4-Hour, Whole-Body 'Face-Lift' Uses Patient's Own Fat, Stem Cells
By JoanneRUSSELL25
May 4, 2012 9:27am
ABC News Paula Faris reports:
It is a medical claim that sounds like science fiction. Walk into a plastic surgeons office for a face-lift and walk out roughly four hours later with a whole-body makeover that required no incision and leaves you with no scars.
But some doctors say that fiction is now reality in the form of a stem-cell makeover, a procedure that uses the fat and stem cells from one part of the body to revamp another part of the body, all in a single office visit.
Such a claim convinced Debra Kerr to try the procedure herself in hopes of achieving a younger look. My eyes are looking heavier, and the lines are so pronounced and gravitys really taken over, Kerr, 55, said. I want to look as good and as young as I really feel.
Kerr, a skin-care specialist from Ohio, underwent a stem-cell makeover in which fat was removed from her waist via liposuction. The fat was then spun in the lab to concentrate its stem cells and, hours later, injected into Kerrs face and breasts.
Were taking a patients own fatty tissue, and we are just repositioning it in another part of their body, said Dr. Sharon McQuillan, a physician and founder of the Ageless Institute in Aventura, Fla., where Kerr had her procedure done.
Courtesy Dr. Sharon McQuillan
Because the makeover uses a patients own stem cells, there is virtually no risk that the body will reject the transfer, according to doctors like McQuillan who perform the procedure.
This enhancement will be enough to make her [Kerr] happy, McQuillan said. She wont have any scars. She doesnt really have any of the risks associated with general anesthesia or a full face lift.
More here:
4-Hour, Whole-Body 'Face-Lift' Uses Patient's Own Fat, Stem Cells
U of M researchers develop new muscular dystrophy treatment approach using human stem cells
By JoanneRUSSELL25
Public release date: 3-May-2012 [ | E-mail | Share ]
Contact: Caroline Marin crmarin@umn.edu 612-624-5680 University of Minnesota Academic Health Center
MINNEAPOLIS/SAINT PAUL (May 4, 2012) Researchers from the University of Minnesota's Lillehei Heart Institute have effectively treated muscular dystrophy in mice using human stem cells derived from a new process that for the first time makes the production of human muscle cells from stem cells efficient and effective.
The research, published today in Cell Stem Cell, outlines the strategy for the development of a rapidly dividing population of skeletal myogenic progenitor cells (muscle-forming cells) derived from induced pluripotent (iPS) cells. iPS cells have all of the potential of embryonic stem (ES) cells, but are derived by reprogramming skin cells. They can be patient-specific, which renders them unlikely to be rejected, and do not involve the destruction of embryos.
This is the first time that human stem cells have been shown to be effective in the treatment of muscular dystrophy.
According to U of M researchers who were also the first to use ES cells from mice to treat muscular dystrophy there has been a significant lag in translating studies using mouse stem cells into therapeutically relevant studies involving human stem cells. This lag has dramatically limited the development of cell therapies or clinical trials for human patients.
The latest research from the U of M provides the proof-of-principle for treating muscular dystrophy with human iPS cells, setting the stage for future human clinical trials.
"One of the biggest barriers to the development of cell-based therapies for neuromuscular disorders like muscular dystrophy has been obtaining sufficient muscle progenitor cells to produce a therapeutically effective response," said principal investigator Rita Perlingeiro, Ph.D., associate professor of medicine in the Medical School's Division of Cardiology. "Up until now, deriving engraftable skeletal muscle stem cells from human pluripotent stem cells hasn't been possible. Our results demonstrate that it is indeed possible and sets the stage for the development of a clinically meaningful treatment approach."
Upon transplantation into mice suffering from muscular dystrophy, human skeletal myogenic progenitor cells provided both extensive and long-term muscle regeneration which resulted in improved muscle function.
To achieve their results, U of M researchers genetically modified two well-characterized human iPS cell lines and an existing human ES cell line with the PAX7 gene. This allowed them to regulate levels of the Pax7 protein, which is essential for the regeneration of skeletal muscle tissue after damage. The researchers found this regulation could prompt nave ES and iPS cells to differentiate into muscle-forming cells.
Continue reading here:
U of M researchers develop new muscular dystrophy treatment approach using human stem cells
New muscular dystrophy treatment approach developed using human stem cells
By Dr. Matthew Watson
ScienceDaily (May 4, 2012) Researchers from the University of Minnesota's Lillehei Heart Institute have effectively treated muscular dystrophy in mice using human stem cells derived from a new process that -- for the first time -- makes the production of human muscle cells from stem cells efficient and effective.
The research, published May 4 in Cell Stem Cell, outlines the strategy for the development of a rapidly dividing population of skeletal myogenic progenitor cells (muscle-forming cells) derived from induced pluripotent (iPS) cells. iPS cells have all of the potential of embryonic stem (ES) cells, but are derived by reprogramming skin cells. They can be patient-specific, which renders them unlikely to be rejected, and do not involve the destruction of embryos.
This is the first time that human stem cells have been shown to be effective in the treatment of muscular dystrophy.
According to U of M researchers -- who were also the first to use ES cells from mice to treat muscular dystrophy -- there has been a significant lag in translating studies using mouse stem cells into therapeutically relevant studies involving human stem cells. This lag has dramatically limited the development of cell therapies or clinical trials for human patients.
The latest research from the U of M provides the proof-of-principle for treating muscular dystrophy with human iPS cells, setting the stage for future human clinical trials.
"One of the biggest barriers to the development of cell-based therapies for neuromuscular disorders like muscular dystrophy has been obtaining sufficient muscle progenitor cells to produce a therapeutically effective response," said principal investigator Rita Perlingeiro, Ph.D., associate professor of medicine in the Medical School's Division of Cardiology. "Up until now, deriving engraftable skeletal muscle stem cells from human pluripotent stem cells hasn't been possible. Our results demonstrate that it is indeed possible and sets the stage for the development of a clinically meaningful treatment approach."
Upon transplantation into mice suffering from muscular dystrophy, human skeletal myogenic progenitor cells provided both extensive and long-term muscle regeneration which resulted in improved muscle function.
To achieve their results, U of M researchers genetically modified two well-characterized human iPS cell lines and an existing human ES cell line with the PAX7 gene. This allowed them to regulate levels of the Pax7 protein, which is essential for the regeneration of skeletal muscle tissue after damage. The researchers found this regulation could prompt nave ES and iPS cells to differentiate into muscle-forming cells.
Up until this point, researchers had struggled to make muscle efficiently from ES and iPS cells. PAX7 -- induced at exactly the right time -- helped determine the fate of human ES and iPS cells, pushing them into becoming human muscle progenitor cells.
Once Dr. Perlingeiro's team was able to pinpoint the optimal timing of differentiation, the cells were well suited to the regrowth needed to treat conditions such as muscular dystrophy. In fact, Pax7-induced muscle progenitors were far more effective than human myoblasts at improving muscle function. Myoblasts, which are cell cultures derived from adult muscle biopsies, had previously been tested in clinical trials for muscular dystrophy, however the myoblasts did not persist after transplantation.
Read more from the original source:
New muscular dystrophy treatment approach developed using human stem cells
Researchers develop new muscular dystrophy treatment approach using human stem cells
By raymumme
Researchers from the University of Minnesota's Lillehei Heart Institute have effectively treated muscular dystrophy in mice using human stem cells derived from a new process that for the first time makes the production of human muscle cells from stem cells efficient and effective.
The research, published today in Cell Stem Cell, outlines the strategy for the development of a rapidly dividing population of skeletal myogenic progenitor cells (muscle-forming cells) derived from induced pluripotent (iPS) cells. iPS cells have all of the potential of embryonic stem (ES) cells, but are derived by reprogramming skin cells. They can be patient-specific, which renders them unlikely to be rejected, and do not involve the destruction of embryos.
This is the first time that human stem cells have been shown to be effective in the treatment of muscular dystrophy.
According to U of M researchers who were also the first to use ES cells from mice to treat muscular dystrophy there has been a significant lag in translating studies using mouse stem cells into therapeutically relevant studies involving human stem cells. This lag has dramatically limited the development of cell therapies or clinical trials for human patients.
The latest research from the U of M provides the proof-of-principle for treating muscular dystrophy with human iPS cells, setting the stage for future human clinical trials.
"One of the biggest barriers to the development of cell-based therapies for neuromuscular disorders like muscular dystrophy has been obtaining sufficient muscle progenitor cells to produce a therapeutically effective response," said principal investigator Rita Perlingeiro, Ph.D., associate professor of medicine in the Medical School's Division of Cardiology. "Up until now, deriving engraftable skeletal muscle stem cells from human pluripotent stem cells hasn't been possible. Our results demonstrate that it is indeed possible and sets the stage for the development of a clinically meaningful treatment approach."
Upon transplantation into mice suffering from muscular dystrophy, human skeletal myogenic progenitor cells provided both extensive and long-term muscle regeneration which resulted in improved muscle function.
To achieve their results, U of M researchers genetically modified two well-characterized human iPS cell lines and an existing human ES cell line with the PAX7 gene. This allowed them to regulate levels of the Pax7 protein, which is essential for the regeneration of skeletal muscle tissue after damage. The researchers found this regulation could prompt nave ES and iPS cells to differentiate into muscle-forming cells.
Up until this point, researchers had struggled to make muscle efficiently from ES and iPS cells. PAX7 induced at exactly the right time helped determine the fate of human ES and iPS cells, pushing them into becoming human muscle progenitor cells.
Once Dr. Perlingeiro's team was able to pinpoint the optimal timing of differentiation, the cells were well suited to the regrowth needed to treat conditions such as muscular dystrophy. In fact, Pax7-induced muscle progenitors were far more effective than human myoblasts at improving muscle function. Myoblasts, which are cell cultures derived from adult muscle biopsies, had previously been tested in clinical trials for muscular dystrophy, however the myoblasts did not persist after transplantation.
Read the original post:
Researchers develop new muscular dystrophy treatment approach using human stem cells
Bellevue doctor tests stem-cell cream as anti-aging therapy
By daniellenierenberg
by JEAN ENERSEN / KING 5 News
KING5.com
Posted on April 27, 2012 at 11:01 PM
A Bellevue doctor is one of only two researchers in the country testing stem cells as an anti-aging treatment.
Working with volunteer patients, Dr. Fredric Stern extracts stem cells with a liposuction-like procedure. The cells are then mixed with a special medium.
"Half is saved cyrogenically for future use and the other half is shipped to the laboratory in Arizona where on that end the stem cells are grown further," Stern said.
The end product goes into a cream called tropoelastin. The hope is that high concentrations of a patient's own stem cells in the cream will boost the skink's ability to repair itself.
If the eye cream proves successful in the eight-week study, the company will also offer a facial cream. Both could be available within a few months.
Stern said he expects the price to be comparable to high-end cosmetic products that typically cost hundreds of dollars.
Stern said the skin treatment is just the beginning. He said wound care is another possible use.
Read more:
Bellevue doctor tests stem-cell cream as anti-aging therapy
Adult stem cells used to induce the natural hair growth cycle in hairless mice
By NEVAGiles23
A previously hairless mouse following an implantation of bioengineered hair follicles recreated from adult tissue-derived stem cells
Researchers lead by Professor Takashi Tsuji from the Tokyo University of Science have successfully induced the natural hair growth and loss cycle in previously hairless mice. They have achieved this feat through the implantation of bioengineered hair follicles recreated from adult-tissue derived stem cells. While these results offer new hope for curing baldness, the work has broader implications, demonstrating the potential of using adult somatic stem cells for the bioengineering of organs for regenerative therapies.
The method devised by Professor Tsujis team involves reconstructing hair follicle germs from adult epithelial stem cells and cultured dermal papilla cells (dermal papilla are nipple-like projections at the base of hairs) and implanting these germs within or between skin layers. To recreate the desired hair densities normally about 120 hair shafts per square centimeter (0.15 square inch) or 60-100 hair shafts per square centimeter following a conventional hair transplantation method 28 bioengineered follicle germs were transplanted onto a circular patch of cervical skin measuring 1 cm (0.39 in) in diameter. The resulting hair density of 124 hair shafts per square centimeter (plus or minus 17 shafts) turned out to be satisfactory, but there was more good news.
Far more importantly, the implanted follicle germs developed all the proper structures and formed correct connections with the surrounding host tissues, including epidermis, arrector pili muscle and nerve fibers. Also, the stem and progenitor cells along with their niches were recreated in the bioengineered follicles, making a continuous hair-growth cycle possible.
The method has been shown to work with all types of hair follicles, regardless of function, structure and color (depending on the type of the origin follicle). In fact, some features of the hair shaft, such as pigmentation, may be controlled fancy a new permanent hair color?
Although more research is still necessary (such as further study of stem cell niches and optimizing the way origin follicles are to be sourced for clinical applications), the study constitutes another milestone on the way to next generation regenerative therapies.
Source: Tokyo University of Science
Just enter your friends and your email address into the form below
For multiple addresses, separate each with a comma
Privacy is safe with us because we have a strict privacy policy.
View post:
Adult stem cells used to induce the natural hair growth cycle in hairless mice
Bioengineered Follicles Grow Hair On Bald Mice
By NEVAGiles23
Featured Article Academic Journal Main Category: Transplants / Organ Donations Also Included In: Stem Cell Research;Dermatology Article Date: 21 Apr 2012 - 0:00 PDT
email to a friend printer friendly opinions
Current Article Ratings:
1 (1 votes)
4 (1 votes)
Takashi Tsuji, a Professor in the Research Institute for Science and Technology, Tokyo University of Science, and Director of Organ Technologies Inc, led the team, who report their findings in an open access paper published in Nature Communications on 17 April.
The study is significant on two counts: first it used adult stem cells and not embryonic stem cells, and second, the bioengineered follicles were fully functional and integrated into surrounding tissue, something that has not been managed before.
Not only does the study raise hopes of a cure for baldness, the researchers say it also represents a significant advance toward the next generation of "organ replacement regenerative therapies" that will enable the replacement of organs damaged by disease, injury or aging.
The researchers bioengineered hair follicle germ cells, the cells that mature into cells that grow hair, from two other types of cell: adult epithelial stem cells and dermal papilla cells.
They implanted the bioengineered cells into the skin of hairless mice and showed that they went on to have normal hair cycles, where after dead hairs fell out, new ones took their place.
View original post here:
Bioengineered Follicles Grow Hair On Bald Mice
Your child’s milk tooth can save her life
By daniellenierenberg
Is your child about to lose her milk tooth? Instead of throwing it away, you can now opt to use it to harvest stem cells in a dental stem cell bank for future use in the face of serious ailments. Now thats a tooth fairy story coming to life.
Still relatively new in India, dental stem cell banking is fast gaining popularity as a more viable option over umbilical cord blood banking.
Stem cell therapy involves a kind of intervention strategy in which healthy, new cells are introduced into a damaged tissue to treat a disease or an injury.
The umbilical cord is a good source for blood-related cells, or hemaotopoietic cells, which can be used for blood-related diseases, like leukaemia (blood cancer). Having said that, blood-related disorders constitute only four percent of all diseases, Shailesh Gadre, founder and managing director of the company Stemade Biotech, said.
For the rest of the 96 percent tissue-related diseases, the tooth is a good source of mesenchymal (tissue-related) stem cells. These cells have potential application in all other tissues of the body, for instance, the brain, in case of diseases like Alzheimers and Parkinsons; the eye (corneal reconstruction), liver (cirrhosis), pancreas (diabetes), bone (fractures, reconstruction), skin and the like, he said.
Mesenchymal cells can also be used to regenerate cardiac cells.
Dental stem cell banking also has an advantage when it comes to the process of obtaining stem cells.
Obtaining stem cells from the tooth is a non-invasive procedure that requires no surgery, with little or no pain. A child, in the age group of 5-12, is any way going to lose his milk tooth. So when its a little shaky, it can be collected with hardly any discomfort, Savita Menon, a pedodontist, said.
Moreover, in a number of cases, when an adolescent needs braces, the doctor recommends that his pre-molars be removed. These can also be used as a source for stem cells. And over and above that, an adults wisdom tooth can also be used for the same purpose, Gadre added.
Therefore, unlike umbilical cord blood banking which gives one just one chance - during birth - the window of opportunity in dental stem cell banking is much bigger.
Continued here:
Your child’s milk tooth can save her life
Stem cell study aids quest for motor neuron disease therapies
By JoanneRUSSELL25
ScienceDaily (Mar. 26, 2012) A breakthrough using cutting-edge stem cell research could speed up the discovery of new treatments for motor neuron disease (MND).
The international research team has created motor neurons using skin cells from a patient with an inherited form of MND.
Role of protein
Using patient stem cells to model MND in a dish offers untold possibilities for how we study the cause of this terrible disease as well as accelerating drug discovery by providing a cost-effective way to test many thousands of potential treatments said Professor Siddharthan Chandran, Director of the University's Euan MacDonald Centre for MND Research.
The study discovered that abnormalities of a protein called TDP-43, implicated in more than 90 per cent of cases of MND, resulted in the death of motor neuron cells.
This is the first time that scientists have been able to see the direct effect of abnormal TDP-43 on human motor neurons.
The study, led by the University of Edinburgh's Euan MacDonald Centre for Motor Neuron Disease Research, was carried out in partnership with King's College London, Columbia University, New York and the University of San Francisco.
Motor neuron disease
MND is a devastating, untreatable and ultimately fatal condition that results from progressive loss of the motor nerves -- motor neurons -- that control movement, speech and breathing.
The study, funded by the MND Association, is published in the journal Proceedings of the National Academy of Sciences.
Visit link:
Stem cell study aids quest for motor neuron disease therapies
Stem cell study aids quest for motor neurone disease therapies
By raymumme
Public release date: 26-Mar-2012 [ | E-mail | Share ]
Contact: Tara Womersley tara.womersley@ed.ac.uk 44-131-650-9836 University of Edinburgh
A breakthrough using cutting-edge stem cell research could speed up the discovery of new treatments for motor neurone disease (MND).
The international research team has created motor neurones using skin cells from a patient with an inherited form of MND.
The study discovered that abnormalities of a protein called TDP-43, implicated in more than 90 per cent of cases of MND, resulted in the death of motor neurone cells.
This is the first time that scientists have been able to see the direct effect of abnormal TDP-43 on human motor neurons.
The study, led by the University of Edinburgh's Euan MacDonald Centre for Motor Neurone Disease Research, was carried out in partnership with King's College London, Colombia University, New York and the University of San Francisco.
MND is a devastating, untreatable and ultimately fatal condition that results from progressive loss of the motor nerves motor neurones that control movement, speech and breathing.
Professor Siddharthan Chandran, of the University of Edinburgh, said: "Using patient stem cells to model MND in a dish offers untold possibilities for how we study the cause of this terrible disease as well as accelerating drug discovery by providing a cost-effective way to test many thousands of potential treatments."
The study, funded by the MND Association, is published in the journal PNAS
Original post:
Stem cell study aids quest for motor neurone disease therapies
New shortcut for stem cell programming
By NEVAGiles23
ScienceDaily (Mar. 22, 2012) Researchers at the University of Bonn artificially derive brain stem cells directly from the connective tissue of mice.
Scientists at the Life & Brain Research Center at the University of Bonn, Germany, have succeeded in directly generating brain stem cells from the connective tissue cells of mice. These stem cells can reproduce and be converted into various types of brain cells. To date, only reprogramming in brain cells that were already fully developed or which had only a limited ability to divide was possible. The new reprogramming method presented by the Bonn scientists and submitted for publication in July 2011 now enables derivation of brain stem cells that are still immature and able to undergo practically unlimited division to be extracted from conventional body cells. The results have now been published in the current edition of the journal Cell Stem Cell.
The Japanese stem cell researcher Professor Shinya Yamanaka and his team produced stem cells from the connective tissue cells of mice for the first time in 2006; these cells can differentiate into all types of body cells. These induced pluripotent stem cells (iPS cells) develop via reprogramming into a type of embryonic stage. This result made the scientific community sit up and take notice. If as many stem cells as desired can be produced from conventional body cells, this holds great potential for medical developments and drug research. "Now a team of scientists from the University of Bonn has proven a variant for this method in a mouse model," report Dr. Frank Edenhofer and his team at the Institute of Reconstructive Neurobiology (Director: Dr. Oliver Brstle) of the University of Bonn. Also involved were the epileptologists and the Institute of Human Genetics of the University of Bonn, led by Dr. Markus Nthen, who is also a member of the German Center for Neurodegenerative Diseases.
Edenhofer and his co-workers Marc Thier, Philipp Wrsdrfer and Yenal B. Lakes used connective tissue cells from mice as a starting material. Just as Yamanaka did, they initiated the conversion with a combination of four genes. "We however deliberately targeted the production of neural stem cells or brain stem cells, not pluripotent iPS multipurpose cells," says Edenhofer. These cells are known as somatic or adult stem cells, which can develop into the cells typical of the nervous system, neurons, oligodendrocytes and astrocytes.
The gene "Oct4" is the central control factor
The gene "Oct4" is a crucial control factor. "First, it prepares the connective tissue cell for reprogramming, later, however, Oct4 appears to prevent destabilized cells from becoming brain stem cells" reports the Bonn stem cell researcher. While this factor is switched on during reprogramming of iPS cells over a longer period of time, the Bonn researchers activate the factor with special techniques for only a few days. "If this molecular switch is toggled over a limited period of time, the brain stem cells, which we refer to as induced neural stem cells (iNS cells), can be reached directly," said Edenhofer. "Oct4 activates the process, destabilizes the cells and clears them for the direct reprogramming. However, we still need to analyze the exact mechanism of the cellular conversion."
The scientists at the University of Bonn have thus found a new way to reprogram cells, which is considerably faster and also safer in comparison to the iPS cells and embryonic stem cells. "Since we cut down on the reprogramming of the cells via the embryonic stage, our method is about two to three times faster than the method used to produce iPS cells," stresses Edenhofer. Thus the work involved and the costs are also much lower. In addition, the novel Bonn method is associated with a dramatically lower risk of tumors. As compared to other approaches, the Bonn scientists' method stands out due to the production of neural cells that can be multiplied to a nearly unlimited degree.
Low risk of tumor and unlimited self renewal
A low risk of tumor formation is important because in the distant future, neural cells will replace defective cells of the nervous system. A vision of the various international scientific teams is to eventually create adult stem cells for example from skin or hair root cells, differentiate these further for therapeutic purposes, and then implant them in damaged areas. "But that is still a long way off," says Edenhofer. However, the scientists have a rather urgent need today for a simple way to obtain brain stem cells from the patient to use them to study various neurodegenerative diseases and test drugs in a Petri dish. "Our work could form the basis for providing practically unlimited quantities of the patient's own cells." The current study was initially conducted on mice. "We are now extremely eager to see whether these results can also be applied to humans," says the Bonn scientist.
Share this story on Facebook, Twitter, and Google:
Read the original here:
New shortcut for stem cell programming
Somatic stem cells obtained from skin cells; pluripotency 'detour' skipped
By NEVAGiles23
ScienceDaily (Mar. 22, 2012) Breaking new ground, scientists at the Max Planck Institute for Molecular Biomedicine in Mnster, Germany, have succeeded in obtaining somatic stem cells from fully differentiated somatic cells. Stem cell researcher Hans Schler and his team took skin cells from mice and, using a unique combination of growth factors while ensuring appropriate culturing conditions, have managed to induce the cells' differentiation into neuronal somatic stem cells.
"Our research shows that reprogramming somatic cells does not require passing through a pluripotent stage," explains Schler. "Thanks to this new approach, tissue regeneration is becoming a more streamlined -- and safer -- process."
Up until now, pluripotent stem cells were considered the 'be-all and end-all' of stem cell science. Historically, researchers have obtained these 'jack-of-all-trades' cells from fully differentiated somatic cells. Given the proper environmental cues, pluripotent stem cells are capable of differentiating into every type of cell in the body, but their pluripotency also holds certain disadvantages, which preclude their widespread application in medicine. According to Schler, "pluripotent stem cells exhibit such a high degree of plasticity that under the wrong circumstances they may form tumours instead of regenerating a tissue or an organ." Schler's somatic stem cells offer a way out of this dilemma: they are 'only' multipotent, which means that they cannot give rise to all cell types but merely to a select subset of them -- in this case, a type of cell found in neural tissue -- a property, which affords them an edge in terms of their therapeutic potential.
To allow them to interconvert somatic cells into somatic stem cells, the Max Planck researchers cleverly combined a number of different growth factors, proteins that guide cellular growth. "One factor in particular, called Brn4, which had never been used before in this type of research, turned out to be a genuine 'captain' who very quickly and efficiently took command of his ship -- the skin cell -- guiding it in the right direction so that it could be converted into a neuronal somatic stem cell," explains Schler. This interconversion turns out to be even more effective if the cells, stimulated by growth factors and exposed to just the right environmental conditions, divide more frequently. "Gradually, the cells lose their molecular memory that they were once skin cells," explains Schler. It seems that even after only a few cycles of cell division the newly produced neuronal somatic stem cells are practically indistinguishable from stem cells normally found in the tissue.
Schler's findings suggest that these cells hold great long-term medical potential: "The fact that these cells are multipotent dramatically reduces the risk of neoplasm formation, which means that in the not-too-distant future they could be used to regenerate tissues damaged or destroyed by disease or old age; until we get to that point, substantial research efforts will have to be made." So far, insights are based on experiments using murine skin cells; the next steps now are to perform the same experiments using actual human cells. In addition, it is imperative that the stem cells' long-term behaviour is thoroughly characterized to determine whether they retain their stability over long periods of time.
"Our discoveries are a testament to the unparalleled degree of rigor of research conducted here at the Mnster Institute," says Schler. "We should realize that this is our chance to be instrumental in helping shape the future of medicine." At this point, the project is still in its initial, basic science stage although "through systematic, continued development in close collaboration with the pharmaceutical industry, the transition from the basic to the applied sciences could be hugely successful, for this as well as for other, related, future projects," emphasizes Schler. This, then, is the reason why a suitable infrastructure framework must be created now rather than later. "The blueprints for this framework are all prepped and ready to go -- all we need now are for the right political measures to be ratified to pave the way towards medical applicability."
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Max-Planck-Gesellschaft.
Read more from the original source:
Somatic stem cells obtained from skin cells; pluripotency 'detour' skipped
A new shortcut for stem cell programming
By Sykes24Tracey
Public release date: 22-Mar-2012 [ | E-mail | Share ]
Contact: Dr. Frank Edenhofer f.edenhofer@uni-bonn.de 49-228-688-5529 University of Bonn
These stem cells can reproduce and be converted into various types of brain cells. To date, only reprogramming in brain cells that were already fully developed or which had only a limited ability to divide was possible. The new reprogramming method presented by the Bonn scientists and submitted for publication in July 2011 now enables derivation of brain stem cells that are still immature and able to undergo practically unlimited division to be extracted from conventional body cells. The results have now been published in the current edition of the prestigious journal Cell Stem Cell.
The Japanese stem cell researcher Professor Shinya Yamanaka and his team produced stem cells from the connective tissue cells of mice for the first time in 2006; these cells can differentiate into all types of body cells. These induced pluripotent stem cells (iPS cells) develop via reprogramming into a type of embryonic stage. This result made the scientific community sit up and take notice. If as many stem cells as desired can be produced from conventional body cells, this holds great potential for medical developments and drug research. "Now a team of scientists from the University of Bonn has proven a variant for this method in a mouse model," report Dr. Frank Edenhofer and his team at the Institute of Reconstructive Neurobiology (Director: Dr. Oliver Brstle) of the University of Bonn. Also involved were the epileptologists and the Institute of Human Genetics of the University of Bonn, led by Dr. Markus Nthen, who is also a member of the German Center for Neurodegenerative Diseases.
Edenhofer and his co-workers Marc Thier, Philipp Wrsdrfer and Yenal B. Lakes used connective tissue cells from mice as a starting material. Just as Yamanaka did, they initiated the conversion with a combination of four genes. "We however deliberately targeted the production of neural stem cells or brain stem cells, not pluripotent iPS multipurpose cells," says Edenhofer. These cells are known as somatic or adult stem cells, which can develop into the cells typical of the nervous system, neurons, oligodendrocytes and astrocytes.
The gene "Oct4" is the central control factor
The gene "Oct4" is a crucial control factor. "First, it prepares the connective tissue cell for reprogramming, later, however, Oct4 appears to prevent destabilized cells from becoming brain stem cells" reports the Bonn stem cell researcher. While this factor is switched on during reprogramming of iPS cells over a longer period of time, the Bonn researchers activate the factor with special techniques for only a few days. "If this molecular switch is toggled over a limited period of time, the brain stem cells, which we refer to as induced neural stem cells (iNS cells), can be reached directly," said Edenhofer. "Oct4 activates the process, destabilizes the cells and clears them for the direct reprogramming. However, we still need to analyze the exact mechanism of the cellular conversion."
The scientists at the University of Bonn have thus found a new way to reprogram cells, which is considerably faster and also safer in comparison to the iPS cells and embryonic stem cells. "Since we cut down on the reprogramming of the cells via the embryonic stage, our method is about two to three times faster than the method used to produce iPS cells," stresses Edenhofer. Thus the work involved and the costs are also much lower. In addition, the novel Bonn method is associated with a dramatically lower risk of tumors. As compared to other approaches, the Bonn scientists' method stands out due to the production of neural cells that can be multiplied to a nearly unlimited degree.
Low risk of tumor and unlimited self renewal
A low risk of tumor formation is important because in the distant future, neural cells will replace defective cells of the nervous system. A vision of the various international scientific teams is to eventually create adult stem cells for example from skin or hair root cells, differentiate these further for therapeutic purposes, and then implant them in damaged areas. "But that is still a long way off," says Edenhofer. However, the scientists have a rather urgent need today for a simple way to obtain brain stem cells from the patient to use them to study various neurodegenerative diseases and test drugs in a Petri dish. "Our work could form the basis for providing practically unlimited quantities of the patient's own cells." The current study was initially conducted on mice. "We are now extremely eager to see whether these results can also be applied to humans," says the Bonn scientist.
Read more:
A new shortcut for stem cell programming
Somatic stem cells obtained from skin cells for first time ever
By NEVAGiles23
"Our research shows that reprogramming somatic cells does not require passing through a pluripotent stage," explains Schler. "Thanks to this new approach, tissue regeneration is becoming a more streamlined - and safer - process."
Up until now, pluripotent stem cells were considered the 'be-all and end-all' of stem cell science. Historically, researchers have obtained these 'jack-of-all-trades' cells from fully differentiated somatic cells. Given the proper environmental cues, pluripotent stem cells are capable of differentiating into every type of cell in the body, but their pluripotency also holds certain disadvantages, which preclude their widespread application in medicine. According to Schler, "pluripotent stem cells exhibit such a high degree of plasticity that under the wrong circumstances they may form tumours instead of regenerating a tissue or an organ." Schler's somatic stem cells offer a way out of this dilemma: they are 'only' multipotent, which means that they cannot give rise to all cell types but merely to a select subset of them - in this case, a type of cell found in neural tissue - a property, which affords them an edge in terms of their therapeutic potential.
To allow them to interconvert somatic cells into somatic stem cells, the Max Planck researchers cleverly combined a number of different growth factors, proteins that guide cellular growth. "One factor in particular, called Brn4, which had never been used before in this type of research, turned out to be a genuine 'captain' who very quickly and efficiently took command of his ship - the skin cell - guiding it in the right direction so that it could be converted into a neuronal somatic stem cell," explains Schler. This interconversion turns out to be even more effective if the cells, stimulated by growth factors and exposed to just the right environmental conditions, divide more frequently. "Gradually, the cells lose their molecular memory that they were once skin cells," explains Schler. It seems that even after only a few cycles of cell division the newly produced neuronal somatic stem cells are practically indistinguishable from stem cells normally found in the tissue.
Schler's findings suggest that these cells hold great long-term medical potential: "The fact that these cells are multipotent dramatically reduces the risk of neoplasm formation, which means that in the not-too-distant future they could be used to regenerate tissues damaged or destroyed by disease or old age; until we get to that point, substantial research efforts will have to be made." So far, insights are based on experiments using murine skin cells; the next steps now are to perform the same experiments using actual human cells. In addition, it is imperative that the stem cells' long-term behaviour is thoroughly characterized to determine whether they retain their stability over long periods of time.
"Our discoveries are a testament to the unparalleled degree of rigor of research conducted here at the Mnster Institute," says Schler. "We should realize that this is our chance to be instrumental in helping shape the future of medicine." At this point, the project is still in its initial, basic science stage although "through systematic, continued development in close collaboration with the pharmaceutical industry, the transition from the basic to the applied sciences could be hugely successful, for this as well as for other, related, future projects," emphasizes Schler. This, then, is the reason why a suitable infrastructure framework must be created now rather than later. "The blueprints for this framework are all prepped and ready to go - all we need now are for the right political measures to be ratified to pave the way towards medical applicability."
More information: Han D.W., Tapia N., Hermann A., Hemmer K., Hing S., Arazo-Bravo M.J., Zaehres H., Frank S., Moritz S., Greber B., Yang J.H., Lee H.T., Schwamborn J.C., Storch A., Schler H.R. (2012) Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors, Cell Stem Cell, CELL-STEM-CELL-D-11-00679R3
Provided by Max-Planck-Gesellschaft (news : web)
Read more:
Somatic stem cells obtained from skin cells for first time ever
SA cracks stem cell conundrum
By daniellenierenberg
Scientists in SA have generated non-embryonic stem cells for the first time, the Council for Scientific and Industrial Research (CSIR) announced on Tuesday.
These "induced adult pluripotent stem cells" were developed from adult skin cells and can be prompted to grow into any type of adult cell, such as those in the heart or brain.
The technology is important for research into regenerative medicine, but is not yet widely used.
While the technology is not novel, the development of the capacity to grow these stem cells in SA is important for researchers investigating diseases affecting Africans, said CSIR post-doctoral fellow Janine Scholefield. The CSIR had replicated techniques devised by Japanese researchers in 2007.
"Cutting-edge medical research is not useful to Africans if knowledge is being created and applied only in the developed world," said CSIR head of gene expression and biophysics Musa Mhlanga. "Given the high disease burden in Africa, our aim is to become creators of knowledge, as well as innovators and expert practitioners of the newest and best technologies," The CSIR said that adult-generated stem cells were more acceptable to people who objected to using stem cells from embryos.
"The other critical thing is the cells (that will be grown) are an exact genetic match to the person who donated the skin cells, so we can circumvent the problem of tissue rejection," Dr Scholefield said.
"We can also develop models of disease in a petri dish in the laboratory," she said, explaining that this would enable researchers to investigate rare diseases without the need for human subjects.
"We are getting closer to using stem cells as part of routine medical practice, but are still a long way off from using these cells for degenerative diseases of the central nervous system," said Michael Pepper, professor of i mmunology at the University of Pretoria.
Prof Pepper said there were several hundred clinical trials using stem cells under way around the world, but most were still at an early stage.
See the original post:
SA cracks stem cell conundrum
International Stem Cell Corporation Announces 2011 Financial Results
By LizaAVILA
CARLSBAD, Calif.--(BUSINESS WIRE)--
International Stem Cell Corporation (OTCBB: ISCO.OB - News) (www.internationalstemcell.com) today announced year-end financial results for the year ended December 31, 2011. ISCO is a California-based development-stage biotechnology company that is focused on therapeutic, biomedical and cosmeceutical product development and commercialization with multiple long-term therapeutic opportunities and two revenue-generating businesses offering potential for increased future revenue.
ISCO reported revenue of $1.1 million for the fourth quarter ended December 31, 2011, reflecting a 110% increase from the same period of the prior year. For the twelve months ended December 31, 2011, the Company reported revenue of $4.5 million, reflecting a year-over-year increase of 189%. The increases in revenues in both periods were primarily driven by strong sales at ISCOs wholly-owned subsidiary Lifeline Skin Care (LSC). In addition, steady growth in sales from ISCOs other wholly-owned subsidiary, Lifeline Cell Technology (LCT), contributed to the increases in revenues for both periods.
While the Company continued to invest in therapeutic projects, development of new technologies, and expansion of products and channels of distribution, to date we have generated limited revenue to support our core therapeutic research and development efforts. For the three months ended December 31, 2011, development expenses, excluding cost of sales, increased $507,000 or 17% compared with the same period of 2010, a reflection of increased G&A expenses resulting from higher stock-based compensation expenses.
For the twelve months ended December 31, 2011, development expenses, excluding costs of sales, increased approximately $3.0 million or 26% when compared with the prior year period.The majority of the increase was primarily due to increases in general and administrative and research and development activities. General and administrative expenses increased largely due to increased non-cash stock-based compensation, higher headcount, and increased expenses related business development activity and general corporate expenses. Research & Development expenses increased mainly due to increased number and complexity of experiments associated with our scientific projects. The increase in development expenses was also related to increased research activities on therapeutic products and product research activities for LSC and LCT coupled with increased sales and marketing expenses related to our skin care products.
Some of the 2011 Highlights:
-- A number of donors willing to provide oocytes for research purposed were enrolled in ISCO's program to establish a bank of clinical grade hpSC capable of being immune-matched to millions of patients.
-- The Research and Development team successfully completed the first series of preclinical studies that supports the therapeutic use of hepatocytes (liver cells) and neuronal cells derived from human parthenogenetic stem cells (hpSC). These in vivo experiments demonstrated that the derived cells are able to survive in targeted locations in mice without causing tumors.
-- We became Sarbanes-Oxley compliant and maintained, in all material respects, effective internal controls over financial reporting as of December 31, 2011.
-- We strengthened our Management Team through the appointments of well-known industry executives: Kurt May as President & Chief Operating Officer, Linh Nguyen as Chief Financial Officer, Donna Queen as Vice President of Marketing and Business Development for LSC.
Continued here:
International Stem Cell Corporation Announces 2011 Financial Results
Breakthrough Beauty Procedure Using Your Own Stem Cells Offered in the Inland Empire
By Dr. Matthew Watson
-- Allure Image Enhancement Among First to Offer the Stem Cell Facelift and PRP Therapy in the Inland Empire --
UPLAND, CA (PRWEB) March 19, 2012
Stem Cell Facelift with PRP Therapy provides an amazing full facial restoration and can simulate the effects of a face lift, brow lift, and total facial rejuvenation in one sitting. In addition, the benefits of the PRP Therapy with growth factors enhance stem cell survival, giving long lasting and potentially permanent results, says John Grasso MD, Medical Director at Allure Image Enhancement. I find these procedures to be an exciting new approach to the world of dermal fillers. Rather than using lab derived products, patients can enjoy the benefits of volume and longevity from their own cells.
Stem Cells often thought of as controversial and futuristic, are the latest beauty secret now available. Although injectable wrinkle treatments are very popular, there are many who shy away from putting anything foreign into their face. The two most common requests my patients ask me when it comes to anti-aging rejuvenation are: 1. Is there something natural I can use? and 2. Is there anything that lasts longer? Autologous fat transfer enhanced with stem cells and platelet rich plasma is going to change the world of Anti-Aging skin care, says Mina Grasso NP, owner of Allure Image Enhancement. For those who do not have adequate fat deposits or choose not to have autologous fat transfer can still benefit from the healing and repair response of various growth factors and cytokines with PRP alone or combined with manufactured fillers.
Fat transfer has been around for many years and may yield inconsistent results: 50% of the transferred fat usually breaks down within 2 years. Fat is an abundant source of mesenchymal stem cells. The difficulty is that in obtaining fat using Liposuction, up to half of the natural stem cells may be damaged. By adding additional autologous stem cells to the suctioned fat, it closer approximates the original concentration of stem cells in fat in the body and may aid the transplanted fat cells in surviving longer. Platelet Rich Plasma (PRP), which contains growth factors and cytokines, stimulates a repair response in soft tissue when added to the stem cell enhanced fat cells. The grafted fat and stem cells as well as surrounding local cells are activated by these growth factors to generate new growth that plumps up sagging areas. The growth factors enhance the quality of skin on the surface and repair sun damage and skin color irregularities.
Using this revolutionary new method, stem cells show promise in regenerating collagenproducing fibroblasts, cartilage, muscle and even bone cells. Research trials are under way using stem cells to repair other damaged tissue such as lungs, knees, and hearts and reverse neurological degenerative diseases. Stem Cell Facelift with PRP results in long-lasting volume in the treated area, and patients can start to see improvement in skin texture a healthy glow as soon as three weeks following treatment, with dramatic results occurring over a period of two to four months and lasting for years..
About Allure Image Enhancement, Inc.
Founded by Mina Grasso, RN, MSN, FNP-C, and her husband John Grasso MD. Allure Image Enhancement, Inc., for 15 years has served the Inland Empire with the latest in medical esthetics, providing services such as Botox Cosmetic, Restylane, Dysport, Juvderm, Latisse, Laser Hair Removal, Tattoo Removal, Laser Skin Rejuvenation, Vein Treatment, Body Shaping, and many more services.
Contact:
Nicholas Rodgers, CAC
More here:
Breakthrough Beauty Procedure Using Your Own Stem Cells Offered in the Inland Empire
Physicians grow retinas from human blood-derived stem cells
By LizaAVILA
Among the primary causes of adult-onset blindness are degenerative diseases of the retina, such as macular degeneration and retinitis pigmentosa. While some treatments have been developed that slow down the rate of degeneration, the clinical situation is still generally unsatisfactory. But if you could grow a new retina, transplant might be a possible cure. Now new hope is springing up from a research project at the University of Wisconsin-Madison in which scientists have succeeded in growing human retinal tissue from stem cells.
Pluripotent stem cells are capable of forming nearly any tissue in the body including retinal tissue. There has been great controversy about using pluripotent stem cells for human research or treatment, as historically the only source was to harvest them from early stage human embryos. Instead, for this work the researchers were able to regress mature body cells back into the pluripotent stem cells from which they originally grew. The process is called reprogramming, and is accomplished by inserting a set of proteins into the cell.
To produce the pluripotent stem cells, a white blood cell was taken from a simple blood sample. Genes which code for the reprogramming proteins are inserted into a plasmid, a nonliving ring of DNA. The cell is then infected with the plasmid, rather as a virus infects a cell, with the difference that the plasmid's genes do not become part of the cell's genetic structure. As the reprogramming proteins are formed within the cell by the plasmid DNA, the cell has a good chance of being reprogrammed into a pluripotent stem cell. This stem cell can then be encouraged to grow and differentiate into retinal tissue rather than make more blood cells.
Laboratory-grown human retinal tissue will certainly be used in testing drugs and to study degenerative diseases of the retina, and may eventually make available a new transplantable retina, or a new retina that is grown in place within the eye.
The figure above compares a schematic of the human retina with a photomicrograph of laboratory-grown retinal tissue. The new tissue has separated into at least three layers of cells, with rudimentary photosensitive rods or cones (red) at the top of the picture, and nerve ganglia (blue-green) at the bottom. The blue cells in the middle layer are likely bipolar retinal cells. The structure of the lab-grown retinal tissue is similar to that of a normal human eye, as can be seen by comparison with the retina schematic. The cells also formed synapses, which provide the channels through which optical information flows to the brain.
"We don't know how far this technology will take us, but the fact that we are able to grow a rudimentary retina structure from a patient's blood cells is encouraging, not only because it confirms our earlier work using human skin cells, but also because blood as a starting source is convenient to obtain," says Dr. David Gamm, pediatric ophthalmologist and senior author of the study. "This is a solid step forward." Further steps are eagerly awaited by those living in the dark.
Source: University of Wisconsin School of Medicine and Public Health
Read more from the original source:
Physicians grow retinas from human blood-derived stem cells
Epigenetic signatures direct the repair potential of reprogrammed cells
By LizaAVILA
ScienceDaily (Mar. 14, 2012) A research team has identified epigenetic signatures, markers on DNA that control transient changes in gene expression, within reprogrammed skin cells. These signatures can predict the expression of a wound-healing protein in reprogrammed skin cells or induced pluripotent stem cells (iPSCs), cells that take on embryonic stem cell properties. Understanding how the expression of the protein is controlled brings us one step closer to developing personalized tissue regeneration strategies using stem cells from a patient, instead of using human embryonic stem cells.
The study was published in the Journal of Cell Science.
When skin cells are reprogrammed, many of their cellular properties are recalibrated as they aquire stem cell properties and then are induced to become skin cells again. In order for these "induced" stem cells to be viable in treatment for humans (tissue regeneration, personalized wound healing therapies, etc.), researchers need to understand how they retain or even improve their characteristics after they are reprogrammed.
Since the initial discovery of reprogramming, scientists have struggled with the unpredictability of the cells due to the many changes that occur during the reprogramming process. Classifying specific epigenetic signatures, as this study did, allows researchers to anticipate ways to produce cell types with optimal properties for tissue repair while minimizing unintended cellular abnormalities.
The researchers used reprogrammed cells to generate three-dimensional connective tissue that mimics an in vivo wound repair environment. To verify the role of the protein (PDGFRbeta) in tissue regeneration and maintenance, the team blocked its cellular expression, which impaired the cells' ability to build tissue.
"We determined that successful tissue generation is associated with the expression of PDGFRbeta. Theoretically, by identifying the epigenetic signatures that indicate its expression, we can determine the reprogrammed cells' potential for maintaining normal cellular characteristics throughout development," said first author Kyle Hewitt, PhD, a graduate of the cell, molecular & developmental biology program at the Sackler School of Graduate Biomedical Sciences, and postdoctoral associate in the Garlick laboratory at Tufts University School of Dental Medicine (TUSDM).
"The ability to generate patient-specific cells from the reprogrammed skin cells may allow for improved, individualized, cell-based therapies for wound healing. Potentially, these reprogrammed cells could be used as a tool for drug development, modeling of disease, and transplantation medicine without the ethical issues associated with embryonic stem cells," said senior author Jonathan Garlick, DDS, PhD, a professor in the department of oral and maxillofacial pathology and director of the division of tissue engineering and cancer biology at TUSDM.
Jonathan Garlick is also a member of the cell, molecular & developmental biology program faculty at the Sackler School and the director of the Center for Integrated Tissue Engineering (CITE) at TUSDM.
Additional authors of the study are Yulia Shamis, MSc, a PhD candidate in the cell, molecular, and developmental biology program at the Sackler School; Elana Knight, BSc, and Avi Smith, BA, both research technicians in the Garlick laboratory; Anna Maione, a PhD student in the cell, molecular & developmental biology program at the Sackler School, and Addy Alt-Holland, PhD, MSc, assistant professor at TUSDM.
This work was supported by grant # DE017413 to Dr. Garlick from the National Institute for Dental and Craniofacial Research, part of the National Institutes of Health.
Excerpt from:
Epigenetic signatures direct the repair potential of reprogrammed cells
Scientists produce eye structures from human blood-derived stem cells
By Sykes24Tracey
ScienceDaily (Mar. 13, 2012) For the first time, scientists at the University of Wisconsin-Madison have made early retina structures containing proliferating neuroretinal progenitor cells using induced pluripotent stem (iPS) cells derived from human blood.
And in another advance, the retina structures showed the capacity to form layers of cells as the retina does in normal human development and these cells possessed the machinery that could allow them to communicate information. (Light-sensitive photoreceptor cells in the retina along the back wall of the eye produce impulses that are ultimately transmitted through the optic nerve and then to the brain, allowing you to see.) Put together, these findings suggest that it is possible to assemble human retinal cells into more complex retinal tissues, all starting from a routine patient blood sample.
Many applications of laboratory-built human retinal tissues can be envisioned, including using them to test drugs and study degenerative diseases of the retina such as retinitis pigmentosa, a prominent cause of blindness in children and young adults. One day, it may also be possible replace multiple layers of the retina in order to help patients with more widespread retinal damage.
We dont know how far this technology will take us, but the fact that we are able to grow a rudimentary retina structure from a patients blood cells is encouraging, not only because it confirms our earlier work using human skin cells, but also because blood as a starting source is convenient to obtain, says Dr. David Gamm, pediatric ophthalmologist and senior author of the study. This is a solid step forward.
In 2011, the Gamm lab at the UW Waisman Center created structures from the most primitive stage of retinal development using embryonic stem cells and stem cells derived from human skin. While those structures generated the major types of retinal cells, including photoreceptors, they lacked the organization found in more mature retina.
This time, the team, led by Gamm, Assistant Professor of Ophthalmology and Visual Sciences in the UW School of Medicine and Public Health, and postdoctoral researcher and lead author Dr. Joseph Phillips, used their method to grow retina-like tissue from iPS cells derived from human blood gathered via standard blood draw techniques.
In their study, about 16 percent of the initial retinal structures developed distinct layers. The outermost layer primarily contained photoreceptors, whereas the middle and inner layers harbored intermediary retinal neurons and ganglion cells, respectively. This particular arrangement of cells is reminiscent of what is found in the back of the eye. Further, work by Dr. Phillips showed that these retinal cells were capable of making synapses, a prerequisite for them to communicate with one another.
The iPS cells used in the study were generated through collaboration with Cellular Dynamics International (CDI) of Madison, Wis., who pioneered the technique to convert blood cells into iPS cells. CDI scientists extracted a type of blood cell called a T-lymphocyte from the donor sample, and reprogrammed the cells into iPS cells. CDI was founded by UW stem cell pioneer Dr. James Thomson.
We were fortunate that CDI shared an interest in our work. Combining our labs expertise with that of CDI was critical to the success of this study, added Dr. Gamm.
Other members of the research team include:
Excerpt from:
Scientists produce eye structures from human blood-derived stem cells