Aesthetic treatments can help you maintain your youthful glow – The Business Times
By daniellenierenberg
AESTHETICS medicine encompasses non-invasive treatments that do not involve surgery and aim to improve or correct the appearance of patients. Less intensive than cosmetic surgery, aesthetics medicine procedures are carried out by doctors to give natural and reversible results. Depending on your areas of concern, different techniques may be employed in combination to produce the best results - there is no "cookie-cutter" approach to your skincare needs.
Our skin has three layers:
The epidermis, the outermost layer of skin, provides a waterproof barrier to protect our body from germs and harmful UV rays. Its bottom-most layer makes new skin cells, and these skin cells travel up to the top layer and flake off, about a month after they form. It also gives you your skin colour, due to the presence of special cells called melanocytes, which produce the pigment melanin.
The dermis, the middle layer, contains tough connective tissue, blood vessels, hair follicles, and sweat glands.
The hypodermis, the innermost layer, is made of fat and connective tissue.
Ageing happens in every layer of the skin. Changes within the skin's layers show themselves on the surface as signs of ageing.
In the epidermis, a slower cell turnover and reduction in lipid production on the skin's surface means rough and dry skin as we age. Our skin is less efficient at repairing itself from harmful infections and UV rays. This causes pigmentation problems, like sunspots.
In the dermis, from the age of 25, there is a 1 per cent annual decrease in collagen, one of the "building blocks" of the skin. Elastin also decreases as we age. Hence, the structure of the skin is compromised, and wrinkles and saggy skin start to appear.
In the deeper layers, the hypodermis, the changes to the size and number of fat cells leads to deep wrinkles and hollow cheeks.
Skin ageing manifests by:
Fine lines and wrinkles: The first noticeable sign of ageing from 25 onwards are fine lines and wrinkles, especially around your eyes. Your dermis, the second layer of your skin, contains the collagen and elastic fibres that keep young skin plump, taut and wrinkle-free. The amount of collagen and elastic fibres in your dermis dwindles as the years roll on. As a result, your skin becomes less elastic, sags and you start to see the tell-tale signs of wrinkles.
Open pores and sagging skin: Ageing causes your skin to lose its elasticity, which stretches your pores and make them look larger. The accumulation of excess oil, dead skin cells and dirt trapped inside your pores also enhances their appearance. Hormonal changes such as pregnancy, menstruation and puberty can also enlarge your pores.
Dry and dull skin: Your epidermis forms the outer layer of your skin - a physical barrier from the external environment. On average, your body will produce an entirely new epidermis about every 60 days. Cells on the surface of your skin rub and flake off, continuously being replaced with new ones from below.
As you get older, it takes longer for your epidermis to renew itself, hence, more dead skin cells accumulate on the top layer of our skin. This diffuses light away and produces a dull skin tone. In addition, as we age, oil production slows down and this makes our skin dry - we soon lose that "Korean glass-skin effect".
Hyperpigmentation
Melanocytes located in the epidermis produce pigment called melanin. Hyperpigmentation is caused by an overproduction of melanin in patches of the skin.
This overproduction is triggered by a variety of factors, including sun exposure, genetic factors, age, hormonal influences, and skin injuries or inflammation.
Common types of hyperpigmentation encountered in our population are:
Melasma: Melasma is a common skin problem among Asians. Women are far more likely than men to get melasma, especially during pregnancy. They present as brown to gray-brown patches, usually on the face. Most people get it on their cheeks, nose bridge, forehead, chin, and above their upper lip. It also can appear on other parts of the body that are exposed to sunlight, such as the forearms and neck.
Solar lentigo: Solar lentigo, also known as age spots, are non-cancerous lesions that occur on the sun-exposed areas of the body. These flat lesions usually have well-defined borders, are dark in colour, and have an irregular shape. The backs of hands and face are common areas.
The lesions tend to increase in number with age, making them common among the middle age and older population. Age spots occur in 50 per cent of women and 20 per cent of men over the age of 50, due to stimulation from UV rays.
Post-inflammatory hyperpigmentation (PIH): It is temporary pigmentation that follows injury, for example, a cut to the skin, or inflammation of the skin, for example, acne or eczema. PIH can occur in anyone, but is more common in darker-skinned individuals, in whom the colour tends to be more intense and persist for a longer period than in lighter skin.
Freckles: Freckles are common, especially among fairer-skinned individuals. They start early on in life, even in childhood, and are due to your genetic makeup and sun exposure.
Dull skin, enlarged pores, pigmentation - How can they be corrected?
Avoid sun exposure: Sun exposure is the main cause of ageing. Choose a sunscreen with "broad spectrum" protection, meaning that it protects against both UVA and UVB rays. UVA rays also contribute to skin cancer and premature aging, UVB rays are the main cause of sunburn and skin cancers.
Ensure your sunscreen has a SPF30 or higher. Physical sunscreen, those that contain zinc oxide or titanium dioxide, provide better sun protection compared to chemical sunscreens, and are less likely to clog pores and cause pimples.
Protect your eyes with sunglasses and cover up with a wide-brimmed hat or an umbrella. Limit your direct exposure to the sun, especially between 10am and 4pm, when UV rays are strongest. Avoid tanning beds, which can cause serious long-term skin damage and contribute to skin cancer.
Lightening creams: Abnormal accumulation of melanin results in hyperpigmentation. Lightening creams contain ingredients to reduce the production of melanin. Powerful lightening creams are available through a prescription from a doctor, while milder ingredients do not require a prescription.
Hydroquinone is a major ingredient in lightening creams. However, frequent adverse reactions experienced by patients, such as skin irritation and inflammation, have prompted research into other agents. Several alternatives such as tranexamic acid, and 4-n-butyl resorcinol, arbutin and kojic acid have been developed.
Lasers: There are many different lasers in the market, for many different types of indications. The property of the laser, which determines what it is used for, is the specific wavelength it emits. Different structures in the skin will absorb light energy at different wavelengths. Therefore, in pigmentation treatments, we can deliver light energy at the correct wavelength to heat up the pigmentation, while sparing the other nearby structures that absorb different wavelengths.
The pigmentation absorbs the light energy and is broken up into small fragments and eventually is cleared from the skin.
My personal favourite protocol is to use two very effective lasers for pigmentation treatment, via a Rejuvenation Laser protocol.
The Nd:YAG laser emits wavelengths of 1064nm and 532nm. It is a gentle cleansing machine that helps to remove surface dirt and oil, cleanse your skin, dry up pimples, build collagen and is very effective to break up pigmentation into small fragments.
The yellow laser, made in Germany, emits a wavelength of 577nm. It helps with improving radiance, giving you radiant skin, reducing redness and effectively vaporising pigmentation.
The Rejuvenation Laser is non-ablative, gentle and has no downtime.
Combined with a potent post-procedure serum, it synergistically enhances the anti-ageing effect of the laser protocol. The serum employs proteins secreted by umbilical cord-lining stem cells to produce collagen, restore healthy skin function and treat symptoms of ageing.
This series is produced in collaboration with The Aesthetics Medical Clinic
See the rest here:
Aesthetic treatments can help you maintain your youthful glow - The Business Times
The Eye Contour Cream Celebrities Swear By To Look FLAWLESS On The Red CarpetIt Works Immediately! – SheFinds
By daniellenierenberg
Do you ever wonder why celebrities are never seen with dark circles under their eyes? Well, we discovered the secret behind the flawless complexions of the rich and famous and its something you can use at home.
After we were especially impressed by the performance of Cardi Bs enviable complexion on the red carpet ahead of the Grammy Awards a few weeks ago, we investigated her skincare routine. As it turns out, this pop stars go-to treatments are Lancer Method 3-step regimen and Dr. Lancers Eye Lifting Cream for an extra boost under the eyes.
These impressive at-home skincare products are designed to promote a youthful appearance in the skin by supporting collagen regeneration and speeding up cell turnover. The result is skin that looks and feels younger, in a natural way.
Lancer The Method: Normal-Combination Set ($255)
Everything You Need To Know About The Lancer Method
The Lancer Method works in three steps used once a day to give you glowing, rejuvenated skin. Dr. Harold Lancer explained to SheFinds, The Lancer Method was developed to help skin act younger by accelerating cell turnover, supporting natural collagen regeneration, and feeding skin essential nutrients. Polish is a dual-action exfoliator that improves the look of fine lines, texture, discoloration and pores for a smoother, younger-looking complexion.
The hydrating, pH-balanced cleanser comes next and gently removes makeup, dirt and oil for a fresh, healthy-looking complexion. Nourish is an ultra-hydrating moisturizer that reduces the look of fine lines and wrinkles while delivering essential nutrients for a dewy and glowing appearance.
Lancer Eye Contour Lifting Cream ($95)
What The Dr. Lancer Eye Lifting Cream Does
Even with the best daily anti-aging skincare routine, we all need to give a little extra love to the skin under our eyes from time to time. This skin is extra sensitive and therefore, more prone to the effects of stress and environmental damage. Dr. Lancers Eye Lifting Cream specifically targets this area to brighten and smooth the skin to reduce the appearance of aging.
Eye Contour Lifting Cream is a triple-action eye treatment and hydrator that targets multiple eye are concerns for a brighter, more youthful experience, Dr. Lancer said. Its proprietary complexes work to improve the appearance of fine lines, wrinkles, puffiness, dark circles and loss of elasticity. When used together, this powerful combination of products targets all areas of the face and top skincare concerns, leaving you with a clear and youthful complexion.
Dr. Lancer said that the best way to promote a youthful glow in your skin is to use hyaluronic acid, peptides, vitamins A, C and E and bioactive phytocompounds.
Hyaluronic Acid is a component of connective tissues that cushions and hydrates. Hyaluronic Acid is found in the skin naturally, but decreases with age so it is important to replenish it topically in conjunction with other ingredients to treat wrinkled skin, Dr. Lancer explained. Peptides are short snippets of linked amino acids reduce the appearance of wrinkles and fine lines as they stimulate collagen production. Vitamins A, C and E are antioxidants that prevent free radical damage and combat oxidation.
And bioactive phytocompounds have been isolated from natural plant sources- some examples: natural fruit enzymes, moisturizing ingredients such as sea algae and aloe vera, grape polyphenol, lilac stem cells, skin lighteners from licorice root, anti-inflammatory agents from ginger root, natural tea tree oil, chamomile oil and marula oil.
The genesis of robotic life and the future of humanity | Sciences – Up News Info
By daniellenierenberg
Looks like some science fiction. Scientists have created what has been described as the first live robots in the laboratory, and they did so by testing different combinations using an "evolutionary algorithm," which can be called electronic evolution.
Before readers begin to imagine androids made of meat, I must point out that these "xenobots" They are less than a millimeter wide and the closest thing they have to the extremities are two stumps that they use to swim through liquids for weeks at a time without requiring additional nutrition. They are composed of embryonic stem cell taken from the African clawed frog, known scientifically as Xenopus laevis, which inspired the name of the tiny bots.
%MINIFYHTMLfbc393bc3889937713c35029ced2f84811%%MINIFYHTMLfbc393bc3889937713c35029ced2f84812%
The scientists used heart cells that act as miniature pistons and skin cells that hold the package together. The level of sophistication involved in this feat of bioengineering suggests that, while the technological glories of the past reside in large monuments and megaprojects, the greatest achievements of the 21st century are found in the microscopic, nano and quantum scales.
Developed by researchers at Tufts University, the University of Vermont and the Harvard Wyss Institute, these impressive miniature biological machines (or should they refer to them as creatures?), Which can repair or heal themselves when they are damaged, They have potentially multiple beneficial uses. .
These include cleaning the microplastics that pollute our oceans and other toxic materials, as well as vectors to administer medications within our bodies, to perform surgical procedures and other medical applications. Unlike conventional robots and machines that can pollute the environment for a long time after their useful lives have expired, xenobots have the additional advantage of being completely biodegradable, which break down harmlessly after "dying."
In addition, such "biological machines,quot; are, in principle, more versatile and robust than their inanimate counterparts. "If living systems could be designed continuously and quickly ab initio and deployed to fulfill novel functions, their innate ability to resist entropy could allow them to far exceed the useful lives of our strongest but static technologies." the researchers postulate.
However, although I do not classify myself as xenobotphobic, I find the possible consequences of biobots and their possible future negative uses quite disturbing, despite the exciting possibilities they present.
Neither the researchers in their scientific paper Outlining the results or news coverage of the xenobots seems to have considered the damaging and destructive potential of this technology. However, this exists and should be carefully considered to avoid the dangerous hazards ahead.
The wrong hands could transform biobots from healing machines to biological weapons. Instead of administering curative medications to the body, they could be used to maim or kill. They could be used to act as the ideal hitmen, committing the perfect murder.
Given the pace of technological progress, the day cannot be very far away when biobots that can send toxins or deadly viruses to the body, attack vulnerabilities in an individual with tailored DNA, simulate a terminal illness or even carry out deadly microsurgery will be developed before a self-destruct mechanism causes them to dissolve in the bloodstream, making these invisible killers impossible to track. They could also be designed and used to attack entire populations, either as acts of biological warfare or bioterrorism.
Even if we manage to control the potential for intentional damage and misuse, there is also the potential for accidental damage. For example, researchers point to the future possibility of equipping biobots with reproductive systems to ensure that they can be (re) produced at scale. However, how can we be sure that they will stick to the script of their programming and produce only the required number of descendants who will live the required useful life?
Do we understand evolution enough to be sure that these novel life forms that we will create will not get rid of the limitations we have designed for them and will mutate in unexpected and potentially risky ways?
Beyond practical applications and erroneous applications, there are long-range ethical dimensions, not to mention the socio-economic and cultural implications for humanity.
By blurring (even more) the lines between the inanimate and the lively, how will we define life in the future? Anything made of organic tissue, no matter how simple and synthetic, continues to be considered life forms, or will we need new categories?
How about the relative value of life / machines? It is a simple xenobot superior to a highly sophisticated synthetic robot, such as Asimo and other expert robots, because one is "alive,quot; and the other probably not.
If intelligence and sensitivity are considered to be some of the characteristics of humanity, will we have to start granting intelligent machines the same rights, since "artificial intelligence,quot; continues to reach and even surpass its human form?
One of the most controversial technological problems of the moment is data privacy rights. But could we reach a point in the future where the data itself needs and has rights? For example, if one day it is considered that robots and computers have become truly intelligent and sensitive, then their data systems will presumably require protection against malicious deletion, which would amount to murder or involuntary modification, which would violate their freedom to choice.
Then there are the existential questions posed by this technological progress. Although technology has rendered the work of countless millions of professions obsolete, in general it has acted as a reinforcement and aid for a humanity in the control of innovation. However, we are rapidly reaching the stage where our technological creations not only eclipse our physical abilities but also our mental abilities and, soon, intellectual abilities.
When we finally build or develop machines that are not only clearly smarter than us, but also have a clear sense of identity and autonomy, we can continue to control them and, if we do, will this be an unjust form of subjugation or even slavery?
To escape the possible inevitability of our own obsolescence and the physical limitations of our bodies, we can decide to merge with our technological creations. We can update or modify our bodies in part or in full, as well as load or update our mental operating systems. Who knows, some may even decide to escape the physical constraints imposed by our mortal and vulnerable bodies, and download their mind and "spirit,quot; into a simulated virtual world (later), transforming into a pure metaphysical code.
Future radical modifications of our physical or mental states, especially if they are divergent among species, will raise the biggest and most fundamental question of all: what does it mean to be human?
The opinions expressed in this article are those of the author and do not necessarily reflect the editorial position of Al Jazeera.
See the rest here:
The genesis of robotic life and the future of humanity | Sciences - Up News Info
The Vegan Diet and Healthy Skin: Everything You Need to Know – LIVEKINDLY
By daniellenierenberg
Its no secret that loading your plate with fruits and vegetables and eschewing processed meat products is good for your insides. But is a vegan diet good for healthy skin, too?
Many celebrities say that it is; Natalie Portman and Billie Eilish have noticed significant improvements in their skin since going vegan and cutting out dairy.
Portman told the Cut a few years ago, Im vegan and I found my skin is much, much better than when I was a vegetarian. I cut out dairy and eggs, and I never had a breakout after. Eilishwho went vegan for ethical reasonssaid in a Tumblr post in 2018, Im lactose intolerant and dairy is horrible for your skin and my skin is VERY aware of that.
But its not just celebrities who think veganism is good for your skin, experts agree that theyre onto something. Blade Tiessena medical aestheticianwho owns the Ontario-based Anti-Aging Clinic and has worked in skincare for 33 yearsbelieves that ditching animal products for a healthy vegan diet can have a dramatic effect.I say this from both personal and professional experience. I suffered from acne since my early teens until months after going vegan at 35, being in the industry I had every treatment and product at my disposal over the years, he told LIVEKINDLY. Some helped to keep breakouts under control but nothing solved the issue permanently until shortly after becoming vegan.
Multiple studies say that ditching dairy could help acne-sufferers. Acne is the most common skin condition in the United States; it affects around 50 million Americans every year.
There are a few different theories on why dairy can cause an acne flare-up; some studies suggest that hormones in cows milk are the culprit. These hormones are intended to stimulate growth in calves. When humans ingest them, they release insulin, which can trigger breakouts.
According to a medically-reviewed article on Healthline, sometimes the hormones in milk can also interact with our own hormones, confusing our bodys endocrine system and signaling breakouts.
Nonprofit PlantPure Communities (PPC) recently launched a social media campaign called Ditch Dairy for Clearer Skin. The campaign aims to educate the public about the link between acne and dairy consumption.
In a supporting article, pediatrician Dr. Jackie Busse, MD, FAAP, says, removing dairy is the first and most important dietary change you should make to prevent and treat acne.
A vegan diet could also help people who suffer from eczemaa condition where patches of skin become inflamed, itchy, and cracked. According to Healthline, a handful have studies have shown that a raw, vegan diet, in particular, can be very beneficial, although there isnt conclusive evidence.
Plant-based foods have also been linked with easing psoriasis, an immune-mediated disease. Similar to eczema, it causes raised red flaky patches to appear on the skin.
Eating a whole food plant-based diet can help psoriasis sufferers because it is naturally low in inflammatory foods, says dietician Deirdre Earls, RD, LD. She was once hospitalized with psoriasis as a child, but switching to a plant-based diet helped her manage the condition effectively.
She told Everyday Health,I drastically changed my diet. I took all of the diet coke, all of the ultra-processed stuff out, and then I replaced it with simple, whole, mostly plant-based foods. Within six months, my skin had cleared.She added,psoriasis is an inflammatory condition, so anything you can do to cut down on inflammation should help.
Reality TV personality and entrepreneur Kim Kardashian-West has suffered from psoriasis for more than a decade and was recently diagnosed with psoriatic arthritis. She opened up on sister Kourtney Kardashians website Poosh about her battle with the disease, and how switching to a plant-based diet has helped her.
I love a healthy life and try to eat as plant-based as possible and drink sea moss smoothies,she said, adding that she also tries to keep her stress levels to a minimum.I hope my story can help anyone else with an autoimmune disease feel confident that there is light at the end of the tunnel.
Eating vegan foods can help with painful conditions, but they can also just make your skin glow too.
According to Tiessen, patients who follow a vegan diet achieve superior skin results to those who do not. They also have more energy and they sleep better. He says, eating a healthy vegan diet free of inflammatory foods along with drinking lots of water, sleeping well, exercising, reducing levels of stress, taking care of and protecting your skin will help ensure beautiful glowing skin that will last a lifetime.
He also recommends using cruelty-free vegan skincare products. Skincare should be looked at as nutrition and protection for the skin, he added. Supplying the skin with nutrients from organic plants can offer benefits that are unavailable from chemicals and or animal-based ingredients.
If you want to opt for cosmetic intervention, Tiessens clinicsin Orillia Ontario and Port Severn Ontariooffer many cruelty-free and vegan treatments, including microneedling. The chain is also an ambassador for vegan medical skincare brand ElaSpa.
If you prefer to stick to just consuming whole foods, here are seven of the best plant-based foods to eat to keep your skin looking glowing and healthy.
Eating spinach regularly can benefit your skin. Its rich in vitamins and minerals, including vitamin A, vitamin C, and vitamin E, which are particularly good for your skin. Its also a great source of iron, as well as folate and magnesium.
Blueberries are packed with skin-beautifying antioxidants. Stephanie Clarkeco-owner of C&J Nutritiontold Self, that deep blue/purple color that makes blueberries so gorgeous translates to helping your skin look young too. This color is a result of compounds called anthocyanins, powerful antioxidants that shield the skin against harmful free radicals that can damage the collagen that keeps your skin firm.
Eating avocados is good for your skin, as theyre rich in vitamins C and E. You can also apply them directly to your face and feel their benefits that way. Registered dietician Maureen Eyerman told Elle, the hydrating properties may reduce fine lines and wrinkles, help keep skin smooth, and boost skins immunity against stress and other environmental factors.
Sweet potatoes are rich in vitamin E and vitamin C, which helps to boost collagen. Theyre also rich in anthocyanins, which can help to prevent blemishes and dark spots. Sweet potatoes are also a source of fiber, iron, calcium, and selenium.
Walnuts contain omega-3 fats, which, according to Clarke,strengthen the membranes of your skin cells.They also contain nourishing fats which attract soothing moisture from the air and reduce inflammation, helping to avoid breakouts.
Carrots are associated with good eye health, but theyre good for the skin, too. According to Healthline, vitamin C-rich carrots can help skin recover from conditions like psoriasis and rashes. They can also help you heal faster from cuts and other wounds.
Kiwis have more vitamin C than oranges, and theyre packed with vitamin E. You can also place them over the top of your eyes, which can help to reduce the appearance of dark circles.
Summary
Article Name
The Vegan Diet and Healthy Skin: Everything You Need to Know
Description
Is the vegan diet the best defense against skin conditions? Here's everything you need to know about eating plant-based and healthy skin.
Author
Charlotte Pointing
Publisher Name
LIVEKINDLY
Publisher Logo
Read the rest here:
The Vegan Diet and Healthy Skin: Everything You Need to Know - LIVEKINDLY
Engineered Living-Cell Blood Vessel Provides New Insights to Progeria – Duke Today
By daniellenierenberg
Biomedical engineers at Duke University have developed the most advanced disease model for blood vessels to date and used it to discover a unique role of the endothelium in Hutchinson-Gilford Progeria Syndrome. Called progeria for short, the devastating and extremely rare genetic disease causes symptoms resembling accelerated aging in children.
The model is the first to grow both the smooth muscle and inner lining, or endothelium, layers of blood vessels from stem cells derived from the patients own skin. Combined with an advanced experimental setup that pushes culture media that models blood through the engineered blood vessels, the model reveals that the endothelium responds differently to flow and shear stress with progeria than it does when healthy.
The study shows that a diseased endothelium alone is enough to produce symptoms of progeria, and also demonstrates a new way of studying blood vessels in dynamic 3D models to better understand and test treatments for serious diseases.
The results appear online on February 6 in the journal Stem Cell Reports.
The endothelium expresses the toxic protein that causes the symptoms of progeria, but it does so at much lower levels than the outer layer of blood vessels made of smooth muscle, said Nadia Abutaleb, a biomedical engineering PhD student at Duke and co-first author of the paper. Because of this, the entire field has been focused on smooth muscle, and the few that have looked at the endothelium have mostly looked at it in a static 2D culture. But weve discovered that its necessary to work dynamically in three dimensions to see the full effects of the disease.
Progeria is a non-hereditary genetic disease caused by a random single-point mutation in the genome. It is so rare and so deadly that there are only about 250 people known to be currently living with the disease worldwide.
Progeria is triggered by a defect in a protein called progerin that leads it to accumulate outside of a cell's nucleus rather than becoming part of the nuclear structural support system. This causes the nucleus to take on an abnormal shape and inhibits its ability to divide. The resulting symptoms look much like accelerated aging, and affected patients usually die of heart disease brought on by weakened blood vessels before the age of 15.
"Progeria isn't considered hereditary, because nobody lives long enough to pass it on," said George Truskey, the R. Eugene and Susie E. Goodson Professor of Biomedical Engineering at Duke. "Because the disease is so rare, its difficult to get enough patients for clinical trials. We're hoping our platform will provide an alternative way to test the numerous compounds under consideration."
Blood vessels are difficult to simulate because their walls have multiple layers of cells, including the endothelium and the media. The endothelium is the innermost lining of all blood vessels that interacts with circulating blood. The media is made mostly of smooth muscle cells that help control the flow and pressure of the blood.
In 2017, the Truskey laboratory engineered the first 3D platform for testing blood vessels grown from skin cells taken from progeria patients. The blood vessels exhibited many of the symptoms seen in people with the disease and responded similarly to pharmaceuticals.
While the smooth muscle cells in our previous study were created using cells from progeria patients, the endothelial cells were not, said Abutaleb. We suspected that the endothelial cells might be responsible for some of the lingering symptoms in the original study, so we began working to grow blood vessels with both smooth muscle and endothelial cells derived from the same patient.
By successfully growing endothelial cells derived from progeria patients, the researchers were able to create a more complete model of the disease. They also tested the endotheliums unique contribution to the diseases symptoms by mixing impaired endothelium with healthy smooth muscle.
They found that a diseased endothelium alone was enough to produce many of the symptoms of progeria, but that these results only appeared when the cells were tested under dynamic conditions.
One of the major findings is that the progeria endothelium responds to flow and shear stresses differently than healthy endothelium, said Abutaleb.
The new models healthy blood vessels responded to pharmaceuticals more strongly than in past papers, and the diseased blood vessels showed a greater drop in functionality. With this advanced model in hand, the team is now beginning to investigate how new and current drugs for progeria affect a patients blood vessels.
This research was supported by the National Institutes of Health (R01 HL138252-01, UH3TR000505, UH3TR002142) and the National Science Foundation (GRFP Grants #1106401 and DGE1644868).
CITATION: iPSC-derived Endothelial Cells Affect Vascular Function in a Tissue Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome, Leigh Atchison, Nadia O. Abutaleb, Elizabeth Snyder-Mounts, Yantenew Gete, Alim Ladha, Thomas Ribar, Kan Cao, George A. Truskey. Stem Cell Reports, vol. 14, issue 2 (2020). DOI: 10.1016/stecr.2020.01.005
# # #
More here:
Engineered Living-Cell Blood Vessel Provides New Insights to Progeria - Duke Today
First-of-its-Kind Bio-Artificial Pancreas on Track for Type-I Diabetes Cure – Global Trade Magazine
By daniellenierenberg
Imagine a world where those living with Type 1 Diabetes, a chronic illness affecting more than 60 million adults globally, no longer had to deal with regular blood glucose monitoring, daily insulin injections or life-threatening nighttime hypoglycemic events, but instead could eat, exercise and sleep worry-free. Thats the kind of future an up-and-coming breakthrough technology is on track to creating.
Beta-O2 Technologies, a privately held biomedical company headquartered in Israel with research and industry affiliates across the U.S., is working to deliver a first-of-its-kind bio-artificial pancreas as a safe, effective and long-term cure for the disease. With preliminary animal trials showing promising results for its second generation breakthrough device, called Bio-artificial Pancreas (Air), the company is planning to begin human clinical trials within the year.
We have strong pre-clinical evidence to prove the safe operation of our device on animals, said Beta-O2 CEO Amir Lichter, noting that the second generation Air is performing well in ongoing animal studies. Its an enormous achievement that is paving the road for human trials.
Measuring approximately 2.5 by 2.5 inches, Air is made of titanium. It has two components: a macrocapsule that contains pancreatic cells and an oxygen tank equipped with an external port, so patients can easily refresh oxygen levels weekly. Once implanted under a patients skin, it becomes a natural source of insulin, sensing blood glucose levels and delivering insulin as required.
While there are a couple of other artificial pancreatic solutions being explored by different industry players, Beta-O2s disruptive technology is the only bio-artificial pancreas to incorporate an active oxygen supply, necessary to keep the pancreas cells in the implanted device functional and viable over the long term. Other solutions are demonstrating limited success because they rely on a patients bloodstream to deliver enough oxygen to keep the transplanted cells viable, which is problematic, Lichter explained.
Pancreas cells (islets) are extremely delicate, he said. We solve the problem by proactively supplying oxygen through an external source, providing a superior solution.
Lichter said the beauty of the Beta-O2 solution which holds 10 global patents for its exclusive immune protection capabilities and oxygen supply mechanisms is that its very generic, meaning it can contain cells from a human donor, cells from the pancreas of a pig, or cells derived in a lab from stem cells. Other advantages are that Beta-O2s bio-artificial pancreas does not require a patient to take intensive immunosuppression therapies after implant due to its protective encapsulation capabilities, and the device can quickly be retrieved from a patient if necessary due to malfunction or other health concerns, he explained.
Beta-O2 is currently collaborating with several U.S.-based pharmaceutical companies and academics, including researchers from Harvard University, MIT, University of Virginia and Cornell University, to further enhance the Air oxygen supply and its ability to measure glucose levels and secrete insulin once implanted. The company is also in negotiations to solidify its collaboration with several stem cell providers as it looks to secure an additional $15 million in investment funds to support its aggressive go-to-market strategy.
The active oxygen supply used by Beta-O2 is currently the best and most advanced technique for maintaining viability and function of large numbers of pancreaticislets (or stem cell-derived islets) in an encapsulation transplantation device, said Clark K. Colton ofthe Department of Chemical Engineering at MIT andBeta-O2 Scientific Advisory Board member.
Calling the Beta-O2 device a next-gen treatment option, Dr. Jos Oberholzer, Professor of Surgery, Biomedical Engineering and Experimental Pathology at the University of Virginia and Beta-O2 Scientific Advisory Board member, explained that after years of insulin injections and closed-loop insulin pumps and glucose sensors, patients will finally have access to a biological device solution to treat the most brittle forms of diabetes. The Beta-O2 device is the only implant that has shown reproducible results in humans with diabetes, with measurable insulin production originating from human islet cells within the device without the need for recipients to take any immunosuppressive drugs.
An earlier safety trial involving four patients in Sweden, supported by New York-based JDRF (Juvenile Diabetes Research Foundation), successfully demonstrated that Beta-O2s device is fully safe for use. No side effects were observed in patients who carried the device for up to 10 months, and the cells remained viable and functional.
Now, current animal trials underway at Beta-O2 are focused on extending the life of functional cells even further, with promising early results showing that rats implanted with Air are maintaining normal glucose levels.
With tangible evidence that we can maintain the viability and functionality of our cells for a long duration in rats, which have an immune system very similar to humans, we are looking forward to moving ahead with our second round of human clinical trials, Lichter said, noting that the company aims to be first to show that implanted biological pancreatic cells can successfully achieve normal blood sugar levels in diabetic patients without the need for immunosuppression therapy.
___________________________________________________________
About Beta-O2 Technologies Ltd. (www.beta-o2.com)
Beta-O2 Technologies Ltd. is a biomedical company developing a proprietary implantable bioreactor, the Air, for the treatment of Type 1 Diabetes. Air is designed to address the main problems of the otherwise successful procedures in which islets of Langerhans (i.e. pancreatic endocrine cells) are transplanted in diabetic patients, such as the need for life-long immunosuppressive pharmacological treatment and limited functionality of the transplanted islets over time due to an insufficient oxygen supply. Beta-O2 investors include SCP Vitalife Partners, Sherpa Ventures, Aurum Ventures, Pitango Venture Capital, Saints Capital, Japanese and Chinese private investors.
See the rest here:
First-of-its-Kind Bio-Artificial Pancreas on Track for Type-I Diabetes Cure - Global Trade Magazine
Could findings of large new study change how cancer is diagnosed and treated – NHS Website
By daniellenierenberg
"Signs of cancer can appear long before diagnosis," reports The Guardian.
Most cells in the body divide and reproduce constantly, picking up replication errors in their DNA over time as we age. Many of these errors may be harmless, but some can cause or increase the risk of cancer.
Cancers begin when harmful errors, or mutations, cause our cells to divide in an uncontrolled way. It's usually impossible to tell if this is happening, until the cancer starts to cause physical signs or symptoms.
In this new study, an international team of researchers sequenced the genomes (the entire DNA and genetic material) of 2,658 tumour samples.
They used the information to work out the order in which mutations and copying of mutations happened, because usually more than one mutation is needed before cells become cancerous. The researchers then modelled how different types of cancer develop over time.
They found that harmful mutations for some types of cancer, such as ovarian cancer, characteristically happen very early, in some cases decades before people have any physical signs of the disease. The findings raise hopes that some cancers could be detected and treated much earlier.
However, at present it's not clear whether this research could lead to a cancer screening system based on checking for "genetic early warning signs", both in terms of effectiveness and feasibility.
At present, the best way to detect cancer early is to be alert to the possible signs and symptoms, attend cancer screening when invited, and know about your family history of the disease.
Find out more about:
The research was carried out by the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, an enormous collaboration between hundreds of scientists from 4 continents. 46 scientists worked on this particular paper, from 38 universities or research institutes.
The PCAWG group published 6 papers this week, but we're focusing on just 1, which looked at the way cancers evolve over time. The study was published in the peer-reviewed journal Nature on an open-access basis, so it is free to read online.
The Guardian, BBC News and Mail Online focused on the discovery that DNA changes to cells may happen many years before cancer can currently be diagnosed, and the reporting was generally accurate.
This was a modelling study, using data from the whole genome sequencing of 2,658 cancers to reconstruct the likely evolution of DNA in these cancers over time. The study helps scientists to better understand how cancers begin and evolve.
However, at this stage, the results cannot be used to test for cancers in people.
A team of scientists worldwide worked with 2,778 samples of cancers, taken from 2,658 people with cancer. Some people gave just 1 sample, while others gave a sample of newly diagnosed primary tumours, and later, a sample of a metastatic cancer (when cancer has spread to another part of the body). 38 cancer types were represented in the samples.
The scientists carried out whole genome sequencing of the samples. This showed where DNA mutations arose, and whether they had been copied and duplicated as more DNA changes accumulated.
Researchers could look for so-called "driver" mutations, which are known to be linked to cancer, and see whether they happened early or late in the cancer's evolution.
They used this information to model a typical "life history" for each of the 38 types of cancer. This showed whether important mutations happened early or late in the cancer's development. They then estimated how that mapped against a person's life. For example, whether cancer-causing mutations happened a short time before cancer was diagnosed, or whether they had been present for years or decades before cancer was detected.
The researchers found that the time between cancer-driving mutations and diagnosis varies a lot between cancers. Some (such as liver and cervical cancer) happen 1 to 5 years before the cancer was diagnosed. By contrast, ovarian cancers showed significant mutations 10 to 40 years before diagnosis. This suggests the original mutations that lead to some adult cancers could happen during childhood or adolescence.
Other results included:
The researchers said: "Our study sheds light on the typical timescale of tumour development, with initial driver events seemingly occurring up to decades before diagnosis." They say the results "highlight opportunities for early cancer detection."
This study represents an enormous achievement by many scientists working together to find out more about how cancers develop over time. This type of work is likely to be important in developing future tests for cancers, and possibly new treatments that can target cancers at a very early stage.
However, the study does not change how cancer is diagnosed or treated at present. It can take years before early-stage research like this leads to changes in clinical practice.
As one of the scientists involved in the study told journalists, the idea of being able to target mutations by doing blood tests during childhood, then eliminate dangerous mutations, is "science fiction".
This research is very complex and, as with all modelling, it relies on some assumptions about the time it takes for mutations to arise, be duplicated and copied. The accuracy of the findings will depend on the accuracy of these assumptions.
All samples in the study came from people who had developed cancer. It would be interesting to compare findings with non-cancerous tissue samples from these people, or samples from people who did not develop cancer.
It's good news that DNA sequencing technology now allows scientists to work on such a large scale, and that theyre able to work together to find out more detail about the way that cancers evolve. This type of work could make a big difference to the way doctors approach cancer in future.
Analysis by BazianEdited by NHS Website
Read the original:
Could findings of large new study change how cancer is diagnosed and treated - NHS Website
Parkinson’s Traced to Malfunctioning Brain Cells at Birth – Newsmax
By daniellenierenberg
People who develop Parkinson's disease at a younger age (before age 50) may have malfunctioning brain cells at birth, according to a study that also identified a drug that may help these patients.
At least 500,000 people in the United States are diagnosed with Parkinson's each year. Most are 60 or older at diagnosis, but about 10% are between 21 and 50.
Parkinson's is a neurological disease that occurs when brain neurons that make dopamine become impaired or die. Dopamine helps coordinate muscle movement.
Symptoms get worse over time and include slow gait, rigidity, tremors, and loss of balance. There is currently no cure.
"Young-onset Parkinson's is especially heartbreaking because it strikes people at the prime of life," said study co-author Dr. Michele Tagliati, director of the Movement Disorders Program at Cedars-Sinai Medical Center in Los Angeles.
"This exciting new research provides hope that one day we may be able to detect and take early action to prevent this disease in at-risk individuals," he said in a hospital news release.
For the study, Tagliati and colleagues generated special stem cells from the cells of patients with young-onset Parkinson's disease. These stem cells can produce any cell type of the human body. Researchers used them to produce dopamine neurons from each patient and analyzed those neurons in the lab.
The dopamine neurons showed two key abnormalities: buildup of a protein called alpha-synuclein, which occurs in most forms of Parkinson's disease; and malfunctioning lysosomes, structures that act as "trash cans" for the cell to break down and dispose of proteins. This malfunction could result in a buildup of alpha-synuclein, the researchers said.
"Our technique gave us a window back in time to see how well the dopamine neurons might have functioned from the very start of a patient's life," said senior author Clive Svendsen, director of the Cedars Sinai Board of Governors Regenerative Medicine Institute.
"What we are seeing using this new model are the very first signs of young-onset Parkinson's," Svendsen said in the release. "It appears that dopamine neurons in these individuals may continue to mishandle alpha-synuclein over a period of 20 or 30 years, causing Parkinson's symptoms to emerge."
The study was published Jan. 27 in the journalNature Medicine.
The researchers also tested drugs that might reverse the neuron abnormalities. A drug called PEP005 already approved by the U.S. Food and Drug Administration for treating precancers of the skin reduced elevated levels of alpha-synuclein both in mice and in dopamine neurons in the lab.
The investigators plan to determine how PEP005, which is available in gel form, might be delivered to the brain to potentially treat or prevent young-onset Parkinson's.
They also want to find out whether the abnormalities in neurons of young-onset Parkinson's patients also exist in other forms of Parkinson's.
Original post:
Parkinson's Traced to Malfunctioning Brain Cells at Birth - Newsmax
Promising rugby teen is told back injury actually rare cancer – Plymouth Live
By daniellenierenberg
When talented rugby player George Thompson went to see his doctor with a suspected match-related injury, the last thing he expected to hear was the word 'cancer'.
George Thompson had been playing rugby since the age of six, spending most of his young sporting career at Devonport Services RFC, representing Devon U15s, captaining Devon U16s and Plymouth Albion U18s, before joining the Exeter Chiefs Academy.
The 17-year-old, from Saltash, was set to join his local club, Saltash RFC, but in a devastating and unexpected blow has had to give up the sport he loves after being diagnosed with Neuroblastoma.
The rare type of cancer mostly affects babies and young children, but very occasionally is found in adolescents.
George, who is in his second year of a gas engineering apprenticeship with Plymouth Community Homes, began suffering with lower back pain and was originally told that it was believed he had ankylosing spondylitis - a long-term condition which means the spine and other areas of the body become inflamed.
But after numerous scans and tests, he was told he had the rare cancer, which had also spread to his bones and bone marrow.
He has now been transferred to Bristol Royal Hospital for children where he is undergoing chemotherapy.
George now has a 12-month plan which will include surgery, chemotherapy, blood transfusions, radiotherapy and immunotherapy.
More than 13,800 has been raised on a crowdfunding page - which you can donate to here - set up by George's auntie, Catherine Arris.
George's sister, Rosie, said the "response has been overwhelming".
She said the money will help herself, her mother Julie and father, Martin with travel costs and subsidise their lost income whilst frequently making back-and-forth trips from Cornwall to Bristol, to ensure that they are with George throughout "the intense treatment period".
Rosie said: "This will also enable George to have some quality downtime away from the hospital ward when he is well enough in-between treatments.
"It is important to us that we maintain as normal a family life as possible throughout the difficult months that lie ahead and this is now being made possible by the generosity of so many people.
"There are not enough words to thank each and every person who is supporting us."
Rosie explained that any money which remains at the end of George's treatment will be donated to Clic Sargent, The Teenage Cancer Trust and Neuroblastoma UK.
"These charities are already looking after us, providing accommodation and various support," she said.
George has already undergone four blood transfusions and it is likely he will receive further transfusions.
Rosie said: "We are all signing up to donate blood and would encourage as many people as possible to follow suit. We have seen first hand how important blood donations are.
"In such a short space of time we have been amazed by the generosity and heartfelt messages of support.
"Georges fun loving character and caring nature has been recognised by so many people, some who have never met George."
There are a number of plans for fund-raising events to take place during Georges treatment, to raise money for Clic Sargent and the Teenage Cancer Trust.
Plymouth Community Homes is set to arrange an event, as well as a team named 'Run For George' which has entered into the Mudstock Run on June 27, 2020, supported by BH Fitness.
There is also a fund-raising rugby match on April 18, 2020, which has been organised by George's uncle, Richard Thompson.
If you are interested in this story, you may be interested in the crowdfunder for the Plymouth man diagnosed with testicular cancer at just 21 years old.
Neuroblastoma is a rare type of cancer that mostly affects babies and young children.
It develops from specialised nerve cells (neuroblasts) left behind from a baby's development in the womb.
Neuroblastoma most commonly occurs in 1 of the adrenal glands situated above the kidneys, or in the nerve tissue that runs alongside the spinal cord in the neck, chest,tummy or pelvis.
It can spread to other organs, such as the bone marrow, bone, lymph nodes, liver and skin.
It affects around 100 children each year in the UK and is most common in children under the age of 5.
The cause is unknown. There are very rare cases where children in the same family are affected, but generally neuroblastoma does not run in families.
Video Unavailable
Click to playTap to play
Play now
The symptoms of neuroblastoma vary depending on where the cancer is and whether it's spread.
The early symptoms can be vague and hard to spot, and can easily be mistaken for those of more common childhood conditions.
Symptoms can include:
See a GP or contactNHS 111if you're worried your child might be seriously ill.
A number of tests may be carried out if it's thought your child could have neuroblastoma.
These tests may include:
Once these tests have been completed, it'll usually be possible to confirm if the diagnosis is neuroblastoma and determine what stage it is.
As with most cancers, neuroblastoma is given a stage. This indicates if it's spread and, if so, how far.
The staging system used for neuroblastoma is:
Knowing the stage of your child's neuroblastoma will allow doctors to decide which treatment is best.
Some babies and infants less than 18 months old with either stage L1 or Ms neuroblastoma who have no symptoms may not need any treatment, as the cancer can sometimes go away on its own.
The main treatments for neuroblastoma are:
See the original post:
Promising rugby teen is told back injury actually rare cancer - Plymouth Live
Biological robots, that is a thing now – CapeTalk
By daniellenierenberg
Machines intended to work in the body should probably be made out of cells from your body.
There are two stories I would like to tell with this edition of Business Unusual, the first is about the Darpa funded research to build robots out of living cells, the second is the incredible history of the animal that was used to build the first biological robots - Platannas.
The Defense Advanced Research Projects Agency (DARPA) is an agency of the American Department of Defense. It has funded many projects for military projects that in time have come to be used for civilian applications. The best-known example is the predecessor of the internet.
Why a military agency would fund research into creating living robots might be concerning but the stated objectives include managing environmental clean-ups or improving drug delivery which certainly are worthy pursuits. Of greater concern, are the ethical questions that are raised by creating new forms of a living organism. At the moment the designs dont attempt to make them self-replicating but that is part of the future plans.
Robots typically are designed and programmed to perform a specific task. Until now they would have been constructed out of non-living materials. These robots are also designed for a specific task but created from living cells. The choice of cell and the specific construction determines what action or function the living robot can perform.
One function that was attempted was movement. Starting from scratch researchers used stem cells from a frog to create skin cells and heart cells. The heart cells are muscles and so can contract while heart cells are able to do so rhythmically. Using those properties a machine learning program was tasked with testing thousands of configurations to determine which design would use the least cells to achieve the motion required. Once the best designs were determined, the living robots were constructed by researchers manipulating individual cells under a microscope.
The tiny constructed robots demonstrated that living robots designed by computer could offer an alternative to traditionally constructed machines. Future versions would look to make the constructions more complex and eventually able to self replicate.
One intended function was using a swarm of living robots with the ability to decompose plastic to be used to remove microplastics in the ocean. That may be a long way off, but if it is to become a reality the best time to start working on it is now.
Another application might be to not find plastic in the sea, but cancers in your body. Your body is already very good at doing so, but as we age and at certain times of our lives it becomes more challenging to correctly identify and kill cancer cells when they are still only tiny tumours.
This would require building robots consisting of your own body cells arranged in a way to allow them to move through the body and specifically find the corrupted cells. Adding them in numbers as we age may reduce the chance of developing tumours or even help the body recover after exposure to damaging external factors like sun damage to your skin.
This too is a long way off, but if successful and added to the many other options for extending and improving our lives then the research is most welcome.
_Image credit: Wikipedia African clawed frog_
Setting the other issues relating to building living robots aside, you might wonder why a frog from South Africa was chosen to build the first living robots.
It was not a random choice but points to a fascinating history that makes this particular frog one that has helped humanity overcome medical issues on a number of occasions.
A pregnancy test these days simply requires peeing on a stick. The reaction to a specific hormone in the urine can be isolated in minutes and let you know if you are pregnant within days of it occurring. It was not always this easy, the first method we are aware of would see a potentially pregnant woman urinate on ungerminated wheat and barley and wait a week or so to see if it germinated. Incredibly it works and was first mentioned over 3 000 years ago by the Egyptians. It was scientifically tested in the 1960s and found to be 70% accurate.
There were a variety of other methods used most on the expectation that something in the urine of females could be used to confirm pregnancy. In the 1920s it was injecting urine into female rabbits that after a day would require the examination of the rabbit ovaries. If swollen the woman was pregnant. In order to do the examination the rabbit was always killed and so the search continued for a better option.
Enter Lancelot Hogben, an English researcher lecturing in Cape Town in the early 1930s. He advised a student to consider using the local platanna as a potential for use as a model organism for biological tests. His hunch proved correct with Hillel Shapiro and Harry Zwarenstein creating the test to use the frog to indicate pregnancy.
The frog would be injected and in hours if the woman was pregnant would produce eggs. Not only was it accurate, but it also would not harm the frog which was easy to keep in a lab and would live for over a decade. As a result, the remarkable frog was exported around the globe and provided the answer to the question, am I pregnant, to the largest population explosion in our history. Most baby boomers parents and indeed many baby boomers would have found out if they were pregnant thanks to this strange-footed frog.
Xenopus literally means strange foot, frogs typically dont have claws which is why the African clawed frog got the name and as for Platanna, that may be a reference to the frog being very flat - plat in Afrikaans.
Given its widespread use for pregnancy and acceptance as a good species for embryonic development when researchers attempted to clone an organism, this frog was once again a key in understanding the process. In 1958, Xenopus was cloned not from splitting an embryonic cell which was the original method, but by using the DNA from an adult specialised cell which replaced the original DNA in a frog egg. The method proved successful and paved the way to allow Dolly the sheep to be cloned from an adult sheep cell in 1996.
We owe a huge debt of gratitude to six species that for a variety of reasons have helped us understand biological processes and how best to deal with disease and the efficacy of drugs. There are nematode worms, fruit flies, zebrafish, chickens, mice and the African clawed toad.
These six animals are our real guinea pigs.
Image credit: Xenobot - Tuft University & University of Vermont
This article first appeared on 702 : Biological robots, that is a thing now
View post:
Biological robots, that is a thing now - CapeTalk
Why Does Hair Turn Grey? – American Council on Science and Health
By daniellenierenberg
Background
Today's biologic quarry is the hair follicle, depicted on the left. While we all take hair for granted (perhaps the lyric "you don't know what you got till it's gone" is applicable), it is a complex structure lying within the skin. Stem cells are responsible for its growth and coloration, more about them shortly, and the milieu of hormones, as well as cell mediators, controls where hair grows along with its texture. In addition to housing a sebaceous gland, hair follicles have muscles, the arrector pili, responsible for raising your hair, as in the phrase "hair-raising scare," which is a real thing.
Hair follicles go through stages of growth (anagen), rest (telogen), loss (catagen and exogen), as well as renewal (kenogen). The bulbous area at the bottom of the follicle contains those previously mentioned stem cells. Hair follicle stem cells (HFSC) derived embryologically from the same layer as our skin produces a new hair follicle. In contrast, melanocyte stem cells (MeSC) derived from the layer that forms our nervous system, provides pigment to color the hair. During anagen, these stem cells are active; otherwise, they just hang out.
The Study
Looking at the pictures of our recent Presidents over two-terms suggests that stress is involved. But how? To find an answer, the researchers made use of black-coated mice, in a series of increasingly focused experiments.
So yes, my children's antics did turn my hair grey, a hair color I have earned, but not directly. It required the assistance of my sympathetic nervous system. And it may explain why some people under stress retain their hair color; they may well have more of the melanocyte stem cells to burn through. It also points towards the belief that our autonomic nervous system, of which the sympathetics are one component, has a role in cell differentiation and tissue maintenance. Perhaps being more chill can adds days to your life as well as less grey in your hair.
[1] I attribute my hair loss, on the other hand, to my wife.
Source: Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells Nature DOI: 10.1038/s41586-020-1935-3
Image of hair follicle courtesy ofHelix84derivative work in Wikimedia
Read the original post:
Why Does Hair Turn Grey? - American Council on Science and Health
Researchers Explore Hydrogels That Are Promising Materials For Delivering Therapeutic Cells – Texas A&M University
By daniellenierenberg
Electron micrograph showing ridges and grooves on MAP hydrogel microbeads caused by developing stem cells.
Courtsey of Daniel Alge
Baby diapers, contact lenses and gelatin dessert. While seemingly unrelated, these items have one thing in common theyre made of highly absorbent substances called hydrogels that have versatile applications. Recently, a type of biodegradable hydrogel, dubbed microporous annealed particle (MAP) hydrogel, has gained much attention for its potential to deliver stem cells for body tissue repair. But it is currently unclear how these jelly-like materials affect the growth of their precious cellular cargo, thereby limiting its use in regenerative medicine.
In a new study published in the November issue of Acta Biomaterialia, researchers at Texas A&M University have shown that MAP hydrogels, programmed to biodegrade at an optimum pace, create a fertile environment for bone stem cells to thrive and proliferate vigorously. They found the space created by the withering of MAP hydrogels creates room for the stem cells to grow, spread and form intricate cellular networks.
Our research now shows that stem cells flourish on degrading MAP hydrogels; they also remodel their local environment to better suit their needs, said Daniel Alge, assistant professor in the Department of Biomedical Engineering. These results have important implications for developing MAP hydrogel-based delivery systems, particularly for regenerative medicine where we want to deliver cells that will replace damaged tissues with new and healthy ones.
MAP hydrogels are a newer breed of injectable hydrogels. These soft materials are interconnected chains of extremely small beads made of polyethylene glycol, a synthetic polymer. Although the microbeads cannot themselves cling to cells, they can be engineered to present cell-binding proteins that can then attach to receptor molecules on the stem cells surface.
Once fastened onto the microbeads, the stem cells use the space between the spheres to grow and transform into specialized cells, like bone or skin cells. And so, when there is an injury, MAP hydrogels can be used to deliver these new cells to help tissues regenerate.
However, the health and behavior of stem cells within the MAP hydrogel environment has never been fully studied.
MAP hydrogels have superior mechanical and biocompatible properties, so in principle, they are a great platform to grow and maintain stem cells, Alge said. But people in the field really dont have a good understanding of how stem cells behave in these materials.
To address this question, the researchers studied the growth, spread and function of bone stem cells in MAP hydrogels. Alge and his team used three samples of MAP hydrogels that differed only in the speed at which they degraded, that is, either slow, fast or not at all.
First, for the stem cells to attach onto the MAP hydrogels, the researchers decorated the MAP hydrogels with a type of cell-binding protein. They then tracked the stem cells as they grew using a high-resolution, fluorescent microscope. The researchers also repeated the same experiment using another cell-binding protein to investigate if cell-binding proteins also affected stem cell development within the hydrogels.
To their surprise, Alges team found that for both types of cell-binding proteins, the MAP hydrogels that degraded the fastest had the largest population of stem cells. Furthermore, the cells were changing the shape of the MAP hydrogel as they spread and claimed more territory.
In the intact MAP hydrogel, we could still see the spherical microbeads and the material was quite undamaged, Alge said. By contrast, the cells were making ridges and grooves in the degrading MAP hydrogels, dynamically remodeling their environment.
The researchers also found that as the stem cells grew, the quantity of bone proteins produced by the growing stem cells depended on which cell-binding protein was initially used in the MAP hydrogel.
Alge noted that the insight gained through their study will greatly inform further research and development in MAP hydrogels for stem-cell therapies.
Although MAP hydrogel degradability profoundly affects the growth of the stem cells, we found that the interplay between the cell-binding proteins and the degradation is also important, he said. As we, as a field, make strides toward developing new MAP hydrogels for tissue engineering, we must look at the effects of both degradability and cell-binding proteins to best utilize these materials for regenerative medicine.
Other contributors to the research include Shangjing Xin from the Department of Biomedical Engineering at Texas A&M and Carl A. Gregory from the Institute for Regenerative Medicine at the Texas A&M Health Science Center.
This research was supported by funds from theNational Institute of Arthritis and Musculoskeletal and Skin Diseasesof the National Institutes of Health.
See original here:
Researchers Explore Hydrogels That Are Promising Materials For Delivering Therapeutic Cells - Texas A&M University
Biological robots, that is a thing now – 702
By daniellenierenberg
There are two stories I would like to tell with this edition of Business Unusual, the first is about the Darpa funded research to build robots out of living cells, the second is the incredible history of the animal that was used to build the first biological robots - Platannas.
The Defense Advanced Research Projects Agency (DARPA) is an agency of the American Department of Defense. It has funded many projects for military projects that in time have come to be used for civilian applications. The best-known example is the predecessor of the internet.
Why a military agency would fund research into creating living robots might be concerning but the stated objectives include managing environmental clean-ups or improving drug delivery which certainly are worthy pursuits. Of greater concern, are the ethical questions that are raised by creating new forms of a living organism. At the moment the designs dont attempt to make them self-replicating but that is part of the future plans.
Robots typically are designed and programmed to perform a specific task. Until now they would have been constructed out of non-living materials. These robots are also designed for a specific task but created from living cells. The choice of cell and the specific construction determines what action or function the living robot can perform.
One function that was attempted was movement. Starting from scratch researchers used stem cells from a frog to create skin cells and heart cells. The heart cells are muscles and so can contract while heart cells are able to do so rhythmically. Using those properties a machine learning program was tasked with testing thousands of configurations to determine which design would use the least cells to achieve the motion required. Once the best designs were determined, the living robots were constructed by researchers manipulating individual cells under a microscope.
The tiny constructed robots demonstrated that living robots designed by computer could offer an alternative to traditionally constructed machines. Future versions would look to make the constructions more complex and eventually able to self replicate.
One intended function was using a swarm of living robots with the ability to decompose plastic to be used to remove microplastics in the ocean. That may be a long way off, but if it is to become a reality the best time to start working on it is now.
Another application might be to not find plastic in the sea, but cancers in your body. Your body is already very good at doing so, but as we age and at certain times of our lives it becomes more challenging to correctly identify and kill cancer cells when they are still only tiny tumours.
This would require building robots consisting of your own body cells arranged in a way to allow them to move through the body and specifically find the corrupted cells. Adding them in numbers as we age may reduce the chance of developing tumours or even help the body recover after exposure to damaging external factors like sun damage to your skin.
This too is a long way off, but if successful and added to the many other options for extending and improving our lives then the research is most welcome.
_Image credit: Wikipedia African clawed frog_
Setting the other issues relating to building living robots aside, you might wonder why a frog from South Africa was chosen to build the first living robots.
It was not a random choice but points to a fascinating history that makes this particular frog one that has helped humanity overcome medical issues on a number of occasions.
A pregnancy test these days simply requires peeing on a stick. The reaction to a specific hormone in the urine can be isolated in minutes and let you know if you are pregnant within days of it occurring. It was not always this easy, the first method we are aware of would see a potentially pregnant woman urinate on ungerminated wheat and barley and wait a week or so to see if it germinated. Incredibly it works and was first mentioned over 3 000 years ago by the Egyptians. It was scientifically tested in the 1960s and found to be 70% accurate.
There were a variety of other methods used most on the expectation that something in the urine of females could be used to confirm pregnancy. In the 1920s it was injecting urine into female rabbits that after a day would require the examination of the rabbit ovaries. If swollen the woman was pregnant. In order to do the examination the rabbit was always killed and so the search continued for a better option.
Enter Lancelot Hogben, an English researcher lecturing in Cape Town in the early 1930s. He advised a student to consider using the local platanna as a potential for use as a model organism for biological tests. His hunch proved correct with Hillel Shapiro and Harry Zwarenstein creating the test to use the frog to indicate pregnancy.
The frog would be injected and in hours if the woman was pregnant would produce eggs. Not only was it accurate, but it also would not harm the frog which was easy to keep in a lab and would live for over a decade. As a result, the remarkable frog was exported around the globe and provided the answer to the question, am I pregnant, to the largest population explosion in our history. Most baby boomers parents and indeed many baby boomers would have found out if they were pregnant thanks to this strange-footed frog.
Xenopus literally means strange foot, frogs typically dont have claws which is why the African clawed frog got the name and as for Platanna, that may be a reference to the frog being very flat - plat in Afrikaans.
Given its widespread use for pregnancy and acceptance as a good species for embryonic development when researchers attempted to clone an organism, this frog was once again a key in understanding the process. In 1958, Xenopus was cloned not from splitting an embryonic cell which was the original method, but by using the DNA from an adult specialised cell which replaced the original DNA in a frog egg. The method proved successful and paved the way to allow Dolly the sheep to be cloned from an adult sheep cell in 1996.
We owe a huge debt of gratitude to six species that for a variety of reasons have helped us understand biological processes and how best to deal with disease and the efficacy of drugs. There are nematode worms, fruit flies, zebrafish, chickens, mice and the African clawed toad.
These six animals are our real guinea pigs.
Image credit: Xenobot - Tuft University & University of Vermont
Read more here:
Biological robots, that is a thing now - 702
Alternative Funding Options To Get Your Dream Business Off The Ground – SWAAY
By daniellenierenberg
Thankfully, as a society we are now better aware of the importance of good mental health. Self-care has become a hotly talked about topic in recent years, with the power of yoga, meditation and journaling at the forefront of many discussions. However, whilst these activities do help to keep a lot of people grounded and happy, they aren't for everyone. It's super important to discover what type of self-care works best for you. For some, this might be an evening in, spent playing on some great bingo sites, while for others it might be going swimming, or taking time to cook up some delicious and healthy meals. We are all different and have different things that make us feel happy and relaxed. But, there are certainly a handful of general and simplistic things that make most of us feel our best.
Cut Back on Social Media
Without a doubt, there are lots of great benefits to social media, but too much screen time can leave us feeling disheartened and pretty blue. The constant barrage of perfectly filtered photos that appear on Instagram are bound to knock many people's self-esteem whether we consciously realise it or not. It's actually really difficult to go online and not compare yourself to others, so whilst it's nice to now and again see what our friends, colleagues and various different celebs are up too, too much time spent looking into the online lives of others is surely going to get you down in the long run. It is also thought that time spent on social media before bed can prevent us from getting a good night's sleep, which is another very important factor contributing to our health and wellness. It is sadly easy to miss out on living truly in the moment because of the distractions that our screens create. Staying away from social media more often in 2020 is without a doubt a kind thing to do for ourselves.
Get Exercising
Exercise is hugely important for both the health of our bodies and our minds, but that doesn't mean you have to hit the gym for hours on end in order to be kinder to yourself. There are many different types of exercise out there to choose from, from competitive sport, to jogging, to walking, to horse riding, to pilates, or even to running around a giant assault course if you so choose. There's a type of exercise out there suitable for everyone and getting into the habit of regular exercise will help to boost your overall mood and decrease your stress levels.
Eat Well
Like exercise, eating a healthy and well-balanced diet is not only important for the body but also the mind. Being deficient in certain nutrients, like magnesium for example, can contribute to feelings of anxiety and depression. Whether you are vegan, vegetarian, follow a keto diet or eat a bit of everything, it's important to understand what nutrients are in certain foods and make sure you eat sensibly and include a varied range of food types. Ordering in takeaways too often and snacking on too many sweets, crisps and chocolate can all too quickly end up taking its toll on your mental state as well as your physical state. However, it's of course important to allow yourself to indulge every now and then and not be too strict with yourself. Really, it's all about moderation.
Read, Watch Greats Films, Listen to Music You Love
Sometimes when we get into a bit of a rut, we forget to indulge in down time. Spending an evening reading a great book or watching our favourite film can really help us to unwind and feel re-energised. Listening to music on the way to and from work can also help to boost your mood and leave you feeling empowered.
Meet Up with Friends and Family
Spending time with the people we love and care about is so important to our mental well-being. It's an opportunity to get any worries off your chest and have a good laugh. Shutting yourself away from people is never a good thing in the long-term. If you don't have many close friends, which isn't at all uncommon in this day and age, then you can easily meet people who share the same interests as you at various different evening classes and clubs.
Being kinder to yourself should always be a priority. A lot of us beat ourselves up for a range of silly and ridiculous things, and we don't put enough time into making ourselves feel great. 2020 is the year to stop being mean to yourself and start helping yourself to feel empowered and truly content in life.
Read more here:
Alternative Funding Options To Get Your Dream Business Off The Ground - SWAAY
17 Brand-New Skincare Products Our Editors Are Using to the Very Last Drop This Month – POPSUGAR
By daniellenierenberg
Contrary to what you've probably (definitely) read on the internet, there is at least one benefit to the month with an average national contiguous temperature of 32 degrees. It is that you are automatically granted the excuse to send that "raincheck? lol" text any chilly evening you so choose, and instead snuggle up with your ugliest jogger sweatpants, a glass of Rioja, and brand-new skincare products. (It's called self-care, look it up.)
With the plethora of face creams, cleansers, serums, treatments, and oils hitting the market this February, however, it can be hard to decide which formulas are truly deserving of your Friday night. That's why we've asked our beauty editors to share their favorite at-home spa-day indulgences ahead, so you can stock up on the skincare products worth canceling all your plans for this month. (Well, at least until your friends start responding with the eye roll emoji.)
Link:
17 Brand-New Skincare Products Our Editors Are Using to the Very Last Drop This Month - POPSUGAR
The low-down on plant stem cells in skin care | Well+Good
By daniellenierenberg
I think it was around the time I was in high school that I learned that people were using stem cells to repair otherwise diseased organs. Science is crazy, right? But now, I see plant stem cells touted as skin-care ingredients in beauty productsall the timeand immediately my mind goes back to the laboratories. WTF are they actually?
The term stem cells is a generic phrase which refers to a special type of cell in an organism that can develop into many different types of cells, explains cosmetic chemist Perry Romanowski. Embryonic stem cells can be developed into all types of human cells like nerve cells, skin cells, muscle cells, etc. Its important to know that these are human cells that are specific to an individual.
In laymans terms, theyre undifferentiated cells that have not chosen a path as to what cells they are going to be yet, adds Purvisha Patel, MD, board-certified dermatologist and founder of Visha Skincare. More specifically, however, Im looking at plant stem cellswhich are different, but have somewhat similar functions. In plants, these cells live in the meristems of plants, says Dr. Patel. They help and regenerate live plants after they have an injury.
The similarity comes in how the cells act, though. Stem cells have the ability to self renew and self repair, just like human stem cells, says Ginger King, cosmetic chemist. The difference is that the plant ones actually have stronger antioxidant properties than human cells because plants are stationary. They have to protect themselves from the insults of weather.
Thats where the benefits to your skin come into playthese cellular components of plants are packed with antioxidants, which helps your skin to fend off free radicals that might otherwise aim to damage it. Plant stem cell benefits to the skin include anti-aging, antioxidant, and anti-inflammatory properties, says King.
These cellular components of plants are protective, and that translates when you apply one to your face.
But while we use the term stem cell it doesnt necessarily mean theyre alive like in the lab. When in skin-care products, the stem cells are not live, but you get the same benefits of antioxidants, amino acid content, and ability to boost collagen synthesis from these stem cell extracts, says King.
Original studies on plant stem cells on skin came using Swiss apple stem cells, according to Dr. Patel. Stem cell extracts were found to reverse the aging process of cultured fibroblasts, she explains. One of the first specific studies showed a decrease in the appearance of crows feet after extract administration. Other studies have followed, and it seems that the major benefit of plant stem cells is in the repair of the skin. These extracts may be beneficial as an anti-aging agent, especially if mixed with tissue exfoliating agents such as retinol, bakuchiol and alpha-hydroxy acids.
That said, even though experts affirm the skin benefits of plant stem cells, Romanowski says to take it with a grain of salt: In my opinion, stem cells are put into cosmetics because consumers hear the words stem cells and think it must refer to some type of advanced biomedical technology, he says. In reality, theyre just plant extracts, albeit super potent ones in many cases.
To find them on beauty product labels, King says to look for the words cell culture extract. Or the packaging will market it as a main ingredient. Product labels will usually have words stem cell on the product to show that they have the extract in them, says Dr. Patel. Other words such as phyto cells, plant extracts, and fruit extracts may be used on the label as well. Remember as with all skin-care ingredients, not all products are created equal and not all plants show efficacy with their stem cells. Look for brands that have clinical trials and results to back up the claims.
To shop the plant stem cell extracts for your own regimen, Ive rounded up some of the most noteworthy products, below.
Other ingredients to add to your skin-care regimen include some form of retinol, along with a trusty vitamin C serum.
Original post:
The low-down on plant stem cells in skin care | Well+Good
Stressful situations cause grey hair – CMU The Tartan Online
By daniellenierenberg
Legends from around the world feature characters whose sadness turns their hair grey overnight. Bizarre as they appear to be, those stories actually include an element of truth. Researchers at Harvard University confirmed that stress can indeed lead to grey hair and discovered the reasons behind it.
In a study published in Nature, the authors found that the nerve cells involved in the fight-or-flight response cause permanent damage to the pigment-regenerating stem cells in hair follicles in mice. This finding advances our understanding of how stress impacts the hair, moving researchers one step closer to blocking its negative effects.
To discover the cause of grey hair, researchers tested and eliminated different possible sources. They initially hypothesized immune attacks on pigment-producing cells were the cause, but mice without immune cells were still susceptible to grey hair.
They proceeded to other theories such as cortisol, the hormone elevated by stress. The theory of cortisol was disproved by further experiments on mice. After the mice lost their abilities to produce cortisol, they could still grow grey hairs under stress.
After several rounds of the process of elimination, the scientists landed on the sympathetic nerve system, which is responsible for the body's fight-or-flight response, as the culprit. Sympathetic nerves branch out into every hair follicle on the skin. When stressed, the nerves will release chemicals that are taken up by nearby stem cells, activating them into pigment-generating cells used to color the hair. An excess amount of pigment-generating cells will be activated when under stress, and the pigment reservoirs of these cells will be prematurely depleted. Once depleted, there are no longer cells that can color ones hair.
This finding helps scientists move towards moderating or blocking the effects of stress. In stressful environments, people are going to get grey hair at an earlier age. Currently, there are over 1.5 million posts with the hashtag #Greyhair on Instagram, and research in 2018 shows that 32 percent of British women under the age of 30 have already started to go grey. Indeed, grey hair is beginning to impact even those in their 20s. Even though factors like nutrition, medication, and genetics also play essential roles in greying hair, stress might have the greatest impact overall.
The relationship between stress, hair, and stem cells could also lead to new discoveries about how stress affects organ functions and blood vessels in comparison to stem cells. Scientists across many disciplines hope to ultimately exploit this relationship to find a way to control stem cells.
The rest is here:
Stressful situations cause grey hair - CMU The Tartan Online
College student from Longview seeks to make the grade with skin-care startup – Longview News-Journal
By daniellenierenberg
During his teen years, Longview native Heath Jordan said, he struggled with skin problems such as rosacea and acne.
Ive always had fair skin, he said, and he sought treatment at a dermatologist. I had a lot of blemishes and outbreaks.
He didnt let his conditions get under his skin. Jordan, 25, said challenges with his own skin inspired him to launch Tend + Temple out of his home in Forth Worth while pursuing a business degree at Texas Christian University.
That was a natural choice for me, he said of the business idea. I learned about skin care.
Jordan, son of Charlotte Hatley and the late Ken Jordan, said he came up with the name for his fledgling business after consulting a branding company that also devised a marketing plan.
He has developed three products with a chemist and dermatologist: a moisturizer, retinol mask (with a Vitamin A formula) and a facial cleanser.
All the products are contained in a tube and use plant stem cells and organic aloe, Jordan said. He also uses exotic ingredients such as snow algae and sea buckthorn oil.
Jordan said his skin-care line will be helpful for both men and women, athletes and people with a variety of skin types.
He plans to market the products at first to three target demographic groups: active-military or veterans (Jordan served in the Air Force), people on the go such as millennials and members of the LGBTQ community. He said he will offer discounts to teachers, active-duty military, veterans and first responders.
Im already talking to some businesses about eventually carrying the brand, he said. Online marketing will come later, then theyll be going into independent pharmacies and medical spas.
Jordan said he plans to formally launch Tend + Temple in June, but first he has to raise financing. Hes launched a campaign on the online fundraising tool Kickstarter that closes at 11:59 p.m. Feb. 29. His goal is raising $60,000.
That will complete the launch and get everything ready and stuff, Jordan said. Ive been using my own money.
If he does not raise the full amount through Kickstarter, Jordan said he would return the money to the contributors. However, he is determined to get his business going, and cited growing up with parents who encouraged ambitions.
There was nothing I could never do, they always kind of instilled in me and my sister (Mackenzie), he said.
His Spanish teacher at Pine Tree High School, Jenny Enriquez, said she recalls Jordan as being a hard worker.
I do not think Spanish was his favorite subject, said Enriquez, now a stay-at-home mom who has remained in touch with Jordan. Even if he struggled with the materials, he was always one of those students who was determined. He was going to get the grade he wanted.
Enriquez said Jordan stayed after class and sought extra credit.
And he remains determined. He joined the Air Force four days after graduating from high school and served six and a half years as a medic before his discharge. He now is a sophomore at TCU.
Once launched, he said, his plan is to expand the skin-care line over the next five years.
Id eventually like to branch off into other product categories such as food and beverages, Jordan said.
View original post here:
College student from Longview seeks to make the grade with skin-care startup - Longview News-Journal
Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID – Dove Medical Press
By daniellenierenberg
John T Lear,1 Axel Hauschild,2 Eggert Stockfleth,3 Nicholas Squittieri,4 Nicole Basset-Seguin,5 Reinhard Dummer6
1Manchester Royal Infirmary, Manchester, UK; 2Klinik Fr Dermatologie, Venerologie Und Allergologie Universittsklinikum Schleswig-Holstein, Kiel, Germany; 3Universittshautklinik Bochum, Bochum, Germany; 4Sun Pharmaceutical Industries, Inc., Princeton, NJ, USA; 5Department of Dermatology, Hpital Saint Louis, Paris, France; 6Skin Cancer Center University Hospital, Zrich, Switzerland
Correspondence: John T LearUniversity of Manchester, 46 Grafton Street, Manchester M13 9NT, UKTel +44 161 276 4173Fax +44 161 276 8881Email john.lear@srft.nhs.uk
Nevoid basal cell carcinoma syndrome (NBCCS), or Gorlin syndrome, is a rare hereditary disease characterized by the development of multiple cutaneous basal cell carcinomas (BCCs) from a young age.1 Loss-of-function germline mutations in the hedgehog-related patched 1 (PTCH1) tumor suppressor gene are the most common cause of NBCCS.1 The hedgehog signaling pathway plays a major role in embryonic development, and in adulthood, is involved in the renewal and maintenance of distinct tissues, including hair follicles, muscle stem cells, and gastric epithelium.2 Its abnormal activation is thought to drive the formation of both sporadic BCCs and those resulting from NBCCS.1 Patients with NBCCS inherit one inactive copy of PTCH1 and then acquire a second-hit mutation, resulting in hedgehog pathway activation and BCC formation.1 Mutations in Suppressor of fused (SUFU) or the PTCH1 homolog PTCH2 have also been found in a subset of patients meeting criteria for NBCCS.1,3
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.
View post:
Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID - Dove Medical Press
Cosmetic Skin Care Market Enhancement And Its growth prospects forecast 2019 to 2026 – Dagoretti News
By daniellenierenberg
The market analysis and insights included in the Cosmetic Skin Care market report presents key statistics on the market status of global and regional manufacturers and is an essential source of guidance which provides right direction to the companies and individuals interested in the industry. To prosper in this competitive market place, businesses are highly benefited if they adopt innovative solutions such as this Cosmetic Skin Care market research report. This wide-ranging market research report acts as a backbone for the success of business in any sector. The market drivers and restraints have been explained in the report with the use of SWOT analysis.
Global cosmetic skin care market is set to witness a substantial CAGR of 5.5% in the forecast period of 2019- 2026. The report contains data of the base year 2018 and historic year 2017. Increasing self-consciousness among population and rising demand for anti- aging skin care products are the factor for the market growth.
Global Cosmetic Skin Care Market By Product (Anti-Aging Cosmetic Products, Skin Whitening Cosmetic Products, Sensitive Skin Care Products, Anti-Acne Products, Dry Skin Care Products, Warts Removal Products, Infant Skin Care Products, Anti-Scars Solution Products, Mole Removal Products, Multi Utility Products), Application (Flakiness Reduction, Stem Cells Protection against UV, Rehydrate the skins surface, Minimize wrinkles, Increase the viscosity of Aqueous, Others), Gender (Men, Women), Distribution Channel (Online, Departmental Stores and Convenience Stores, Pharmacies, Supermarket, Others), Geography (North America, Europe, Asia-Pacific, South America, Middle East and Africa) Industry Trends and Forecast to 2026 ;
Complete report on Global Cosmetic Skin Care Market Research Report 2019-2026 spread across 350 Pages, profiling Top companies and supports with tables and figures
Market Definition: Global Cosmetic Skin Care Market
Cosmetic skin care is a variety of products which are used to improve the skins appearance and alleviate skin conditions. It consists different products such as anti- aging cosmetic products, sensitive skin care products, anti- scar solution products, warts removal products, infant skin care products and other. They contain various ingredients which are beneficial for the skin such as phytochemicals, vitamins, essential oils, and other. Their main function is to make the skin healthy and repair the skin damages.
Key Questions Answered in Global Cosmetic Skin Care Market Report:-
Our Report offers:-
Top Key Players:
Market Drivers:
Market Restraints:
Key Developments in the Market:
Customize report of Global Cosmetic Skin Care Market as per customers requirement also available.
Market Segmentations:
Global Cosmetic Skin Care Market is segmented on the basis of
Market Segmentations in Details:
By Product
By Application
By Gender
By Distribution Channel
By Geography
North America
Europe
Asia-Pacific
South America
Middle East & Africa
Competitive Analysis: Global Cosmetic Skin Care Market
Global cosmetic skin care market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of cosmetic skin care market for Global, Europe, North America, Asia-Pacific, South America and Middle East & Africa.
About Data Bridge Market Research:
Data Bridge Market Researchset forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.
Contact:
Data Bridge Market Research
Tel: +1-888-387-2818
Email: [emailprotected]
Go here to read the rest:
Cosmetic Skin Care Market Enhancement And Its growth prospects forecast 2019 to 2026 - Dagoretti News