Harvard teaching hospital to pay $10 million to settle research misconduct allegations – Retraction Watch (blog)
By raymumme
Piero Anversa
Brigham and Womens Hospital and its parent healthcare network have agreed to pay $10 million to the U.S. government to resolve allegations it fraudulently obtained federal funding.
The case, which involves three former Harvard stem cell researchers, dates back several years. In 2014, Circulation retracted a paper by Piero Anversa, Annarosa Leri, and Jan Kajstura, among others, amidst a university investigation into misconduct allegations. Anversa and Leri whose lab was described as filled with fear by one former research fellow later sued the hospital for notifying journals of that investigation. They lost.
In the agreement announced today by the Department of Justice (DOJ), Partners Healthcare and Brigham and Womens Hospital have agreed to pay the government $10 million to settle allegations that the researchers fraudulently obtained funding from the National Institutes of Health:
The settlement resolves allegations that Dr. Anversa, along with Dr. Annarosa Leri and Dr. Jan Kajstura, knew or should have known that their laboratory promulgated and relied upon manipulated and falsified information, including confocal microscope images and carbon-14 age data for cells, in applications submitted for NIH research grant awards concerning the purported ability of stem cells to repair damage to the heart. The government alleges that problems with the work of the laboratory included improper protocols, invalid and inaccurately characterized cardiac stem cells, reckless or deliberately misleading record-keeping, and discrepancies and/or fabrication of data and images included in applications and publications. The government contends that, at the direction of these BWH scientists, the Anversa laboratory included false scientific information in claims to NIH in order to obtain and use funds from NIH grants.
John Thomas, a partner with Gentry Locke who represents whistleblowers who raise allegations of misconduct, told us that other cases have settled for large amounts such as a recent settlement with Columbia University for $9.5 million. But there are other elements that make this latest announcement noteworthy, he said.
Specifically, most settlements involve some black and white failure in research administration, such as misrepresenting a researchers qualifications on a grant, misreporting effort, or conducting the research at a different facility (such as the Columbia case), said Thomas. The latest decision, in contrast, goes to the science itself.
As a result, he said:
This demonstrates the government is still willing to step in even when its not an administrative issue, even when it goes to the merits of the actual misconduct allegations. I think it shows that when the government awards grants, one of the things its intending to get is good and honest science. The science matters.
We reached out to Anversa and Levi; in response, we received a statement from their attorney:
It is outrageous that BWH has sought to unfairly tarnish the reputations of Drs Anversa and Leri, scientists who have pioneered groundbreaking work in cardiac stem cell reproduction and who have litigation pending against BWH and its president, Betsy Nabel.
Neither Dr. Anversa nor Dr. Leri was involved in the settlement process. BWH self-reported allegations in its own way for its own purposes. It has long been known that Drs. Anversa and Leri relied on the work of a senior scientist in the lab in presenting data for grants and in publications. No one has ever shown that either Dr. Anversa or Dr. Leri participated in the fraud or was aware of it at the time.
BWHs allegations and settlement cannot take away from Drs. Anversa and Leris contributions to the science of stem cell replication. There are Phase II trials being conducted by NIH currently on stem cell treatments based on their work. Taxpayer money was rightly used to further the fight against heart disease, a leading cause of death in this country.
According to the U.S. Attorneys Office, Brigham and Womens Hospital brought the allegations to the governments attention:
After learning of the allegations of research misconduct in the Anversa laboratory, BWH investigated the allegations, disclosed its concerns to the U.S. Department of Health and Human Services, Office of the Inspector General (OIG) and Office of Research Integrity, and then worked cooperatively with OIG and the Department of Justice to explain the bases for the allegations.
The three researchers Anversa, Leri, and Kajstura are no longer based at Brigham and Womens Hospital. Earlier this year, Anversa and Leri published a paper about cardiac progenitor cells that lists an affiliation at the Swiss Institute for Regenerative Medicine.
In todays statement, Acting U.S. Attorney William D. Weinreb said:
Individuals and institutions that receive research funding from NIH have an obligation to conduct their research honestly and not to alter results to conform with unproven hypotheses.
Like Retraction Watch? Consider making atax-deductible contribution to support our growth. You can also follow uson Twitter, like uson Facebook, add us to yourRSS reader, sign up on ourhomepagefor an email every time theres a new post, or subscribe to ourdaily digest. Clickhere to review our Comments Policy. For a sneak peek at what were working on,click here.
Originally posted here:
Harvard teaching hospital to pay $10 million to settle research misconduct allegations - Retraction Watch (blog)
3D Printed Patches seeded with cells to repair cardiac tissue after heart attacks – BSA bureau (press release)
By Sykes24Tracey
The patches may be effective at helping to restore the heart following a myocardial infarction, as the heart isnt able to restore lost cells on its own. The patches may be effective at helping to restore the heart following a myocardial infarction, as the heart isnt able to restore lost cells on its own.
A team of researchers from University of Minnesota-Twin Cities, University of Wisconsin-Madison, and University of Alabama-Birmingham have developed a technique for 3D printing cardiac patches seeded with living cells. The patches may be effective at helping to restore the heart following a myocardial infarction, as the heart isnt able to restore lost cells on its own.
The technology has already been tested on a mouse model following an induced heart attack in which cardiac function wa significantly improved in four weeks following the application of the patch.
The patch is structurally based on how proteins naturally assemble within cardiac tissue. A highly detailed technique called multiphoton-excited 3D printing was used to create an extracellular matrix that was then seeded with about 50,000 cardiomyocytes, smooth muscle cells, and endothelial cells obtained from human-induced pluripotent stem cells.
The patch began beating on its own only a day after placing the cells and calcium transients, which are intercellular signaling mechanisms, were detected and increased over the following week.
See the original post here:
3D Printed Patches seeded with cells to repair cardiac tissue after heart attacks - BSA bureau (press release)
Stem-cell screening finds statin alternative for hypercholesterolaemia – The Pharmaceutical Journal
By daniellenierenberg
Source: Shutterstock.com
Researchers have showncertain cardiac glycosides can reduce hepatocyte production of aprecursor of LDL cholesterol.
Familial hypercholesterolaemia (FH) is a rare genetic disease that affects the production of functioning low-density lipoprotein (LDL) receptors in the liver. When patients have mutations in both copies of the LDL receptor gene, they do not respond to statins and have limited pharmaceutical treatment options available because of a lack of accurate disease models.
Reporting in Cell Stem Cell on 6 April 2017[1], researchers used FH human hepatocytes derived from induced pluripotent stem cells to screen for existing drugs that might lower apolipoprotein B (apoB) a precursor of LDL cholesterol.
The team found that all nine cardiac glycosides in their drug library reduced levels of apoB in the hepatocytes. In an analysis of historical patient data, the researchers found a reduction in serum LDL-C comparable to that seen with statins in patients taking cardiac glycosides.
The researchers say the results demonstrate the potential of their stem-cell based approach for identifying new treatment candidates for inherited liver diseases.
Citation: Clinical Pharmacist, CP April 2017 online, online | DOI: 10.1211/CP.2017.20202623
See the article here:
Stem-cell screening finds statin alternative for hypercholesterolaemia - The Pharmaceutical Journal
VistaGen Therapeutics Announces Peer-Reviewed Publication in … – Yahoo Finance
By JoanneRUSSELL25
SOUTH SAN FRANCISCO, CA--(Marketwired - April 27, 2017) - VistaGen Therapeutics Inc. (VTGN), a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders, announced today the peer-reviewed publication of nonclinical studies of the effects of AV-101 (4-Cl-KYN), its CNS prodrug candidate, in four well-established nonclinical models of pain.
The publication, titled: "Characterization of the effects of L-4-chlorokynurenine on nociception in rodents," by lead author, Tony L. Yaksh, Ph.D., and co-authors, Robert Schwarcz, Ph.D. and H. Ralph Snodgrass, Ph.D., was recently published in The Journal of Pain (DOI: 10.1016/j.jpain.2017.03.014) and is available online at http://www.jpain.org/article/S1526-5900(17)30552-7/abstract.
"In these studies, AV-101 was found to have robust anti-nociceptive effects, similar to gabapentin, but with a better side effect profile in several pre-clinical models of hyperalgesia and allodynia, results suggest AV-101's potential for treating multiple hyperpathic pain states," reported Tony L. Yaksh, Ph.D., Professor in Anesthesiology at the University of California, San Diego (UCSD).
"In comparison to gabapentin and other agents commonly used by millions of patients battling chronic neuropathic pain, we believe AV-101 has the potential to reduce debilitating pain effectively without causing burdensome side effects. Many neuropathic pain treatments on the market today have side effects, including anxiety, depression, mild cognitive impairment and sedation. The positive results published in these studies fall in line with our goal of advancing Phase 2 clinical development of AV-101 across a broad range of CNS indications, including major depressive disorder, neuropathic pain and L-DOPA-induced dyskinesia associated with Parkinson's disease. We are optimistic that we will be able to bring to market a new generation CNS medication that would help millions of patients currently treated with therapies with inadequate efficacy and significant side effects and safety concerns," stated H. Ralph Snodgrass, Ph.D., VistaGen's President and Chief Scientific Officer.
Study Summary and Key Findings:
About AV-101
AV-101 (4-CI-KYN) is an oral CNS prodrug candidate in Phase 2 development in the U.S. as a new generation treatment for major depressive disorder (MDD). AV-101 also has broad potential utility in several other CNS disorders, including chronic neuropathic pain and epilepsy, as well as addressing symptoms associated with neurodegenerative diseases, such as Parkinson's disease and Huntington's disease.
AV-101 is currently being evaluated in a Phase 2 monotherapy study in MDD, a study being fully funded by the U.S. National Institute of Mental Health (NIMH) and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH, as Principal Investigator.
VistaGen is preparing to advance AV-101 into a 180-patient, U.S. multi-center, Phase 2 adjunctive treatment study in MDD patients with an inadequate response to standard FDA-approved antidepressants, with Dr. Maurizio Fava of Harvard University as Principal Investigator.
About VistaGen
VistaGen Therapeutics, Inc. (VTGN), is a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders. VistaGen's lead CNS product candidate, AV-101, is in Phase 2 development as a new generation oral antidepressant drug candidate for major depressive disorder (MDD). AV-101's mechanism of action is fundamentally differentiated from all FDA-approved antidepressants and atypical antipsychotics used adjunctively to treat MDD, with potential to drive a paradigm shift towards a new generation of safer and faster-acting antidepressants. AV-101 is currently being evaluated by the U.S. National Institute of Mental Health (NIMH) in a Phase 2 monotherapy study in MDD being fully funded by the NIMH and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH. VistaGen is preparing to launch a 180-patient Phase 2 study of AV-101 as an adjunctive treatment for MDD patients with inadequate response to standard, FDA-approved antidepressants. Dr. Maurizio Fava of Harvard University will be the Principal Investigator of the Company's Phase 2 adjunctive treatment study. AV-101 may also have the potential to treat multiple CNS disorders and neurodegenerative diseases in addition to MDD, including chronic neuropathic pain, epilepsy, and symptoms of Parkinson's disease and Huntington's disease, where modulation of the NMDAR, AMPA pathway and/or key active metabolites of AV-101 may achieve therapeutic benefit.
Read More
VistaStem Therapeutics is VistaGen's wholly owned subsidiary focused on applying human pluripotent stem cell technology, internally and with collaborators, to discover, rescue, develop and commercialize proprietary new chemical entities (NCEs), including small molecule NCEs with regenerative potential, for CNS and other diseases, and cellular therapies involving stem cell-derived blood, cartilage, heart and liver cells. In December 2016, VistaGen exclusively sublicensed to BlueRock Therapeutics LP, a next generation regenerative medicine company established by Bayer AG and Versant Ventures, rights to certain proprietary technologies relating to the production of cardiac stem cells for the treatment of heart disease.
For more information, please visit http://www.vistagen.com and connect with VistaGen on Twitter, LinkedIn and Facebook.
Forward-Looking Statements
The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the successful launch, continuation and results of the NIMH's Phase 2 (monotherapy) and/or the Company's planned Phase 2 (adjunctive therapy) clinical studies of AV-101 in MDD, and other CNS diseases and disorders, including neuropathic pain and L-DOPA-induced dyskinesia associated with Parkinson's disease, protection of its intellectual property, and the availability of substantial additional capital to support its operations, including the Phase 2 clinical development activities described above. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.
Read more:
VistaGen Therapeutics Announces Peer-Reviewed Publication in ... - Yahoo Finance
UMN research team fixes broken hearts with 3D-printed tissue patch – Minnesota Daily
By Sykes24Tracey
A research team at the University of Minnesota found a way to heal broken hearts.
Researchers used a 3D printer to create protein patches that mimic heart tissue to treat post-heart attack scars. The research is in collaboration with the University of Wisconsin-Madison and the University of Alabama-Birmingham.
Brenda Ogle, a University biomedical engineering professor and lead researcher for the project, said she and her team have investigated proteins that surround cells in the body for 15 years. The team has been studying how the proteins also called the extracellular matrix influence stem cell behavior.
For many years, weve been trying to develop optimum formulation that can support stem cells in new cardiac [cell] types, Ogle said, adding that theyve focused on cardiac cell types to figure out a way to strengthen them after the muscle cells are damaged and die during a heart attack. Its one of the cell types in the body that cant be recovered.
The team successfully treated mice with the patches and is now planning to test the method on larger animals.
Molly Kupfer, a doctoral student who is part of Ogles team, said a heart attack occurs when there is a blockage in a primary blood vessel that delivers oxygen and nutrients to the heart.
When that happens, you have cell death in the area of the heart that doesnt receive the appropriate oxygen and nutrients, Kupfer said. Those cells that die arent able to recover."
Typically, after a heart attack, the blood clot in the heart is removed at a hospital, and if the heart has not been damaged too badly, doctors monitor the heart long-term, prescribe medicine and regularly check for signs of heart failure, Ogle said.
What you get instead after a heart attack is scar tissue forming, and that scar tissue ultimately fails, Ogle said.
Associate Professor Brenda Ogle places a 3D printed biopatch on a mouse heart in Nils Hasselmo Hall on Tuesday, April 25, 2017. Her research team induces heart attacks in mice, which causes a dead area of cardiac cells. The patch is placed in this dead zone and mimics the cells of the native heart that aren't able to be replenished on their own.
Kupfer said she worked with Paul Campagnola and his lab at the University of Wisconsin to print the patches; the cells were prepared at the University of Minnesota.
Campagnola, a biomedical engineering professor, said he initially developed the underlying printing technology in 2000.
"The idea of the patch is it could actually behave like native cardiac tissue and assist the function of the heart, Kupfer said, adding that the method used to print the patches results in extremely high resolution structures.
Ogle said before applying the patch to the animal hearts theyre currently testing on, they take a scan of the scarred tissue and create a digital template for the 3D-printer to follow and print the proteins in the same pattern.
Campagnola said the patch provides a stable space for cells to grow and be implanted in damaged areas.
Cardiac cells are also added to the patch when it covers a damaged area. Ogle said it not only provides a support structure, but transplants healthy cells that will eventually become integrated into the heart, stabling it structurally and functionally.
A huge aha moment was when [the cardiac cells] started to beat on this patch synchronously and spontaneously, she said. When that happened, we realized that this could be a viable therapy for the heart, a way to replace those lost muscle cells.
Through the research group at the University of Alabama, Ogle said a study was conducted where the patch was tested on dead or dying tissue in mice hearts and the group saw improvement in the mice after four weeks.
The project was funded through a series of grants from the National Institutes of Health, the National Science Foundation with support from the University, she said.
The group has since received larger funds from the NIH to run a study using the patch on larger animals within the next year.
Ogle said it would take about 10 years until the patch can be used on human patients in a clinical setting.
View original post here:
UMN research team fixes broken hearts with 3D-printed tissue patch - Minnesota Daily
Coalition Duchenne Congratulates Capricor Therapeutics on Positive Six-Month Results from its Randomized CAP … – Benzinga
By raymumme
Coalition Duchenne funded cardiosphere-derived cell studies in Duchenne carried out by Eduardo Marbn MD, the director of the Cedars-Sinai Heart Institute. This work was later licensed for commercial development by Capricor.
(PRWEB) April 25, 2017
Coalition Duchenne, a charity based in Newport Beach, California, committed to raising awareness for Duchenne muscular dystrophy, and funding for Duchenne research, congratulates Capricor Therapeutics on positive six-month results from its randomized CAP-1002 (cardiosphere-derived cells) Phase I/II HOPE clinical trial in Duchenne announced today.
Coalition Duchenne funded studies carried out by Eduardo Marbn MD, the director of the Cedars-Sinai Heart Institute, on cardiosphere-derived cells in Duchenne. This work was later licensed for commercial development by Capricor.
"We are excited that our work with Dr. Marbn is evolving and could become a treatment for Duchenne through Capricor's stellar efforts. It is the cardiomyopathy associated with Duchenne that causes us to lose so many boys and young men with Duchenne. Their hearts fail them when they still have so many dreams to be fulfilled. We must strengthen those hearts," said Catherine Jayasuriya, the founder and executive director of Coalition Duchenne.
The six-month results showed statistically-significant improvements in systolic thickening of the inferior wall of the heart and in the function of the middle and distal upper limb in patients treated with CAP-1002 as compared to control patients. In addition, differences observed in several other cardiac and skeletal muscle measures, including cardiac scar, were consistent with a treatment effect.
"These initial positive clinical results build upon a large body of preclinical data which illustrate CAP-1002's potential to broadly improve the condition of those afflicted by Duchenne, as they show that cardiosphere-derived cells exert salutary effects on cardiac and skeletal muscle," said Linda Marbn, PhD, Capricor's president and chief executive officer.
John L. Jefferies, MD, Professor of Pediatric Cardiology and Adult Cardiovascular Diseases at the University of Cincinnati and Director, Advanced Heart Failure and Cardiomyopathy, and Principal Investigator of the HOPE Trial, said, "In HOPE, we saw potential effects in both the heart and skeletal muscle that appear quite compelling in an exploratory trial."
Coalition Duchenne is hopeful that CAP-1002 will move forward rapidly and become a treatment for Duchenne. Such a development will realize a simple, but potentially game changing, lateral thought by a mother of a young man with Duchenne. Catherine's 24-year-old son Dusty Brandom has the cardiomyopathy exhibited by all boys and young men with Duchenne. In November 2011, Catherine read an Economist article titled "Repairing Broken Hearts" featuring the research of Dr. Eduardo Marbn and others. She immediately thought about Dusty's heart. Catherine's quest, both as a mother and a leader in the Duchenne community, became to convince the researchers to apply stem cell technology to Duchenne. She wrote to all of the researchers mentioned in the article and pushed her simple thesis that Duchenne related cardiomyopathy would be a good candidate for therapy. Only Dr. Eduardo Marbn responded.
About Coalition Duchenne
Coalition Duchenne was founded in 2011 to raise global awareness for Duchenne muscular dystrophy, to fund research, and to find a cure for Duchenne. Coalition Duchenne is a 501c3 non-profit corporation. Its vision is to change the outcome for boys and young men with Duchenne, to rapidly move forward to a new reality of longer, fulfilled lives, by funding the best opportunities for research and creating awareness.
Coalition Duchenne has several research initiatives that are making advances in potential cardiac and pulmonary treatments for sufferers of Duchenne muscular dystrophy.
Through its Duchenne Without Borders initiative, Coalition Duchenne is helping medically underserved boys and young men with Duchenne worldwide. For example, Coalition Duchenne provides Ambu Bags to Duchenne families in rural Borneo to help maintain pulmonary function.
Catherine Jayasuriya, the founder and executive director of Coalition Duchenne, produced and directed the award winning documentary Dusty's Trail: Summit of Borneo (2013) which has screened internationally and is included in the syllabus at teaching institutions worldwide.
For more information about Coalition Duchenne, visit http://www.coalitionduchenne.org.
About Duchenne muscular dystrophy
Duchenne muscular dystrophy is a progressive muscle wasting disease. It is the most common fatal genetic disease that affects children. Duchenne occurs in 1 in 3,500 male births, across all races, cultures and countries. Duchenne is caused by a defect in the gene that codes for the protein dystrophin. This is a vital protein that helps connect the muscle fiber to the cell membranes. Without dystrophin the muscle cells become unstable, are weakened and lose their functionality. Life expectancy ranges from the mid teenage years to age 30.
About CAP-1002
CAP-1002 consists of allogeneic cardiosphere-derived cells, or CDCs, a type of cardiac progenitor cell. CDCs have been the subject of over 100 peer-reviewed scientific publications and have been administered to approximately 140 human subjects across several clinical trials. CAP-1002 is currently being evaluated in the randomized, double-blind, placebo-controlled Phase II ALLSTAR Clinical Trial in adults who have suffered a large heart attack and in the Phase I/II HOPE Clinical Trial in boys and young men with Duchenne.
About Capricor Therapeutics
Capricor Therapeutics, Inc. is a clinical-stage biotechnology company developing first-in-class biological therapies for cardiac and other medical conditions. Capricor's lead candidate, CAP-1002, is a cell-based candidate currently in clinical development for the treatment of Duchenne muscular dystrophy, myocardial infarction (heart attack), and heart failure. Capricor is exploring the potential of CAP-2003, a cell-free, exosome-based candidate, to treat a variety of disorders. For more information, visit http://www.capricor.com.
For the original version on PRWeb visit: http://www.prweb.com/releases/2017/04/prweb14274775.htm
Follow this link:
Coalition Duchenne Congratulates Capricor Therapeutics on Positive Six-Month Results from its Randomized CAP ... - Benzinga
Cellular Logistics pursuing commercialization, top spot in Governor’s Business Plan Contest – Wisbusiness.com
By NEVAGiles23
One of the finalists in the Governors Business Plan Contest, Cellular Logistics, is making another run at the top prize as it pursues commercialization of its biomaterials.
Two years ago, the company submitted a plan and made it to the semifinal round before being eliminated.
That was premature, but a good experience to go through in terms of preparation for this year, where we have a much more clear path and stronger team, said Adam Bock, CFO for Cellular Logistics. Weve been here before, but its always exciting.
The company just finished up a family and friends funding round last quarter, which raised $400,000. Its still in its growth stages, according to Bock, who characterizes Cellular Logistics as a virtual company at this point.
We have our business and tech team who operate wherever we need to be -- no dedicated office or lab, Bock said. All work has been done at Wisconsin Institute for Medical Research.
He added the company will be prepared to transition into a commercial space in about six months, saying were right at that crossover point.
Eric Schmuck, Cellular Logistics chief science officer, invented the companys patented biomaterials and heads the studies currently being done to test them.
He initially had the idea as a grad student in the UW-Madison Department of Physiology, where he was working with materials on which to grow stem cells. He realized the material he was experimenting with had unique characteristics which could be applicable in other ways.
It was novel; no one had done anything like it, Schmuck said. WARF agreed to patent the idea in 2011. Weve been tinkering with it in UW ever since.
The company is in the preclinical phase, currently testing an injectable supportive extracellular matrix in the hearts of mice. While results for these tests will have to wait until they are complete, Schmuck says that for earlier iterations, tests have been extremely promising.
He has seen really good restoration of function, with earlier tests, including powerful reduction in cardiac dilation -- a good sign for heart health.
In fact, earlier tests suggest the companys biomaterials are able to reverse or inhibit progression to heart failure, Schmuck says. They would be used in humans to repair damaged cardiac muscles, for patients who have experienced recent heart attacks or heart failure.
The company will be seeking approval from the FDA eventually, Schmuck said, adding that human trials could be undertaken in two or three years.
Bock says winning the contest would be spectacular, and that taking part is a lot of fun. The top 12, or Diligent Dozen, will be announced in late May, with the end of the contest coming in early June.
--By Alex Moe WisBusiness.com
A 3D-printed patch for a ‘broken’ heart – Livemint
By NEVAGiles23
This week: Biomedical engineering division, University of Minnesota
Three-dimensional or 3D printing technology, which has been around for almost three decades, routinely makes headlines. Not surprising, given that the so-called Fabbers, or personal manufacturing machines3D printers come under this categorynow not only make jewellery and toothbrushes, but also football boots, racing-car parts, custom-designed cakes, guns, human organs, houses and plane parts.
3D printing can be used to save lives too. Consider this. During a heart attack, the muscle cells of the heart do not get enough blood. Hence, they die. Our bodies cant replace these dead cells, so the body leaves a scar tissue in that area of the heart. This puts the person at risk of heart failure in the future.
A team of biomedical engineering researchers, led by the University of Minnesota (Umn.edu), has created a laser 3D-bioprinted patch to address the issue and help heal the scarred heart tissue after a heart attack. Three-dimensional bioprinting is the process of creating cell patterns in a confined space using 3D printing technologies.
The researchers successfully used this technique to incorporate stem cells (cells capable of renewing themselves through cell division, sometimes after long periods of inactivity) derived from adult human heart cells in a dish in the lab.
When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from stem cells and structural proteins (that do most of the work in cells and are required for the structure, function, and regulation of the bodys tissues and organs) belonging to the heart, it became part of the heart and was absorbed into the body, requiring no further surgeries.
The discovery, which is a major step forward in treating patients with tissue damage after a heart attack, was published on 14 April in Circulation Research, the journal published by the American Heart Association. The researchers have filed a patent for it.
The scientists insist that this research is different from previous ones in that the patch is modelled after a digital, 3D scan of the structural proteins of the heart tissue. The digital model is made into a physical structure by 3D printing, further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type, explain the researchers, can we achieve the 1 micron resolution needed to mimic structures of native heart tissue.
The scientists say they are already beginning the next step to develop a larger patch that they will test on a pig heart, which is similar in size to a human heart. Of course, the real success will be known only when human trials take place.
3D printing belongs to a class of techniques known as additive manufacturing, or building objects layer by layer. The most common household 3D-printing process involves a print head, which allows for any material to be extruded or squirted through a nozzle. There are several additive processes, including selective laser sintering, direct metal-laser sintering, fused deposition modelling, stereolithography and laminated-object manufacturing. All of them differ in the way layers are deposited to create the 3D objects.
Meanwhile, the concept of 4D printing, which allows materials to self-assemble into 3D structures, and was initially proposed by Skylar Tibbits of the Massachusetts Institute of Technology (MIT) in April 2013, is also showing promise.
Lab Watch is the Lounge guide to emerging tech from around the world .
First Published: Fri, Apr 21 2017. 02 57 PM IST
Read the rest here:
A 3D-printed patch for a 'broken' heart - Livemint
3D-printed Patch Can Help Mend a ‘Broken’ Heart | Technology … – Technology Networks
By Dr. Matthew Watson
A team of biomedical engineering researchers has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. Two of the researchers involved are biomedical engineering Associate Professor Brenda Ogle (right) and Ph.D. student Molly Kupfer (left). Credit: Patrick OLeary, University of Minnesota
A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step forward in treating patients with tissue damage after a heart attack.
See Also:How 3D Printing Could Revolutionise Organ Transplantation
According to the American Heart Association, heart disease is the No. 1 cause of death in the U.S. killing more than 360,000 people a year. During a heart attack, a person loses blood flow to the heart muscle and that causes cells to die. Our bodies cant replace those heart muscle cells so the body forms scar tissue in that area of the heart, which puts the person at risk for compromised heart function and future heart failure.
In this study, researchers from the University of Minnesota-Twin Cities, University of Wisconsin-Madison, and University of Alabama-Birmingham used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab.
Watch a video of the cells beating on the patch.
When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from cells and structural proteins native to the heart, it became part of the heart and absorbed into the body, requiring no further surgeries.
This is a significant step forward in treating the No. 1 cause of death in the U.S., said Brenda Ogle, an associate professor of biomedical engineering at the University of Minnesota. We feel that we could scale this up to repair hearts of larger animals and possibly even humans within the next several years.
Related:Synthetic Cardiac Stem Cells Developed
Ogle said that this research is different from previous research in that the patch is modeled after a digital, three-dimensional scan of the structural proteins of native heart tissue. The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution needed to mimic structures of native heart tissue.
We were quite surprised by how well it worked given the complexity of the heart, Ogle said. We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch.
Ogle said they are already beginning the next step to develop a larger patch that they would test on a pig heart, which is similar in size to a human heart.
The research was funded by the National Science Foundation, National Institutes of Health, University of Minnesota Lillehei Heart Institute, and University of Minnesota Institute for Engineering in Medicine.
This article has been republished frommaterialsprovided by University of Minnesota. Note: material may have been edited for length and content. For further information, please contact the cited source.
Reference:
Gao, L., Kupfer, M. E., Jung, J. P., Yang, L., Zhang, P., Sie, Y. D., . . . Zhang, J. (2017). Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed ScaffoldNovelty and Significance. Circulation Research, 120(8), 1318-1325. doi:10.1161/circresaha.116.310277
Read this article:
3D-printed Patch Can Help Mend a 'Broken' Heart | Technology ... - Technology Networks
3D-printed Patch Can Help Mend a ‘Broken’ Heart – Technology Networks
By NEVAGiles23
Technology Networks | 3D-printed Patch Can Help Mend a 'Broken' Heart Technology Networks The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution needed to ... |
Read the rest here:
3D-printed Patch Can Help Mend a 'Broken' Heart - Technology Networks
Heart-healing patch has got the beat – New Atlas
By Sykes24Tracey
Biomedical engineering Associate Professor Brenda Ogle (right) and Ph.Dstudent Molly Kupfer, with a mouse heart (Credit: Patrick OLeary, University of Minnesota)
One of the problems with heart attacks (as if there weren't enough already) is that when the heart heals afterwards, it grows scar tissue over the part of the heart that was damaged. That scar tissue never does become beating heart tissue, so it leaves the heart compromised for the rest of the patient's life. There may be hope, however, as scientists from the University of Minnesota have created a new patch that allows the heart to heal more completely.
First of all, yes, this has been done before. We have already seen experimental "heart patches" from places like the University of Tel Aviv, Brown University and MIT, which allow the heart to heal with a minimum of scar tissue growth.
More than 700 New Atlas Plus subscribers read our newsletter and website without ads.
Join them for just US$19 a year.
One of the things that makes this latest patch unique is the fact that it's 3D-bioprinted out of structural proteins native to the heart. It takes the form of a scaffolding-like matrix, which is subsequently seeded with cardiac cells derived from stem cells. The result is a patch of material, similar in structure and material to heart tissue, containing actual functioning heart cells as opposed to inert scar tissue.
In lab tests, one of the patches was placed on the heart of a mouse that had suffered a simulated heart attack. Within just four weeks, the scientists noted a "significant increase in functional capacity." The patch was ultimately absorbed by the body, so no additional surgeries were required to remove it after its job was done.
"We were quite surprised by how well it worked given the complexity of the heart," says associate professor Brenda Ogle, who is leading the research. "We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch."
A larger patch is now in the works, which will be tested on a pig heart.
Other institutions involved in the study include the University of Wisconsin-Madison and University of Alabama-Birmingham. A paper on the research was recently published in the journal Circulation Research.
Source: University of Minnesota
Excerpt from:
Heart-healing patch has got the beat - New Atlas
Scientists identify mechanisms of early heart development in Zebrafish – Biotechin.Asia
By Dr. Matthew Watson
A female specimen of a zebrafish (Danio rerio) breed with fantails
Cardiovascular disease is one of the leading causes of death in the world with approximately 30% of global mortality attributed to it.Cardiovascular disease conditions lead to damage of cardiac muscle cells resulting in defective heart function.
Stem cell therapy, though a relatively young science, is one of the upcoming treatment options for such diseases in the near future. In principle, stem cells from embryos can be made to differentiate into many functional cell types including heart cells, which can be effectively used to replace damaged cells in heart patients. To achieve this, scientists are constantly trying to understand the developmental process by which the heart is formed from various progenitors in a growing embryo. Once we understand this pathway at an organismal level, efforts can be made to use these stem cells for regenerative medicine.
A team of scientists led by Bruno Reversade from Singapore and Ian Scott from the University of Toronto have come together to study heart development in the Zebrafish model.
Zebrafish, scientifically called Danio rerio, is one of the powerful models for studying various organ functions. Although there are major structural differences between zebrafish and humans, there are strong similarities at the genetic and morphological levels. One of the biggest advantages of using zebrafish is that unlike mice, rats or monkeys, zebrafish embryos are transparent and hence provide a tractable system for visualizing these important developmental processes in situ.
During embryonic development, early heart development requires the activation of one of the important signaling pathways called Nodal or TGF pathway. Depending on the activation levels of Nodal, different cells become different stem cell types. Hence, there has to be a mechanism for fine-tuning of this signaling to produce these activity thresholds. Scientists from these two groups have recently identified the candidates involved in this fine-tuning.
Researchers recently identified a mutation, which leads to zebrafish with no heart at all. This suggests that this mutation somehow alters an early developmental process in heart formation. Interestingly, this gene encodes for a protein called Apelin receptor. So how does the Apelin receptor affect heart development? Scientists revealed that mutation in this receptor caused lower levels of Nodal signaling in mutant embryos as compared to the normal ones, thus failing to induce the formation of cardiac stem cells. When Nodal activity is artificially elevated in embryos that lack the Apelin receptor, they were able to develop hearts further confirming the role of Apelin receptor in this pathway.
A detailed understanding of this molecular cross-talk could help in the derivation of specific cell types from human embryonic stem cells for regenerative medicine, says Bruno Reversade, a human geneticist at the A*STAR Institute of Medical Biology, who co-led the investigation.
Further, this collaborative study showed that the Apelin receptor does not work in cells that produce or receive Nodal signals, suggesting that the Apelin receptor modulates Nodal signaling levels by acting in cells that lie between the cells that release Nodal signals and the cardiac progenitors.
In brief, this receptor functions as a distant regulator for fine-tuning the expression of the Nodal pathway during early stages of heart development ensuring proper cardiac development. One important area of future study is to determine whether modulating the levels of this receptor can prove useful for patients with various heart disorders.
Original article can be found here: https://elifesciences.org/content/5/e13758
Like Loading...
Visit link:
Scientists identify mechanisms of early heart development in Zebrafish - Biotechin.Asia
3D-Printed Patch Can Help Mend a ‘Broken’ Heart – Lab Manager | News (press release) (blog)
By Sykes24Tracey
Photo courtesy of the University of Minnesota
MINNEAPOLIS/ST. PAUL A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step forward in treating patients with tissue damage after a heart attack.
The research study was published Apr. 14 inCirculation Research, a journal published by the American Heart Association. Researchers have filed a patent on the discovery.
According to the American Heart Association, heart disease is the No. 1 cause of death in the U.S. killing more than 360,000 people a year. During a heart attack, a person loses blood flow to the heart muscle and that causes cells to die. Our bodies cant replace those heart muscle cells so the body forms scar tissue in that area of the heart, which puts the person at risk for compromised heart function and future heart failure.
In this study, researchers from the University of Minnesota-Twin Cities, University of Wisconsin-Madison, and University of Alabama-Birmingham used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab.
Watch a video of the cells beating on the patch.
Video credit:College of Science and Engineering, UMN
When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from cells and structural proteins native to the heart, it became part of the heart and absorbed into the body, requiring no further surgeries.
Related Article:3D-Printed Guide Helps Regrow Complex Nerves After Injury
This is a significant step forward in treating the No. 1 cause of death in the U.S., said Brenda Ogle, an associate professor of biomedical engineering at the University of Minnesota. We feel that we could scale this up to repair hearts of larger animals and possibly even humans within the next several years.
A team of biomedical engineering researchers has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. Two of the researchers involved are biomedical engineering associate professor Brenda Ogle (right) and PhD student Molly Kupfer (left).Photo credit: Patrick OLeary, University of MinnesotaOgle said that this research is different from previous research in that the patch is modeled after a digital, three-dimensional scan of the structural proteins of native heart tissue. The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution needed to mimic structures of native heart tissue.
We were quite surprised by how well it worked given the complexity of the heart, Ogle said. We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch.
Ogle said they are already beginning the next step to develop a larger patch that they would test on a pig heart, which is similar in size to a human heart.
The research was funded by the National Science Foundation, National Institutes of Health, University of Minnesota Lillehei Heart Institute, and University of Minnesota Institute for Engineering in Medicine.
In addition to Ogle, other biomedical engineering researchers who were part of the team include Molly E. Kupfer, Jangwook P. Jung, Libang Yang, Patrick Zhang, and Brian T. Freeman from the University of Minnesota; Paul J. Campagnola, Yong Da Sie, Quyen Tran, and Visar Ajeti from the University of Wisconsin-Madison; and Jianyi Zhang, Ling Gao, and Vladimir G. Fast from the University of Alabama,
To read the full research paper entitled Myocardial Tissue Engineering With Cells Derived from Human Induced-Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold, visit theCirculation Researchwebsite.
Visit link:
3D-Printed Patch Can Help Mend a 'Broken' Heart - Lab Manager | News (press release) (blog)
Regenexx Network Using Regenerative Medicine Technologies in Interventional Orthopedics to Treat Pain – Yahoo Finance
By Dr. Matthew Watson
BROOMFIELD, Colo., April 17, 2017 /PRNewswire/ -- "Interventional orthopedics in pain medicine practice" was recently published by Elsevier as a chapter in Techniques in Regional Anesthesia and Pain Management. The chapter, authored by Regenexx founder Christopher J. Centeno, MD examines less invasive ways to treat orthopedic pain and injuries through autologous biologics, such as stem cells and platelet rich plasma (PRP), and the shift from surgical orthopedics to interventional orthopedics.
Interventional orthopedics utilizing advanced technologies, such as ultrasound and X-ray guidance, precise percutaneous injections of autologous biologics, and bone marrow concentrate, (BMC) expand nonsurgical options in the field of orthopedics. Citing the dramatic reduction in cardiac surgery rates since the adoption of the specialty interventional cardiology, the authors reveal, "We are poised on the brink of the same change in orthopedic care." The authors also state, "The field of autologous biologics has the potential to alter the playing field of orthopedic care by allowing percutaneous injections to replace the need for more invasive orthopedic surgeries."
The chapter covers three important tenets in the developing field that will allow Interventional Orthopedics to alter traditional orthopedic care in the future. First is the rapid expansion of injectates (material being injected), such as stem cells and PRP, that can help heal damaged tissue and that can effectively treat musculoskeletal tissues. Second is the precise image-guided placement of those injectates into those damaged tissues. And third is the development of new tools that will advance this regenerative-medicine technology. The chapter also highlights research that supports the use of bone marrow stem cells and the importance of education standards and organization, training, and retraining of physicians to meet these standards.
The full chapter "Interventional orthopedics in pain medicine practice" can be found online at http://www.sciencedirect.com/science/article/pii/S1084208X16300052.
Christopher J. Centeno, MD, is the CEO of Regenexx and an international expert and specialist in regenerative medicine and the clinical use of mesenchymal stem cells in orthopedics. Dr. Centeno maintains an active research-based practice and has multiple publications listed in the US National Library of Medicine.He has also served as editor-in-chief of a medical research journal dedicated to traumatic injury and is one of the few physicians in the world with extensive experience in the culture expansion of and clinical use of adult stem cells to treat orthopedic injuries.
MEDIA CONTACT Mark Testa 155014@email4pr.com (303) 885-9630
To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/regenexx-network-using-regenerative-medicine-technologies-in-interventional-orthopedics-to-treat-pain-300439851.html
Read more here:
Regenexx Network Using Regenerative Medicine Technologies in Interventional Orthopedics to Treat Pain - Yahoo Finance
CESCA Therapeutics to Present at the 2017 International Symposium of Translational Medicine in Stem Cell … – GlobeNewswire (press release)
By Dr. Matthew Watson
April 11, 2017 07:15 ET | Source: Cesca Therapeutics Inc.
RANCHO CORDOVA, Calif., April 11, 2017 (GLOBE NEWSWIRE) -- Cesca Therapeutics Inc. (Nasdaq:KOOL), a market leader in automated cell processing and point-of-care, autologous cell-based therapies, today announced that Dr. Xiaochun (Chris) Xu, Chairman and Interim Chief Executive Officer and Chairman of Boyalife Group, will present an overview of the Companys cardiovascular clinical research program at the 2017 International Symposium of Translational Medicine in Stem Cell Myocardial Repair, being held April 10-12, 2017 at the Hope Hotel in Shanghai, China.
Details of the presentation are as follows:
Despite recent therapeutic and surgical advances, the effects of peripheral arterial disease, including heart attack and critical limb ischemia (CLI), remain among the worlds leading causes of morbidity and mortality and represent a rapidly escalating public health crisis, noted Dr. Xu. I look forward to presenting a review of our latest findings, including key feasibility study results and an overview of our Phase 3 Critical Limb Ischemia Rapid Stemcell Treatment (CLIRST) trial, which we believe highlight the potential of Cesca Therapeutics proprietary AutoXpress point-of-care platform to deliver autologous cell-based therapies that may represent a new paradigm in patient treatment going forward.
About the Symposium of Translational Medicine in Stem Cell Myocardial Repair
The 2017 International Symposium of Translational Medicine in Stem Cell Myocardial Repair brings together more than 650 of the worlds cardiac disease thought leaders to discuss the potential of translational and regenerative medicine in treating myocardial infarction (MI) and cardiac failure. The symposium is co-sponsored by the Shanghai Society for Cell Biology, the Institute of Health Sciences, the Shanghai Cardiovascular Disease Institute, the Guangzhou Institutes of Biomedicine and Health, and the Key Laboratory of Stem Cell Biology, Shanghai.
About Cesca Therapeutics Inc.
Cesca is engaged in the research, development, and commercialization of cellular therapies and delivery systems for use in regenerative medicine. The Company is a leader in the development and manufacture of automated blood and bone marrow processing systems that enable the separation, processing and preservation of cell and tissue therapeutics. Cesca is an affiliate of the Boyalife Group (http://www.boyalifegroup.com), a China-based industrial-research alliance among top research institutes for stem cell and regenerative medicine.
Forward-Looking Statement
The statements contained herein may include statements of future expectations and other forward-looking statements that are based on managements current views and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in such statements. A more complete description of risks that could cause actual events to differ from the outcomes predicted by Cesca Therapeutics' forward-looking statements is set forth under the caption "Risk Factors" in Cesca Therapeutics annual report on Form 10-K and other reports it files with the Securities and Exchange Commission from time to time, and you should consider each of those factors when evaluating the forward-looking statements.
Related Articles
Rancho Cordova, California, UNITED STATES
Cesca Therapeutics Inc. Logo
LOGO URL | Copy the link below
Formats available:
Follow this link:
CESCA Therapeutics to Present at the 2017 International Symposium of Translational Medicine in Stem Cell ... - GlobeNewswire (press release)
Scientists have made a 3D-printed patch that can help heal the damaged heart tissue – Tech2 (blog)
By LizaAVILA
Scientists have created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step forward in treating patients with tissue damage after a heart attack, researchers at University of Minnesota in the US said. During a heart attack, a person loses blood flow to the heart muscle and that causes cells to die.
Our bodies can not replace those heart muscle cells so the body forms scar tissue in that area of the heart, which puts the person at risk for compromised heart function and future heart failure. Researchers used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab.
When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from cells and structural proteins native to the heart, it became part of the heart and absorbed into the body, requiring no further surgeries. This is a significant step forward in treating the No 1 cause of death in the US, said Brenda Ogle, an associate professor at the University of Minnesota.
We feel that we could scale this up to repair hearts of larger animals and possibly even humans within the next several years, said Ogle. Ogle said that the research is different from previous ones as the patch is modelled after a digital, three- dimensional scan of the structural proteins of native heart tissue. The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells.
Only with 3D printing of this type can we achieve one micron resolution needed to mimic structures of native heart tissue, researchers said. We were quite surprised by how well it worked given the complexity of the heart. We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch, Ogle said.
Ogle said they are already beginning the next step to develop a larger patch that they would test on a pig heart, which is similar in size to a human heart. The study was published in the journal Circulation Research.
Publish date: April 16, 2017 12:57 pm| Modified date: April 16, 2017 12:57 pm
Tags: 3D-Bioprint, Brenda Ogle, cells, Heart, heart attack, heart failure, Journal Circulation Research, scientists, structural proteins, University of Minnesota
Read more:
Scientists have made a 3D-printed patch that can help heal the damaged heart tissue - Tech2 (blog)
Breakthrough in cardiac health: 3D-printed patch can help mend a ‘broken’ heart – Economic Times
By NEVAGiles23
WASHINGTON D.C: Scientists have developed a revolutionary 3D-bioprinted patch that could one day be used to repair damage to the human heart.
The patch can help heal scarred heart tissue after a heart attack. The discovery is a major step forward in treating patients with tissue damage after a heart attack.
The researchers from the University of Minnesota-Twin Cities, University of Wisconsin-Madison, and University of Alabama-Birmingham used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab.
When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from cells and structural proteins native to the heart, it became part of the heart and absorbed into the body, requiring no further surgeries.
"This is a significant step forward in treating the No. 1 cause of death in the U.S.," said researcher Brenda Ogle. "We feel that we could scale this up to repair hearts of larger animals and possibly even humans within the next several years."
Ogle said that this research is different from previous research in that the patch is modelled after a digital, three-dimensional scan of the structural proteins of native heart tissue. The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution needed to mimic structures of native heart tissue.
"We were quite surprised by how well it worked given the complexity of the heart," Ogle noted. "We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch."
Ogle said they are already beginning the next step to develop a larger patch that they would test on a pig heart, which is similar in size to a human heart.
The research study is published in Circulation Research, a journal published by the American Heart Association.
See the article here:
Breakthrough in cardiac health: 3D-printed patch can help mend a 'broken' heart - Economic Times
3D-printed patch can help mend a broken heart – UMN News
By daniellenierenberg
A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step forward in treating patients with tissue damage after a heart attack.
The research study is published today in Circulation Research, a journal published by the American Heart Association. Researchers have filed a patent on the discovery.
According to the American Heart Association, heart disease is the No. 1 cause of death in the U.S. killing more than 360,000 people a year. During a heart attack, a person loses blood flow to the heart muscle and that causes cells to die. Our bodies cant replace those heart muscle cells so the body forms scar tissue in that area of the heart, which puts the person at risk for compromised heart function and future heart failure.
In this study, researchers from the University of Minnesota-Twin Cities, University of Wisconsin-Madison, and University of Alabama-Birmingham used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab.
Watch a video of the cells beating on the patch.
When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from cells and structural proteins native to the heart, it became part of the heart and absorbed into the body, requiring no further surgeries.
This is a significant step forward in treating the No. 1 cause of death in the U.S., said Brenda Ogle, an associate professor of biomedical engineering at the University of Minnesota. We feel that we could scale this up to repair hearts of larger animals and possibly even humans within the next several years.
Ogle said that this research is different from previous research in that the patch is modeled after a digital, three-dimensional scan of the structural proteins of native heart tissue. The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution needed to mimic structures of native heart tissue.
We were quite surprised by how well it worked given the complexity of the heart, Ogle said. We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch.
Ogle said they are already beginning the next step to develop a larger patch that they would test on a pig heart, which is similar in size to a human heart.
The research was funded by the National Science Foundation, National Institutes of Health, University of Minnesota Lillehei Heart Institute, and University of Minnesota Institute for Engineering in Medicine.
In addition to Ogle, other biomedical engineering researchers who were part of the team include Molly E. Kupfer, Jangwook P. Jung, Libang Yang, Patrick Zhang, and Brian T. Freeman from the University of Minnesota; Paul J. Campagnola, Yong Da Sie, Quyen Tran, and Visar Ajeti from the University of Wisconsin-Madison; and Jianyi Zhang, Ling Gao, and Vladimir G. Fast from the University of Alabama,
To read the full research paper entitled Myocardial Tissue Engineering With Cells Derived from Human Induced-Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold, visit the Circulation Research website.
Originally posted here:
3D-printed patch can help mend a broken heart - UMN News
‘Neuron-reading’ nanowires could accelerate development of drugs for neurological diseases – Science Daily
By NEVAGiles23
Science Daily | 'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases Science Daily "We envision that this nanowire technology could be used on stem-cell-derived brain models to identify the most effective drugs for neurological diseases," said Anne Bang, director of cell biology at the Conrad Prebys Center for Chemical Genomics at ... |
Continued here:
'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases - Science Daily
Multipotent vs. pluripotent stem cells – Pathology Student
By LizaAVILA
Q. Im in doubt regarding myelodysplasia is it multipotent or pluripotent?
A. Thats a great question because it lets us talk about hematopathology (yay!) and also stem cells (which can be confusing unless someone explains some simple stuff).
What is a stem cell? First, lets talk about stem cells. The thing that makes a stem cell a stem cell, at least in my mind, is the ability to self-renew. This means that the stem cell can either divide into two daughter cells which will mature into grown up cells, or (and more commonly) it can give rise to two cells: one that will become a mature cell, and another which retains the capacity to divide again. Its called asymmetric division: instead of giving rise to two of the same cells, you get one regular cell and another stem cell (which can continue this cycle of replication for a long long time).
(Virtually) limitless replication Most cells have a limited number of times that they can divide. This is because the telomeres (little protective DNA sequences) on the end of the chromosomes get a little shorter every time the DNA replicates and eventually they are so short that they cant protect the DNA and the cell is unable to divide. Stem cells and cancer cells have an enzyme called telomerase that replenishes the telomeres, keeping them nice and long so the cell can keep on dividing. Stem cells do eventually die so technically, there are a limited number of cell divisionsbut its a really, really big number. Cancer cells, on the other hand, are often totally immortal they can just keep on dividing and dividing.
Totipotent Another cool thing about stem cells is that they can give rise to many different kinds of cells. Heres where things can get murky. There are stem cells in an embryo which are able to give rise to any of the cell types in the body: hepatocytes, epithelial cells, neurons, cardiac muscle cellseverything. This makes sense: if youre going to grow into a human, you have to have cells that give rise to all the necessary cell types. These stem cells are called totipotent or pluripotent stem cells. Theres a slight difference between the two words: totipotent means that the stem cell can give rise to any and all human tissue cells and it can even give rise to an entire functional human. The only totipotent cells in human development are the fertilized egg and the cells in the next few cell divisions.
Pluripotent After those few cell divisions, the cells become pluripotent. Pluripotent cells are similar to totipotent cells in that they can give rise to any and all human tissue cells. Theyre different, though, because they are not capable of giving rise to an entire organism. On day four of development, the tiny little embryo forms two layers: one that will become the placenta and the other that will become the baby. The cells that will become the baby can give rise to any human tissue type (obviously) but those cells alone cant give rise to the entire organism (because you cant form the baby without the placenta). Slight difference but enough to make a separate term.
Multipotent Another term you should know is multipotent. Multipotent stem cells cannot give rise to any old cell in the body they are restricted to a limited range of cell types. For example, there are multipotent stem cells in the bone marrow that can give rise to red cells, white cells and platelets. They cant give rise to hepatocytes, or any other cell type, though so they are not totipotent or pluripotent.
There are lots of multipotent stem cells in the adult human body. They reside in the bone marrow, skin, muscle, GI tract, endothelium, and mesenchymal tissues. This means that there is a nice source for replacing cells that have died or been sloughed away.
What about myelodsyplasia? So back to your question. Myelodysplasia is a hematopoietic disorder in which cells in the bone marrow grow funny (dysplasia) they might be binucleate, or not have the normal number of granules, or whatever. In addition, some cases have an increase in blasts in the bone marrow but not over 20%, or youd call it an acute leukemia. Some cases transform, eventually, into an acute myeloid leukemia; others just stay the way they are and dont become nasty.
Check out the image above, from a case of myelodysplasia. There is a bizarre, multinucleated erythroblast at 11 oclock (this is called dyserythropoiesis, or disordered red cell growth). There are also two messed-up neutrophils (dysgranulopoiesis) at 4 oclock and 10 oclock the one at 4 oclock has only two nuclear lobes, and both are hypogranular (not enough specific granulation). Theres also an increase in blasts, if this field is representative: theres one in the middle and (probably) one at 5 oclock.
This disorder (actually, its a group of disorders) involves stem cells in the bone marrow. Sometimes only one cell line is involved (red cells, say); other times all three cell lines are involved (red cells, white cells and platelets). Either way, the disorder involves a stem cell, and since the stem cells in the bone marrow are multipotent, it would be correct to say that myelodysplasia is a disorder of multipotent stem cells in the bone marrow. Its kind of redundant, though, because as far as we know, there arent any other kind of stem cells in the bone marrow! But at least you know the answer to your question now.
Read the original post:
Multipotent vs. pluripotent stem cells - Pathology Student