Bioengineered Follicles Grow Hair On Bald Mice
By NEVAGiles23
Featured Article Academic Journal Main Category: Transplants / Organ Donations Also Included In: Stem Cell Research;Dermatology Article Date: 21 Apr 2012 - 0:00 PDT
email to a friend printer friendly opinions
Current Article Ratings:
1 (1 votes)
4 (1 votes)
Takashi Tsuji, a Professor in the Research Institute for Science and Technology, Tokyo University of Science, and Director of Organ Technologies Inc, led the team, who report their findings in an open access paper published in Nature Communications on 17 April.
The study is significant on two counts: first it used adult stem cells and not embryonic stem cells, and second, the bioengineered follicles were fully functional and integrated into surrounding tissue, something that has not been managed before.
Not only does the study raise hopes of a cure for baldness, the researchers say it also represents a significant advance toward the next generation of "organ replacement regenerative therapies" that will enable the replacement of organs damaged by disease, injury or aging.
The researchers bioengineered hair follicle germ cells, the cells that mature into cells that grow hair, from two other types of cell: adult epithelial stem cells and dermal papilla cells.
They implanted the bioengineered cells into the skin of hairless mice and showed that they went on to have normal hair cycles, where after dead hairs fell out, new ones took their place.
View original post here:
Bioengineered Follicles Grow Hair On Bald Mice
Your child’s milk tooth can save her life
By daniellenierenberg
Is your child about to lose her milk tooth? Instead of throwing it away, you can now opt to use it to harvest stem cells in a dental stem cell bank for future use in the face of serious ailments. Now thats a tooth fairy story coming to life.
Still relatively new in India, dental stem cell banking is fast gaining popularity as a more viable option over umbilical cord blood banking.
Stem cell therapy involves a kind of intervention strategy in which healthy, new cells are introduced into a damaged tissue to treat a disease or an injury.
The umbilical cord is a good source for blood-related cells, or hemaotopoietic cells, which can be used for blood-related diseases, like leukaemia (blood cancer). Having said that, blood-related disorders constitute only four percent of all diseases, Shailesh Gadre, founder and managing director of the company Stemade Biotech, said.
For the rest of the 96 percent tissue-related diseases, the tooth is a good source of mesenchymal (tissue-related) stem cells. These cells have potential application in all other tissues of the body, for instance, the brain, in case of diseases like Alzheimers and Parkinsons; the eye (corneal reconstruction), liver (cirrhosis), pancreas (diabetes), bone (fractures, reconstruction), skin and the like, he said.
Mesenchymal cells can also be used to regenerate cardiac cells.
Dental stem cell banking also has an advantage when it comes to the process of obtaining stem cells.
Obtaining stem cells from the tooth is a non-invasive procedure that requires no surgery, with little or no pain. A child, in the age group of 5-12, is any way going to lose his milk tooth. So when its a little shaky, it can be collected with hardly any discomfort, Savita Menon, a pedodontist, said.
Moreover, in a number of cases, when an adolescent needs braces, the doctor recommends that his pre-molars be removed. These can also be used as a source for stem cells. And over and above that, an adults wisdom tooth can also be used for the same purpose, Gadre added.
Therefore, unlike umbilical cord blood banking which gives one just one chance - during birth - the window of opportunity in dental stem cell banking is much bigger.
Continued here:
Your child’s milk tooth can save her life
Stem cell study aids quest for motor neuron disease therapies
By JoanneRUSSELL25
ScienceDaily (Mar. 26, 2012) A breakthrough using cutting-edge stem cell research could speed up the discovery of new treatments for motor neuron disease (MND).
The international research team has created motor neurons using skin cells from a patient with an inherited form of MND.
Role of protein
Using patient stem cells to model MND in a dish offers untold possibilities for how we study the cause of this terrible disease as well as accelerating drug discovery by providing a cost-effective way to test many thousands of potential treatments said Professor Siddharthan Chandran, Director of the University's Euan MacDonald Centre for MND Research.
The study discovered that abnormalities of a protein called TDP-43, implicated in more than 90 per cent of cases of MND, resulted in the death of motor neuron cells.
This is the first time that scientists have been able to see the direct effect of abnormal TDP-43 on human motor neurons.
The study, led by the University of Edinburgh's Euan MacDonald Centre for Motor Neuron Disease Research, was carried out in partnership with King's College London, Columbia University, New York and the University of San Francisco.
Motor neuron disease
MND is a devastating, untreatable and ultimately fatal condition that results from progressive loss of the motor nerves -- motor neurons -- that control movement, speech and breathing.
The study, funded by the MND Association, is published in the journal Proceedings of the National Academy of Sciences.
Visit link:
Stem cell study aids quest for motor neuron disease therapies
Stem cell study aids quest for motor neurone disease therapies
By raymumme
Public release date: 26-Mar-2012 [ | E-mail | Share ]
Contact: Tara Womersley tara.womersley@ed.ac.uk 44-131-650-9836 University of Edinburgh
A breakthrough using cutting-edge stem cell research could speed up the discovery of new treatments for motor neurone disease (MND).
The international research team has created motor neurones using skin cells from a patient with an inherited form of MND.
The study discovered that abnormalities of a protein called TDP-43, implicated in more than 90 per cent of cases of MND, resulted in the death of motor neurone cells.
This is the first time that scientists have been able to see the direct effect of abnormal TDP-43 on human motor neurons.
The study, led by the University of Edinburgh's Euan MacDonald Centre for Motor Neurone Disease Research, was carried out in partnership with King's College London, Colombia University, New York and the University of San Francisco.
MND is a devastating, untreatable and ultimately fatal condition that results from progressive loss of the motor nerves motor neurones that control movement, speech and breathing.
Professor Siddharthan Chandran, of the University of Edinburgh, said: "Using patient stem cells to model MND in a dish offers untold possibilities for how we study the cause of this terrible disease as well as accelerating drug discovery by providing a cost-effective way to test many thousands of potential treatments."
The study, funded by the MND Association, is published in the journal PNAS
Original post:
Stem cell study aids quest for motor neurone disease therapies
New shortcut for stem cell programming
By NEVAGiles23
ScienceDaily (Mar. 22, 2012) Researchers at the University of Bonn artificially derive brain stem cells directly from the connective tissue of mice.
Scientists at the Life & Brain Research Center at the University of Bonn, Germany, have succeeded in directly generating brain stem cells from the connective tissue cells of mice. These stem cells can reproduce and be converted into various types of brain cells. To date, only reprogramming in brain cells that were already fully developed or which had only a limited ability to divide was possible. The new reprogramming method presented by the Bonn scientists and submitted for publication in July 2011 now enables derivation of brain stem cells that are still immature and able to undergo practically unlimited division to be extracted from conventional body cells. The results have now been published in the current edition of the journal Cell Stem Cell.
The Japanese stem cell researcher Professor Shinya Yamanaka and his team produced stem cells from the connective tissue cells of mice for the first time in 2006; these cells can differentiate into all types of body cells. These induced pluripotent stem cells (iPS cells) develop via reprogramming into a type of embryonic stage. This result made the scientific community sit up and take notice. If as many stem cells as desired can be produced from conventional body cells, this holds great potential for medical developments and drug research. "Now a team of scientists from the University of Bonn has proven a variant for this method in a mouse model," report Dr. Frank Edenhofer and his team at the Institute of Reconstructive Neurobiology (Director: Dr. Oliver Brstle) of the University of Bonn. Also involved were the epileptologists and the Institute of Human Genetics of the University of Bonn, led by Dr. Markus Nthen, who is also a member of the German Center for Neurodegenerative Diseases.
Edenhofer and his co-workers Marc Thier, Philipp Wrsdrfer and Yenal B. Lakes used connective tissue cells from mice as a starting material. Just as Yamanaka did, they initiated the conversion with a combination of four genes. "We however deliberately targeted the production of neural stem cells or brain stem cells, not pluripotent iPS multipurpose cells," says Edenhofer. These cells are known as somatic or adult stem cells, which can develop into the cells typical of the nervous system, neurons, oligodendrocytes and astrocytes.
The gene "Oct4" is the central control factor
The gene "Oct4" is a crucial control factor. "First, it prepares the connective tissue cell for reprogramming, later, however, Oct4 appears to prevent destabilized cells from becoming brain stem cells" reports the Bonn stem cell researcher. While this factor is switched on during reprogramming of iPS cells over a longer period of time, the Bonn researchers activate the factor with special techniques for only a few days. "If this molecular switch is toggled over a limited period of time, the brain stem cells, which we refer to as induced neural stem cells (iNS cells), can be reached directly," said Edenhofer. "Oct4 activates the process, destabilizes the cells and clears them for the direct reprogramming. However, we still need to analyze the exact mechanism of the cellular conversion."
The scientists at the University of Bonn have thus found a new way to reprogram cells, which is considerably faster and also safer in comparison to the iPS cells and embryonic stem cells. "Since we cut down on the reprogramming of the cells via the embryonic stage, our method is about two to three times faster than the method used to produce iPS cells," stresses Edenhofer. Thus the work involved and the costs are also much lower. In addition, the novel Bonn method is associated with a dramatically lower risk of tumors. As compared to other approaches, the Bonn scientists' method stands out due to the production of neural cells that can be multiplied to a nearly unlimited degree.
Low risk of tumor and unlimited self renewal
A low risk of tumor formation is important because in the distant future, neural cells will replace defective cells of the nervous system. A vision of the various international scientific teams is to eventually create adult stem cells for example from skin or hair root cells, differentiate these further for therapeutic purposes, and then implant them in damaged areas. "But that is still a long way off," says Edenhofer. However, the scientists have a rather urgent need today for a simple way to obtain brain stem cells from the patient to use them to study various neurodegenerative diseases and test drugs in a Petri dish. "Our work could form the basis for providing practically unlimited quantities of the patient's own cells." The current study was initially conducted on mice. "We are now extremely eager to see whether these results can also be applied to humans," says the Bonn scientist.
Share this story on Facebook, Twitter, and Google:
Read the original here:
New shortcut for stem cell programming
Somatic stem cells obtained from skin cells; pluripotency 'detour' skipped
By NEVAGiles23
ScienceDaily (Mar. 22, 2012) Breaking new ground, scientists at the Max Planck Institute for Molecular Biomedicine in Mnster, Germany, have succeeded in obtaining somatic stem cells from fully differentiated somatic cells. Stem cell researcher Hans Schler and his team took skin cells from mice and, using a unique combination of growth factors while ensuring appropriate culturing conditions, have managed to induce the cells' differentiation into neuronal somatic stem cells.
"Our research shows that reprogramming somatic cells does not require passing through a pluripotent stage," explains Schler. "Thanks to this new approach, tissue regeneration is becoming a more streamlined -- and safer -- process."
Up until now, pluripotent stem cells were considered the 'be-all and end-all' of stem cell science. Historically, researchers have obtained these 'jack-of-all-trades' cells from fully differentiated somatic cells. Given the proper environmental cues, pluripotent stem cells are capable of differentiating into every type of cell in the body, but their pluripotency also holds certain disadvantages, which preclude their widespread application in medicine. According to Schler, "pluripotent stem cells exhibit such a high degree of plasticity that under the wrong circumstances they may form tumours instead of regenerating a tissue or an organ." Schler's somatic stem cells offer a way out of this dilemma: they are 'only' multipotent, which means that they cannot give rise to all cell types but merely to a select subset of them -- in this case, a type of cell found in neural tissue -- a property, which affords them an edge in terms of their therapeutic potential.
To allow them to interconvert somatic cells into somatic stem cells, the Max Planck researchers cleverly combined a number of different growth factors, proteins that guide cellular growth. "One factor in particular, called Brn4, which had never been used before in this type of research, turned out to be a genuine 'captain' who very quickly and efficiently took command of his ship -- the skin cell -- guiding it in the right direction so that it could be converted into a neuronal somatic stem cell," explains Schler. This interconversion turns out to be even more effective if the cells, stimulated by growth factors and exposed to just the right environmental conditions, divide more frequently. "Gradually, the cells lose their molecular memory that they were once skin cells," explains Schler. It seems that even after only a few cycles of cell division the newly produced neuronal somatic stem cells are practically indistinguishable from stem cells normally found in the tissue.
Schler's findings suggest that these cells hold great long-term medical potential: "The fact that these cells are multipotent dramatically reduces the risk of neoplasm formation, which means that in the not-too-distant future they could be used to regenerate tissues damaged or destroyed by disease or old age; until we get to that point, substantial research efforts will have to be made." So far, insights are based on experiments using murine skin cells; the next steps now are to perform the same experiments using actual human cells. In addition, it is imperative that the stem cells' long-term behaviour is thoroughly characterized to determine whether they retain their stability over long periods of time.
"Our discoveries are a testament to the unparalleled degree of rigor of research conducted here at the Mnster Institute," says Schler. "We should realize that this is our chance to be instrumental in helping shape the future of medicine." At this point, the project is still in its initial, basic science stage although "through systematic, continued development in close collaboration with the pharmaceutical industry, the transition from the basic to the applied sciences could be hugely successful, for this as well as for other, related, future projects," emphasizes Schler. This, then, is the reason why a suitable infrastructure framework must be created now rather than later. "The blueprints for this framework are all prepped and ready to go -- all we need now are for the right political measures to be ratified to pave the way towards medical applicability."
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Max-Planck-Gesellschaft.
Read more from the original source:
Somatic stem cells obtained from skin cells; pluripotency 'detour' skipped
A new shortcut for stem cell programming
By Sykes24Tracey
Public release date: 22-Mar-2012 [ | E-mail | Share ]
Contact: Dr. Frank Edenhofer f.edenhofer@uni-bonn.de 49-228-688-5529 University of Bonn
These stem cells can reproduce and be converted into various types of brain cells. To date, only reprogramming in brain cells that were already fully developed or which had only a limited ability to divide was possible. The new reprogramming method presented by the Bonn scientists and submitted for publication in July 2011 now enables derivation of brain stem cells that are still immature and able to undergo practically unlimited division to be extracted from conventional body cells. The results have now been published in the current edition of the prestigious journal Cell Stem Cell.
The Japanese stem cell researcher Professor Shinya Yamanaka and his team produced stem cells from the connective tissue cells of mice for the first time in 2006; these cells can differentiate into all types of body cells. These induced pluripotent stem cells (iPS cells) develop via reprogramming into a type of embryonic stage. This result made the scientific community sit up and take notice. If as many stem cells as desired can be produced from conventional body cells, this holds great potential for medical developments and drug research. "Now a team of scientists from the University of Bonn has proven a variant for this method in a mouse model," report Dr. Frank Edenhofer and his team at the Institute of Reconstructive Neurobiology (Director: Dr. Oliver Brstle) of the University of Bonn. Also involved were the epileptologists and the Institute of Human Genetics of the University of Bonn, led by Dr. Markus Nthen, who is also a member of the German Center for Neurodegenerative Diseases.
Edenhofer and his co-workers Marc Thier, Philipp Wrsdrfer and Yenal B. Lakes used connective tissue cells from mice as a starting material. Just as Yamanaka did, they initiated the conversion with a combination of four genes. "We however deliberately targeted the production of neural stem cells or brain stem cells, not pluripotent iPS multipurpose cells," says Edenhofer. These cells are known as somatic or adult stem cells, which can develop into the cells typical of the nervous system, neurons, oligodendrocytes and astrocytes.
The gene "Oct4" is the central control factor
The gene "Oct4" is a crucial control factor. "First, it prepares the connective tissue cell for reprogramming, later, however, Oct4 appears to prevent destabilized cells from becoming brain stem cells" reports the Bonn stem cell researcher. While this factor is switched on during reprogramming of iPS cells over a longer period of time, the Bonn researchers activate the factor with special techniques for only a few days. "If this molecular switch is toggled over a limited period of time, the brain stem cells, which we refer to as induced neural stem cells (iNS cells), can be reached directly," said Edenhofer. "Oct4 activates the process, destabilizes the cells and clears them for the direct reprogramming. However, we still need to analyze the exact mechanism of the cellular conversion."
The scientists at the University of Bonn have thus found a new way to reprogram cells, which is considerably faster and also safer in comparison to the iPS cells and embryonic stem cells. "Since we cut down on the reprogramming of the cells via the embryonic stage, our method is about two to three times faster than the method used to produce iPS cells," stresses Edenhofer. Thus the work involved and the costs are also much lower. In addition, the novel Bonn method is associated with a dramatically lower risk of tumors. As compared to other approaches, the Bonn scientists' method stands out due to the production of neural cells that can be multiplied to a nearly unlimited degree.
Low risk of tumor and unlimited self renewal
A low risk of tumor formation is important because in the distant future, neural cells will replace defective cells of the nervous system. A vision of the various international scientific teams is to eventually create adult stem cells for example from skin or hair root cells, differentiate these further for therapeutic purposes, and then implant them in damaged areas. "But that is still a long way off," says Edenhofer. However, the scientists have a rather urgent need today for a simple way to obtain brain stem cells from the patient to use them to study various neurodegenerative diseases and test drugs in a Petri dish. "Our work could form the basis for providing practically unlimited quantities of the patient's own cells." The current study was initially conducted on mice. "We are now extremely eager to see whether these results can also be applied to humans," says the Bonn scientist.
Read more:
A new shortcut for stem cell programming
Somatic stem cells obtained from skin cells for first time ever
By NEVAGiles23
"Our research shows that reprogramming somatic cells does not require passing through a pluripotent stage," explains Schler. "Thanks to this new approach, tissue regeneration is becoming a more streamlined - and safer - process."
Up until now, pluripotent stem cells were considered the 'be-all and end-all' of stem cell science. Historically, researchers have obtained these 'jack-of-all-trades' cells from fully differentiated somatic cells. Given the proper environmental cues, pluripotent stem cells are capable of differentiating into every type of cell in the body, but their pluripotency also holds certain disadvantages, which preclude their widespread application in medicine. According to Schler, "pluripotent stem cells exhibit such a high degree of plasticity that under the wrong circumstances they may form tumours instead of regenerating a tissue or an organ." Schler's somatic stem cells offer a way out of this dilemma: they are 'only' multipotent, which means that they cannot give rise to all cell types but merely to a select subset of them - in this case, a type of cell found in neural tissue - a property, which affords them an edge in terms of their therapeutic potential.
To allow them to interconvert somatic cells into somatic stem cells, the Max Planck researchers cleverly combined a number of different growth factors, proteins that guide cellular growth. "One factor in particular, called Brn4, which had never been used before in this type of research, turned out to be a genuine 'captain' who very quickly and efficiently took command of his ship - the skin cell - guiding it in the right direction so that it could be converted into a neuronal somatic stem cell," explains Schler. This interconversion turns out to be even more effective if the cells, stimulated by growth factors and exposed to just the right environmental conditions, divide more frequently. "Gradually, the cells lose their molecular memory that they were once skin cells," explains Schler. It seems that even after only a few cycles of cell division the newly produced neuronal somatic stem cells are practically indistinguishable from stem cells normally found in the tissue.
Schler's findings suggest that these cells hold great long-term medical potential: "The fact that these cells are multipotent dramatically reduces the risk of neoplasm formation, which means that in the not-too-distant future they could be used to regenerate tissues damaged or destroyed by disease or old age; until we get to that point, substantial research efforts will have to be made." So far, insights are based on experiments using murine skin cells; the next steps now are to perform the same experiments using actual human cells. In addition, it is imperative that the stem cells' long-term behaviour is thoroughly characterized to determine whether they retain their stability over long periods of time.
"Our discoveries are a testament to the unparalleled degree of rigor of research conducted here at the Mnster Institute," says Schler. "We should realize that this is our chance to be instrumental in helping shape the future of medicine." At this point, the project is still in its initial, basic science stage although "through systematic, continued development in close collaboration with the pharmaceutical industry, the transition from the basic to the applied sciences could be hugely successful, for this as well as for other, related, future projects," emphasizes Schler. This, then, is the reason why a suitable infrastructure framework must be created now rather than later. "The blueprints for this framework are all prepped and ready to go - all we need now are for the right political measures to be ratified to pave the way towards medical applicability."
More information: Han D.W., Tapia N., Hermann A., Hemmer K., Hing S., Arazo-Bravo M.J., Zaehres H., Frank S., Moritz S., Greber B., Yang J.H., Lee H.T., Schwamborn J.C., Storch A., Schler H.R. (2012) Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors, Cell Stem Cell, CELL-STEM-CELL-D-11-00679R3
Provided by Max-Planck-Gesellschaft (news : web)
Read more:
Somatic stem cells obtained from skin cells for first time ever
SA cracks stem cell conundrum
By daniellenierenberg
Scientists in SA have generated non-embryonic stem cells for the first time, the Council for Scientific and Industrial Research (CSIR) announced on Tuesday.
These "induced adult pluripotent stem cells" were developed from adult skin cells and can be prompted to grow into any type of adult cell, such as those in the heart or brain.
The technology is important for research into regenerative medicine, but is not yet widely used.
While the technology is not novel, the development of the capacity to grow these stem cells in SA is important for researchers investigating diseases affecting Africans, said CSIR post-doctoral fellow Janine Scholefield. The CSIR had replicated techniques devised by Japanese researchers in 2007.
"Cutting-edge medical research is not useful to Africans if knowledge is being created and applied only in the developed world," said CSIR head of gene expression and biophysics Musa Mhlanga. "Given the high disease burden in Africa, our aim is to become creators of knowledge, as well as innovators and expert practitioners of the newest and best technologies," The CSIR said that adult-generated stem cells were more acceptable to people who objected to using stem cells from embryos.
"The other critical thing is the cells (that will be grown) are an exact genetic match to the person who donated the skin cells, so we can circumvent the problem of tissue rejection," Dr Scholefield said.
"We can also develop models of disease in a petri dish in the laboratory," she said, explaining that this would enable researchers to investigate rare diseases without the need for human subjects.
"We are getting closer to using stem cells as part of routine medical practice, but are still a long way off from using these cells for degenerative diseases of the central nervous system," said Michael Pepper, professor of i mmunology at the University of Pretoria.
Prof Pepper said there were several hundred clinical trials using stem cells under way around the world, but most were still at an early stage.
See the original post:
SA cracks stem cell conundrum
International Stem Cell Corporation Announces 2011 Financial Results
By LizaAVILA
CARLSBAD, Calif.--(BUSINESS WIRE)--
International Stem Cell Corporation (OTCBB: ISCO.OB - News) (www.internationalstemcell.com) today announced year-end financial results for the year ended December 31, 2011. ISCO is a California-based development-stage biotechnology company that is focused on therapeutic, biomedical and cosmeceutical product development and commercialization with multiple long-term therapeutic opportunities and two revenue-generating businesses offering potential for increased future revenue.
ISCO reported revenue of $1.1 million for the fourth quarter ended December 31, 2011, reflecting a 110% increase from the same period of the prior year. For the twelve months ended December 31, 2011, the Company reported revenue of $4.5 million, reflecting a year-over-year increase of 189%. The increases in revenues in both periods were primarily driven by strong sales at ISCOs wholly-owned subsidiary Lifeline Skin Care (LSC). In addition, steady growth in sales from ISCOs other wholly-owned subsidiary, Lifeline Cell Technology (LCT), contributed to the increases in revenues for both periods.
While the Company continued to invest in therapeutic projects, development of new technologies, and expansion of products and channels of distribution, to date we have generated limited revenue to support our core therapeutic research and development efforts. For the three months ended December 31, 2011, development expenses, excluding cost of sales, increased $507,000 or 17% compared with the same period of 2010, a reflection of increased G&A expenses resulting from higher stock-based compensation expenses.
For the twelve months ended December 31, 2011, development expenses, excluding costs of sales, increased approximately $3.0 million or 26% when compared with the prior year period.The majority of the increase was primarily due to increases in general and administrative and research and development activities. General and administrative expenses increased largely due to increased non-cash stock-based compensation, higher headcount, and increased expenses related business development activity and general corporate expenses. Research & Development expenses increased mainly due to increased number and complexity of experiments associated with our scientific projects. The increase in development expenses was also related to increased research activities on therapeutic products and product research activities for LSC and LCT coupled with increased sales and marketing expenses related to our skin care products.
Some of the 2011 Highlights:
-- A number of donors willing to provide oocytes for research purposed were enrolled in ISCO's program to establish a bank of clinical grade hpSC capable of being immune-matched to millions of patients.
-- The Research and Development team successfully completed the first series of preclinical studies that supports the therapeutic use of hepatocytes (liver cells) and neuronal cells derived from human parthenogenetic stem cells (hpSC). These in vivo experiments demonstrated that the derived cells are able to survive in targeted locations in mice without causing tumors.
-- We became Sarbanes-Oxley compliant and maintained, in all material respects, effective internal controls over financial reporting as of December 31, 2011.
-- We strengthened our Management Team through the appointments of well-known industry executives: Kurt May as President & Chief Operating Officer, Linh Nguyen as Chief Financial Officer, Donna Queen as Vice President of Marketing and Business Development for LSC.
Continued here:
International Stem Cell Corporation Announces 2011 Financial Results
Breakthrough Beauty Procedure Using Your Own Stem Cells Offered in the Inland Empire
By Dr. Matthew Watson
-- Allure Image Enhancement Among First to Offer the Stem Cell Facelift and PRP Therapy in the Inland Empire --
UPLAND, CA (PRWEB) March 19, 2012
Stem Cell Facelift with PRP Therapy provides an amazing full facial restoration and can simulate the effects of a face lift, brow lift, and total facial rejuvenation in one sitting. In addition, the benefits of the PRP Therapy with growth factors enhance stem cell survival, giving long lasting and potentially permanent results, says John Grasso MD, Medical Director at Allure Image Enhancement. I find these procedures to be an exciting new approach to the world of dermal fillers. Rather than using lab derived products, patients can enjoy the benefits of volume and longevity from their own cells.
Stem Cells often thought of as controversial and futuristic, are the latest beauty secret now available. Although injectable wrinkle treatments are very popular, there are many who shy away from putting anything foreign into their face. The two most common requests my patients ask me when it comes to anti-aging rejuvenation are: 1. Is there something natural I can use? and 2. Is there anything that lasts longer? Autologous fat transfer enhanced with stem cells and platelet rich plasma is going to change the world of Anti-Aging skin care, says Mina Grasso NP, owner of Allure Image Enhancement. For those who do not have adequate fat deposits or choose not to have autologous fat transfer can still benefit from the healing and repair response of various growth factors and cytokines with PRP alone or combined with manufactured fillers.
Fat transfer has been around for many years and may yield inconsistent results: 50% of the transferred fat usually breaks down within 2 years. Fat is an abundant source of mesenchymal stem cells. The difficulty is that in obtaining fat using Liposuction, up to half of the natural stem cells may be damaged. By adding additional autologous stem cells to the suctioned fat, it closer approximates the original concentration of stem cells in fat in the body and may aid the transplanted fat cells in surviving longer. Platelet Rich Plasma (PRP), which contains growth factors and cytokines, stimulates a repair response in soft tissue when added to the stem cell enhanced fat cells. The grafted fat and stem cells as well as surrounding local cells are activated by these growth factors to generate new growth that plumps up sagging areas. The growth factors enhance the quality of skin on the surface and repair sun damage and skin color irregularities.
Using this revolutionary new method, stem cells show promise in regenerating collagenproducing fibroblasts, cartilage, muscle and even bone cells. Research trials are under way using stem cells to repair other damaged tissue such as lungs, knees, and hearts and reverse neurological degenerative diseases. Stem Cell Facelift with PRP results in long-lasting volume in the treated area, and patients can start to see improvement in skin texture a healthy glow as soon as three weeks following treatment, with dramatic results occurring over a period of two to four months and lasting for years..
About Allure Image Enhancement, Inc.
Founded by Mina Grasso, RN, MSN, FNP-C, and her husband John Grasso MD. Allure Image Enhancement, Inc., for 15 years has served the Inland Empire with the latest in medical esthetics, providing services such as Botox Cosmetic, Restylane, Dysport, Juvderm, Latisse, Laser Hair Removal, Tattoo Removal, Laser Skin Rejuvenation, Vein Treatment, Body Shaping, and many more services.
Contact:
Nicholas Rodgers, CAC
More here:
Breakthrough Beauty Procedure Using Your Own Stem Cells Offered in the Inland Empire
Physicians grow retinas from human blood-derived stem cells
By LizaAVILA
Among the primary causes of adult-onset blindness are degenerative diseases of the retina, such as macular degeneration and retinitis pigmentosa. While some treatments have been developed that slow down the rate of degeneration, the clinical situation is still generally unsatisfactory. But if you could grow a new retina, transplant might be a possible cure. Now new hope is springing up from a research project at the University of Wisconsin-Madison in which scientists have succeeded in growing human retinal tissue from stem cells.
Pluripotent stem cells are capable of forming nearly any tissue in the body including retinal tissue. There has been great controversy about using pluripotent stem cells for human research or treatment, as historically the only source was to harvest them from early stage human embryos. Instead, for this work the researchers were able to regress mature body cells back into the pluripotent stem cells from which they originally grew. The process is called reprogramming, and is accomplished by inserting a set of proteins into the cell.
To produce the pluripotent stem cells, a white blood cell was taken from a simple blood sample. Genes which code for the reprogramming proteins are inserted into a plasmid, a nonliving ring of DNA. The cell is then infected with the plasmid, rather as a virus infects a cell, with the difference that the plasmid's genes do not become part of the cell's genetic structure. As the reprogramming proteins are formed within the cell by the plasmid DNA, the cell has a good chance of being reprogrammed into a pluripotent stem cell. This stem cell can then be encouraged to grow and differentiate into retinal tissue rather than make more blood cells.
Laboratory-grown human retinal tissue will certainly be used in testing drugs and to study degenerative diseases of the retina, and may eventually make available a new transplantable retina, or a new retina that is grown in place within the eye.
The figure above compares a schematic of the human retina with a photomicrograph of laboratory-grown retinal tissue. The new tissue has separated into at least three layers of cells, with rudimentary photosensitive rods or cones (red) at the top of the picture, and nerve ganglia (blue-green) at the bottom. The blue cells in the middle layer are likely bipolar retinal cells. The structure of the lab-grown retinal tissue is similar to that of a normal human eye, as can be seen by comparison with the retina schematic. The cells also formed synapses, which provide the channels through which optical information flows to the brain.
"We don't know how far this technology will take us, but the fact that we are able to grow a rudimentary retina structure from a patient's blood cells is encouraging, not only because it confirms our earlier work using human skin cells, but also because blood as a starting source is convenient to obtain," says Dr. David Gamm, pediatric ophthalmologist and senior author of the study. "This is a solid step forward." Further steps are eagerly awaited by those living in the dark.
Source: University of Wisconsin School of Medicine and Public Health
Read more from the original source:
Physicians grow retinas from human blood-derived stem cells
Epigenetic signatures direct the repair potential of reprogrammed cells
By LizaAVILA
ScienceDaily (Mar. 14, 2012) A research team has identified epigenetic signatures, markers on DNA that control transient changes in gene expression, within reprogrammed skin cells. These signatures can predict the expression of a wound-healing protein in reprogrammed skin cells or induced pluripotent stem cells (iPSCs), cells that take on embryonic stem cell properties. Understanding how the expression of the protein is controlled brings us one step closer to developing personalized tissue regeneration strategies using stem cells from a patient, instead of using human embryonic stem cells.
The study was published in the Journal of Cell Science.
When skin cells are reprogrammed, many of their cellular properties are recalibrated as they aquire stem cell properties and then are induced to become skin cells again. In order for these "induced" stem cells to be viable in treatment for humans (tissue regeneration, personalized wound healing therapies, etc.), researchers need to understand how they retain or even improve their characteristics after they are reprogrammed.
Since the initial discovery of reprogramming, scientists have struggled with the unpredictability of the cells due to the many changes that occur during the reprogramming process. Classifying specific epigenetic signatures, as this study did, allows researchers to anticipate ways to produce cell types with optimal properties for tissue repair while minimizing unintended cellular abnormalities.
The researchers used reprogrammed cells to generate three-dimensional connective tissue that mimics an in vivo wound repair environment. To verify the role of the protein (PDGFRbeta) in tissue regeneration and maintenance, the team blocked its cellular expression, which impaired the cells' ability to build tissue.
"We determined that successful tissue generation is associated with the expression of PDGFRbeta. Theoretically, by identifying the epigenetic signatures that indicate its expression, we can determine the reprogrammed cells' potential for maintaining normal cellular characteristics throughout development," said first author Kyle Hewitt, PhD, a graduate of the cell, molecular & developmental biology program at the Sackler School of Graduate Biomedical Sciences, and postdoctoral associate in the Garlick laboratory at Tufts University School of Dental Medicine (TUSDM).
"The ability to generate patient-specific cells from the reprogrammed skin cells may allow for improved, individualized, cell-based therapies for wound healing. Potentially, these reprogrammed cells could be used as a tool for drug development, modeling of disease, and transplantation medicine without the ethical issues associated with embryonic stem cells," said senior author Jonathan Garlick, DDS, PhD, a professor in the department of oral and maxillofacial pathology and director of the division of tissue engineering and cancer biology at TUSDM.
Jonathan Garlick is also a member of the cell, molecular & developmental biology program faculty at the Sackler School and the director of the Center for Integrated Tissue Engineering (CITE) at TUSDM.
Additional authors of the study are Yulia Shamis, MSc, a PhD candidate in the cell, molecular, and developmental biology program at the Sackler School; Elana Knight, BSc, and Avi Smith, BA, both research technicians in the Garlick laboratory; Anna Maione, a PhD student in the cell, molecular & developmental biology program at the Sackler School, and Addy Alt-Holland, PhD, MSc, assistant professor at TUSDM.
This work was supported by grant # DE017413 to Dr. Garlick from the National Institute for Dental and Craniofacial Research, part of the National Institutes of Health.
Excerpt from:
Epigenetic signatures direct the repair potential of reprogrammed cells
Scientists produce eye structures from human blood-derived stem cells
By Sykes24Tracey
ScienceDaily (Mar. 13, 2012) For the first time, scientists at the University of Wisconsin-Madison have made early retina structures containing proliferating neuroretinal progenitor cells using induced pluripotent stem (iPS) cells derived from human blood.
And in another advance, the retina structures showed the capacity to form layers of cells as the retina does in normal human development and these cells possessed the machinery that could allow them to communicate information. (Light-sensitive photoreceptor cells in the retina along the back wall of the eye produce impulses that are ultimately transmitted through the optic nerve and then to the brain, allowing you to see.) Put together, these findings suggest that it is possible to assemble human retinal cells into more complex retinal tissues, all starting from a routine patient blood sample.
Many applications of laboratory-built human retinal tissues can be envisioned, including using them to test drugs and study degenerative diseases of the retina such as retinitis pigmentosa, a prominent cause of blindness in children and young adults. One day, it may also be possible replace multiple layers of the retina in order to help patients with more widespread retinal damage.
We dont know how far this technology will take us, but the fact that we are able to grow a rudimentary retina structure from a patients blood cells is encouraging, not only because it confirms our earlier work using human skin cells, but also because blood as a starting source is convenient to obtain, says Dr. David Gamm, pediatric ophthalmologist and senior author of the study. This is a solid step forward.
In 2011, the Gamm lab at the UW Waisman Center created structures from the most primitive stage of retinal development using embryonic stem cells and stem cells derived from human skin. While those structures generated the major types of retinal cells, including photoreceptors, they lacked the organization found in more mature retina.
This time, the team, led by Gamm, Assistant Professor of Ophthalmology and Visual Sciences in the UW School of Medicine and Public Health, and postdoctoral researcher and lead author Dr. Joseph Phillips, used their method to grow retina-like tissue from iPS cells derived from human blood gathered via standard blood draw techniques.
In their study, about 16 percent of the initial retinal structures developed distinct layers. The outermost layer primarily contained photoreceptors, whereas the middle and inner layers harbored intermediary retinal neurons and ganglion cells, respectively. This particular arrangement of cells is reminiscent of what is found in the back of the eye. Further, work by Dr. Phillips showed that these retinal cells were capable of making synapses, a prerequisite for them to communicate with one another.
The iPS cells used in the study were generated through collaboration with Cellular Dynamics International (CDI) of Madison, Wis., who pioneered the technique to convert blood cells into iPS cells. CDI scientists extracted a type of blood cell called a T-lymphocyte from the donor sample, and reprogrammed the cells into iPS cells. CDI was founded by UW stem cell pioneer Dr. James Thomson.
We were fortunate that CDI shared an interest in our work. Combining our labs expertise with that of CDI was critical to the success of this study, added Dr. Gamm.
Other members of the research team include:
Excerpt from:
Scientists produce eye structures from human blood-derived stem cells
International Stem Cell Corporation to Present at the Roth Conference on March 14
By LizaAVILA
CARLSBAD, Calif.--(BUSINESS WIRE)--
International Stem Cell Corporation (OTCBB:ISCO.OB - News) today announced that Co-Chairman Kenneth Aldrich and President and Chief Operating Officer Kurt May will be presenting at the 24th Annual Roth Conference on Wednesday, March 14, 2012 at 1:00 p.m. Pacific time. The conference is being held March 11-14 at the Ritz Carlton Hotel in Dana Point, California.
About International Stem Cell Corporation
International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology, and cell-based skin care products through its subsidiary Lifeline Skin Care. More information is available at http://www.internationalstemcell.com.
To subscribe to receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.
Read this article:
International Stem Cell Corporation to Present at the Roth Conference on March 14
If Canada's game is hockey, its science is stem cells
By NEVAGiles23
alan bernstein From Wednesday's Globe and Mail Published Wednesday, Mar. 07, 2012 2:00AM EST
Most Canadians are unaware that two of their own a lanky physics whiz from Alberta and a rumpled Shakespeare-quoting MD from Toronto made a discovery 50 years ago that transformed the understanding of human biology and opened new doors to the treatment of cancer and other diseases.
Toiling away in labs atop Torontos old Princess Margaret Hospital, James Edgar Till and Ernest Armstrong (Bun) McCulloch proved that a single rare cell could produce the red blood cells, white blood cells and platelets needed to make blood, while simultaneously reproducing itself. Dr. Till and Dr. McCulloch originally called the cell a colony-forming unit. Today, its better known as a stem cell.
A great new book, Dreams and Due Diligence, by Joe Sornberger, tells the story. Still, that so few of us know let alone celebrate the fact that the stem cell is a Canadian discovery is baffling. Canada founded the entire field of stem-cell science. We have done much of the heavy lifting for decades: discovering neural stem cells, skin stem cells and cancer stem cells. If hockey is Canadas game, stem-cell science is Canadas science. Not knowing about Dr. Till and Dr. McCulloch is not knowing about Maurice Richard and Wayne Gretzky.
The way it happened didnt help. Their original paper was published in an obscure journal, Radiation Research, in 1961. Public interest went viral only after American James Thomson isolated human embryonic stem cells in 1998, which simultaneously raised hopes that stem cells could be used to repair any damaged cell in the body and ethical concerns that doing so would encourage the destruction of human embryos.
In 2002, the Canadian Institutes of Health Research developed guidelines for all stem-cell research carried out in Canada with its funds. These guidelines have become the gold standard for other countries, including the United States.
Whats even more remarkable is that Canada does such groundbreaking research on a dime. The all in investment in stem-cell research in Canada public, private and charitable funding is about $75-million. This support is provided by Canadians through taxes, donations to health charities and the generosity of community leaders individuals such as Robert and Cheryl McEwen of Toronto and the late Harley Hotchkiss of Calgary. But we still seriously lag behind California, which, with roughly the same population as Canada, has committed $3-billion over 10 years for stem-cell research.
How much further Canadas star scientists can go, however, is in doubt. According to the Stem Cell Network, there are 40 to 50 early-phase clinical trials using transplanted cells ready to roll out over the next four years. All are currently unfunded.
Prime Minister Stephen Harper has said his government will continue to make the key investments in science and technology but bemoaned Canadas less-than-optimal results for those investments. Stem-cell research has already proved itself a sound investment: Dr. Till and Dr. McCullochs work formed the basis of the bone marrow transplantation program at Princess Margaret Hospital that alone has saved thousands of lives. But it will take more than government funding: Private industry and private citizens also need to support life-saving research.
Canadians have good reason to be proud of our countrys contributions to health research and medicine. Two stand out as landmarks: the discovery of insulin in the 1920s and the discovery of stem cells in the 1960s. On Wednesday, at a dinner that brings together many of the countrys leading figures in business, the arts, entertainment, sports and science, the Canadian Stem Cell Foundation will be launched. The event will look back at that great discovery 50 years ago and look forward to ensure that Canadians continue to contribute to stem-cell research and its application to human disease.
More here:
If Canada's game is hockey, its science is stem cells
Planarian genes that control stem cell biology identified
By Dr. Matthew Watson
ScienceDaily (Mar. 1, 2012) Despite their unassuming appearance, the planarian flatworms in Whitehead Institute Member Peter Reddien's lab are revealing powerful new insights into the biology of stem cells -- insights that may eventually help such cells deliver on a promising role in regenerative medicine.
In this week's issue of the journal Cell Stem Cell, Reddien and scientists in his lab report on their development of a novel approach to identify and study the genes that control stem cell behavior in planarians. Intriguingly, at least one class of these genes has a counterpart in human embryonic stem cells.
"This is a huge step forward in establishing planarians as an in vivo system for which the roles of stem cell regulators can be dissected," says Reddien, who is also an associate professor of biology at MIT and a Howard Hughes Medical Institute (HHMI) Early Career Scientist. "In the grand scheme of things for understanding stem cell biology, I think this is a beginning foray into seeking general principles that all animals utilize. I'd say we're at the beginning of that process."
Planarians (Schmidtea mediterranea) are tiny freshwater flatworms with the ability to reproduce through fission. After literally tearing themselves in half, the worms use stem cells, called cNeoblasts, to regrow any missing tissues and organs, ultimately forming two complete planarians in about a week.
Unlike muscle, nerve, or skin cells that are fully differentiated, certain stem cells, such as cNeoblasts and embryonic stem cells are pluripotent, having the ability to become almost cell type in the body. Researchers have long been interested in harnessing this capability to regrow damaged, diseased, or missing tissues in humans, such as insulin-producing cells for diabetics or nerve cells for patients with spinal cord injuries.
Several problems currently confound the therapeutic use of stem cells, including getting the stem cells to differentiate into the desired cell type in the appropriate location and having such cells successfully integrate with surrounding tissues, all without forming tumors. To solve these issues, researchers need a better understanding of how stem cells tick at the molecular level, particularly within the environment of a living organism. To date, a considerable amount of embryonic stem cell research has been conducted in the highly artificial environment of the Petri dish.
With its renowned powers of regeneration and more than half of its genes having human homologs, the planarian seems like a logical choice for this line of research. Yet, until now, scientists have been unable to efficiently find the genes that regulate the planarian stem cell system.
Postdoctoral researcher Dan Wagner, first author of the Cell Stem Cell paper, and Reddien devised a clever method to identify potential genetic regulators and then determine if those genes affect the two main functions of stem cells: differentiation and renewal of the stem cell population.
After identifying genes active in cNeoblasts, Wagner irradiated the planarians, leaving a single surviving cNeoblast in each planarian. Left alone, each cNeoblast can form colonies of new cells at very specific rates of differentiation and stem cell renewal.
The researchers knocked down each of the active genes, one per planarian, and observed how the surviving cNeoblasts responded. By comparing the rate of differentiation and stem cell renewal to that of normal cNeoblasts, they could determine the role of each gene. Thus, if a colony containing a certain knocked down gene were observed to have fewer stem cells than the controls, it could be concluded that gene in question plays a role in the process of stem cell renewal. And if the colony had fewer differentiated cells than normal, the knocked down gene could be associated with differentiation.
Here is the original post:
Planarian genes that control stem cell biology identified
Living brain cells used in research
By raymumme
Scientists are growing living brain cells from skin samples which could help research into treatments for schizophrenia and bipolar disorder.
Scientists at the University of Edinburgh are growing the cells from skin samples taken from families known to carry faulty genes, which are believed to cause mental illness.
The project, which has received 1 million in funding from the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), aims to develop brain stem cells that could be used to test and screen drugs.
Scientists said it is not easy to understand the diseases using animal models and it is difficult to predict if possible new treatments will work.
They hope using cell-based systems derived from the skin or hair of affected patients will enable researchers to create tests that are more relevant to the disease in humans, and will reduce the dependence on animal models.
Andrew McIntosh, professor of biological psychiatry, said: "We are making different types of brain cells out of skin samples from people with bipolar disorder and schizophrenia.
"Once we have grown these in the laboratory we can then study the cells' neurological function and see how they respond to standard psychiatric treatments. Following this, we hope to be able to screen new medicines."
In the past, researchers used brain tissue from people with schizophrenia and bipolar depression from deceased donors to gain insight into these brain conditions. Scientists said that access to the living brain cells is an exciting development in studying mental illness.
The university said that between 1% and 4% of the world's population is diagnosed with bipolar disorder or schizophrenia, for which there are few highly effective treatments. Little is known about the causes of these conditions but a genetic component is involved as it can run in families.
Well over a million people in the UK are said to be affected by these conditions.
Go here to see the original:
Living brain cells used in research
Stem Cells Might Have the Potential to Produce New Eggs
By NEVAGiles23
Scientists might have found a way for a woman to be able to produce more eggs, potentially aiding and extending her fertility. The study, published in the journal Nature Medicine, found the ovaries of young women might still contain egg-producing stem cells, according to a report by MSNBC.
How could these stem cells potentially be used?
Theoretically, they could be used to develop new treatments for women who are struggling with infertility issues. The lead researcher on the study, Jonathan Tilly, has said that the stem cells could potentially be used to preserve the fertility of younger women who have struggled with serious diseases, like cancer, that may require harsh treatments that destroy the viability of their available eggs. He also speculated that they may be able to be used to restore egg production for an older woman that is no longer fertile.
What did the study involve?
Tilly, who works through Harvard-affiliated Massachusetts General Hospital, had first discovered these stem cells in mice. He then went looking for them in donated ovaries that he acquired through a partnership with a Japanese hospital.
The stem cells had to be isolated in order for Tilly to test them for their ability to produce new eggs. After being injected with a gene that would change them to a particular color, the stem cells were placed in part of a human ovary and grafted under the skin of mice to monitor the effect, according to My Health News Daily. The grafted stem cells did in fact appear to begin to grow new, albeit immature, eggs.
What are the potential challenges facing this study?
Mostly, skepticism. Some experts that have reviewed the study, including Dr. Mario Conti of the Center for Reproductive Sciences at the University of California, San Francisco, have pointed out that Tilly has failed to prove that these cells can be used to grow eggs in humans rather than mice. Other criticism concerns the stem cells themselves, which appear to make up a very small amount of the cells of the ovaries, and whether or not they are capable of producing a mature egg that can be fertilized and grow into a human being.
What are the next research steps?
Tilly plans on conducting more studies to test the potential of these stem cells. WebMD reported that he has already partnered with cell biologist Dr. Evelyn Telfer at the University of Edinburgh in Scotland to begin developing techniques to take the immature, or "seed" eggs and encourage them to become fully-mature eggs which may be able to be used.
More here:
Stem Cells Might Have the Potential to Produce New Eggs
Eggs from Stem Cells excite the imagination
By raymumme
These human eggs (oocytes) can now be made from adult ovaries; Credit: Shutterstock
Yvonne A R White, Dori C Woods, Yasushi Takai, Hiroyuki Seki and Jonathan L Tilly worked hard in 2004. When this intrepid team revealed that some mammals (eg. mice) can produce eggs into their adult life, there was hope that stem cells could now become a staple of medical ideas. That hope has been fully justified. Published in the March issue of Nature Medicine, the same team have explored human female ovary capabilities and performed what was thought the impossible.
We may all know that female babies are born with their full and finite complement of oocytes or eggs, but we are only partly correct. Now the possibilities have enlarged. The proof that you could find egg-producing stem cells in the ovary of adult women was paramount for this team of scientists.
Dr. Jonathan Tilly directs the Vincent Center in Massachusetts General Hospital: "The discovery of oocyte precursor cells in adult human ovaries, coupled with the fact that these cells share the same characteristic features of their mouse counterparts that produce fully functional eggs, opens the door for development of unprecedented technologies to overcome infertility in women and perhaps even delay the timing of ovarian failure." Presumably, stem cell researchers will read much more into this.
Shanghai mouse research provided support with proof of egg-producing stem cells in 2009 and then the Vincent team developed a more precise green fluorescence-activated cell-sorting technique(GFP), whereby no possibility of contamination from other cells was possible. The verified eggs they produced could then be fertilised and developed into blastocysts. Now for human tissues. The resultant oocytes (eggs) not only looked like and grew like those in human ovaries, but some had the required haploid number of chromosomes, presumably after meiosis (all true eggs of course have to double up their DNA later, when fertilised.)
This cross-section of a human ovary shows potential areas for stem cells -which can now be converted to oocytes - even in adult women; Credit: Shutterstock
The final step, to date, involved using mouse recipients for the human tissue. Immature human follicles and oocytes were found after 7-14 days, and possibly were present before the mouse skin graft. Dr. Tilly and the team are now exploring the freezing of these cells in human OSC banks, as human eggs cannot be frozen and thawed without damage.
Likewise, factors such as hormones that influence the marvellous transformation from OSC to oocyte need to be identified with IVF and other infertility possibilities become let us say, "improved" spectacularly by these discoveries. Women's health generally could also be improved by maintaining some functions in the ovary throughout life. Let us be clear that with even more from these particular stem cells, a fascinating transformation of the whole of medicine lies ahead.
Read this article:
Eggs from Stem Cells excite the imagination