced dyskinesia associated with Parkinson's disease and other disorders where modulation of the NMDA receptors, activation of AMPA pathways and/or key active metabolites of AV-101 may achieve therapeutic benefit.

VistaStem Therapeutics is VistaGen's wholly owned subsidiary focused on applying human pluripotent stem cell technology, internally and with collaborators, to discover, rescue, develop and commercialize proprietary new chemical entities (NCEs), including small molecule NCEs with regenerative potential, for CNS and other diseases, and cellular therapies involving stem cell-derived blood, cartilage, heart and liver cells.

For more information, please visit http://www.vistagen.com and connect with VistaGen on Twitter, LinkedIn and Facebook.

Forward-Looking Statements

The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the successful financing, launch, continuation and results of the NIMH's Phase 2 (monotherapy) and/or the Company's planned Phase 2 (adjunctive therapy) clinical studies of AV-101 in MDD, and other CNS diseases and disorders, including neuropathic pain and L-DOPA-induced dyskinesia associated with Parkinson's disease, protection of its intellectual property, and the availability of substantial additional capital to support its operations, including the Phase 2 clinical development activities described above. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

FINANCIAL TABLES FOLLOW

Read more:
VistaGen Therapeutics Reports Fiscal 2017 Financial Results and Provides Corporate Update - Markets Insider

To Read More: VistaGen Therapeutics Reports Fiscal 2017 Financial Results and Provides Corporate Update – Markets Insider
categoriaCardiac Stem Cells commentoComments Off on VistaGen Therapeutics Reports Fiscal 2017 Financial Results and Provides Corporate Update – Markets Insider | dataJuly 1st, 2017
Read All

VistaGen Therapeutics Reports Fiscal 2017 Financial Results and Provides Corporate Update – Benzinga

By JoanneRUSSELL25

SOUTH SAN FRANCISCO, CA--(Marketwired - June 29, 2017) - VistaGen Therapeutics Inc. (NASDAQ:VTGN), a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders, today reported its financial results for its fiscal year ended March 31, 2017.

The Company also provided an update on its corporate progress, clinical status and anticipated milestones for AV-101, its orally available CNS prodrug candidate in Phase 2 development, initially as a new generation treatment for major depressive disorder (MDD).

"With a team of industry experts and a focused strategy in place, we have established a strong foundation and embarked on paths to achieve several key catalysts within the next 18 months. We anticipate our first catalyst within the next 9 months as the NIMH completes its AV-101 Phase 2 monotherapy study in MDD, a study being conducted and fully funded by the NIH. Additionally, we are working closely with the FDA and our Principal Investigator, Dr. Maurizio Fava of Harvard University Medical School, on our AV-101 Phase 2 adjunctive treatment study in MDD, which we anticipate will begin enrollment in the first quarter of 2018 and be completed by the end of 2018, with topline results available in the first quarter of 2019," commented Shawn Singh, Chief Executive Officer of VistaGen.

In addition to MDD, AV-101 may have therapeutic potential in several other CNS indications where modulation of NMDA receptors, activation of AMPA pathways and/or active metabolites of AV-101 play a key role, including for treatment of epilepsy, as a non-opioid alternative for management of neuropathic pain, and to address certain symptoms associated with Parkinson's disease and Huntington's disease.

Mr. Singh continued, "Our MDD clinical program is our top priority, and will remain so. Additionally, however, recent peer-reviewed publications suggest that AV-101 may have significant therapeutic potential as a non-opioid treatment alternative for pain management. We are also excited about AV-101's potential to reduce dyskinesia associated with standard levodopa, or L-DOPA, therapy for Parkinson's disease, based on results from previous non-clinical studies. Without diverting our priority focus on MDD, we plan to expand our AV-101 Phase 2 clinical program during the next year to include these important CNS indications with significant unmet need."

"We are also pleased to have advanced our cardiac stem cell program during fiscal 2017, through both our participation in the FDA's CiPA initiative focused on using novel human stem cell models to predict cardiac toxicity of new drug candidates long before animal and human studies, as well as our exclusive sublicense agreement with BlueRock Therapeutics, an emerging force in cardiac regenerative medicine, founded and funded by Bayer AG and Versant Ventures. Our initial revenue-generating milestone with BlueRock Therapeutics was completed during fiscal 2017. We are optimistic about this relationship's potential and the future of cardiac regenerative medicine. We believe these significant events over the past year have positioned us to create substantial value for our stakeholders in fiscal 2018 and beyond."

Potential Near-Term Milestones:

Operational Highlights During Fiscal 2017:Achievements Related to Stem Cell Technologies

Advancement of AV-101 as a Potential, Non-Opioid Treatment Alternative for Chronic Pain

Bolstered Team with Industry Experts

Intellectual Property Accomplishments

Capital Market Highlights

Financial Results for the Fiscal Year Ended March 31, 2017:

Revenue for the fiscal year ended March 31, 2017 totaled $1.25 million and was attributable to a sublicense agreement with BlueRock Therapeutics, for certain rights to the Company's proprietary technologies relating to the production of cardiac stem cells for the treatment of heart disease.

Research and development expense totaled $5.2 million for the fiscal year ended March 31, 2017, an increase of approximately 33% compared with the $3.9 million incurred for the fiscal year ended March 31, 2016. The increase in year-over-year research and development expense was attributable to increased focus on development of AV-101, including preparations to launch the Phase 2 Adjunctive Treatment Study in MDD.

General and administrative expense decreased to $6.3 million in the fiscal year ended March 31, 2017, from $13.9 million in the fiscal year ended March 31, 2016, primarily as a result of the decrease in non-cash stock compensation expense, partially offset by an increase in non-cash expense related to grants of equity securities in payment of certain professional services during fiscal 2017. Of the amounts reported, non-cash expenses, related primarily to grants or modifications of equity securities, totaled approximately $3.1 million in fiscal 2017 and $11.9 million in fiscal 2016.

Net loss for the fiscal years ended March 31, 2017 and 2016 was approximately $10.3 million and $47.2 million, respectively, the latter amount including a non-recurring, non-cash expense of approximately $26.7 million attributable to the extinguishment of approximately $15.9 million carrying value of prior indebtedness, including then-outstanding Senior Secured Convertible Notes, and conversion of such indebtedness into equity securities between May and September 2015 at a conversion price (stated value of the equity received) of $7.00 per share.

At March 31, 2017, the Company had a cash and cash equivalents balance of $2.9 million. Since late-March 2017, the Company sold units consisting of unregistered common stock and common stock warrants to accredited investors in a self-placed private placement, yielding approximately $1 million in cash proceeds to the Company.

About VistaGen

VistaGen Therapeutics, Inc. (NASDAQ:VTGN) is a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders. VistaGen's lead CNS product candidate, AV-101, is in Phase 2 development, initially as a new generation oral antidepressant drug candidate for major depressive disorder (MDD). AV-101's mechanism of action is fundamentally differentiated from all FDA-approved antidepressants and atypical antipsychotics used adjunctively to treat MDD, with potential to drive a paradigm shift towards a new generation of safer and faster-acting antidepressants. AV-101 is currently being evaluated by the U.S. National Institute of Mental Health (NIMH) in a Phase 2 monotherapy study in MDD being fully funded by the NIMH and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH. VistaGen is preparing to launch a 180-patient Phase 2 study of AV-101 as an adjunctive treatment for MDD patients with inadequate response to standard, FDA-approved antidepressants. Dr. Maurizio Fava of Harvard University will be the Principal Investigator of the Company's Phase 2 adjunctive treatment study. AV-101 may also have the potential to treat multiple CNS disorders and neurodegenerative diseases in addition to MDD, including neuropathic pain, epilepsy, Huntington's disease, L-Dopa-induced dyskinesia associated with Parkinson's disease and other disorders where modulation of the NMDA receptors, activation of AMPA pathways and/or key active metabolites of AV-101 may achieve therapeutic benefit.

VistaStem Therapeutics is VistaGen's wholly owned subsidiary focused on applying human pluripotent stem cell technology, internally and with collaborators, to discover, rescue, develop and commercialize proprietary new chemical entities (NCEs), including small molecule NCEs with regenerative potential, for CNS and other diseases, and cellular therapies involving stem cell-derived blood, cartilage, heart and liver cells.

For more information, please visit http://www.vistagen.com and connect with VistaGen on Twitter, LinkedIn and Facebook.

Forward-Looking Statements

The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the successful financing, launch, continuation and results of the NIMH's Phase 2 (monotherapy) and/or the Company's planned Phase 2 (adjunctive therapy) clinical studies of AV-101 in MDD, and other CNS diseases and disorders, including neuropathic pain and L-DOPA-induced dyskinesia associated with Parkinson's disease, protection of its intellectual property, and the availability of substantial additional capital to support its operations, including the Phase 2 clinical development activities described above. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

FINANCIAL TABLES FOLLOW

Go here to see the original:
VistaGen Therapeutics Reports Fiscal 2017 Financial Results and Provides Corporate Update - Benzinga

To Read More: VistaGen Therapeutics Reports Fiscal 2017 Financial Results and Provides Corporate Update – Benzinga
categoriaCardiac Stem Cells commentoComments Off on VistaGen Therapeutics Reports Fiscal 2017 Financial Results and Provides Corporate Update – Benzinga | dataJune 30th, 2017
Read All

Siberian scientists say stem cells can treat varicose veins – Russia Beyond the Headlines

By JoanneRUSSELL25

Scientists at the Institute of Chemical Biology and Fundamental Medicine (ICBFM) based in Siberia have discovered that stem cells can restore blood flow in veins with clots.

Facebook

Pinterest

WhatsApp

"Quite a lot of pathologies regarding veins still remain unstudied." Source: Getty Images

To help treat varicose veins, scientists need to accelerate the growth of blood vessels, which would be a crucial development for cardiac medicine. A heart attack is caused by damaged arteries, and an ischemic stroke also often results from vascular damage.

"Quite a lot of pathologies regarding veins still remain unstudied," said Igor Mayborodin, a doctor of medical sciences at the stem cell laboratory at ICBFM. "Weve looked into blood flow restoration in situations when there are blood clots. Now were trying to use stem cells to stimulate the growth of veins and bypass the diseased area."

The discovery by Siberian scientists will make it possible to successfully treat diseases of the veins and resulting complications, for example, varicosis, phlebothrombosis (the formation of a blood clot in the vein that leads to its blockage), and even some types of trophic ulcers and cerebral strokes.

Researchers conducted a number of studies on rats, injecting them with stem cells taken from their relatives. The experiment showed that within a week small vessels had formed in the rodents, and in the third week the replacement of the introduced cells with the rodents' own cells began.

The new blood vessels remained in the body but stem cells that formed walls were gradually replaced by those of the rodents. Thus, scientists showed that stem cells can restore blood flow, bypassing damaged veins. Based on the results, a series of articles will be prepared.

Also, scientists witnessed unexpected side effects. "Some of the stem cells die, and then macrophages are attracted to the site, that is, 'ingester' cells capable of actively engulfing and digesting the remains of dead cells," Mayborodin said. "This is what helps a surgical wound be rid of damaged tissue quicker and heal. This is a good result."

The scientists are continuing their state-funded research, and they have obtained a patent for their work. For the time being, however, they cant check the results in clinical tests because Russian law restricts the use of stem cells on humans.

"Wed like to utilize the obtained data in regards to humans, but this is currently not possible," Mayborodin said. "For now were refining the results of the research on cell therapy and clarifying possible complications. But wed like to test our hypothesis at least on a severe case of varicosis in clinical conditions."

View post:
Siberian scientists say stem cells can treat varicose veins - Russia Beyond the Headlines

To Read More: Siberian scientists say stem cells can treat varicose veins – Russia Beyond the Headlines
categoriaCardiac Stem Cells commentoComments Off on Siberian scientists say stem cells can treat varicose veins – Russia Beyond the Headlines | dataJune 30th, 2017
Read All

Mayo-Connected Regenerative Medicine Startup Inks Downtown Rochester Lease – Twin Cities Business Magazine

By NEVAGiles23

A regenerative medicine startup led by a Mayo Clinic cardiologist is setting up shop in a downtown Rochesters Minnesota BioBusiness Center, according to newly filed city documents. The filing indicated Rion LLC, a Minnesota company registered to Dr. Atta Behfar of the Mayo Clinic Center for Regenerative Medicine, has signed a three-year lease for just over 2,000 square feet at the city-owned BioBusiness Center. The lease begins July 1. The nine-story BioBusiness Center opened in downtown Rochester in 2007 as a center for innovation in biotechnology, promoting the linkages between the researchers and practitioners at Mayo Clinic; instructors and students at the University of Minnesota Rochester, and the biotechnology business community. It houses the Mayo Clinic Business Accelerator among other tenants. Behfar is an assistant medical professor and leads a laboratory at Mayo concentrating on applying regenerative medicine the practice of using stem cells to regenerate damaged or missing tissue to prevent and cure chronic heart conditions. Specifically, his group focuses on development and use of both stem cells and protein-based therapies to reverse injury caused by lack of blood flow to the heart. The business direction of Rion, meanwhile, appears to be specifically geared toward a cutting-edge development in the field of regenerative medicine the use of extracellular vesicles (EVs) in speeding and directing the growth of regenerating tissues in the heart and elsewhere in the body. EVs, long brushed off by researchers as mere debris in the bloodstream, are membrane-enclosed spheres that break off from the surfaces of nearly all living cells when disturbed. They transport lipids, proteins and nucleic acids, and have now been found to be important players in cell-to-cell communication, influencing the behavior and even the identity of cells. Their emerging role in regenerative medicine could potentially be huge. For instance, by bioengineering them to transport protein payloads from stem cells, they can be used to signal the bodys own cells to regenerate tissue instead of transplanting the stem cells themselves, thus eliminating the chance of host immune system rejection. A patent application filed last year by Rion, Behfar, Mayo Center for Regenerative Medicine Director Dr. Andre Terzic and two other local inventors is aimed at adapting the healing properties of a specific type of EV into a unique kind of product that could have wide applications. It focuses on EVs derived from blood platelets, which are well known to stop bleeding, promote the growth of new tissues and blood vessels, relieve inflammation and provide a host of other benefits. The patent describes a system of encapsulating platelet EVs derived from human or animal blood into a platelet honey and delivering it to target areas of the body, such as damaged tissues or organs. Its purported effect is to regenerate, repair and restore damaged tissue, with possible uses including treating heart disease; healing damaged bones or joints; wound treatment; and cosmetic skin applications. A brief business description provided by Rion to Rochester city officials stated the company is focused on the delivery of cutting edge regenerative technologies to patients at low cost and in off-the-shelf fashion. Building on initial research at Mayo Clinic, Rion LLC aims to develop and bring to practice products in the space of wound healing, orthopedics and cardiac disease. The statement also added the company is an enthusiastic backer of Rochesters efforts to develop a local biotech business cluster, and is seeking to participate in the realization of the Destination Medical Center initiative.

Read more:
Mayo-Connected Regenerative Medicine Startup Inks Downtown Rochester Lease - Twin Cities Business Magazine

To Read More: Mayo-Connected Regenerative Medicine Startup Inks Downtown Rochester Lease – Twin Cities Business Magazine
categoriaCardiac Stem Cells commentoComments Off on Mayo-Connected Regenerative Medicine Startup Inks Downtown Rochester Lease – Twin Cities Business Magazine | dataJune 29th, 2017
Read All

Aging and Heart Research Lead Station Science Today – Space Fellowship

By NEVAGiles23

Expedition 52 explored the aging process in space today and measured the lighting conditions on the International Space Station. The crew is also getting spacesuits ready for an upcoming Russian spacewalk.

Flight Engineer Peggy Whitson swapped out stem cell samples today inside the Microgravity Science Glovebox for the Cardiac Stem Cells study. The experiment is researching spaceflights effect on accelerated aging and may provide a treatment for heart disease on Earth. Scientists are observing the stem cells in space to determine their role in cardiac biology and effectiveness in tissue regeneration.

Whitson also set up light meters to measure the intensity and color of new LED (light-emitting diode) light bulbs installed in the station. The data is being collected for the Lighting Effects study to determine how the new lights affect crew sleep, circadian rhythms and cognitive performance.

NASA astronaut Jack Fischer checked out Russian Orlan spacesuits with Commander Fyodor Yurchikhin this morning. The spacesuit maintenance work is doing being done ahead of a Russian spacewalk planned for later this year.

Read more from the original source:
Aging and Heart Research Lead Station Science Today - Space Fellowship

To Read More: Aging and Heart Research Lead Station Science Today – Space Fellowship
categoriaCardiac Stem Cells commentoComments Off on Aging and Heart Research Lead Station Science Today – Space Fellowship | dataJune 28th, 2017
Read All

VistaGen Announces Peer-Reviewed Publication in the Scandinavian Journal of Pain Highlighting Orally-Available AV … – Markets Insider

By LizaAVILA

SOUTH SAN FRANCISCO, CA--(Marketwired - June 22, 2017) - VistaGen Therapeutics Inc.(NASDAQ: VTGN), a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders, announced today a peer-reviewed publication in the Scandinavian Journal of Pain of two Phase 1 clinical studies of the effects of AV-101 (4-Cl-KYN), the Company's CNS prodrug candidate, as a potential non-opioid treatment for neuropathic pain. Safety data from both the single and multi-dose Phase 1 studies indicated that oral AV-101 was extremely safe and well tolerated, with no meaningful difference in adverse events (AEs) at any dose between AV-101 and placebo. Recently published statistically-significant positive results in four well-established preclinical models of pain associated with tissue inflammation and nerve injury, together with the excellent clinical safety profile, pharmacokinetic (PK) characteristics and consistent reductions in three pain measures (allodynia, mechanical and heat hyperalgesia) demonstrated by these studies, support future Phase 2 clinical studies of AV-101 as a potential new non-opioid treatment alternative for neuropathic pain.

The publication, titled "Randomized, Double-Blind, Placebo Controlled, Dose-Escalation Study: Investigation of the Safety, Pharmacokinetics, and Antihyperalgesic Activity of L-4 chlorokynurenine in Healthy Volunteers," by lead author, Mark Wallace, MD, and co-authors, Alexander White, MD, Kathy A Grako, PhD, Randal Lane, Allen (Jo) Cato, PhD and H. Ralph Snodgrass, PhD, was recently published in the Scandinavian Journal of Pain (DOI: 10.1016/j.sjpain.2017.05.004) and is available online at http://www.scandinavianjournalpain.com/article/S1877-8860(17)30128-3/fulltext.

"The excellent safety data and consistent reductions in allodynia pain and mechanical and heat hyperalgesia during the two Phase 1 clinical studies of AV-101 support our belief in its potential to treat neuropathic pain without the negative side-effects experienced with most of the drugs used today to treat pain. Additional clinical trials of AV-101 in neuropathic pain are warranted," reported Mark Wallace, MD, Distinguished Professor of Clinical Anesthesiology at the University of California, San Diego.

"The positive results published in these studies further support our belief that AV-101 has the potential to reduce pain effectively and safely, without causing burdensome side effects like gabapentin and many other neuropathic pain treatments, such as opiates, on the market today. The opioid epidemic, which stems in part from prescribing opiate analgesics for outpatient procedures, makes it imperative that we find new analgesics devoid of abuse potential. Importantly, AV-101 does not bind to opioid receptors, and yet may still have efficacy in neuropathic pain," stated Mark A. Smith, MD, PhD, Chief Medical Officer, VistaGen Therapeutics. "Additionally, a key observation from these Phase 1 studies in normal volunteers was spontaneous reports of 'feelings of well-being' in subjects exposed to AV-101, especially those in the highest dose group of 1440 mg, while none of the subjects on placebo reported any such feelings. Importantly, these feelings were NOT characterized as feeling intoxicated or psychotic as has been often reported by subjects taking ketamine for major depressive disorder. We are optimistic about AV-101's potential as a new treatment alternative for major depressive disorder, without ketamine-like side effects, and for neuropathic pain, without gabapentin-like side effects or opioid abuse potential."

Study Summary and Key Findings:

Two Phase 1 Clinical Studies -

About AV-101AV-101 (4-CI-KYN) is an oral CNS prodrug candidate in Phase 2 development in the U.S., initially as a new generation treatment for major depressive disorder (MDD). AV-101 also has broad potential utility in several other CNS indications where modulation of NMDA receptors, activation of AMPA pathways and/or key active metabolites of AV-101 may achieve therapeutic benefit, including neuropathic pain and epilepsy, as well as addressing symptoms associated with neurodegenerative diseases, such as Parkinson's disease and Huntington's disease.

AV-101 is currently being evaluated in a Phase 2 monotherapy study in MDD, a study being fully funded by the U.S. National Institute of Mental Health (NIMH) and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH, as Principal Investigator.

VistaGen is preparing to advance AV-101 into a 180-patient, U.S. multi-center, Phase 2 adjunctive treatment study in MDD patients with an inadequate response to standard FDA-approved antidepressants, with Dr. Maurizio Fava of Harvard University as Principal Investigator.

About VistaGenVistaGen Therapeutics, Inc. (NASDAQ: VTGN), is a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders. VistaGen's lead CNS product candidate, AV-101, is in Phase 2 development, initially as a new generation oral antidepressant drug candidate for major depressive disorder (MDD). AV-101's mechanism of action is fundamentally differentiated from all FDA-approved antidepressants and atypical antipsychotics used adjunctively to treat MDD, with potential to drive a paradigm shift towards a new generation of safer and faster-acting antidepressants. AV-101 is currently being evaluated by the U.S. National Institute of Mental Health (NIMH) in a Phase 2 monotherapy study in MDD being fully funded by the NIMH and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH. VistaGen is preparing to launch a 180-patient Phase 2 study of AV-101 as an adjunctive treatment for MDD patients with inadequate response to standard, FDA-approved antidepressants. Dr. Maurizio Fava of Harvard University will be the Principal Investigator of the Company's Phase 2 adjunctive treatment study. AV-101 may also have the potential to treat multiple CNS disorders and neurodegenerative diseases in addition to MDD, including chronic neuropathic pain, epilepsy, Huntington's disease, and L-Dopa-induced dyskinesias associated with Parkinson's disease and, other disorders where modulation of NMDA receptors, activation of AMPA pathways and/or key active metabolites of AV-101 may achieve therapeutic benefit.

VistaStem Therapeutics is VistaGen's wholly owned subsidiary focused on applying human pluripotent stem cell technology, internally and with collaborators, to discover, rescue, develop and commercialize proprietary new chemical entities (NCEs), including small molecule NCEs with regenerative potential, for CNS and other diseases, and cellular therapies involving stem cell-derived blood, cartilage, heart and liver cells. In December 2016, VistaGen exclusively sublicensed to BlueRock Therapeutics LP, a next generation regenerative medicine company established by Bayer AG and Versant Ventures, rights to certain proprietary technologies relating to the production of cardiac stem cells for the treatment of heart disease.

For more information, please visit http://www.vistagen.com and connect with VistaGen on Twitter, LinkedIn and Facebook.

Forward-Looking StatementsThe statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the successful launch, continuation and results of the NIMH's Phase 2 (monotherapy) and/or the Company's planned Phase 2 (adjunctive therapy) clinical studies of AV-101 in MDD, and other CNS diseases and disorders, including neuropathic pain and L-DOPA-induced dyskinesia associated with Parkinson's disease, protection of its intellectual property, and the availability of substantial additional capital to support its operations, including the Phase 2 clinical development activities described above. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

Excerpt from:
VistaGen Announces Peer-Reviewed Publication in the Scandinavian Journal of Pain Highlighting Orally-Available AV ... - Markets Insider

To Read More: VistaGen Announces Peer-Reviewed Publication in the Scandinavian Journal of Pain Highlighting Orally-Available AV … – Markets Insider
categoriaCardiac Stem Cells commentoComments Off on VistaGen Announces Peer-Reviewed Publication in the Scandinavian Journal of Pain Highlighting Orally-Available AV … – Markets Insider | dataJune 23rd, 2017
Read All

StemoniX Wins Red Herring Top 100 Award – PR Newswire (press release)

By NEVAGiles23

"Being named a Red Herring Top 100 winner is an incredible honor," said StemoniX CEO Ping Yeh. "We truly believe in the importance of what we're doing and in making medicine more effective and safer for everyone. This award is affirming not only for us, but also for our investors, who continue to make it possible for us to pursue our mission of making sure medicine works the first time. Our commitment to improving our technology, and our work with some of the country's top producers of therapeutic cures, will ensure we achieve our vision."

StemoniX was born out of Yeh's own medical battle. 5 years ago, he survived a frightening bout with cancer. During treatment, his only option to beat the disease was a drug that may have destroyed his heart. There was no way for doctors to test the effectiveness of that treatment or Ping's survival rate ahead of time. Convinced there had to be a better way to test medication, he poured his life savings into starting StemoniX. In only three years, the company has made scientific breakthroughs that may forever alter how people are treated.

"Every year, Red Herring North America Top 100 selects an amazing group of disruptive companies. But a few carry an exceptional weight because they will change the world. StemoniX is one of them," said Red Herring chairman Alex Vieux. "Ping Yeh and his team are receiving continued and increased market validation for their technology. StemoniX will revolutionize drug discovery research and has pioneered a novel approach. Hence the jury was enthused at the opportunity to recognize StemoniX among the Top 100 Red Herring North America 2017."

StemoniX is on a mission to accelerate the discovery of new medicines. The company develops and scalably manufactures human induced pluripotent stem cell (iPSC)-derived cardiac and neuronal platforms for drug discovery and development. Their human models enable scientists to quickly and economically conduct research with improved outcomes in a simplified workflow. StemoniX microHeart products, which come in high-density plate formats, provide researchers with structurally aligned human iPSC-derived cardiac cells that exhibit accelerated features of maturity resembling heart tissue.

StemoniX microBrain products will launch later this year, containing physiologically relevant human iPSC-derived neural microtissue in high-density plates with biology, activity and functional maturity that mimic brain tissue.

StemoniX also offers Discovery as a Service. The company has the ability to develop custom-iPSC-based disease models, test compounds with its in-house screening capabilities and operationalize their customers' human iPS cells at large scale for high throughput screening.

Following StemoniX's Top 100 win, they are invited to present at the Top 100 Global event in November that will encompass the best-in-show from the Top 100 Europe, North America and Asia.

About StemoniX: StemoniX is transforming how medicine is discovered. By using skin or blood to create functioning microHearts and microBrains, StemoniX is making it possible to test medication on humans without that medication ever entering their bodies. This method of drug testing will speed up the search for new cures and enable the ability to test drug effectiveness on an individual person, so medicine works correctly the first time. Learn more at stemonix.com.

Media Contact: Ryan Gordon Phone Number: 612-440-7836 Email: ryan.gordon@stemonix.com Website: stemonix.com

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/stemonix-wins-red-herring-top-100-award-300477971.html

SOURCE StemoniX, Inc.

http://stemonix.com

Read more:
StemoniX Wins Red Herring Top 100 Award - PR Newswire (press release)

To Read More: StemoniX Wins Red Herring Top 100 Award – PR Newswire (press release)
categoriaCardiac Stem Cells commentoComments Off on StemoniX Wins Red Herring Top 100 Award – PR Newswire (press release) | dataJune 22nd, 2017
Read All

Testing For Cardiotoxicity In 3D – Asian Scientist Magazine

By Sykes24Tracey

Researchers from Singapore have developed a 3D tissue model than can be used to test drugs for their effects on the heart in a more realistic manner.

Asian Scientist Newsroom | June 22, 2017 | In the Lab

AsianScientist (Jun. 22, 2017) - Researchers at the Institute of Bioengineering and Nanotechnology (IBN) of the Agency for Science, Technology and Research (A*STAR) have engineered a three-dimensional heart tissue from human stem cells to test the safety and efficacy of new drugs on the heart. Their research has been published in Biofabrication.

Cardiotoxicity, which can lead to heart failure and even death, is a major cause of drug withdrawal from the market. So it is important to test as early as possible whether a newly developed drug is safe for human use. However, cardiotoxicity is difficult to predict in the early stages of drug development, said Professor Jackie Y. Ying, Executive Director at IBN.

A big part of the problem is the use of animals or animal-derived cells in preclinical cardiotoxicity studies due to the limited availability of human heart muscle cells. Substantial genetic and cardiac differences exist between animals and humans. There have been a large number of cases whereby the tests failed to detect cardiovascular toxicity when moving from animal studies to human clinical trials.

Existing screening methods based on 2D cardiac structure cannot accurately predict drug toxicity, while the currently available 3D structures for screening are difficult to fabricate in the quantities needed for commercial application.

To solve this problem, the IBN research team fabricated their 3D heart tissue from cellular self-assembly of heart muscle cells grown from human induced pluripotent stem cells. They also developed a fluorescence labelling technology to monitor changes in beating rate using a real-time video recording system.

The new heart tissue exhibited more cardiac-specific genes, stronger contraction and higher beating rate compared to cells in a 2D structure.

Using the 3D heart tissue, we were able to correctly predict cardiotoxic effects based on changes in the beating rate, even when these were not detected by conventional tests. The method is simple and suitable for large-scale assessment of drug side effects. It could also be used to design personalized therapy using a patients own cells, said lead researcher Dr. Andrew Wan, who is Team Leader and Principal Research Scientist at IBN.

The researchers have filed a patent on their human heart tissue model, and hope to work with clinicians and pharmaceutical companies to bring this technology to market.

The article can be found at: Lu et al. (2017) Engineering a Functional Three-Dimensional Human Cardiac Tissue Model for Drug Toxicity Screening.

Source: A*STAR; Photo: Shutterstock. Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Read more:
Testing For Cardiotoxicity In 3D - Asian Scientist Magazine

To Read More: Testing For Cardiotoxicity In 3D – Asian Scientist Magazine
categoriaCardiac Stem Cells commentoComments Off on Testing For Cardiotoxicity In 3D – Asian Scientist Magazine | dataJune 22nd, 2017
Read All

Stem cell therapy relying on patient’s own unhealthy heart may be dangerous – Genetic Literacy Project

By raymumme

A new study at Tel Aviv University shows that stem cell therapy, one of the few treatments available to patients with severe and end-stage heart failure, can actually harm them unless it is done differently.

We concluded that stem cells used in cardiac therapy should be drawn from healthy donors or be better genetically engineered for the patient, said lead researcher Jonathan Leor of the universitys Sackler Faculty of Medicine and Sheba Medical Center.

Doctors use tissue or adult stem cells to replace damaged tissue, which encourages regeneration of blood vessel cells and new heart muscle tissue. But cardiac stem cells from a diseased heart can lead to a toxic interaction via a molecular pathway between the heart and the immune system, the study found.

We found that, contrary to popular belief, tissue stem cells derived from sick hearts do not contribute to heart healing after injury, Leor said. Furthermore, we found that these cells are affected by the inflammatory environment and develop inflammatory properties. The affected stem cells may even exacerbate damage to the already diseased heart muscle.

[Read the fully study here (behind paywall)]

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post:Study says some stem cells dangerous for heart patients

More here:
Stem cell therapy relying on patient's own unhealthy heart may be dangerous - Genetic Literacy Project

To Read More: Stem cell therapy relying on patient’s own unhealthy heart may be dangerous – Genetic Literacy Project
categoriaCardiac Stem Cells commentoComments Off on Stem cell therapy relying on patient’s own unhealthy heart may be dangerous – Genetic Literacy Project | dataJune 21st, 2017
Read All

Study says some stem cells dangerous for heart patients | The Times … – The Times of Israel

By JoanneRUSSELL25

A new study at Tel Aviv University shows that stem cell therapy, one of the few treatments available to patients with severe and end-stage heart failure, can actually harm them unless it is done differently.

We concluded that stem cells used in cardiac therapy should be drawn from healthy donors or be better genetically engineered for the patient, said lead researcher Jonathan Leor of the universitys Sackler Faculty of Medicine and Sheba Medical Center.

Doctors use tissue or adult stem cells to replace damaged tissue, which encourages regeneration of blood vessel cells and new heart muscle tissue. But cardiac stem cells from a diseased heart can lead to a toxic interaction via a molecular pathway between the heart and the immune system, the study found.

We found that, contrary to popular belief, tissue stem cells derived from sick hearts do not contribute to heart healing after injury, Leor said. Furthermore, we found that these cells are affected by the inflammatory environment and develop inflammatory properties. The affected stem cells may even exacerbate damage to the already diseased heart muscle.

The findings could suggest a way to make stem cell therapy safer for heart disease patients. The treatment is often a last resort, apart from getting a transplant.

Researchers discovered a molecular pathway involved in the toxic interaction while studying stem cells in mice with heart disease. By deleting the gene that makes the pathway, the cells ability to regenerate healthy tissue can be restored, they found.

The researchers are now testing a gene editing technique to delete the problem gene.

We hope our engineered stem cells will be resistant to the negative effects of the immune system, Leor said.

The study was conducted by TAUs Dr. Nili Naftali-Shani and published in the journal Circulation.

Read the rest here:
Study says some stem cells dangerous for heart patients | The Times ... - The Times of Israel

To Read More: Study says some stem cells dangerous for heart patients | The Times … – The Times of Israel
categoriaCardiac Stem Cells commentoComments Off on Study says some stem cells dangerous for heart patients | The Times … – The Times of Israel | dataJune 21st, 2017
Read All

Stem Cell Clinics List | Stem Cells Freak

By NEVAGiles23

Here we have compiled a list of several clinics offering stem cell treatments. Please note that the "conditions treated" refers to the conditions that THEY claim to treat. Most, if not all, stem cell treatments (except hematopoietic stem cell transplantation) aren't FDA approved, meaning that they haven't been clincally tested for safety or efficacy. Please be aware that receiving an unapproved medical treatment isrisky and may cause serious complications and possibly death.

It was only a few years ago when Europe's most popular stem cell clinic (XCell-center) was forced to close after one of the treatments caused the death of a boy. In the past, we have also covered the case of a woman that had serious adverse effects following an unapproved cosmetic stem cell treatment(facelift).

We have not included clinics offering hematopoietic stem cell transplantation, as this treatment is medically approved and offered virtually in any country that has an above the average hospital.

The stem cell clinics are categorised by alphabetical order. We are not paid by any of them and we have listed them for your ease. We have probably missed a few ones, feel free to leave a comment and we will add them asap.

Stem cell clinics list

Beijing Puhua International Hospital

Conditions Treated:Diabetes, Epilepsy, Stroke, Ataxia, Spinal Cord Injuries, Parkinson's Disease, Brain Injury, Multiple Sclerosis, Batten's Disease

Interview of a patient treated in Beijing Puhua International Hospital. The video is from the hospital's official youtube channel, so it may be biased

Elises International

Conditions Treated: No info available at their website

Advertisement video ofElises International

EmCell

Conditions Treated:ALS, Alzheimer's,Anemia, Cancer, Eye Diseases, Diabetes, Liver Diseases, Multiple Sclerosis Parkinson, and other

Location:Ukraine

EmCell Advertisement

Global Stem Cells

Conditions Treated:Type 2 Diabetes, Hepatitis C, Osteoarthritis, joint pain, hair regrowth, cosmetic anti-aging, ulcerative colitis, heart disease

Location:Bangkok Thailand

MD Stem Cells

New Zealand Stem Cell Clinic

Stem Cell Institute

Video of a patient treated in theStem Cell Institute. The video is taken from the clinic's official youtube channell,so it may be biased.

Okyanos Heart Institute

Conditions Treated:Cardiac conditions

Okyanos Promotinal Video

Stemedix, Inc

Conditions Treated:Multiple sclerosis, COPD, ALS, Alzheimers Disease, Parkinsons, Diabetes, Rheumatoid Arthritis and other

Location:Florida, United States

StemGenex

Conditions Treated: Multiple sclerosis, Alzheimer, Parkinson, Diabetes, Rheumatoid Arthritis and other

Location:San Diego, California.

Stem Cells Thailand

Conditions Treated:Alzheimer, Autism, Diabetes, Erectile Dysfunction, Face lift, Multiple Sclerosis, Arthritis and other

Regennex

Conditions Treated: Regennex mainly offers treatments for bone and cartilage regeneration in all major joints like knee, ankle, hip, back, shoulder etc

Dr. Centeno, founder of the clinic, talking about Regenexx

The rest is here:
Stem Cell Clinics List | Stem Cells Freak

To Read More: Stem Cell Clinics List | Stem Cells Freak
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Clinics List | Stem Cells Freak | dataJune 21st, 2017
Read All

‘Yoga, meditation counters gene expression changes that cause stress’ – Daily Times

By NEVAGiles23

In a new study, researchers have uncovered a molecular explanation for the stress-relieving effects of such practices.

Study leader Ivana Buric, of the Centre for Psychology at Coventry University in the United Kingdom, and colleagues found that mind-body interventions (MBIs) "reverse" changes in DNA that cause stress.

For their study, the researchers looked at whether MBIs influence gene expression, the process by which genes create proteins and other molecules that affect cellular function.

From their analysis, the researchers found that people who practice MBIs experience reduced production of a molecule called nuclear factor kappa B (NF-kB), which is known to regulate gene expression.

The researchers explain that stressful events trigger activity in the sympathetic nervous system (SNS), which is responsible for the "fight-or-flight" response.

This SNS activity leads to the production of NF-kB, which produces molecules called cytokines that promote cellular inflammation. If this molecular reaction is persistent, it can lead to serious physical and mental health problems, such as depression and cancer.

The study suggests that MBIs, however, lower the production of NF-kB and cytokines. This not only helps to alleviate stress, but it also helps to stave off the associated health conditions.

"Millions of people around the world already enjoy the health benefits of mind-body interventions like yoga or meditation, but what they perhaps don't realize is that these benefits begin at a molecular level and can change the way our genetic code goes about its business," says Buric.

"These activities are leaving what we call a molecular signature in our cells, which reverses the effect that stress or anxiety would have on the body by changing how our genes are expressed. Put simply, MBIs cause the brain to steer our DNA processes along a path which improves our well-being."

The team says that future studies should explore how the molecular effects of MBIs on stress compare with other interventions, such as exercise and diet.

"But this is an important foundation to build on to help future researchers explore the benefits of increasingly popular mind-body activities," Buric concludes.

Separately, a new study has found that the treatment can be more harmful than helpful if cardiac stem cells are involved.

Researchers found that using patients' own cardiac stem cells to repair damaged heart tissue may not only be ineffective, but that the stem cells may also develop inflammatory properties that cause further heart damage.

Study leader Prof Jonathan Leor, of the Sackler Faculty of Medicine and Sheba Medical Center at Tel Aviv University in Israel, and colleagues recently reported their findings in the journal Circulation.

Prof Leor and colleagues came to their findings by isolating stem cells derived from the cardiac tissue of mice that had left ventricular dysfunction caused by a heart attack.

The team then injected the stem cells back into the hearts of the mice and assessed how they affected heart remodelling and function, compared with a saline solution.

Instead of repairing the rodents' damaged heart tissue, the researchers found that the transplanted stem cells developed inflammatory properties, which may increase heart damage."We found that, contrary to popular belief, tissue stem cells derived from sick hearts do not contribute to heart healing after injury," explained Prof Leor.

"Furthermore, we found that these cells are affected by the inflammatory environment and develop inflammatory properties. The affected stem cells may even exacerbate damage to the already diseased heart muscle."

An increasing number of end-stage heart failure patients are turning to stem cell therapy as a "last resort," but the researchers believe that the treatment should be approached with caution.

"Our findings suggest that stem cells, like any drug, can have adverse effects. We concluded that stem cells used in cardiac therapy should be drawn from healthy donors or be better genetically engineered for the patient."

Read the original post:
'Yoga, meditation counters gene expression changes that cause stress' - Daily Times

To Read More: ‘Yoga, meditation counters gene expression changes that cause stress’ – Daily Times
categoriaCardiac Stem Cells commentoComments Off on ‘Yoga, meditation counters gene expression changes that cause stress’ – Daily Times | dataJune 19th, 2017
Read All

Israeli Scientists: Stem Cell Therapy Not Good for All Heart … – The Jewish Press – JewishPress.com

By JoanneRUSSELL25

Photo Credit: Nati Shohat / Flash 90

Patients with severe and end-stage heart failure have few treatment options available to them apart from transplants and miraculous stem cell therapy. But a new Tel Aviv University study has found that stem cell therapy may in fact harm patients with heart disease.

The research, led by Prof. Jonathan Leor of TAUs Sackler Faculty of Medicine and Sheba Medical Center and conducted by TAUs Dr. Nili Naftali-Shani, explores the current practice of using cells from the host patient to repair tissue and contends that this can prove deleterious or toxic for patients. The study was recently published in the journal Circulation.

We found that, contrary to popular belief, tissue stem cells derived from sick hearts do not contribute to heart healing after injury, said Prof. Leor. Furthermore, we found that these cells are affected by the inflammatory environment and develop inflammatory properties. The affected stem cells may even exacerbate damage to the already diseased heart muscle.

Tissue or adult stem cells blank cells that can act as a repair kit for the body by replacing damaged tissue encourage the regeneration of blood vessel cells and new heart muscle tissue. Faced with a worse survival rate than many cancers, a number of patients with heart failure have turned to stem cell therapy as a last resort.

But our findings suggest that stem cells, like any drug, can have adverse effects, said Prof. Leor. We concluded that stem cells used in cardiac therapy should be drawn from healthy donors or be better genetically engineered for the patient.

Hope for improved cardiac stem cell therapy

In addition, the researchers also discovered the molecular pathway involved in the negative interaction between stem cells and the immune system as they isolated stem cells in mouse models of heart disease. After exploring the molecular pathway in mice, the researchers focused on cardiac stem cells in patients with heart disease.

The results could help improve the use of autologous stem cells those drawn from the patients themselves in cardiac therapy, Prof. Leor said.

We showed that the deletion of the gene responsible for this pathway can restore the original therapeutic function of the cells, said Prof. Leor. Our findings determine the potential negative effects of inflammation on stem cell function as theyre currently used. The use of autologous stem cells from patients with heart disease should be modified. Only stem cells from healthy donors or genetically engineered cells should be used in treating cardiac conditions.

The researchers are currently testing a gene editing technique (CRISPER) to inhibit the gene responsible for the negative inflammatory properties of the cardiac stem cells of heart disease patients. We hope our engineered stem cells will be resistant to the negative effects of the immune system, said Prof. Leor.

Meanwhile, for those unable to profit from stem cell therapy, researchers at Ben Gurion University of the Negev (BGU) have developed a revolutionary new drug that may reverse the damage and repair the diseased heart.

The newly developed drug is a polymer which reduces the inflammation in cardiovascular tissue and stops plaque build-up in arteries. Then it goes one step further and removes existing plaque in the heart, leaving healthy tissue behind.

Professor Ayelet David, a researcher at BGU revealed the drug might also help people suffering from diabetes, hypertension and other conditions associated with old age.

Continued here:
Israeli Scientists: Stem Cell Therapy Not Good for All Heart ... - The Jewish Press - JewishPress.com

To Read More: Israeli Scientists: Stem Cell Therapy Not Good for All Heart … – The Jewish Press – JewishPress.com
categoriaCardiac Stem Cells commentoComments Off on Israeli Scientists: Stem Cell Therapy Not Good for All Heart … – The Jewish Press – JewishPress.com | dataJune 19th, 2017
Read All

How 3D Printing Can Help Mend a Broken Heart – Newsweek

By raymumme

Each year, more than 700,000 people suffer myocardial infarction, aka a heart attack. Thanks to medical advances, there are myriad ways for a doctor to get the blood properly pumping and save a persons life. A cardiologist might give a patient medication to clear or loosen blockages. Or a doctor might insert a catheter to remove the clot, or place stents in the artery so it stays open.

These interventions have vastly improved survival rates, but they dont heal the damage caused by a cardiac event. The heart is really just one big muscle, and trauma to any muscle does some damage, which becomes scar tissue. Scar tissue on the heart means it functions far less optimally, which eventually leads to heart failure.

Short of a transplant, there isnt a long-term option to fix a damaged ticker. But a team of researchers say theyve come up with a high-tech solution that could revolutionize cardiology. Using 3-D printing technology, Brenda Ogle, an associate professor of biomedical engineering at the University of Minnesota-Twin Cities, has created a patch a doctor could apply to mend a patients broken heart.

Tech & Science Emails and Alerts- Get the best of Newsweek Tech & Science delivered to your inbox

A false-color scanning electron micrograph (SEM) of a blood clot protruding from an arterial entrance in a heart chamber. This type of clot, known as coronary thrombosis, is the usual cause of myocardial infarction (heart attack). P. Motta/G. Macchiarelli/Sapienza University/Science Photo Libary/Getty

The concept is to imprint proteins that are native to the body, says Ogle. Weve used stem cellderived cardiac musclecardiac myocytesand actually mixed those with other cell types needed for blood vessels. This, she says, prevents what would otherwise happen naturally: The formation of a different type cells known as fibroblasts, which secrete scar tissue.

Ogle and her team of 3-D printing experts, clinical cardiologists and stem cell engineers have successfully tried the patch on mice. First, the team induced cardiac arrest in the rodents. When they then placed the cell patch on a mouse, researchers saw a significant increase in the functional capacity of the organ after just four weeks. We generated the continuous electric signal across the patch, and we can pace it: We can increase the frequency of beating up to three hertz, which is similar to a mouse heart, says Ogle who, this past January, published the findings of their experiment in Circulation Research, a journal from the American Heart Association.

The results of the experiment were so inspiring that in June 2016 the National Institutes of Health awarded her team a grant of more than $3 million, so they can now give pigs heart attacks and fix them with the patch. However, it will take some time to see their innovation in surgical departments, since using biological products such as cells requires a long regulatory process and, of course, quality assurance.

The replacement of muscle has been the holy grail for some time, says Ogle. Now we finally have the ability to take stem cells out of the body and develop the protocols to do that.

Original post:
How 3D Printing Can Help Mend a Broken Heart - Newsweek

To Read More: How 3D Printing Can Help Mend a Broken Heart – Newsweek
categoriaCardiac Stem Cells commentoComments Off on How 3D Printing Can Help Mend a Broken Heart – Newsweek | dataJune 18th, 2017
Read All

Page 40«..1020..39404142..5060..»


Copyright :: 2025