Page 21234..1020..»

Cell Therapy – an overview | ScienceDirect Topics

By daniellenierenberg

Stem Cell Therapy

Cell therapy involves the direct administration of cells into the body for healing purposes. The units of therapy in this approach are single cells. For regenerative medicine, the ultimate objective of cell therapy is to establish a long-term graft with the capacity to perform organ functions. A practical example is bone marrow transplantation, in which HSC are the units of therapy, engraft in the bone marrow, and repopulate the entire blood lineage.105

Intravenous administration describes the direct injection of dissociated cells into the bloodstream using a syringe. It is the simplest delivery route for cell therapies and is used for HSC therapy in the clinic. Kidney cells, however, are different from blood cells and do not typically circulate throughout the body. The kidney is furthermore a densely-packed organ with no obvious route for stem cells to traverse from the bloodstream into the nephrons. Whether kidney stem cells have the ability to engraft and regenerate the kidney after intravenous administration therefore needs to be tested in preclinical animal models. In these experiments, the kidneys are typically subjected to acute injury. This damages the glomerular filtration barrier, which can enhance penetration of cells into the kidney and subsequent engraftment.

In one example, human iPS cell-derived cells expressing a variety of NPC and adult kidney cell markers were injected into the mouse tail vein 24 hours after administration of the nephrotoxic drug cisplatin.106 Extensive engraftment was reported in proximal tubules, which coincided with a 55% reduction in urea levels in treated mice, compared with control animals administered with saline or undifferentiated iPS cells.106 These experiments suggest a possible benefit of iPS-derived kidney cells on kidney injury. However, the isolated cells were not shown to demonstrate the ability to form kidney organoids with segmented nephrons. It is therefore unclear whether the implanted cells contained bona fide NPC or whether new nephrons were actually formed.

Intravenous administration has also been applied to adult kidney cell populations. Human glomerular epithelial transitional cells (see earlier), administered intravenously into a mouse model of chemically-induced podocytopathy, were found in glomeruli, and were associated with a decrease in proteinuria.107 These cells also contributed to tubules after acute injury.80 As these cells cannot form new nephrons, this approach seeks to repair and replace, rather than to completely regenerate.

MSC can be readily obtained, for instance from a patient's adipose tissue. Intravenous administration of MSC in experimental models can have a beneficial effect on ischemia-reperfusion injury.99,102,108 This benefit can be obtained even in the absence of MSC engraftment, likely via a paracrine effect. However, MSC administered to injured kidneys do not contribute tangibly to new nephron formation and can differentiate ectopically into undesirable fat cells or fibroblasts within glomeruli.108,109 Collectively, these findings suggest that intravenous administration of cell therapeutics may provide some benefit in cases where the glomerular filtration barrier has been compromised but may also have unwanted side effects.

Continued here:
Cell Therapy - an overview | ScienceDirect Topics

To Read More: Cell Therapy – an overview | ScienceDirect Topics
categoriaIPS Cell Therapy commentoComments Off on Cell Therapy – an overview | ScienceDirect Topics | dataNovember 22nd, 2022
Read All

Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update

By daniellenierenberg

Entered into a definitive merger agreement with Advaxis Inc. – transaction expected to close by end of Q1 2023, subject to approval by Ayala’s shareholders and the satisfaction of customary closing conditions

See the article here:
Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update

To Read More: Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update
categoriaIPS Cell Therapy commentoComments Off on Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update | dataNovember 6th, 2022
Read All

Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022

By daniellenierenberg

Reductions in hepatitis B surface antigen levels observed in a subset of subjects with chronic hepatitis B enrolled in Phase 1 study ALG-000184-201 Reductions in hepatitis B surface antigen levels observed in a subset of subjects with chronic hepatitis B enrolled in Phase 1 study ALG-000184-201

Original post:
Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022

To Read More: Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022
categoriaIPS Cell Therapy commentoComments Off on Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022 | dataNovember 6th, 2022
Read All

NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting

By daniellenierenberg

--Poster presentation to showcase NGM Bio’s in vitro and in vivo research supporting development of NGM936, a ILT3 x CD3 bispecific T cell engager product candidate engineered to direct T cell-mediated killing of ILT3-positive cancer cells----Oral presentation from the lab of Dr. Fabiana Perna at the Indiana University School of Medicine to showcase research done in collaboration with NGM Bio demonstrating the rationale for the study of NGM936 for the treatment of patients with multiple myeloma--

See the rest here:
NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting

To Read More: NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting
categoriaIPS Cell Therapy commentoComments Off on NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting | dataNovember 6th, 2022
Read All

Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update

By daniellenierenberg

WALTHAM, Mass., Nov. 04, 2022 (GLOBE NEWSWIRE) -- CinCor Pharma, Inc. is re-issuing its earnings press release for the third quarter ended September 30, 2022, issued on November 3, 2022 at 8:00 am ET, to correct and clarify certain information contained in the quotation of the Chief Executive Officer. All other information remains unchanged.

Read the rest here:
Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update

To Read More: Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update
categoriaIPS Cell Therapy commentoComments Off on Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update | dataNovember 6th, 2022
Read All

CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver…

By daniellenierenberg

NEWARK, Calif., Nov. 04, 2022 (GLOBE NEWSWIRE) -- CymaBay Therapeutics, Inc. (NASDAQ: CBAY), a biopharmaceutical company focused on developing and providing access to innovative therapies for patients with liver and other chronic diseases, today announced encouraging seladelpar data in patients with primary biliary cholangitis (PBC) that are being presented at The Liver Meeting® of the American Association for the Study of Liver Diseases (AASLD), in Washington, DC (November 4th – 8th).

Read this article:
CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver...

To Read More: CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver…
categoriaIPS Cell Therapy commentoComments Off on CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver… | dataNovember 6th, 2022
Read All

Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core…

By daniellenierenberg

Data demonstrating nanomolar potency of core inhibitor ABI-4334 to disrupt the hepatitis B virus (HBV) life cycle at multiple points supports advancement into clinical studies

Here is the original post:
Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core...

To Read More: Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core…
categoriaIPS Cell Therapy commentoComments Off on Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core… | dataNovember 6th, 2022
Read All

Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference

By daniellenierenberg

Late-breaking abstract one of nine abstracts selected by SITC Communications Committee to be showcased at the SITC 2022 Press Conference

The rest is here:
Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference

To Read More: Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference
categoriaIPS Cell Therapy commentoComments Off on Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference | dataNovember 6th, 2022
Read All

Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection

By daniellenierenberg

Six-month outcomes are expected in second quarter of 2023 Six-month outcomes are expected in second quarter of 2023

See the rest here:
Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection

To Read More: Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection
categoriaIPS Cell Therapy commentoComments Off on Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection | dataNovember 6th, 2022
Read All

ORYZON to Give Updates on Corporate Progress in November

By daniellenierenberg

MADRID, Spain and BOSTON, Nov. 04, 2022 (GLOBE NEWSWIRE) -- Oryzon Genomics, S.A. (ISIN Code: ES0167733015, ORY), a clinical-stage biopharmaceutical company leveraging epigenetics to develop therapies in diseases with strong unmet medical need, announced today that its management will give an update on corporate progress at several international events in November.

More here:
ORYZON to Give Updates on Corporate Progress in November

To Read More: ORYZON to Give Updates on Corporate Progress in November
categoriaIPS Cell Therapy commentoComments Off on ORYZON to Give Updates on Corporate Progress in November | dataNovember 6th, 2022
Read All

PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors

By daniellenierenberg

CRANBURY, N.J., Nov. 04, 2022 (GLOBE NEWSWIRE) -- PMV Pharmaceuticals, Inc. (Nasdaq: PMVP), a precision oncology company pioneering the discovery and development of small molecule, tumor-agnostic therapies targeting p53, today announced the appointment of Carol Gallagher, Pharm.D., to its Board of Directors. Dr. Gallagher brings more than 30 years of biotech leadership and expertise in drug development and commercialization. She replaces Thilo Schroeder, Ph.D., who is stepping down from the Board. The Board changes are effective immediately.

See the article here:
PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors

To Read More: PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors
categoriaIPS Cell Therapy commentoComments Off on PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors | dataNovember 6th, 2022
Read All

Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver…

By daniellenierenberg

ALG-055009, a THR-? agonist drug candidate in development as a treatment for NASH, demonstrated dose-dependent reductions in several atherogenic lipids and a favorable pharmacokinetic profile in subjects with hyperlipidemia

See the article here:
Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver...

To Read More: Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver…
categoriaIPS Cell Therapy commentoComments Off on Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver… | dataNovember 6th, 2022
Read All

Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022

By daniellenierenberg

Data demonstrated treatment with TERN-501 resulted in time- and dose-dependent increases in sex hormone binding globulin (SHBG), a key marker linked to NASH histologic efficacy

Original post:
Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022

To Read More: Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022
categoriaIPS Cell Therapy commentoComments Off on Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022 | dataNovember 6th, 2022
Read All

First U.S. patient receives autologous stem cell therapy to treat dry …

By daniellenierenberg

Media Advisory

Wednesday, August 31, 2022

At the National Institutes of Health, a surgical team successfully implanted a patch of tissue made from patient cells with the goal of treating advanced dry age-related macular degeneration (AMD), also known as geographic atrophy. Dry AMD is a leading cause of vision loss among older Americans and currently has no treatment.

The patient received the therapy as part of a clinical trial that is the first in the United States to use replacement tissues from patient-derived induced pluripotent stem (iPS) cells. The surgery was performed by Amir H. Kashani, M.D., Ph.D., associate professor of ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine with assistance by Shilpa Kodati, M.D., staff clinician, NEI. The procedure was performed at the NIH Clinical Center in Bethesda, Maryland, under a phase 1/2a clinical trial to determine the therapys safety.

This iPS cell derived therapy was developed by the Ocular and Stem Cell Translational Research Section team led by Kapil Bharti, Ph.D., senior investigator at the National Eye Institute (NEI), part of NIH, in collaboration with FUJIFILM Cellular Dynamics Inc., and Opsis Therapeutics, based in Madison, Wisconsin. Safety and efficacy of this cell therapy was tested by the NEI preclinical team. Clinical-grade manufacturing of this cell therapy was performed at the Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, NIH.

This surgery is the culmination of 10 years of research and development at the NEI. In the NIH lab, the patients blood cells were converted to iPS cells, which can become almost any type of cell in the body. In this case, they were programmed to become retinal pigment epithelial (RPE) cells, the type of cell that degenerates in the advanced forms of dry AMD. RPE cells nourish and support light-sensing photoreceptors in the retina. In AMD, the loss of RPE leads to the loss of photoreceptors, which causes vision loss. This work was supported by the NIH Common Fund and NEI Intramural funding.

Kapil Bharti, Ph.D., senior investigator, Ocular and Stem Cell Translational Research Section, NEI

Brian Brooks, M.D., Ph.D., chief, Ophthalmic Genetics and Visual Function Branch, NEI

To schedule interviews with Drs. Bharti and Brooks, contact NEI at neinews@nei.nih.gov

NIH launches first U.S. clinical trial of patient-derived stem cell therapy to replace and repair dying cells in retina (News release)

NIH researchers rescue photoreceptors, prevent blindness in animal models of retinal degeneration (News release)

Autologous Transplantation of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for Geographic Atrophy Associated with Age-Related Macular Degeneration (Clinical trial information)

About the NEI: NEI leads the federal governments efforts to eliminate vision loss and improve quality of life through vision researchdriving innovation, fostering collaboration, expanding the vision workforce, and educating the public and key stakeholders. NEI supports basic and clinical science programs to develop sight-saving treatments and to broaden opportunities for people with vision impairment. For more information, visit https://www.nei.nih.gov.

About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIHTurning Discovery Into Health

###

Go here to see the original:
First U.S. patient receives autologous stem cell therapy to treat dry ...

To Read More: First U.S. patient receives autologous stem cell therapy to treat dry …
categoriaIPS Cell Therapy commentoComments Off on First U.S. patient receives autologous stem cell therapy to treat dry … | dataOctober 29th, 2022
Read All

BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH – Yahoo Finance

By daniellenierenberg

BORDEAUX, France, Oct. 11, 2022 /PRNewswire/ --TreeFrog Therapeutics,a biotechnology company developing stem cell-derived therapies in regenerative medicine and immuno-oncology based on the biomimetic C-Stemtechnology platform, and Invetech, a global leader in the development and production ofautomated manufacturing solutionsfor cell and advanced therapies, today announced the delivery of a GMP-grade cell encapsulation device using the C-Stemtechnology. The machine will be transferred in 2023 to a contract development and manufacturing organization (CDMO) to produce TreeFrog's cell therapy candidate for Parkinson's disease, with the aim of a first-in-human trial in 2024.Over 2023, Invetech will deliver three additional GMP encapsulation devices to support TreeFrog's in-house and partnered cell therapy programs in regenerative medicine and immuno-oncology.

TreeFrogs C-Stem technology generates alginate capsules seeded with induced pluripotent stem cells (iPSCs) at very high speed. Engineered to mimic the in vivo stem cell niche, the capsules allow iPSCs to grow exponentially in 3D, and to differentiate into ready-to-transplant functional microtissues.

Blending microfluidics and stem cell biology, TreeFrog's C-Stemtechnology generates alginate capsules seeded with induced pluripotent stem cells (iPSCs) at very high speed. Engineered to mimic the in vivo stem cell niche, the capsules allow iPSCs to grow exponentially in 3D, and to differentiate into ready-to-transplant functional microtissues. And because alginate is both porous and highly resistant, encapsulated iPSCs can be expanded and differentiated in large-scale bioreactors without suffering from impeller-induced shear stress.

"TreeFrog Therapeutics introduces a breakthrough technology for cell therapy, which impacts scale, quality, as well as the efficacy and safety potential of cellular products. Automating this disruptive technology and turning it into a robust GMP-grade instrument is a tremendous achievement for our team. This deliverable is the result of a very fruitful and demanding collaboration with TreeFrog's engineers in biophysics and bioproduction over the past four years. We're now eager to learn how the neural microtissues produced with C-Stemwill perform in the clinic." Anthony Annibale, Global VP Commercial at Invetech.

Started in 2019, the collaboration between TreeFrog and Invetech led to the delivery of a prototype in October 2020. With this research-grade machine, TreeFrog demonstrated the scalability of C-Stem, moving within six months from milliliter-scale to 10-liter bioreactors. In June 2021, the company announced the production of two single-batches of 15 billion iPSCs in 10L bioreactors with an unprecedented 275-fold amplification per week, striking reproducibility and best-in-class cell quality. The new GMP-grade device delivered by Invetech features the same technical specifications. The machine generates over 1,000 capsules per second, allowing to seed bioreactors from 200mL to 10L. However, the device was entirely redesigned to fit bioproduction standards.

"With the GMP device, our main challenge was to minimize the learning curve for operators, so as to facilitate tech transfer. Invetech and our team did an outstanding job in terms of automation and industrial design to make the device both robust and easy to use. As an inventor, I am so proud of the journey of the C-Stemtechnology. Many elements have been changed and improved on the way, and now comes the time to put the platform in the hands of real-world users to make real products." Kevin Alessandri, Ph.D., co-founder and chief technology officer, TreeFrog Therapeutics

"In October 2020, we announced that we were planning for the delivery of a GMP encapsulation device by the end of 2022. Exactly two years after, we're right on time. I guess this machine testifies to the outstanding execution capacity of TreeFrog and Invetech. But more importantly, this machine constitutes a key milestone. Our platform can now be used to manufacture clinical-grade cell therapy products. Our plan is to accelerate the translation of our in-house and partnered programs to the clinic, with a focus on immuno-oncology and regenerative medicine applications." Frederic Desdouits, Ph.D., chief executive officer, TreeFrog Therapeutics

About Invetech

Invetech helps cell and gene therapy developers to visualize, strategize and manage the future. With proven processes, expert insights and full-spectrum services, we swiftly accelerate life-changing therapies from the clinic to commercial-scale manufacturing. Through our ready-to-run, preconfigured systems, our custom and configurable technology platforms and automated production systems, we assure predictable, reproducible products of the highest quality and efficacy. Our integrated approach brings together biological scientists, engineers, designers and program managers to deliver successful, cost-effective market offerings to more people, more quickly. Working in close collaboration with early-stage and mature life sciences companies, we are committed to advancing the next generation of vital, emerging therapies to revolutionize healthcare and precision medicine.invetechgroup.com

About TreeFrog Therapeutics

TreeFrog Therapeutics is a French-based biotech company aiming to unlock access to cell therapies for millions of patients. Bringing together over 100 biophysicists, cell biologists and bioproduction engineers, TreeFrog Therapeutics raised $82M over the past 3 years to advance a pipeline of stem cell-based therapies in immuno-oncology and regenerative medicine. In 2022, the company opened technological hubs in Boston, USA, and Kobe, Japan, with the aim of driving the adoption of the C-Stemplatform and establish strategic alliances with leading academic, biotech and industry players in the field of cell therapy.www.treefrog.fr

Media ContactsPierre-Emmanuel GaultierTreeFrog Therapeutics+ 33 6 45 77 42 58pierre@treefrog.fr

Marisa ReinosoInvetech+1 858 437 1061marisa.reinoso@invetechgroup.com

TreeFrog Therapeutics is a French-based biotech company aiming to unlock access to cell therapies for millions of patients. Bringing together over 100 biophysicists, cell biologists and bioproduction engineers, TreeFrog Therapeutics raised $82M over the past 3 years to advance a pipeline of stem cell-based therapies in immuno-oncology and regenerative medicine.

Invetech logo (PRNewsFoto/Invetech)

Cision

View original content to download multimedia:https://www.prnewswire.com/news-releases/breakthrough-technology-for-ips-derived-cell-therapies-turned-into-gmp-platform-by-treefrog-therapeutics--invetech-301645370.html

SOURCE Invetech; Treefrog Therapeutics

View original post here:
BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - Yahoo Finance

To Read More: BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH – Yahoo Finance
categoriaIPS Cell Therapy commentoComments Off on BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH – Yahoo Finance | dataOctober 13th, 2022
Read All

iPS-Cell Based Cell Therapies for Genetic Skin Disease

By daniellenierenberg

AMSBIO has published an interview with Professor Marius Wernig from Stanford University, Pathology Stem Cell Institute that discusses what could be the worlds first widely applicable curative treatment for Epidermolysis Bullosa (EB).

This rare genetic disease causes chronic and incredibly painful skin wounds that often lead to an aggressive form of skin cancer and eventual death.

While various cell-therapy approaches have been attempted, Professor Wernig and collaborators identified the need for induced pluripotent stem cells (iPSCs), and how they could become used to treat EB in a more efficient, applicable, and commercially viable manner.

In the past, the only way Professor Wernigs research group could grow iPSCs cells with a normal karyotype over longer periods of time was on mouse feeder cells with serum. This combination of mouse cell co-culture and undefined bovine serum set was not a suitable methodology as it was almost impossible to perform in compliance with FDA safety standards.

Professor Wernig describes how StemFit Basic03 clinical grade stem cell culture medium, available from AMSBIO has allowed his research group to safely expand their cells using an FDA compliant protocol. While there are still hurdles to climb before a cure for EB is fully realised, using StemFit Basic03 has solved the challenge of reproducibly growing clinical grade iPSCs.

Read the full interview.

Completely free of animal- and human-derived components StemFit Basic03 provides highly stable and reproducible culture condition for Induced Pluripotent Stem and Embryonic Stem cells under feeder-free conditions during the reprogramming, expansion, and differentiation phases of stem cell culture. StemFit Basic03 combines high colony forming efficiency with lower than standard media volume consumption to offer cost effective colony expansion when compared to leading competitors.

More information online

View original post here:
iPS-Cell Based Cell Therapies for Genetic Skin Disease

To Read More: iPS-Cell Based Cell Therapies for Genetic Skin Disease
categoriaIPS Cell Therapy commentoComments Off on iPS-Cell Based Cell Therapies for Genetic Skin Disease | dataOctober 5th, 2022
Read All

Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy – Marketscreener.com

By daniellenierenberg

JCR Pharmaceuticals Co., Ltd. and Sysmex Corporation announced that they have established a joint venture(hereafter the "joint venture") for carrying out research and development, manufacture and sales of cell-based regenerative medicine products including hematopoietic stem cells and other stem cells. In recent years, the significant potential of regenerative medicine and cell therapy have been established in particular in areas that have traditionally been difficult to address with conventional chemically synthesized low molecular weight drugs1 or biopharmaceuticals2, such as the restoration of tissues and functions lost as a result of aging, illness, autoimmune diseases, or cancer. In particular, research and development on the therapeutic application of stem cells including hematopoietic stem cells, mesenchymal stem cells, and iPS cells have generated significant attention. Since its inception, JCR has been engaged in the research, development, manufacturing and sales of pharmaceutical products using regenerative medicine, genetic engineering, and gene therapy technologies to advance therapies in the rare disease field. This is exemplified in the field of regenerative medicine, by the approval of TEMCELL HS Inj.3, the first allogeneic regenerativemedicine in Japan (Non-proprietary name: Human (allogeneic) bone marrow-derived mesenchymal stem cells) in February 2016 for the treatment of acute graft-versus-host disease (acute GVHD)4, a serious complication that develops after hematopoietic stem cell transplantation. In recent years, JCR has further streamlined and integrated its expertise around the establishment of groundbreaking medicines for the advancement of highly innovative medicines that could not be developed without such groundbreaking technologies. In the joint venture, the two companies aim to realize the social implementation of regenerative medicine and cell therapy by integrating JCR's expertise in developing, manufacturing and marketing regenerative medicine products, with Sysmex's expertise in quality control testing technology and knowledge of workflows efficiency using robotics technology, including IoT. AlliedCel Corporation, which is the corporate name of the joint venture following prior discussions regarding the alliance both companies, was established on October 3, 2022. The joint venture will advance programs of the potential for technology development and commercialization, including the project currently being promoted by both companies using hematopoietic stem cell proliferation technology. The name AlliedCel stands for the joint venture's aspiration to integrate knowledge and expertise from a broad set of collaborators and stakeholders including business partners, patients and their families, with the united goal of unleashing the power of cells in supporting patients in their needfor life-changing therapies. Through the research and development of regenerative medicineproducts using diverse cells such as stem cells, AlliedCel aims to provide appropriate treatmentoptions to patients and improve their prognosis.

See the article here:
Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy - Marketscreener.com

To Read More: Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy – Marketscreener.com
categoriaIPS Cell Therapy commentoComments Off on Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy – Marketscreener.com | dataOctober 5th, 2022
Read All

MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress – Yahoo…

By daniellenierenberg

MeiraGTx

Multiple Poster Presentations Highlight Versatility and Novelty of MeiraGTxs Technology Platforms for Gene and Cell Therapy

LONDONandNEW YORK, Oct. 04, 2022 (GLOBE NEWSWIRE) -- MeiraGTx Holdings plc(Nasdaq: MGTX), a vertically integrated, clinical stage gene therapy company, today announced the Company will exhibit 15 poster presentations at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress, which will be held from October 11-14, 2022, in Edinburgh, Scotland.

The posters will include data from MeiraGTxs novel gene regulation platform, including the first data demonstrating the potential to regulate CAR-T, as well as data from the Companys promoter platforms and several new, optimized pre-clinical programs addressing severe unmet needs for indications such as amyotrophic lateral sclerosis (ALS) and Wilsons disease. In addition, the Company will have presentations on its proprietary viral vector manufacturing technology and potency assay development.

Were pleased to present data illustrating the depth and versatility of MeiraGTxs scientific platforms, said Alexandria Forbes, Ph.D., president and chief executive officer of MeiraGTx. The 15 published abstracts at this years ESGCT Congress reflect the extraordinary productivity of our research efforts in developing new technologies and applying them to the design of optimized genetic medicines, as well as innovation in manufacturing and process development technology. I am particularly excited for us to present our riboswitch gene regulation technology applied to cell therapy for the first time, in this case the regulation of CAR-Ts, which is a huge area of scientific and clinical interest, continued Dr. Forbes. We look forward to presenting these data highlighting our innovative platform technologies and broad R&D capabilities.

Abstract Title (P101): AI-driven promoter optimization at MeiraGTxSession Title: Advances in viral and non-viral vector designDate: October 12, 2022

Story continues

Abstract Title (P124): Promoter Engineering Platform at MeiraGTxSession Title: Advances in viral and non-viral vector designDate: October 13, 2022

Abstract Title (P243): UPF1 delivered by novel expression-enhanced promoters protects cultured neurons in a genetic ALS modelSession Title: CNS and sensoryDate: October 12, 2022

Abstract Title (P254): Optimization and scale-up of AAV2-AQP1 production using a novel transient transfection agentSession Title: Developments in manufacturing and scale upDate: October 13, 2022

Abstract Title (P264): Designing and screening formulations to improve manufacturability and distribution of AAV gene therapiesSession Title: Developments in manufacturing and scale upDate: October 13, 2022

Abstract Title (P270): Use of anion exchange chromatography to provide high empty AAV capsid removal and product yieldsSession Title: Developments in manufacturing and scale upDate: October 13, 2022

Abstract Title (P320): Multivariate analysis for increased understanding of MeiraGTx upstream processSession Title: Developments in manufacturing and scale upDate: October 13, 2022

Abstract Title (P362): Development of AAV-UPF1 gene therapy to rescue ALS pathophysiology using microfluidic platformsSession Title: Disease models (iPS derived and organoids)Date: October 13, 2022

Abstract Title (P399): Titratable and reversible control of CAR-T cell receptor and activity by riboswitch via oral small moleculeSession Title: Engineered T and NK CARs and beyondDate: October 12, 2022

Abstract Title (P436): Novel riboswitches regulate AAV-delivered transgene expression in mammals via oral small molecule inducersSession Title: Gene and epigenetic editingDate: October 13, 2022

Abstract Title (P553): Development of optimized ATP7B gene therapy vectors for the treatment of Wilsons Disease with increased potencySession Title: Metabolic diseasesDate: October 12, 2022

Abstract Title (P554): A CNS-targeted gene therapy for the treatment of obesitySession Title: Metabolic diseasesDate: October 13, 2022

Abstract Title (561): Riboswitch-controlled delivery of therapeutic hormones for gene therapySession Title: Metabolic diseasesDate: October 12, 2022

Abstract Title (P622): Riboswitch-controlled delivery of therapeutic antibodies for gene therapySession Title: OtherDate: October 13, 2022

Abstract Title (P630): Improving AAV in vitro transducibility for cell-based potency assay developmentSession Title: OtherDate: October 13, 2022

About MeiraGTxMeiraGTx (Nasdaq: MGTX) is a vertically integrated, clinical stage gene therapy company with six programs in clinical development and a broad pipeline of preclinical and research programs. MeiraGTx has core capabilities in viral vector design and optimization and gene therapy manufacturing, and a transformative gene regulation platform technology which allows tight, dose responsive control of gene expression by oral small molecules with dynamic range that can exceed 5000-fold. Led by an experienced management team, MeiraGTx has taken a portfolio approach by licensing, acquiring, and developing technologies that give depth across both product candidates and indications. MeiraGTxs initial focus is on three distinct areas of unmet medical need: ocular, including inherited retinal diseases and large degenerative ocular diseases, neurodegenerative diseases, and severe forms of xerostomia. Though initially focusing on the eye, central nervous system, and salivary gland, MeiraGTx plans to expand its focus to develop additional gene therapy treatments for patients suffering from a range of serious diseases.

For more information, please visit http://www.meiragtx.com.

Forward Looking StatementThis press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this press release that do not relate to matters of historical fact should be considered forward-looking statements, including, without limitation, statements regarding our product candidate development and our pre-clinical data and reporting of such data and the timing of results of data, including in light of the COVID-19 pandemic, as well as statements that include the words expect, will, intend, plan, believe, project, forecast, estimate, may, could, should, would, continue, anticipate and similar statements of a future or forward-looking nature. These forward-looking statements are based on managements current expectations. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including, but not limited to, our incurrence of significant losses; any inability to achieve or maintain profitability, raise additional capital, repay our debt obligations, identify additional and develop existing product candidates, successfully execute strategic priorities, bring product candidates to market, expansion of our manufacturing facilities and processes, successfully enroll patients in and complete clinical trials, accurately predict growth assumptions, recognize benefits of any orphan drug designations, retain key personnel or attract qualified employees, or incur expected levels of operating expenses; the impact of the COVID-19 pandemic on the status, enrollment, timing and results of our clinical trials and on our business, results of operations and financial condition; failure of early data to predict eventual outcomes; failure to obtain FDA or other regulatory approval for product candidates within expected time frames or at all; the novel nature and impact of negative public opinion of gene therapy; failure to comply with ongoing regulatory obligations; contamination or shortage of raw materials or other manufacturing issues; changes in healthcare laws; risks associated with our international operations; significant competition in the pharmaceutical and biotechnology industries; dependence on third parties; risks related to intellectual property; changes in tax policy or treatment; our ability to utilize our loss and tax credit carryforwards; litigation risks; and the other important factors discussed under the caption Risk Factors in our Quarterly Report on Form 10-Q for the quarter ended June 30, 2022, as such factors may be updated from time to time in our other filings with the SEC, which are accessible on the SECs website at http://www.sec.gov. These and other important factors could cause actual results to differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent managements estimates as of the date of this press release. While we may elect to update such forward-looking statements at some point in the future, unless required by law, we disclaim any obligation to do so, even if subsequent events cause our views to change. Thus, one should not assume that our silence over time means that actual events are bearing out as expressed or implied in such forward-looking statements. These forward-looking statements should not be relied upon as representing our views as of any date subsequent to the date of this press release.

Contacts

Investors:MeiraGTxInvestors@meiragtx.com

Media:Jason Braco, Ph.D.LifeSci Communicationsjbraco@lifescicomms.com

Read the rest here:
MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress - Yahoo...

To Read More: MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress – Yahoo…
categoriaIPS Cell Therapy commentoComments Off on MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress – Yahoo… | dataOctober 5th, 2022
Read All

Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe – Digital Journal

By daniellenierenberg

The global stem cell market size is expected to reach USD 19.13 Billion in 2028 at a CAGR of 8.4% during the forecast period, according to the latest report by Reports and Data.

The globalstem cell marketsize is expected to reach USD 19.13 Billion in 2028 at a CAGR of 8.4% during the forecast period, according to the latest report by Reports and Data. Growing adoption of stem cell therapies to treat chronic and rare diseases, rising number of clinical trials for regenerative medicine globally, and rapid progress in stem cell research are key factors expected to drive market revenue growth over the forecast period. In addition, increasing investment by major pharmaceutical and biotechnology companies, advancements in regenerative medicine, and development of advanced gene editing and tissue engineering techniques are also expected to contribute to revenue growth of the market going ahead.

Stem cells are unspecialized cells that have the ability to develop into different types of cells such as liver cells, muscle cells, and brain cells, among others. Stem cells have remarkable ability of self-renewal in undifferentiated state and can differentiate into various cell types with specific functions under appropriate triggers. Stem cells have played a major role in regenerative medicine, with increasing focus on stem cells of human origin such as adult stem cells, somatic stem cells, and embryonic stem cells. These cells can be used to regenerate human cells, organs, and tissues and have the capability to restore normal function after disease or debilitating injury. During embryonic development, stem cells can form cells of all three germ layers mesoderm, endoderm, and ectoderm. They play a crucial role in repair system of body and normal turnover of regenerative organs such as skin and blood, and this has boosted their importance in medical therapies for the treatment of various degenerative illnesses.

Get a sample of the report @https://www.reportsanddata.com/sample-enquiry-form/2981

Increasing investment to accelerate stem cell research, rapid adoption of stem cell therapies for the treatment of chronic and neurodegenerative disorders, and the increasing number of clinical trials across the globe are some key factors expected to drive market growth Our Expert Review

Recent advancements in stem cell biology and research have enhanced the application scope of stem cell therapy in treating diseases wherein currently available medical therapies have failed to cure, prevent progression, or alleviate symptoms. This is also a key factor expected to contribute to revenue growth of the market over the forecast period. However, ethical issues and political controversies, concerns related to immunity, and stringent regulatory policies associated with stem cell research are some key factors expected to restrain market growth to a certain extent over the forecast period.

Some Key Highlights from the Report:

Asia Pacific is expected to lead the market growth over the coming years owing to rapid advancements in the healthcare sector in APAC countries such as India, China, and Japan. North America is anticipated to register the highest market growth over the forecast period attributed to the increasing availability of robust healthcare and clinical settings, legalization of medical marijuana, favorable reimbursement scenario, presence of key market players, and rapid technological advancements in the region.

The growing popularity of over-the-counter medications driving market growth

Growing incidence of acute and chronic diseases and lesser access to advanced medical facilities owing to low disposable income levels are driving the demand for over-the-counter medications. Availability of generic and low-cost alternatives to medical therapies are some other factors playing a major role in driving demand for over-the-counter medications.

Restriction on product launches and R&D activities to hamper the market growth

The imposition of strict government regulations and shortage of funds has put a halt on product launches and R&D activities and is expected to restrain market growth over the forecast period. In addition, the launch of expensive drugs and therapies and increasing regulations regarding safety and approvals are also hampering the market growth.

Competitive Landscape:

The global market comprises various market players operating at regional and global levels. These key players are adopting various strategies such as R&D investments, license agreements, partnerships, mergers and acquisitions, collaborations, and joint ventures to gain a robust footing in the market.

Top Companies Profiled in the Report:

Celgene Corporation, Virgin Health Bank, ReNeuron Group plc, Biovault Family, Mesoblast Ltd, Precious Cells International Ltd, Caladrius, Opexa Therapeutics, Inc., Neuralstem, Inc., and Pluristem.

Stem Cells Market Segmentation:

Product Outlook (Revenue, USD Billion; 2018-2028)

Technology Outlook (Revenue, USD Billion; 2018-2028)

Therapy Outlook (Revenue, USD Billion; 2018-2028)

Application Outlook (Revenue, USD Billion; 2018-2028)

Regional Outlook:

Frequently asked questions addressed in the report:

Thank you for reading our report. For more details please connect with us and our team will ensure the report is customized to meet all the needs of clients. The report also offers a comprehensive regional analysis and specific countries can be included in the report according to the requirements.

Explore Latest Trending Research Reports By Reports and Data:

3D Printing in Healthcare Market, By Technology Type (Material Extrusion, Photopolymerization, Powder Bed Fusion, Material Jetting, Binder Jetting, Sheet Lamination, Directed Energy Deposition), By Application, By End User (Hospitals and Clinics, Pharmaceutical Companies, Research Institutes), and By Region Forecast to 2028

Ambulatory Surgery Center (ASC) MarketAnalysis By Type (Hospital-Based Ambulatory Surgery Centers, Free-Standing Ambulatory Surgery Centers, Others) By Specialty, By Treatment, And By Region Forecasts To 2028

Bioresorbable Coronary Stents MarketBy Product Type (Polymeric, Metallic), By Brand, By Application (Coronary artery disease, Peripheral artery disease), By Absorption Rate, By End User (Hospitals, Surgical Centres, Others) And Region, Forecast 2020 To 2028

About Reports and Data

Reports and Data is a market research and consulting company that provides syndicated research reports, customized research reports, and consulting services. Our solutions purely focus on your purpose to locate, target, and analyze consumer behavior shifts across demographics, across industries, and help clients to make smarter business decisions. We offer market intelligence studies ensuring relevant and fact-based research across multiple industries, including Healthcare, Touch Points, Chemicals, Products, and Energy. We consistently update our research offerings to ensure our clients are aware of the latest trends existent in the market. Reports and Data has a strong base of experienced analysts from varied areas of expertise. Our industry experience and ability to develop a concrete solution to any research problems provides our clients with the ability to secure an edge over their respective competitors.

Media ContactCompany Name: Reports and DataContact Person: John WatsonEmail: Send EmailPhone: +1-212-710-1370Address:40 Wall St. 28th floor City: New York CityState: NY 10005Country: United StatesWebsite: https://www.reportsanddata.com/report-detail/stem-cells-market

View post:
Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe - Digital Journal

To Read More: Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe – Digital Journal
categoriaIPS Cell Therapy commentoComments Off on Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe – Digital Journal | dataSeptember 27th, 2022
Read All

Implanting a Patient’s Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD – Everyday Health

By daniellenierenberg

Specially treated stem cells derived from a single individual have been successfully implanted into that same individuals eyes in a first-of-its-kind clinical trial testing ways to treat advanced dry age-related macular degeneration (AMD).

The therapy, currently in its first phase of testing to ensure that its safe for humans, involves harvesting and processing a persons blood cells and using them to replace the persons retinal cells that had succumbed to AMD, a leading cause of vision loss globally.

The procedure was performed by researchers from the National Eye Institute (NEI), a branch of the National Institutes of Health in Bethesda, Maryland, and from the Wilmer Eye Institute at Johns Hopkins School of Medicine in Baltimore. The NIH researchers have been working on the new treatment for a decade.

The scientists, who previously demonstrated the safety and effectiveness of the therapy in rats and pigs, took blood cells from the patient and, in the laboratory, converted them into patient-derived induced pluripotent stem (iPS) cells. These immature, undifferentiated cells have no assigned function in the body, which means they can assume many forms. The researchers programmed these particular iPS cells to become retinal pigment epithelial (RPE) cells, the type that die in AMD and lead to late-stage dry AMD.

In healthy eyes, RPE cells supply oxygen to photoreceptors, the light-sensing cells in the retina at the back of the eyeball. The death of RPE cells virtually dooms the photoreceptors, resulting in vision loss. The idea behind the new therapy is to replace dying RPE cells with patient-derived induced iPS ones, strengthening the health of the remaining photoreceptors.

Before being transplanted, the iPS-derived cells were grown in sheets one cell thick on a biodegradable scaffold designed to promote their integration into the retina. The researchers positioned the resulting patch between atrophied host RPE cells and the photoreceptors using a specially created surgical tool.

The patient received the transplanted cells during the summer and will be followed for a year as researchers monitor overall eye health, including retina stability, and whether any inflammation or bleeding develop, says Kapil Bharti, PhD, a senior investigator at the NEI and for the clinical trial.

Safety data are critical for any new drug, says Gareth Lema, MD, PhD, a vitreoretinal surgeon at New York Eye & Ear Infirmary, a division of the Mount Sinai Health System. Stem cells have added complexity in that they are living tissue, Dr. Lema says. Precise differentiation is necessary for them to fulfill their intended therapeutic effect and not cause harm."

This therapy also requires a surgical procedure to implant the cells, Lema says, adding that its an exquisitely elegant surgery, but introduces further risk of harm. For those reasons, he says, Patients must know that ocular stem cell therapies should only be attempted within the regulated environment of a nationally registered clinical trial.

The rules of a clinical trial dont generally allow specifics to be discussed this early in the process, says Dr. Bharti. Announcing that we were able to successfully transplant the cells now hopefully allows us to recruit more patients, since we can take up to 12 in this phase, he says. We also hope that it will give some optimism to patients with dry AMD and to researchers studying it.

It took seven months to develop the implanted cells, says Bharti, and although the federal Food and Drug Administration (FDA) approved the clinical trial in 2019, the onset of the COVID-19 pandemic delayed the start by two years, he says.

Macular degeneration comprises several stages of disease within the macula, the critical portion of the retina responsible for straight-ahead vision. Aging causes retinal cells to deteriorate, generating debris, or drusen, within the macula, setting the stage for early (aka dry) AMD. Geographic atrophy represents a more advanced stage. If the disease progresses to the relatively rare wet AMD, so named for the leaking of blood into the macula, central vision can be snuffed out.

Risk of AMD increases with age, particularly among people who are white, have a history of smoking, or have a family history of the disease.

Treatment to slow wet AMDs progression includes eye injections with anti-VEGF (or VEGF-A for vascular endothelial growth factor antagonists), a medication that halts the growth of unstable, leaky blood vessels in the eye. Some people may undergo photodynamic therapy, which combines injections and laser treatments.

Currently, there is no cure for dry AMD; it cant be reversed. Nor are there treatments to reliably stop its onset or progression for everyone at every stage of the disease. (Research has confirmed that a specialized blend of vitamins and minerals, available over the counter as AREDS, or Age-Related Eye Disease Studies supplements, reduces the risk of AMDs progression from intermediate to advanced stages.)

There are other, ongoing clinical trials for the treatment of dry AMD. Regenerative Patch Technologies, in Menlo Park, California, for example, is a little further along in testing a different stem cell treatment. Patients have been followed for three years, and 27 percent have shown vision improvement, says Jane Lebkowski, PhD, the companys president. There are a number of AMD clinical trials ongoing in the U.S., and patients should ask their ophthalmologists about trials that might be appropriate.

ClinicalTrials.gov, the NIHs clinical trials database, lists close to 300 AMD clinical trials at various stages in the United States.

Ferhina Ali, MD, MPH, a retinal specialist at the Westchester Medical Center in Valhalla, New York, who isnt involved in the trial, describes the newest stem cell therapy as elegant and pioneering. These are early stages but there is tremendous potential as a first-in-kind surgically implanted stem cell therapy and as a way to achieve vision gains in dry macular degeneration, Dr. Ali says.

Bharti says that in laboratory animals the implanted cells behaved as retinal cells should maintaining the retinas integrity. Over the next few years, he and his colleagues will determine whether they function effectively in humans.

Does that mean, however, that the same AMD disease process that destroyed the original retinal cells could destroy the transplanted ones? It takes 40 to 60 years to damage human cells, Bharti says, and if we get that long with the transplanted cells, well take it.

Read more from the original source:
Implanting a Patient's Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD - Everyday Health

To Read More: Implanting a Patient’s Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD – Everyday Health
categoriaIPS Cell Therapy commentoComments Off on Implanting a Patient’s Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD – Everyday Health | dataSeptember 19th, 2022
Read All

Page 21234..1020..»


Copyright :: 2025