Osiris Bolsters its Stem Cell Intellectual Property Estate
By Dr. Matthew Watson
COLUMBIA, Md.--(BUSINESS WIRE)--
Osiris Therapeutics, Inc. (OSIR), announced today the expansion of its intellectual property protection around Prochymal (remestemcel-L). The United States Patent and Trademark Office recently granted Osiris two patents that cover multiple mechanisms of action related to cardiac tissue repair. Additionally, Osiris has enhanced its mesenchymal stem cell (MSC) patent estate with the issuance of patents across Europe and Australia covering stem cells expressing all therapeutically useful levels of cell surface receptors for TNF-alpha, a receptor essential to the cell's ability to counteract inflammation. These patents further support Osiris' considerable intellectual property position, which includes 48 issued U.S. patents around the production, composition, testing and use of the mesenchymal stem cell from both allogeneic and autologous sources.
"These recent additions to Osiris patent estate, combined with the existing broad coverage of our pioneering MSC platform technology, reinforce our industry leading IP portfolio and bolster our dominant position regarding the manufacture and use of mesenchymal stem cells for the treatment of a broad range of diseases, said Chris Alder, Chief Intellectual Property Counsel of Osiris. We have invested significant time and resources building our intellectual property estate, and with the commercialization of Prochymal, we are preparing to take the necessary action to enforce our considerable rights.
Prochymal is now approved in Canada and New Zealand, and is currently available in seven other countries including the United States under an Expanded Access Program. With Prochymal (remestemcel-L) entering commerce, Osiris has initiated the process of identifying entities that may be infringing upon its intellectual property rights and will take appropriate action as necessary.
About Prochymal (remestemcel-L)
Prochymal is the worlds first approved drug with a stem cell as its active ingredient. Developed by Osiris Therapeutics, Prochymal is an intravenous formulation of MSCs, which are derived from the bone marrow of healthy adult donors between the ages of 18 and 30 years. The MSCs are selected from the bone marrow and grown in culture so that up to 10,000 doses of Prochymal can be produced from a single donor. Prochymal is truly an off-the-shelf stem cell product that is stored frozen at the point-of-care and infused through a simple intravenous line without the need to type or immunosuppress the recipient. Prochymal is approved in Canada and New Zealand for the management of acute graft-versus-host disease (GvHD) in children and is available for adults and children in eight countries including the United States, under an Expanded Access Program. Prochymal is currently in a Phase 3 trial for refractory Crohns disease and is also being evaluated in clinical trials for the treatment of myocardial infarction (heart attack) and type 1 diabetes.
About Osiris Therapeutics
Osiris Therapeutics, Inc. is the leading stem cell company, having developed the worlds first approved stem cell drug, Prochymal. The company is focused on developing and marketing products to treat medical conditions in inflammatory, cardiovascular, orthopedic and wound healing markets. In Biosurgery, Osiris currently markets Grafix for burns and chronic wounds, and Ovation for orthopedic applications. Osiris is a fully integrated company with capabilities in research, development, manufacturing and distribution of stem cell products. Osiris has developed an extensive intellectual property portfolio to protect the company's technology, including 48 U.S. and 144 foreign patents.
Osiris, Prochymal, Grafix and Ovation are registered trademarks of Osiris Therapeutics, Inc. More information can be found on the company's website, http://www.Osiris.com. (OSIRG)
Forward-Looking Statements
See original here:
Osiris Bolsters its Stem Cell Intellectual Property Estate
Successful transplant of patient-derived stem cells into mice with muscular dystrophy
By JoanneRUSSELL25
ScienceDaily (June 27, 2012) Stem cells from patients with a rare form of muscular dystrophy have been successfully transplanted into mice affected by the same form of dystrophy, according to a new study published June 27 in Science Translational Medicine.
For the first time, scientists have turned muscular dystrophy patients' fibroblast cells (common cells found in connective tissue) into stem cells and then differentiated them into muscle precursor cells. The muscle cells were then genetically modified and transplanted into mice.
The new technique, which was initially developed at the San Raffaele Scientific Institute of Milan and completed at UCL, could be used in the future for treating patients with limb-girdle muscular dystrophy (a rare form in which the shoulders and hips are primarily affected) and, possibly, other forms of muscular dystrophies.
Muscular dystrophies are genetic disorders primarily affecting skeletal muscle that result in greatly impaired mobility and, in severe cases, respiratory and cardiac dysfunction. There is no effective treatment, although several new approaches are entering clinical testing including cell therapy.
In this study, scientists focused on genetically modifying a type of cell called a mesoangioblast, which is derived from blood vessels and has been shown in previous studies to have potential in treating muscular dystrophy. However, the authors found that they could not get a sufficient number of mesoangioblasts from patients with limb-girdle muscular dystrophy because the muscles of the patients were depleted of these cells.
Instead, scientists in this study "reprogrammed" adult cells from patients with limb-girdle muscular dystrophy into stem cells and were able to induce them to differentiate into mesoangioblast-like cells. After these 'progenitor' cells were genetically corrected using a viral vector, they were injected into mice with muscular dystrophy, where they homed-in on damaged muscle fibres.
The researchers also showed that when the same muscle progenitor cells were derived from mice the transplanted cells strengthened damaged muscle and enabled the dystrophic mice to run for longer on a treadmill than dystrophic mice that did not receive the cells.
Dr Francesco Saverio Tedesco, UCL Cell & Developmental Biology, who led the study, said: "This is a major proof of concept study. We have shown that we can bypass the limited amount of patients' muscle stem cells using induced pluripotent stem cells and then produce unlimited numbers of genetically corrected progenitor cells.
"This technique may be useful in the future for treating limb-girdle muscular dystrophy and perhaps other forms of muscular dystrophy."
Professor Giulio Cossu, another UCL author, said: "This procedure is very promising, but it will need to be strenuously validated before it can be translated into a clinical setting, also considering that clinical safety for these "reprogrammed" stem cells has not yet been demonstrated for any disease."
Read the original here:
Successful transplant of patient-derived stem cells into mice with muscular dystrophy
Bioheart's Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem …
By JoanneRUSSELL25
SUNRISE, Fla., June 25, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (BHRT.OB) announced today that Kristin Comella, the company's Chief Science Officer presented at the 10th Annual Meeting of the International Society for Stem Cell Research (ISSCR) in Yokohama, Japan June 13 - 16, 2012. One of the world's premier stem cell research events, the ISSCR format includes international research and poster presentations from invited speakers, exceptional peer-to-peer learning and unparalleled networking opportunities.
Comella presented a poster on clinical applications of adipose or fat derived stem cells (ADSCs).
The ISSCR annual meeting serves as the largest forum for stem cell and regenerative medicine professionals from around the world. Through lectures, symposia, workshops, and events attendees experience innovative stem cell and regenerative medicine research, advances and what's on the horizon. The meeting features more than 1,000 abstracts, nearly 150 speakers and provides numerous networking and professional development opportunities and social events. For additional information, visit http://www.isscr.org.
Kristin Comella has over 14 years experience in corporate entities with expertise in regenerative medicine, training and education, research, product development and senior management including more than 10 years of cell culturing experience. She has made a significant contribution to Bioheart's product development, manufacturing and quality systems since she joined the company in September 2004.
About Bioheart, Inc.
Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.
Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com, or visit us on Facebook: Bioheart and Twitter @BioheartInc.
Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.
Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.
The Company is subject to the risks and uncertainties described in its filings with the Securities and Exchange Commission, including the section entitled "Risk Factors" in its Annual Report on Form 10-K for the year ended December 31, 2011, and its Quarterly Report on Form 10-Q for the quarter ended March 30, 2012.
Continued here:
Bioheart's Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem ...
Romberg Test/ Cardiac Pacemaker Removal?/Finding Love in Life/Stem Cell Treatment – Video
By Sykes24Tracey
23-06-2012 01:57 I have become so worried about my health because without health I will never get to experience the happiness of falling in love. I now do a Roberg test after every gym workout along with a couple of other tests. I also found out my cousin may be having his pacemaker removed from his heart because there is a surgery to correct his heart without the need for this implanted machine. He has had a pacemaker since his early 20s. It is a possibility I could have what my cousin has and that could possibly explain some of my symptoms. I do feel many doctors in Colombia will do a better job at diagnosing and treating someone with my symptoms. I am seriously considering going for examinations in Colombia and may even seek out treatment there or in another country. I do believe a radical and aggressive approach to both my physical and mental health will definitely enable me to find love in life and make massive amount of friends to share my activities with. I get so jealous of seeing guys in the gym with their girlfriend and friends. I just want to be happy and loved. I basically believe I can still be salvaged!
Continue reading here:
Romberg Test/ Cardiac Pacemaker Removal?/Finding Love in Life/Stem Cell Treatment - Video
'Master molecule' may improve stem cell treatment of heart attacks
By Dr. Matthew Watson
ScienceDaily (June 20, 2012) Johns Hopkins researchers have discovered that a single protein molecule may hold the key to turning cardiac stem cells into blood vessels or muscle tissue, a finding that may lead to better ways to treat heart attack patients.
Human heart tissue does not heal well after a heart attack, instead forming debilitating scars. However, for reasons not completely understood, stem cells can assist in this repair process by turning into the cells that make up healthy heart tissue, including heart muscle and blood vessels. Recently, doctors elsewhere have reported promising early results in the use of cardiac stem cells to curb the formation of unhealthy scar tissue after a heart attack. But the discovery of a "master molecule" that guides the destiny of these stem cells could result in even more effective treatments for heart patients, the Johns Hopkins researchers say.
In a study published in the June 5 online edition of journal Science Signaling, the team reported that tinkering with a protein molecule called p190RhoGAP shaped the development of cardiac stem cells, prodding them to become the building blocks for either blood vessels or heart muscle. The team members said that by altering levels of this protein, they were able to affect the future of these stem cells.
"In biology, finding a central regulator like this is like finding a pot of gold," said Andre Levchenko, a biomedical engineering professor and member of the Johns Hopkins Institute for Cell Engineering, who supervised the research effort.
The lead author of the journal article, Kshitiz, a postdoctoral fellow who uses only his first name, said, "Our findings greatly enhance our understanding of stem cell biology and suggest innovative new ways to control the behavior of cardiac stem cells before and after they are transplanted into a patient. This discovery could significantly change the way stem cell therapy is administered in heart patients."
Earlier this year, a medical team at Cedars-Sinai Medical Center in Los Angeles reported initial success in reducing scar tissue in heart attack patients after harvesting some of the patient's own cardiac stem cells, growing more of these cells in a lab and transfusing them back into the patient. Using the stem cells from the patient's own heart prevented the rejection problems that often occur when tissue is transplanted from another person.
Levchenko's team has been trying to figure out what, at the molecular level, causes the stem cells to change into helpful heart tissue. If they could solve this mystery, the researchers hoped the cardiac stem cell technique used by the Los Angeles doctors could be altered to yield even better results.
During their research, the Johns Hopkins team members wondered whether changing the surface on which the harvested stem cells grew would affect the cells' development. The researchers were surprised to find that growing the cells on a surface whose rigidity resembled that of heart tissue caused the stem cells to grow faster and to form blood vessels. This cell population boom had occurred far less often in the stem cells grown in the glass or plastic dishes typically used in biology labs. This result also suggested why formation of cardiac scar tissue, a structure with very different rigidity, can inhibit stem cells naturally residing there from regenerating the heart.
Looking further into this stem cell differentiation, the Johns Hopkins researchers found that the increased cell growth occurred when there was a decrease in the presence of the protein p190RhoGAP. "It was the kind of master regulator of this process," Levchenko said. "And an even bigger surprise was that if we directly forced this molecule to disappear, we no longer needed the special heart-matched surfaces. When the master regulator was missing, the stem cells started to form blood vessels, even on glass."
A final surprise occurred when the team decided to increase the presence of p190RhoGAP, instead of making it disappear. "The stem cells started to turn into cardiac muscle tissue, instead of blood vessels," Levchenko said. "This told us that this amazing molecule was the master regulator not only of the blood vessel development, but that it also determined whether cardiac muscles and blood vessels would develop from the same cells, even though these types of tissue are quite different."
Read the original:
'Master molecule' may improve stem cell treatment of heart attacks
Next Generation: The Heart Camera
By LizaAVILA
A new camera system allows researchers to measure multiple cardiac signals at once to understand how they interact to control heart function.
THE DEVICE: A complex interplay of signals governs the hearts rhythm. Voltage changes and calcium flux are both important in controlling heart muscle function, with each signal influencing the others dynamics. Scientists at the University of Oxford have created a single camera system that can capture the dynamics of these signals simultaneously, yielding important insight into their relationship.
Peter Lee and colleagues combined several colors of light emitting diodes (LEDs) with a multi-band emission filter so that one very high speed camera could capture the different wavelengths of light emitted by various fluorescent dyes. By using different colors of LEDs, they were able to stimulate different dyes to measure changes in calcium and voltage across cardiac tissue or single layers of human cardiomyocytes (created from induced pluripotent stem cells).
WHATS NEW:The new setup took advantage of advances in lighting technology, explained Lee. While many older systems used xenon lamps, LEDs are cheap, cover the spectrum from infrared to ultraviolet, and reach peak intensity almost immediatelyallowing for ultra-rapid switching between excitation colors. Many previous systems also relied on a moving wheel to switch between colors, and thus measure different signals, explained Guy Salama, who researches cardiac arrhythmias at the University of Pittsburgh, but was not involved in the new cameras development. The wheels needed to move uniformly without wobbling, which would throw off its precision measurements, said Salama, and meant that each parameter had to be recorded for exactly the same amount of time. But Lees system, which uses electronics to control the length of time each LED shines, allows for different excitation times for each parameter of interestwhich is important as not all physiological changes happen on the same time scale, said Salama. Lees system has also jettisoned the need for moving parts, which can require careful alignment.
Single camera and LED system. Peter Lee
IMPORTANCE: Because calcium and voltage changes interact to control cardiac function, and perturbations in either leading to dysfunctions like arrhythmia, Lees camera system provides researchers with a tool to further investigate the interaction between the two signals, and thus gain a deeper understanding of cardiac function.
Using a single camera with multiple emission filters also allowed Lee and his collaborators to measure calcium properly, Lee explained. Many previous experiments used high-affinity calcium dyes, which bound strongly but could perturb the signal. The strong LEDs allowed for weaker-binding dyes, and ratiometric calcium measurement, meaning the dyes display shifts in emission wavelength upon binding calcium. Researchers can then quantify the concentration of calcium based on the light emissions they detect and calcium flux simultaneously.
Additionally, explained Lee, the simplicity of the system makes it more easily scalable. LEDs are cheap and perform well, and the lack of moving parts makes setup much easier than multi-camera systems that need careful calibration.
NEEDS IMPROVEMENT: As appealingly simple as a one-camera setup is, a single camera and multiple light sources can also introduce new hurdles, explained Salama. Because one camera is being used to capture multiple parameters, this cuts down on the number of image frames that can be devoted to each signal, noted Salama. For example, if a camera is running at 1,000 frames per second, but imaging four signals, only 250 of those frames would capture each parameter.
Salama also feared that lining up the LEDs and camera might result in the different light sources hitting the cardiac tissue at different angles, and bouncing off at different angles, making it difficult for the camera to capture them all. When visualizing the voltage and calcium propagations over a single layer of cells, scientists need to make sure the emissions theyre comparing are coming from the same locationso they arent trying to match voltage changes in one set of cells with calcium fluxes in another. When imaging microscopic-scale changes, Lee works around this problem by merging the lights into one path and using an optical fiber to direct all the colors to one site.
More here:
Next Generation: The Heart Camera
Stem cells tested for heart attack repair
By LizaAVILA
Cookies are small data files which are sent to your browser (Internet Explorer, Firefox, Chrome etc) from a website you visit. They are stored on your electronic device.
This is a type of cookie which is collected by Adobe Flash media player (it is also called a Local Shared Object) - a piece of software you may already have on your electronic device to help you watch online videos and listen to podcasts.
Yes there are a number of options available, you can set your browser either to reject all cookies, to allow only "trusted" sites to set them, or to only accept them from the site you are currently on.
However, please note - if you block/delete all cookies, some features of our websites, such as remembering your login details, or the site branding for your local newspaper may not function as a result.
The types of cookies we, our ad network and technology partners use are listed below:
A tool used by some of our advertisers to target adverts to you based on pages you have visited in the past. To opt out of this type of targeting you can visit the 'Your Online Choices' website by clicking here.
Our sites contain advertising from Google; these use cookies to ensure you get adverts relevant to you. You can tailor the type of ads you receive by visiting here or to opt out of this type of targeting you can visit the 'Your Online Choices' website by clicking here.
This is used to help us identify unique visitors to our websites. This data is anonymous and we cannot use this to uniquely identify individuals and their usage of the sites.
This comes from our ad serving technology and is used to track how many times you have seen a particular ad on our sites, so that you don't just see one advert but an even spread. This information is not used by us for any other type of audience recording or monitoring.
ComScore monitor and externally verify our site traffic data for use within the advertising industry. Any data collected is anonymous statistical data and cannot be traced back to an individual.
See the original post here:
Stem cells tested for heart attack repair
New Method Turns Embryonic/Induced Pluripotent Stem Cells into Cardiac Muscle Cells
By daniellenierenberg
This finding can help researchers model diseases in the lab, and allow these diseases to be studied
Researchers from the University of Wisconsin-Madison have found a way to turn both embryonic and induced pluripotent stem cells into cardiomyocytes.
Sean Palecek, study leader and professor of chemical and biological engineering at the University of Wisconsin-Madison, along with Timothy Kamp, professor of cardiology at UW School of Medicine and Public Health, and Xiaojun Lian, a UW graduate student, have developed a technique for abundant cardiomyocyte production, which will allow scientists to better understand and treat diseases.
Cardiomyocytes are important cells that make up the beating heart. These cells are extremely difficult to obtain, especially in large quantities, because they only survive for a short period of time when retrieved from the human heart.
But now, the UW researchers have found an inexpensive method for developing an abundance of cardiomyocytes in the laboratory. This finding can help researchers model diseases in the lab, and allow these diseases to be studied. Researchers will also be able to tests drugs that could help fight these diseases, such as heart disease.
"Many forms of heart disease are due to the loss or death of functioning cardiomyocytes, so strategies to replace heart cells in the diseased heart continue to be of interest, said Kamp. "For example, in a large heart attack up to 1 billion cardiomyocytes die. The heart has a limited ability to repair itself, so being able to supply large numbers of potentially patient-matched cardiomyocytes could help."
The UW research team found that changing a signaling pathway called Wnt can help guide stem cell differentiation to cardiomyocytes. They just turned the Wnt pathway on and off at different times using two small molecule chemicals.
"Our protocol is more efficient and robust," said Palecek. "We have been able to reliably generate greater than 80 percent cardiomyocytes in the final population while other methods produce about 30 percent cardiomyocytes with high batch-to-batch variability.
"The biggest advantage of our method is that it uses small molecule chemicals to regulate biological signals. It is completely defined, and therefore more reproducible. And the small molecules are much less expensive than protein growth factors."
This study was published in the journal Proceedings of the National Academy of Sciences.
See the rest here:
New Method Turns Embryonic/Induced Pluripotent Stem Cells into Cardiac Muscle Cells
Heart Damage Repaired By Reprogramming Resident Fibroblasts into Functioning Heart Cells
By LizaAVILA
LAGUNA HILLS, Calif., May 29, 2012 /PRNewswire/ --LoneStar Heart Inc., today announced the advancement of a new therapeutic strategy aimed at genetic reprogramming of cardiac fibroblasts into functioning heart muscle cells to treat damage following a heart attack and other forms of heart disease. The announcement follows a study conducted by researchers at the University of Texas Southwestern Medical Center (UT Southwestern), published in the on-line May 13th issue of the journal Nature, demonstrating feasibility of the approach. The company has acquired exclusive worldwide rights to the new technology.
The adult human heart has almost no regenerative capacity. Instead of rebuilding muscle tissue after a heart attack, or myocardial infarction, the injured human heart forms fibrous, non-contractile scar tissue lacking muscle or blood vessels. Fibroblasts account for a majority of cells in the heart and are activated following injury to form this fibrotic scar tissue. Fibrosis impedes regeneration of cardiac muscle cells, and contributes to loss of contractile function, ultimately leading to heart failure and death. Therapeutic strategies to promote new muscle formation, while limiting fibrosis, represent an attractive approach for heart repair.
As reported in Nature, Eric N. Olson, Ph.D., and colleagues from UT Southwestern show that four gene-regulatory proteins GATA4, HAND2, MEF2C, and TBX5 (GHMT) can convert cardiac fibroblasts into beating cardiac-like muscle cells. Introduction of these proteins into proliferating fibroblasts in mice reprograms them into functional cardiac-like myocytes, improving cardiac function and reducing fibrosis and adverse remodeling of the heart following myocardial infarction. Using cell lineage-tracing techniques, the investigators conclude that newly formed cardiac-like muscle cells in GHMT-treated hearts arose from pre-existing cardiac fibroblasts. Cardiac imaging studies confirmed the new technique promoted a dramatic increase in cardiac function that was sustained for at least three months following myocardial infarction.
"These studies establish proof-of-concept for in vivo cellular reprogramming as a new approach for heart repair," said Dr. Olson, professor and chair of molecular biology at UT Southwestern, and a co-founder of LoneStar Heart. "However, much work remains to be done to determine if this strategy might eventually be effective in humans. We are working hard toward that goal."
The new reprogramming strategy may provide a novel means of improving cardiac function following injury, bypassing many of the obstacles associated with cellular transplantation. Prior work by Dr. Olson's group and others has shown that GHMT proteins fulfill similar roles in cardiac gene regulation in a wide range of organisms, including humans, highlighting the potential of these proteins to augment function of the injured human heart. While cellular replacement strategies via the introduction of stem cells or other cell types into injured hearts have shown promise, there have been numerous technical and biological hurdles associated with such approaches.
About LoneStar Heart, Inc.LoneStar Heart, Inc. is developing cardiac restorative therapies for patients with heart failure that stimulate the heart's ability to repair itself. Based on its integrated cardiomechanical and biomolecular technologies, the privately held company is advancing a broad portfolio of products to restore the failing heart's structure and function in collaboration with the Texas Heart Institute, UT Southwestern, and a global network of leading clinicians. These products include Algisyl-LVR,cardiac stem-cell modulators, and cellular and genetic therapies delivered as stand-alone treatments, or in combination with the company's biopolymer matrix system.
LoneStar Heart's lead product, Algisyl-LVR, is a single-use, self-gelling biopolymer implanted into the heart's left ventricle during surgery. Providing internal tissue support, Algisyl-LVR is aimed at preventing the progression of heart failure and restoring the heart's normal structure and function with a significant improvement in the patient's quality of life. Classified as a medical device, the product is undergoing a randomized controlled clinical study (AUGMENT-HF) in Europe to evaluate its safety and efficacy in patients with advanced heart failure.
About UT Southwestern Medical CenterUT Southwestern Medical Center, one of the premier medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. Its faculty has many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,600, the faculty is responsible for groundbreaking medical advances and is committed to quickly translating science-driven research to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to more than 100,000 hospitalized patients, and oversee nearly 2 million outpatient visits a year.
Physicians care for patients in the Dallas-based UT Southwestern Medical Center; in Parkland Health & Hospital System, which is staffed primarily by UT Southwestern physicians; and in its affiliated hospitals, Children's Medical Center Dallas, Texas Scottish Rite Hospital for Children and the VA North Texas Health Care System. UT Southwestern programs are offered in Waco, Wichita Falls, Plano/Frisco and Fort Worth. Three degree-granting institutions UT Southwestern Medical School, UT Southwestern Graduate School of Biomedical Sciences and UT Southwestern School of Health Professions train nearly 4,600 students, residents and fellows each year. UT Southwestern researchers undertake more than 3,500 research projects annually, totaling more than $417 million.
Dr. Olson holds the Pogue Distinguished Chair in Research on Cardiac Birth Defects, the Robert A. Welch Distinguished Chair in Science, and the Annie and Willie Nelson Professorship in Stem Cell Research at UT Southwestern.
Read this article:
Heart Damage Repaired By Reprogramming Resident Fibroblasts into Functioning Heart Cells
Stemedica Stem Cells Approved for Clinical Trials in Mexico for Chronic Heart Failure
By NEVAGiles23
SAN DIEGO, May 29, 2012 (GLOBE NEWSWIRE) -- via PRWEB - Stemedica Cell Technologies, Inc. announced today that its strategic partner in Mexico, Grupo Angeles Health Services, has received approval from Mexico's regulatory agency, COFEPRIS, for a Phase I/II single-blind randomized clinical trial for chronic heart failure. COFEPRIS is the Mexican equivalent of the United States FDA. The clinical trial, to be conducted at multiple hospital sites throughout Mexico, will utilize Stemedica's adult allogeneic ischemia tolerant mesenchymal stem cells (itMSC) delivered via intravenous infusion. The trial will involve three safety cohorts at different dosages, followed by a larger group being treated with the maximum safe dosage. The COFEPRIS approval is the second approval for the use of Stemedica's itMSCs. COFEPRIS approved Stemedica's itMSCs in 2010 for a clinical trial for ischemic stroke. These two trials are the only allogeneic stem cell studies approved by COFEPRIS.
Grupo Angeles is a Mexican company that is 100% integrated into the national healthcare development effort. The company is comprised of 24 state-of-the-art hospitals totaling more than 2,000 beds and 200 operating rooms. Eleven thousand Groupo Angeles physicians annually treat nearly five million patients a year. Of these, more than two million are seen as in-patients. In just over two decades, Groupo Angeles has radically transformed the practice of private medicine in Mexico and contributed decisively to reform in the country's health system. Grupo Angeles hospitals conduct an estimated 100 clinical trials annually, primarily with major global pharmaceutical and medical device companies.
"We are pleased that we will be working with the largest and most prestigious private medical institution in Mexico to study Stemedica's product for this indication. If successful, our stem cells may provide a treatment option for the millions of patients, both in Mexico and internationally, who suffer from this condition," said Maynard Howe, PhD, CEO of Stemedica Cell Technologies, Inc.
Roberto Simon, MD, CEO of Grupo Angeles Health Services, noted, "We are proud to be the first organization to bring regulatory-approved allogeneic stem cell treatment to the people of Mexico. We envision that this type of treatment may well become a standard for improving cardiac status for chronic heart failure patients and are pleased to be partnering with Stemedica, one of the leading companies in the field of regenerative medicine."
Nikolai Tankovich, MD, PhD, President and Chief Medical Officer of Stemedica commented, "For the more than five million North Americans who suffer from chronic heart failure, this is an important trial. Our ischemia tolerant mesenchymal stem cells hold the potential to improve ejection fraction--the amount of blood pumped with each heart beat--and therefore, dramatically improve quality of life."
For more information about Stemedica please contact Dave McGuigan at dmcguigan(at)stemedica(dot)com. For more information about Grupo Angeles and the chronic heart failure trial please contact Paulo Yberri at pyberri(at)angelesehealth(dot)com.
About Stemedica Cell Technologies, Inc. Stemedica Cell Technologies, Inc.(http://www.stemedica.com) is a specialty bio-pharmaceutical company committed to the manufacturing and development of best-in-class allogeneic adult stem cells and stem cell factors for use by approved research institutions and hospitals for pre-clinical and clinical (human) trials. The company is a government licensed manufacturer of clinical grade stem cells and is approved by the FDA for its clinical trials for ischemic stroke. Stemedica is currently developing regulatory pathways for a number of medical indications using adult allogeneic stem cells. The Company is headquartered in San Diego, California.
This article was originally distributed on PRWeb. For the original version including any supplementary images or video, visit http://www.prweb.com/releases/stemedica-clinical-trial/chronic-heart-failure/prweb9550806.htm
Original post:
Stemedica Stem Cells Approved for Clinical Trials in Mexico for Chronic Heart Failure
Israeli Scientists Reprogram Skin Cells into Beating Heart Tissue: Stem Cell Research Pays Off – Video
By raymumme
24-05-2012 09:53 For the first time ever, scientists have transformed normal skin cells into healthy beating heart tissue. Researchers based in Haifa in Israel, say they hope that the breakthrough will one day lead to new treatments for patients suffering from heart failure. Head of Research Professor Lior Gepstein "We were able to demonstrate the ability to take skin cells from very sick patients with significant heart failure, heart disease, and show that cells, skin cells from these patients can be eventually differentiated to become healthy heart cells in the dish. So one can take skin cells from a very sick individual, who has very sick heart cells, to reprogram them to become induced pluripotent stem cells and then make heart cells that are healthy, that are young and resemble heart cells at the day that the patient was born." At the moment, people with severe heart failure have to rely on mechanical devices or hope for a transplant. However, by studying stem cells from various sources for more than a decade, researchers are hoping to capitalise on their ability to transform stem cells into a wide variety of other kinds of cell. Head of Research Professor Lior Gepstein "These cells can be transplanted into hearts of animals, survive and function in synchrony with existing heart tissue. This study open the road, hopefully, to future clinical trials, in a decade or so, that will test the ability of such heart cells to repair the patient's own heart," There may be a lot to do before ...
State awards stem cell grants to medical researchers
By JoanneRUSSELL25
SACRAMENTO California's stem cell agency today approved two grants to UC Davis Health System researchers for their innovative work in regenerative medicine.
Kyriacos A. Athanasiou, distinguished professor of orthopaedic surgery and professor and chair of biomedical engineering, and the Child Family Professor of Engineering at UC Davis, is investigating the use of skin-derived stem cells to heal cartilage injuries and debilitating conditions of the knee such as osteoarthritis.
W. Douglas Boyd, professor of surgery, plans to further refine a novel approach to treating cardiovascular injuries suffered during a heart attack by using stem cells and a tissue-like scaffold to repair cardiac damage.
The pair received individual grants totaling approximately $6.6 million from the California Institute for Regenerative Medicine's (CIRM) governing board.
Athanasiou's and Boyd's multi-year grants were among the proposals submitted to CIRM for its third round of Early Translational Awards, which are intended to enable clinical therapies to be developed more rapidly.
"Both of these scientists are conducting exciting research that could have far-reaching implications in health care," said Jan Nolta, director of the UC Davis Institute for Regenerative Cures and the university's stem cell program director. "Dr. Athanasiou is bioengineering new cartilage that could have the same physiological integrity as the cartilage a person is born with. Dr. Boyd is developing a treatment that uses a paper-thin patch embedded with stem cells to harness their regenerative powers to repair damaged heart muscle."
Boyd, who's a pioneering cardiothoracic surgeon, pointed out in his CIRM proposal that heart disease is the nation's number-one cause of death and disability. An estimated 16.3 million Americans over the age of 20 suffer from coronary heart disease, which in 2007 accounted for an estimated 1 in 6 deaths in the U.S. Boyd plans to use bone-marrow derived stem cells -- known as mesenchymal stem cells -- in combination with a bioengineered framework known as an extracellular matrix, to regenerate damaged heart tissue, block heart disease and restore cardiac function, something currently not possible except in cases of a complete and very invasive heart transplant.
An expert in biomedical engineering, Athanasiou is focusing on developing a cellular therapy using stem cells created from an individual's own skin -- known as autologous skin-derived stem cells -- which have shown great promise in animal models. He plans to use the new funding to conduct extensive toxicology and durability tests to determine the technique's long-term safety and efficacy. Such tests are among the many steps needed to advance toward human clinical trials.
Cartilage is the slippery tissue that covers the ends of bones in joints, allowing bones to glide over each other and absorbing the shock of movement. Cartilage defects from injuries and lifelong wear and tear can eventually degenerate into osteoarthritis. According to the National Institute of Arthritis and Musculoskeletal and Skin Diseases, osteoarthritis is the most common form of arthritis and affects an estimated 27 million Americans over the age of 25.
"For anyone suffering from osteoarthritis or other debilitating cartilage conditions, Dr. Athanasiou's goal of using stem cells to regenerate new tissue could have enormous quality-of-life and economic benefits," said Nolta, who is the recipient of a prior translational grant from CIRM to develop potential therapies for Huntington's disease . "Dr. Boyd's work is equally promising because he's using a bioengineered structure to encourage cardiac tissue repair, which could have important benefits in the treatment of heart disease."
See the article here:
State awards stem cell grants to medical researchers
How damaged hearts could be healed by growing stem cells
By LizaAVILA
By Jenny Hope
PUBLISHED: 18:09 EST, 22 May 2012 | UPDATED: 01:35 EST, 23 May 2012
Scientists claim they can rejuvenate broken hearts using skin cells that have been turned into heart muscle cells.
New research opens up the prospect of reprogramming cells taken from heart failure patients that would not be rejected by their bodies.
It is the first time that stem cells taken from the skin of elderly and diseased patients - who are most likely to need such treatment - have been transformed into heart cells.
New developments: The research opens up the prospect of reprogramming cells taken from heart failure patients that would not be rejected by their bodies
Previously skin cells taken from young and healthy people have been transformed into heart muscle cells.
But researchers from Israel warn that clinical trials could be a decade away, as more work in the laboratory and major investment are needed.
The research is the latest advance in stem cell therapy where the intention is to infused repair cells directly into the scarred heart muscle of patients suffering debilitating symptoms such as breathlessness and fatigue.
See original here:
How damaged hearts could be healed by growing stem cells
Cardio3 BioSciences Has Been Selected to Present C3BS-CQR-1 Trial Data in Late Breaking Clinical Trial Session at …
By LizaAVILA
MONT-SAINT-GUIBERT, Belgium, May 18, 2012 /PRNewswire/ --
The Belgian biotechnology company, Cardio3 BioSciences (C3BS), a leader in the discovery and development of regenerative and protective therapies for the treatment of cardiovascular diseases, today announces that the final results of its Phase II clinical trial of C3BS-CQR-1 is will be presented at the late breaking clinical trial session at the European Society of Cardiology 2012 Heart Failure Congress in Belgrade, Serbia taking place on May 19-22.
Andr Terzic, M.D., Ph.D, Director at Center of Regenerative Medicine, Mayo Clinic, the co-lead investigator on the trial, will present new final follow up data on the Company's stem cell therapy for heart failure, C3BS-CQR-1, which is based on "Cardiopoiesis" proprietary technology. The presentation will be held on Sunday, May 20th in Belgrade, Serbia.
Dr. Christian Homsy, CEO of Cardio3 BioSciences, said: "Being selected to present the final follow-up data in the late breaking clinical trial session at this prestigious cardiology congress highlights the quality of our technology and reiterates our belief in C3BS-CQR-1 as a potential treatment for patients with heart failure, a condition with a significant unmet medical need. We look forward to advancing the product into Phase III."
About Cardio3 BioSciences
Cardio3 BioSciences is a Belgian leading biotechnology company focused on the discovery and development of regenerative and protective therapies for the treatment of cardiac diseases. The company was founded in 2007 and is based in the Walloon region of Belgium. Cardio3 BioSciences leverages research collaborations in the US and in Europe with Mayo Clinic and the Cardiovascular Center Aalst, Belgium.
The Company's lead product candidate C3BS-CQR-1 is an innovative pharmaceutical product consisting of autologous cardiac progenitor stem cells. C3BS-CQR-1 is based on ground breaking research conducted at Mayo Clinic that allowed discovery of cardiopoiesis, a process to mimic in adult stem cells the natural signals triggered in the early stages of life during the cardiac tissue development. Cardio3 BioSciences has also developed C-Cath, the next-generation injection catheter with superior efficiency of delivery of bio therapeutic agents into the myocardium.
C3BS-CQR-1, C-Cure, C-Cath, Cardio3 BioSciences and the Cardio3 BioSciences and C-Cath logos are trademarks or registered trademarks of Cardio3 BioSciences SA, in Belgium, other countries, or both. Mayo Clinic holds equity in Cardio3 BioSciences as a result of intellectual property licensed to the company. In addition to historical facts or statements of current condition, this press release contains forward-looking statements, which reflect our current expectations and projections about future events, and involve certain known and unknown risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. These forward-looking statements are further qualified by important factors, which could cause actual results to differ materially from those in the forward-looking statements, including timely submission and approval of anticipated regulatory filings; the successful initiation and completion of required Phase III studies; additional clinical results validating the use of adult autologous stem cells to treat heart failure; satisfaction of regulatory and other requirements; and actions of regulatory bodies and other governmental authorities. As a result, of these factors investors and prospective investors are cautioned not to rely on any forward-looking statements. We disclaim any intention or obligation to update or review any forward-looking statement, whether as a result of new information, future events or otherwise.
For more information contact:
Cardio3 BioSciences: http://www.c3bs.com Dr Christian Homsy, CEOTel : +32-10-39-41-00 Anne Portzenheim, Communication Manager aportzenheim@c3bs.com
Go here to read the rest:
Cardio3 BioSciences Has Been Selected to Present C3BS-CQR-1 Trial Data in Late Breaking Clinical Trial Session at ...
Pluristem trial finds stem cells improve cardiac dysfunction
By daniellenierenberg
Pluristem Therapeutics Ltd. (Nasdaq:PSTI; DAX: PJT: PLTR) today reported that the cardiac function in a diabetic-induced diastolic dysfunction in animals improved following PLacental eXpanded (PLX cells) administration.
The study was conducted as part of the European Commission's Seventh Framework Program (FP7) in collaboration with Prof. Doctor Carsten Tschope and his staff at the Charite Universitaetsmedizin Berlin, Berlin-Bradenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.
Dr. Tschope said, "Currently, there are limited treatment options for diastolic dysfunction and even fewer options for diabetic induced diastolic dysfunction. This study holds promise that PLX cells might be able to inhibit diabetic induced diastolic dysfunction progression as well as possibly repair the existing damage, hypotheses that will be further explored in future studies."
Diabetes was induced in thirty-six mice resulting in the development of diastolic heart failure. After seven days, the animals received either PLX cells from two separate batches or placebo (12 subjects in each of the three groups). Ten mice were not treated (controls).
After three weeks, several cardiac parameters were assessed and found to be significantly improved following the treatment with PLX cells. Important measurements included the cardiac ejection fraction and the left ventricular (LV) relaxation time constant, believed to be the best index of LV diastolic function and a determination of the stiffness of the ventricle. Cardiac ejection fraction improved 19%, the left ventricular relaxation time constant fell 16% and stiffness of the ventricle fell 19%.
Administration of either batch of PLX cells also resulted in a significant anti-inflammatory effect.
Pluristem chairman and CEO Zami Alberman said, "As we demonstrated last week with the announcement that our cells successfully treated the seven year old patient suffering from aplastic bone marrow disease, our strategy is to develop a minimally invasive cell therapy solution that can be used to treat a wide range of life-threatening diseases. Our initial testing of a treatment for diastolic heart disease opens a new potential indication where our cells can be used and potentially positions Pluristem as a "first-line of defense" for diastolic dysfunction."
Pluristem's share price jumped 5.6% in pre-market trading on Nasdaq to $3.01, giving a market cap of $126.33 million. The share rose 10.6% on the TASE today to NIS 11.50.
Published by Globes [online], Israel business news - http://www.globes-online.com - on May 15, 2012
Copyright of Globes Publisher Itonut (1983) Ltd. 2012
The rest is here:
Pluristem trial finds stem cells improve cardiac dysfunction
Cardio3 BioSciences Announces CE Marking for its C-Cath® Injection Catheter
By Sykes24Tracey
MONT-SAINT-GUIBERT, Belgium, May 9, 2012 /PRNewswire/ --
The Belgian biotechnology company, Cardio3--BioSciences (C3BS), a leader in the discovery and development of regenerative and protective therapies for the treatment of cardiac diseases, today announces that it has received CE Marking (Conformit Europenne) for its intra-myocardial C-Cath Injection Catheter. The CE Mark certifies that C-Cath complies with applicable European health, safety and environmental protection legislation. C-Cath is now available for commercial use in the EU and many other countries where the CE mark allows commercialization.
The C-Cath Injection Catheter is the most advanced device of its kind and was designed to address three key requirements: ease of use, safety and efficacy. During its development Cardio3 BioSciences combined its extensive experience in stem cell therapies and specific knowledge of the properties of heart tissue with key insights from leading cardiologists in the field. C-Cath's performance is based on its unique needle design as well as unique catheter properties. Previously announced pre-clinical data from a head to head comparison with the 'best' injection catheter available until now showed a close to threefold increase in retention of stem cells within the heart muscle in favour of the CCath Injection Catheter. Within a clinical setting, an increased retention rate could allow an increase in efficacy while reducing side effects.-
Dr Christian Homsy,CEOof Cardio3-BioSciences comments on today's announcement: "Today marks an important milestone for Cardio3 BioSciences and our innovative C-Cath technology. With C-Cath, we developed an advanced injection catheter that meets the requirements of physicians and has the potential to deliver better outcomes for patients. C-Cath demonstrates our commitment to continued innovation in regenerative heart therapy. This is a major step forward in addressing the patient needs for regenerative therapies for the heart and provides physicians with new treatment options."
About Cardio3 BioSciences
Cardio3-BioSciences is a Belgian leading biotechnology company focused on the discovery and development of regenerative and protective therapies for the treatment of cardiac diseases. The company was founded in 2007 and is based in the Walloon region of Belgium. Cardio3-BioSciences leverages research collaborations in the US and in Europe with Mayo Clinic and the Cardiovascular Center Aalst, Belgium.
The Company's lead product candidate C3BS-CQR-1 is an innovative pharmaceutical product consisting of autologous cardiac progenitor stem cells. C3BS-CQR-1 is based on ground breaking research conducted at Mayo Clinic that allowed discovery of cardiopoiesis, a process to mimic in adult stem cells the natural signals triggered in the early stages of life during the cardiac tissue development. Cardio3-BioSciences has developed C-Cath, the next-generation injection catheter with superior efficiency of delivery of bio therapeutic agents into the myocardium.
C3BS-CQR-1, C-Cure, C-Cath, Cardio3 BioSciences and the Cardio3 BioSciences and C-Cath logos are trademarks or registered trademarks of Cardio3 BioSciences SA, in Belgium, other countries, or both. Mayo Clinic holds equity in Cardio3 BioSciences as a result of intellectual property licensed to the company. In addition to historical facts or statements of current condition, this press release contains forward-looking statements, which reflect our current expectations and projections about future events, and involve certain known and unknown risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. These forward-looking statements are further qualified by important factors, which could cause actual results to differ materially from those in the forward-looking statements, including timely submission and approval of anticipated regulatory filings; the successful initiation and completion of required Phase III studies; additional clinical results validating the use of adult autologous stem cells to treat heart failure; satisfaction of regulatory and other requirements; and actions of regulatory bodies and other governmental authorities. As a result, of these factors investors and prospective investors are cautioned not to rely on any forward-looking statements.We disclaim any intention or obligation to update or review any forward-looking statement, whether as a result of new information, future events or otherwise.
For more information contact:
Cardio3 BioSciences http://www.c3bs.com
Read this article:
Cardio3 BioSciences Announces CE Marking for its C-Cath® Injection Catheter
Biz Beat: Making stem cells "available to the masses"
By LizaAVILA
Mike Ivey writes on all matters money in the spirit of Capital Times founder William T. Evjue, who believed that the concentration of wealth in the U.S. is not healthy for the Democracy.
When UW-Madison's James Thomson in 1998 became the first scientist to grow human embryonic stem cells in a lab, it generated tremendous excitement about the medical possibilities.
Thomson tried to downplay the breakthrough but talk spread about cures for Alzheimers or Parkinsons disease, growing livers for cirrhosis suffers or producing healthy heart cells for cardiac patients.
The miracle cures have been slow in coming, however. Scientists can replicate healthy nerve cells in a Petri dish but havent found a way to replace defective spinal cells in ALS victims, for example.
In many ways, were still at the first steps,Anita Bhattacharyya, a senior scientist in the stem cell program at the UW's Waisman Center, told a business group Tuesday.
Butproducing stem cells for others to use is proving one of Madisons more promising new business ventures. Pharmaceutical companies in particular are using stem cells to test drugs before launching into expensive further testing.
Were making these cells available to the masses, says Chris Parker, chief technology officer at Cellular Dynamics International.
Launched by Thomson -- and backed with $100 million from a local investor group -- Cellular Dynamics International was lauded recently by MIT as one of the 50 most important companies in the world
Since its founding in 2005, the company now counts 107 employees at it offices in University Research Park and is continuing to grow.
Im hiring right now, Parker joked toa lunch crowd of the Wisconsin Technology Council Tuesday.
Read this article:
Biz Beat: Making stem cells "available to the masses"
Stanford Group Publishes Fluidigm-Based Method for Gene Expression Profiling of Single Stem Cells
By raymumme
By Ben Butkus
Stanford University researchers have published a method for using Fluidigm's digital PCR platform to conduct single-cell, real-time PCR to compare gene expression patterns of single cells.
The protocol is indicative of the increased use of Fluidigm's products for single-cell biology, an application area that the company has been heavily promoting over the past year.
In addition, the method may provide a powerful tool for understanding gene expression and differentiation in induced pluripotent stem cells and human embryonic stem cells for regenerative medicine, the researchers said.
In a paper published last week in Nature Protocols, researchers led by Joseph Wu, associate professor of medicine, cardiology, and radiology at Stanford University School of Medicine, described how they used Fluidigm's BioMark HD platform and Dynamic Array chips to analyze gene expression profiles of single iPSCs or hESCs approximately 11 hours after collection.
The team decided to publish the method after using it to conduct a study published last March in the Journal of Clinical Investigation that demonstrated how single-cell transcriptional profiling revealed heterogeneity in human iPSCs. "A lot of people asked us after that JCI paper how we exactly do this, so we decided to write a detailed protocol," Wu told PCR Insider.
Wu and colleagues began using Fluidigm's platform through the laboratory of fellow Stanford scientist Stephen Quake, a co-founder of the company and a co-author on the recent Nature Protocols paper.
According to Veronica Sanchez-Freire, a postdoc in Wu's lab and also a co-author on the paper, the group needed a tool to compare gene expression between individual cells in single colonies of iPSCs or hESCs with high sensitivity using a limiting amount of sample.
"We were interested in seeing how different gene expression could be in the cell depending on its position in the colony," Sanchez-Freire said. "We are looking at these iPS cells from different cell types and donors, and we always compare them to [human embryonic] stem cells, the gold standard but we also wanted to see how similar they are [to each other]."
Most traditional gene expression studies, using, for example, quantitative real-time PCR, extract RNA from a large population of cells for downstream expression analysis. "And we saw that when you do that, iPS cells and stem cells are very similar," Sanchez-Freire said. "But when you go to the single-cell level, we saw how the iPS cells are more heterogeneous than the ES cells."
Visit link:
Stanford Group Publishes Fluidigm-Based Method for Gene Expression Profiling of Single Stem Cells
Expert wants central bank for cord blood
By JoanneRUSSELL25
A nodal public stem-cell bank in India is the need of the hour if blood cancer and thalassaemia patients are to benefit from stem-cell therapy, according to an expert.
We need an indigenous inventory of 30,000 units of umbilical cord-blood stem-cells, which would enable seven out of 10 patients seeking stem-cell transplant to find a ready match off the shelves, said P. Srinivasan, a pioneer in public cord-blood banking in the country, addressing members of the Ladies Study Group of the Indian Chamber of Commerce on Friday.
Cord blood, also called placental blood, is the blood remaining in the umbilical cord and placenta following childbirth after the cord is cut, and is routinely discarded with the placenta and umbilical cord as biological waste.
A rich source of stem cells, cord blood can be used to treat over 80 diseases, including certain cancers like leukaemia, breast cancer, blood disorders like thalassaemia major and autoimmune disorders like lupus, multiple sclerosis, Crohns Disease and rheumatoid arthritis.
Early clinical studies suggest these can even help avert corneal degeneration and restore vision in cases of blindness, help restore proper cardiac function to heart attack sufferers and improve movement in patients with spinal cord injury.
Since stem-cell matching is highly ethnicity dependent, the chances of an Indian finding a perfect match in a foreign country is a lot less compared to a resource pool of locally-donated units, the former resource person for WHO, now the chairman and managing trustee of Jeevan Blood Bank and Research Centre in Chennai, added.
Even if someone finds a match abroad, the cost of shipping the bag of matching cord blood could be as high as $40,000, as against the Rs 30,000 required for processing and storing one unit indigenously.
Srinivasan felt reaching the critical mass of 30,000 cord-blood units wasnt a big deal, given the fact that 20 million babies are born in India every year.
Purnima Dutta, the president of Ladies Study Group, agreed that raising awareness on the need to donate umbilical cord blood was the key.
As women and responsible citizens, the onus is on us to spread the word and encourage young couples to come forward and donate cord blood to ensure we can achieve this desired public-bank inventory which can save valuable lives, she said.
Go here to see the original:
Expert wants central bank for cord blood
Research and Markets: Progenitor and Stem Cell Technologies and Therapies Reviews the Range Of Progenitor and Stem …
By Dr. Matthew Watson
DUBLIN--(BUSINESS WIRE)--Dublin - Research and Markets (http://www.researchandmarkets.com/research/2fee68d4/progenitor_and_ste) has announced the addition of Woodhead Publishing Ltd's new book "Progenitor and Stem Cell Technologies and Therapies" to their offering.
Progenitor and stem cell technologies and therapies
Progenitor and stem cells have the ability to renew themselves and change into a variety of specialised types, making them ideal materials for therapy and regenerative medicine. "Progenitor and stem cell technologies and therapies" reviews the range of progenitor and stem cells available and their therapeutic application.
Part one reviews basic principles for the culture of stem cells before discussing technologies for particular cell types. These include human embryonic, induced pluripotent, amniotic and placental, cord and multipotent stem cells. Part two discusses wider issues such as intellectual property, regulation and commercialisation of stem cell technologies and therapies. The final part of the book considers the therapeutic use of stem and progenitor cells. Chapters review the use of adipose tissue-derived stem cells, umbilical cord blood (UCB) stem cells, bone marrow, auditory and oral cavity stem cells. Other chapters cover the use of stem cells in therapies in various clinical areas, including lung, cartilage, urologic, nerve and cardiac repair.
With its distinguished editor and international team of contributors, "Progenitor and stem cell technologies and therapies" is a standard reference for both those researching in cell and tissue biology and engineering as well as medical practitioners investigating the therapeutic use of this important technology.
Key Features:
- Reviews the range of progenitor and stem cells available and outlines their therapeutic application
- Examines the basic principles for the culture of stem cells before discussing technologies for particular cell types, including human embryonic, induced pluripotent, amniotic and placental, cord and multipotent stem cells
- Includes a discussion of wider issues such as intellectual property, regulation and commercialisation of stem cell technologies and therapies
For more information visit http://www.researchandmarkets.com/research/2fee68d4/progenitor_and_ste
Continued here:
Research and Markets: Progenitor and Stem Cell Technologies and Therapies Reviews the Range Of Progenitor and Stem ...