Page 6«..5678..2030..»

Benjamin Button For Real? Scientists Are Close To Cracking The Code To Reverse Aging – Worldcrunch

By daniellenierenberg

PARIS Barbra Streisand loved her dog Samantha, aka Sammy. The white and fluffy purebred Coton of Tulear was even present on the steps of the Elyse Palace, the French Presidents official residence, when Streisand received the Legion of Honor in 2007.

As the singer and actress explained inThe New York Times in 2018, she loved Sammy so much that, unable to bring herself to see her pass away, she had the dog cloned by a Texas firm for the modest sum of 50,000 dollars just before she died in 2017, at the age of 14. And that's how Barbra Streisand became the happy owner of Miss Violet and Miss Scarlet, two puppies who are the spitting image of the deceased Samantha.

This may sound like a joke, but there is one deeply disturbing fact that Harvard Medical School genetics professor David A. Sinclair points out in his book Why We Age And Why We Dont Have To. It is that the cloning of an old dog has led to two young puppies.

This proves that DNA ours as well as that of Sammy has everything it takes to restore lost youth. This is a property that could be used to "reverse" aging without having to go through the problematic stage of cloning.

The idea rests on identifying the "reset" button of the organism. And aging specialists all have the same piece of good news to announce: this button has been found.

Its name sounds like a Japanese techno-thriller title: "The Yamanaka factors". But Shinya Yamanaka is not a fictional character. He is a scientist specialized in stem cell research who received the 2012 Nobel Prize in Medicine.

If all this sound a bit too science-fictional, you should know that the U.S. biotech company Altos Labs, which was just founded early this year, received a check of three billion dollars from billionaires Yuri Milner and Jeff Bezos. Not bad for a start-up. But this is a start-up with a very promising technology cellular reprogramming, which is nothing more than the name given by biologists to the famous "reset" button.

In 2006-2007, Yamanaka announced to the scientific community that he had discovered a combination of four genes Oct4, Klf4, Sox2 and c-Myc which, when injected into a cell, induces it to go from being a differentiated cell (nerve, blood, and so on) to being a pluripotent stem cell, i.e., one that can subsequently redevelop into any cell type.

It didn't take long for Yamanaka's colleagues to take advantage of his amazing discovery. In 2011, French researcher Jean-Marc Lematre, who worked at the Institute of Functional Genomics at the University of Montpellier (which never received the same financial support as American biotech company Altos Labs!) was the first to experimentally prove, on human tissues, that cellular aging was a reversible process. He and his team succeeded in transforming aging or senescent human skin cells back into young skin cells.

The process has since been improved, since it is no longer necessary to go through the stage of pluripotent cells which can degenerate into cancerous cells to reverse cellular aging. Interrupting the process before reaching this stage is enough to start the series of gene reactions that counter cellular aging.

But that's not all. Since Lematre's pioneering work, biologists from both sides of the Atlantic have shown that what was possible at the level of the cell is also possible at the level of the organism as a whole. As is often the case, they used mice as guinea pigs. At the end of 2016, in a famous study published by the "Cell" magazine, a professor at the Salk Institute (San Diego, California) Juan Carlos Izpisua Belmonte revealed the more than promising results recorded on genetically modified rodents.

The rodents' genome had been enriched with the Yamanaka factors as well as a small piece of additional genetic code, corresponding to a sort of on-off switch. Controlling the activation of the four genes, this "promoter" was itself activated only if the mouse ingested an antibiotic the doxycycline to be precise.

By prescribing this molecule (and thus activating the Yamanaka factors) two days a week throughout the life of the mice, Belmonte and his team increased their lifespan by 40%. "Aging is no longer a unidirectional process, as we thought. We can slow it down and even reverse it," he announced triumphantly. In a very similar experiment, Jean-Marc Lematre has obtained a more modest lengthening, of 15%, but thanks to a single dose of doxycycline. And above all, insists the French researcher, this "extra" lifespan proved to be free of all age-related diseases: osteoporosis, arthritis, pulmonary or renal fibrosis, etc.

The genetic modification of mice is common practice in labs. But should we do the same with humans to get the same result? There was public outcry in 2018 when Chinese researcher He Jiankui gave birth to twins with tampered genomes the first genetically modified children in history with the objective of giving them resistance to HIV.

How we view "GMO babies" may change over the next few decades. But whether it changes or not, it will not be necessary to go that far to do cell reprogramming in humans. A simple vaccine will probably do the trick.

The Covid-19 pandemic made the public aware that a vaccine whether RNA or DNA could be used as a vector to introduce genetic material into the human body. BioNTech's and Moderna's messenger RNA vaccines do this, but many other "viral vectors" exist, such as adeno-associated viruses (AAVs), small, non-pathogenic DNA viruses commonly used in molecular biology to carry one or more "genes of interest. On paper, there is nothing to prevent these genes of interest from being precisely those highlighted by Yamanaka.

And this is what our near future could look like. Around the age of 30, when we are alas, only temporarily! at the peak of our mental and physical fitness, we would receive one or more injections of this viral vector responsible for carrying Yamanaka's factors into us. Nothing would change in our body yet, as the Yamanaka factors have been programmed to remain silent until activated by the promoter. So we would continue to age normally. The passing of the years would no longer be irreparable!

Indeed, as soon as we would start to feel their first undesirable effects, let's say in our mid-forties, we would be prescribed a month's treatment with doxycycline. And then but only then would the youth therapy kick in. White hair disappearing, wounds healing faster, wrinkles fading, organs regenerating, glasses becoming useless... "Like Benjamin Button," writes David Sinclair, "you would experience the sensations of a 35-year-old. Then 30. Then 25. But unlike Benjamin Button, you would not go beyond that limit, because the statute of limitations would be interrupted... You would be about two decades younger biologically, physically and mentally, without having lost any of your knowledge, wisdom or memories."

Of course, such a possibility, if it becomes a reality and especially if it becomes widespread, will revolutionize large parts of society and will not be without its own tricky problems for a resource-limited planet. But who among us, once we reach a certain age, wouldn't dream of regaining our lost youth, while retaining the "benefits of experience"?

From Your Site Articles

Related Articles Around the Web

See the original post here:
Benjamin Button For Real? Scientists Are Close To Cracking The Code To Reverse Aging - Worldcrunch

To Read More: Benjamin Button For Real? Scientists Are Close To Cracking The Code To Reverse Aging – Worldcrunch
categoriaSkin Stem Cells commentoComments Off on Benjamin Button For Real? Scientists Are Close To Cracking The Code To Reverse Aging – Worldcrunch | dataSeptember 19th, 2022
Read All

I took an international trip with my frozen eggs to learn about the fertility industry – MIT Technology Review

By daniellenierenberg

Depending on whats being carried and how much they can pay, the patient or patients involved will choose either a hand-carry service, a commercial carrier such as DHL or FedEx, or something in between, such as the combination of commercial flights and local couriers that Loewen relied on during the pandemic. The cost of transporting my eggs with FlyVet Europa was 1,300 euros, or about $1,400 at the time. That includes the price of two one-way tickets for Paolo and the egg suitcase, and a few incidental expenses. (When I told Monaco how many eggs were traveling, he quipped, Uno squadro di calcio!a soccer team.)

CryoStork, the division of Cryoport devoted to the fertility sector, offers all three tiers of servicecommercial carriers for something that can be easily replaced (sperm, in other words), a middle-tier service using local couriers and air freight, and a door-to-door hand-carry servicefor prices ranging from a few hundred dollars to as much as $7,000 or $8,000 for an international hand-carry trip.

Ultimately, the pandemic boosted business for Loewen. Today, he and a team of eight colleagues, half employees and half working on a per-shipment basis, handle around 30 to 40 IVF-related shipments each month. Similarly, when the war in Ukraine began, Loewen and other colleagues received frantic requests from clients desperate to move their biomaterials out of the capital, Kiev, where most of the countrys IVF clinics and surrogacy agencies are based, and business shifted to nearby Georgia. But by September, Loewen was planning to once again deliver biomaterials to Ukraine. People want to have babiesconflict or not, he says.

What does it take to be a tissue courier, and how does one get into the field? Everyone I spoke to said that to succeed, you must love traveling, have a calm personality (in case, as happened to Loewen, youre ever surrounded by a knot of armed Belarusian soldiers at the airport and accused of trafficking human organs), and be adept at problem-solving.

Loewen looks for people with experience in the travel sector, who can navigate new cities and wont be rattled by a flight cancellation or a grumpy customs official. Mark Sawicki of Cryoport has several former pilots now working as couriers; their security clearances enable them to move through airports more easily than civilians.

Nicole Dorman, 43, has always loved children; she jokes that her current job as a courier is babysitting. She has three kids, aged 14 to 22, and has been a teachers aide and a school crossing guard, following four years in the US Army. When shes home for a week or two at a time with her kids in between gigs, she also makes deliveries for DoorDash in Clarksville, Tennessee.

WENN RIGHTS LTD / ALAMY STOCK PHOTO

Dorman had begun by transporting stem cells for a Frankfurt-based courier service. When she was looking for work in November of 2020, she emailed a half-dozen IVF courier companies and heard back from Loewen within 15 minutes. She has been working for him ever since, and also does US shipments for the Ukrainian company ARK Cryo, as well as EmbryoPort, a UK-based firm.

Dorman is on the road roughly 70% of each month; when we spoke in mid-May, she was preparing for a weeklong trip beginning with a pickup in Indianapolis, a drop-off in Bratislava, a train ride from there to Prague for another pickup, and then a flight to Greece. Like all couriers whove been working for any length of time, she has frequent flier status. In the 18 months since she started, she has transported more than 90 shipments. Now I can pretty much do it in my sleep, she says.

See the article here:
I took an international trip with my frozen eggs to learn about the fertility industry - MIT Technology Review

To Read More: I took an international trip with my frozen eggs to learn about the fertility industry – MIT Technology Review
categoriaSkin Stem Cells commentoComments Off on I took an international trip with my frozen eggs to learn about the fertility industry – MIT Technology Review | dataSeptember 19th, 2022
Read All

Propanc Biopharma Reports Significant Effects of PRP Against the Tumor Microenvironment – Business Wire

By daniellenierenberg

MELBOURNE, Australia--(BUSINESS WIRE)--Propanc Biopharma, Inc. (OTC Pink: PPCB) (Propanc or the Company), a biopharmaceutical company developing novel cancer treatments for patients suffering from recurring and metastatic cancer, today announced significant effects of PRP against the tumor microenvironment and pre-metastatic niche has been reported by the Companys joint researcher, Mrs. Beln Toledo Cutillas MSc, at the laboratory of Professor Macarena Pern, PhD, University of Jan. Treatment with PRP was shown to have a favorable impact inhibiting, slowing, or reversing tumor development by acting as an anti-tumor agent, decreasing tumor cell proliferation, developing a non-malignant phenotype (observable characteristics) and promoting cell adhesion (sticking close to one another) and differentiation (cell specialization rather than stem cell like). It was concluded that PRP could have a significant impact on the tumor microenvironment as a potential clinical application. PRP is a combination of the two proenzymes trypsinogen and chymotrypsinogen.

Cancer remains one of the leading causes of death, globally. Despite recent advances in understanding its molecular and genetic basis, more than one third of those affected die each year from cancer. These alarming results are mainly attributed to current therapies not fully effective against cancer cells which may develop drug resistance, leading to recurrence and metastasis, causing more than 90% of cancer-related deaths. According to Mrs. Cutillas, This is why we need to find better and more effective therapeutic strategies. She explains that tumor formation is influenced by two factors, genetic changes in tumor cells and the rearrangement of components of the tumor microenvironment. In recent years, cancer research has focused on the tumor microenvironment.

Numerous assays, in vitro and in vivo studies, were conducted by Mrs. Cutillas confirming that PRP appears to have an anti-tumor effect and can act selectively against specific tumor elements, without affecting the non-tumor microenvironment and preventing its malignification (i.e., the process of making malignant).

Dr Julian Kenyon, MD, MB, ChB, Propancs Chief Scientific Officer said, The work undertaken by Mrs Cutillas highlights the significant potential applications of PRP in a clinical setting, specifically relating to drug resistance, and consequently recurrence and metastasis, which is the biggest cause of death for sufferers. The pioneering research being undertaken with our joint researchers at the Universities of Jan and Granada, continues to confirm our belief in the therapeutic potential of PRP, and may lead to exciting new ways to treat cancer patients suffering from solid tumors whilst reducing the threat of recurrence.

PRP is a mixture of two proenzymes, trypsinogen and chymotrypsinogen from bovine pancreas administered by intravenous injection. A synergistic ratio of 1:6 inhibits growth of most tumor cells. Examples include kidney, ovarian, breast, brain, prostate, colorectal, lung, liver, uterine and skin cancers.

About Propanc Biopharma, Inc.

Propanc Biopharma, Inc. (the Company) is developing a novel approach to prevent recurrence and metastasis of solid tumors by using pancreatic proenzymes that target and eradicate cancer stem cells in patients suffering from pancreatic, ovarian and colorectal cancers. For more information, please visit http://www.propanc.com.

The Companys novel proenzyme therapy is based on the science that enzymes stimulate biological reactions in the body, especially enzymes secreted by the pancreas. These pancreatic enzymes could represent the bodys primary defense against cancer.

To view the Companys Mechanism of Action video on its anti-cancer lead product candidate, PRP, please click on the following link: http://www.propanc.com/news-media/video

Forward-Looking Statements

All statements other than statements of historical facts contained in this press release are forward-looking statements, which may often, but not always, be identified by the use of such words as may, might, will, will likely result, would, should, estimate, plan, project, forecast, intend, expect, anticipate, believe, seek, continue, target or the negative of such terms or other similar expressions. These statements involve known and unknown risks, uncertainties and other factors, which may cause actual results, performance or achievements to differ materially from those expressed or implied by such statements. These factors include uncertainties as to the Companys ability to continue as a going concern absent new debt or equity financings; the Companys current reliance on substantial debt financing that it is unable to repay in cash; the Companys ability to successfully remediate material weaknesses in its internal controls; the Companys ability to reach research and development milestones as planned and within proposed budgets; the Companys ability to control costs; the Companys ability to obtain adequate new financing on reasonable terms; the Companys ability to successfully initiate and complete clinical trials and its ability to successful develop PRP, its lead product candidate; the Companys ability to obtain and maintain patent protection; the Companys ability to recruit employees and directors with accounting and finance expertise; the Companys dependence on third parties for services; the Companys dependence on key executives; the impact of government regulations, including FDA regulations; the impact of any future litigation; the availability of capital; changes in economic conditions, competition; and other risks, including, but not limited to, those described in the Companys periodic reports that are filed with the Securities and Exchange Commission and available on its website at http://www.sec.gov. These forward-looking statements speak only as of the date hereof and the Company disclaims any obligations to update these statements except as may be required by law.

More:
Propanc Biopharma Reports Significant Effects of PRP Against the Tumor Microenvironment - Business Wire

To Read More: Propanc Biopharma Reports Significant Effects of PRP Against the Tumor Microenvironment – Business Wire
categoriaSkin Stem Cells commentoComments Off on Propanc Biopharma Reports Significant Effects of PRP Against the Tumor Microenvironment – Business Wire | dataSeptember 11th, 2022
Read All

6 Ingredients to Avoid Putting on Your Skin – Healthline

By daniellenierenberg

What we put in our bodiesfoodis regulated by the Food and Drug Administration and the U.S. Department of Agriculture.

What we put on itskin care and beauty productsis not.

That could be an issue.

In one 2021 report, scientists tested 231 popular makeup products from the U.S. and Canada and found that more than 100 had Per-and poly-fluoroalkyl substances (PFAS). These are chemicals that dont break down and build up in the body over time.

They include perfluorooctanoic acid, which may cause cancer, according to the American Cancer Society.

Clean skin goes beyond washing your face.

Your skin is a living, dynamic organ, says Nava Greenfield, M.D. of Schweiger Dermatology Group in New York City. Just like you consider carefully what you put into your mouth, you should take care in what you place on your skin.

Understanding whats in your products can help you achieve long-term health thats more than skin-deep.

Heres what the science says you should avoidand what to use instead.

The skin is our largest organ, notes Marianna Blyumin-Karasik, board-certified dermatologist, co-founder of Precision Skin Institute, and founder of Stamina Cosmetics.

The skin has high absorption, so skin care products that can be absorbed and enter our bloodstream can have detrimental effects on our overall health, Blyumin-Karasik says.

Some ingredients like synthetic or highly concentrated fragrances or chemicals in personal care products can trigger skin sensitivity, irritation, or a more intense allergy.

Symptoms can include:

Other ingredients have been linked to more serious problems, like:

For example, a 2018 review suggested that phthalates found in certain personal care products could adversely affect male fertility.

A 2021 study indicated that exposure to formaldehyde, sometimes used in keratin hair treatments, could lead to heart malformations in a developing fetus.

In 2020, California became the first state to issue a statewide ban on 24 chemicals, including methylene glycol and formaldehyde.

Other states dont have these bans, leaving consumers to analyze and interpret labels themselves.

Complicating things, some recommendations to avoid specific ingredients arent one-size-fits-all. Different people may have different (or no) reactions to certain ingredients, even if theyre common allergens.

Aside from real toxins and dangerous chemicals, a list like this will be different for each person, Greenfield says. Unfortunately, its not all black and white.

Having an idea of whats potentially toxic and whats more likely to cause skin irritation can help you make informed decisions about the products you choose.

From common allergens to potential carcinogens, here are the ingredients Blyumin-Karasik and Greenfield suggest avoiding:

Blyumin-Karasik and Greenfield warn that PEGs are a potential skin irritant.

Theyre most often found in lotions, creams, and hair products because they can act as skin conditioners and humectants, a common moisturizing agent.

A small 2021 case study examined six cases of acute sensitivity to PEGs. However, researchers also noted the allergy was rare.

Blyumin-Karasik notes that methyl and propyl parabens are preservatives with reputations for being hormone disruptors. However, research is mixed.

A 2017 study on gerbil prostates indicated that methylparaben could disrupt estrogenic and androgenic receptors that might affect the prostate.

Another 2017 study suggested parabens, including methyl and propyl parabens, posed little health risk. However, researchers noted that parabens could inhibit compounds with anti-estrogenic properties.

The FDA wrote in 2022 that it didnt have enough evidence to warn that parabens affect human health. The American Academy of Dermatology (AAD) reported similarly in 2019, noting that allergic reaction risks were low.

Found in some eye make-up products, lipsticks, and deodorants, aluminum can cause skin irritation, according to Greenfield.

Theres also been discussion as to whether aluminum is a carcinogen, or cancer-causing agent.

A 2015 study suggested aluminum can increase the migration of breast cancer cells and called for more research.

In 2013, the Cosmetic Ingredient Review said alumina and aluminum hydroxide was safe to put in cosmetics, noting that it doesnt get absorbed into the skin and less than 1 percent is absorbed orally.

This ingredient is a preservative commonly found in soaps and shampoos and may cause skin irritation or allergies, Blyumin-Karasik explains. Greenfield agrees with avoiding formaldehyde, saying its a common irritant.

A 13-year retrospective study of patch tests published in 2020 indicated that a polymer known as toluene-sulfonamide-formaldehyde resin (R-TSF or TSFR), often used in nail polish, was one of the most common allergens. Its also known as a carcinogen, but data shows its only hazardous if a person inhales a significant amount.

The American Cancer Society says formaldehyde in personal care products like shampoos typically contains formaldehyde levels that are far below hazardous to health. The organization says keratin hair smoothing treatments can raise indoor air concentration to hazardous levels.

Phthalates are typically used to make sure plastic doesnt break. They can also be used in fragrances in skin products. Blyumin-Karasik warns they may disrupt hormones.

A 2020 literature review indicated that phthalates could lead to:

A 2018 study suggested phthalates could lead to pregnancy loss and fertility issues.

However, its important to note that neither piece of research above was specific to phthalates in beauty products.

Key West and Hawaii recently banned oxybenozone, which is commonly found in sunscreen. Blyumin-Karasik says it can disrupt hormones and cause allergic reactions.

A 2020 review of 29 studies indicated no a link between fertility issues and oxybenzone and called for more research.

However, an older 2016 study indicated that men with higher levels of benzophenone-type ultraviolet (UV) filter concentrations had lower sperm concentrations.

Avoiding fragranced products and using a mineral-based sunscreen can help avoid harmful chemicals, Blyumin-Karasik says. Looking for preservative-free items can also cut down on risks of irritants and health hazards.

The main purpose of preservatives is to maintain the integrity of the personal care products, Blyumin-Karasik says. The natural alternatives may not attain as long of the shelf-life as the chemical ones, but theyre better for our well-being.

To clean up your beauty regimen, Blyumin-Karasik suggests looking for products that contain these safer ingredients instead.

Blyumin-Karasik suggests using tea tree oil, an essential oil found in shampoos, skin care items, hand sanitizers, and first aid products.

A 2021 study suggested tea tree oil could help disinfect hands when used in sanitizer.

Research from 2015 indicated it could aid wound healing, and a 12-week pilot study published in 2017 suggested it could reduce acne.

Instead of PEGs, opt for a humectant with fewer potential side effects. Blyumin-Karasik recommends glycerin.

One small 2017 study of women indicated that products with a mix of hyaluronic acid, glycerin, and Centella asiatica (gotu kola) could boost skin hydration for 24 hours.

A 2019 safety assessment suggested glycerin was safe to use in cosmetic practices.

Coconut oil, or Cocus nucifera, is extracted from the meaty part of a coconut fruit.

Blyumin-Karasik recommends it because its moisturizing and can reduce mold growth in skin care products.

A 2022 study indicated that a coconut oil-based serum combined with deer antler stem cell extract for two weeks could:

A 2019 study indicated virgin coconut oil had anti-inflammatory properties and supported its use in skin care products.

Blyumin-Karasik says elderberry, or Sambucus nigra extract, often found in serums, has versatile benefits for our skin.

She notes these benefits include antimicrobial effects and high levels of vitamin C.

Research on elderberry is limited, particularly in topical products. However, a 2019 study suggested it had anti-aging benefits when ingested as a supplement.

Blyumin-Karasik says willow bark, or Salix nigra extract, is an excellent source of skin preservation. She recommends it for its anti-inflammatory and antimicrobial properties.

Besides that, willow bark contains a potent salicin ingredient which has gentle exfoliating properties to cleanse pores and reduce skin surface oil, she says.

A 2019 study suggested willow bark total extract may have antioxidant and anti-inflammatory benefits.

An older 2010 study suggested that salicin, which is extracted from white willow bark, may have benefits when applied to the skin topically.

When shopping for personal care products, there are a few things youll want to keep in mind, depending on your age and any conditions you have.

Leave the layering for sweater weather, not skin care. Blyumin-Karasik says the biggest issues she sees in her clinic happen when people try to cake on too many products or ingredients.

Trying to be innovative or frugal, young individuals play with potentially hazardous ingredients such as baking soda or lemon juice which can lead to significant skin irritation, Blyumin-Karasik says. Older individuals try to layer too many products onto their skin such alpha hydroxy acids and potent retinoids and as a result, create skin allergy or irritation.

Blyumin-Karasik recommends working with a dermatologist to find the correct ingredients for your skin type and beauty goals.

A long ingredients list doesnt necessarily mean there are a ton of items working to boost your skins health. Sometimes, simple ingredient lists are most effective.

In general, if a skin care product has too many chemicals or fragrances, it can irritate the skin and cause skin rashes, and its best to avoid, Blyumin-Karasik says.

Individuals with sensitive skin, eczema, dermatitis, or rosacea will want to pay particular attention to product labels and the less is more mantra, Blyumin-Karasik says, as people with these conditions are more prone to irritation.

Theyre best served by using fragrance-free, sensitive skincare lines such as Avene and Bioderma, and definitely avoiding any of the above skin allergens, Blyumin-Karasik says.

Blyumin-Karasik advises acne-prone individuals to opt for products that wont clog pores. She suggests looking for words like oil-free and noncomedogenic and minimizing the use of occlusive moisturizers or make-up.

These can cause more breakouts and blemishes, Blyumin-Karasik warns.

When purchasing skin care products, youre making an investment in your bodys largest organ.

But some ingredients may not serve your skin or overall health.

Though research in some cases is minimal and others are mixed, Phthalates and some parabens are linked to hormonal disruption. Other ingredients are carcinogens or may cause irritation.

Speaking with a dermatologist can help you figure out the best and safest products and ingredients for your skin and overall health.

Beth Ann Mayer is a New York-based freelance writer and content strategist who specializes in health and parenting writing. Her work has been published in Parents, Shape, and Inside Lacrosse. She is a co-founder of digital content agency Lemonseed Creative and is a graduate of Syracuse University. You can connect with her on LinkedIn.

Continued here:
6 Ingredients to Avoid Putting on Your Skin - Healthline

To Read More: 6 Ingredients to Avoid Putting on Your Skin – Healthline
categoriaSkin Stem Cells commentoComments Off on 6 Ingredients to Avoid Putting on Your Skin – Healthline | dataSeptember 3rd, 2022
Read All

Regenerative Properties of the Newborn Heart Offers Hope for Those With Congenital Heart Disease – The Epoch Times

By daniellenierenberg

Researchers from the Murdochs Children Research Institute (MCRI) are developing new treatments for congenital heart disease that could enable children born with birth defects can regenerate the damaged organ.

In 2011, Prof. Enzo Porrello, who is nowhead of the Heart Regeneration Laboratory at the MCRI,demonstrated the regenerative properties of newborn mouse hearts at the University of Texas Southwestern Medical Centre. Prior to this research, the capacity of mammalian hearts to regenerate was a debated topic.

This sort of changed our thinking of what was possible in terms of stimulating the human heart to regenerate itself following damage, such as a heart attack, Porrello said, reported theAustralian. And I guess this also fuelled my own interest in my subsequent career in the area of regenerative medicine.

After hearing about cases where newborns recovered from massive heart attacks, Porrello began to explore the regenerative properties of human newborn hearts.

In 2017, Porrello and Prof. James Hudson manufactured living and beating heart tissues from stem cells in a laboratory at the University of Queensland.

Porrello said that although other scientists had grown heart muscle cells from stem cells, nobody had grown the cells as miniature complex three-dimensional tissues. Additionally, they were not able to grow such tissues in a format compliant to drug development, he said.

And thats really the technological breakthrough that we were able to make.

According to the Australian Institute of Health and Welfare, approximately nine out of every 1,000 babies born around the world will be born with congenital heart disease. In Australia, it is estimated that 2,400 babies are born with congenital heart disease annually, while in America, nearly one percent of all babies born are estimatedby the Centre For Disease Control to have the condition.

Porrello said that, at the moment, if a child develops heart failure and doesnt respond to standard frontline therapies, a heart transplant is their only option. Children in this situation are put on a transplant waiting list, and whilst waiting for a heart to become available, they are put on mechanical support.

Heart transplantation is limited by organ donor availability, and its also limited by the need for lifelong immunosuppression in those patients, Porrello said.

And so if were able to develop these bioengineered heart tissues from stem cells, this could potentially prevent or delay the need for heart transplantation in these very unwell individuals with end-stage heart failure.

Porrello said that the ultimate goal of his research is to harness the self-repairing capacity of the newborn heart and to develop drugs that waken the hearts dormant regenerative abilities so that the organ may repair itself after damage.

I would say that based on recent studies in the field in the past 10 years since we first made our discovery in mice, we are certainly getting closer, he said.

There is sort of proof of concept that this is possible now, at least in mice, and the question is whether or not we can now make that a therapeutic reality in humans.

The first step in creating these complex heart tissues is attaching special molecules to stem cells; these molecules trigger the cells to morph into heart muscle tissue. The heart tissues are then developed in a plastic culture dish that consists of 96 tiny wells.

The geometry of the well is designed in such a way that the heart tissues spontaneously form when the heart muscle cells are inserted into the well, Porrello said.

He said that within each well of the device are tiny elastic micropillars; the pillars function as elastic cantilevers since they are attached to the dish at only one end and extend horizontally to the dish. The heart muscle cells condense around these cantilevers to produce tiny miniature beating heart tissues that contract around the micropillar; every time the tissue contracts, the micropillar within it deflects.

Porrello said that the device enables researchers to measure the force that the tissues are generating, allowing them to observe how fast the tissues are beating and whether they display any irregularities in their heartbeat. These capabilities are useful for treatment testing because the effect that medication or genetic manipulations of stem cells have on the tissues heartbeat can be seen.

And so it serves as a pretty powerful platform for looking at drug responses, but also modelling genetic forms of heart disease.

Were actually now scaling up these tissues and growing very, very large bioengineered heart tissue patches that can be implanted onto the heart.

In an email to The Epoch Times, Porrello said in the future that, bioengineered heart tissue patches could be used to treat adults with heart failure, and alternative approaches are already being trialled.

Our bioengineered heart tissues could also be used to support the failing heart in adults with underlying heart disease.

Further studies are required to confirm that our bioengineered heart tissue patches are safe and effective in animal models before progressing to human trials. These pre-clinical safety and efficacy studies are underway.

He noted that although significant advances and a better understanding of the hearts regenerative mechanisms have been made in recent years, using this knowledge to develop a safe and effective drug is a slow process.

It typically takes 10 years and around $1 billion dollars to develop a new heart failure drug and take it all the way through to clinical approval. We are at the beginning of that journey.

We need to gain a better understanding of the fundamental biology underlying heart regeneration before we can develop effective treatments.

Porello is now applying his discoveries in a clinical context at theMCRIto reach his goal of regenerating human hearts. The regeneration research at the institute has two branches, the first focuses on studying diseases using lab-grown models of the heart muscle. The models are made using blood and tissue samples collected from sick children at the Royal Childrens Hospital in Melbourne.

He said that this branch of the research enables the team to model the genetic basis of the disease in any individual.

Were using this technology to model childhood heart disease, trying to understand its causes, and then using those genetic models of heart disease to test and develop therapeutic approaches to treat those conditions, he said.

Porrello said that the second branch of the research performed at the MCRI explores the regenerative approach to growing the very, very large bioengineered heart tissue patches. The researchers plan is to eventuallyimplant the patches into a heart to function as a biological assistance device that supports the function of the heart.

If it works, it would be transformative, Porrello said.

Stem cells have been used in medicine for more than fifty years, with the most common stem cell procedure currently beingbone marrow transplantsalso known as hematopoietic stem cell transplantsused to treat patients with blood cancers such asleukemiaand blood disorders such assickle cell diseaseandthalassemia.

More recently, skin grown from stem cells has been used to treat extensive burns, and stem cells from fat (adipose tissue) have been used as tissue fillers.

Visit link:
Regenerative Properties of the Newborn Heart Offers Hope for Those With Congenital Heart Disease - The Epoch Times

To Read More: Regenerative Properties of the Newborn Heart Offers Hope for Those With Congenital Heart Disease – The Epoch Times
categoriaSkin Stem Cells commentoComments Off on Regenerative Properties of the Newborn Heart Offers Hope for Those With Congenital Heart Disease – The Epoch Times | dataSeptember 3rd, 2022
Read All

Meet White Orange: The Vitamin C Skin Care Brand For Sensitive Skin – Bustle

By daniellenierenberg

After struggling with acne for years, White Orange founder Carishma Khubhani still had a hard time finding skin are products that worked for her and even when her acne cleared, she was worried that her skin may revert back to its old habits. I always wanted to have my own skin care line one day, said Khubani, who was a musician in Los Angeles before becoming a brand founder. [My dermatologist and esthetician] told me that the only things that have been proven to make a visible difference in your skin are vitamin C and retinol. Other vitamin C serums were expensive or unpleasant to use or simply didnt work which led her to create White Orange.

After three years of formulating, White Orange claims to bring on a new generation of vitamin C. Vitamin C is the king of skin care ingredients for good reason its proven to help with sun damage, dark spots, and even acne. But you might be surprised to learn that there are different types of vitamin C in the products you use. Most vitamin C products on the market (including the priciest products) use a form of vitamin C called L-ascorbic acid. Its a go-to because there have been so many clinical studies supporting its efficacy; however, the downside is that it can be irritating and unstable. (Stability ensures that the product retains its potency over time.) It's cheap and it's inexpensive and [brands who use it] want to maximize their profit margins to be able to pay all their overhead, Khubani says.

With this knowledge, Khubani chose to use a less-common form of vitamin C called tetra hexadecyl ascorbate, or BV-OSC. She claims its the most potent, yet stable form of vitamin C, and so far, the science looks promising: A study found that after an aqueous gel with 10% BV-OSC was applied to a group of patients over the span of two to 10 months, age spots, acne and skin redness all showed immense improvement.

In addition to tetrahexadecyl ascorbate, one of the most significant ingredients that influenced the name of the product is pith the white part of the orange (hence the brand name) which was included for its high concentration of vitamin C. Other ingredients include hyaluronic acid, ferulic acid, and vitamin E all superstar skin care ingredients proven to fight free radicals and help overall skin texture and brightness. White Orange also added orange stem cells, which feature their own exclusive proprietary complex, and a liposomal delivery system to help the ingredients penetrate more deeply into the skin.

Other products also use tetrahexadecyl ascorbate, like Sunday Riley C.E.O 15 Vitamin C Brightening Serum so what makes White Orange different? Its all in the delivery system. Many vitamin C products come in glass dropper bottles, so the product is exposed to light and air every time you use it, which allows the product to oxidize and become less effective. White Orange puts their product in a syringe-style bottle, so your product isnt exposed to air and you only pump out the amount you need, preserving the freshness of the serum. The formula is also vegan and cruelty-free.

Khubani recommends using the product before you apply your moisturizer and SPF and after you wash your face and potentially apply a toner. After washing my face with my CeraVe Hydrating facial cleanser, I used the White Orange serum and finished off with my trusty CeraVe moisturizer. The formula is very light and non-sticky and so far, the product seems to be very gentle and non-irritating (I have highly sensitive skin). I also really like the syringe bottle, which is travel-friendly and dispenses the perfect amount each time. I havent noticed any anti-aging or acne-preventing effects, but I would recommend trying this product if youre looking to add a gentle serum to a simple skincare routine and if you have sensitive skin, you can rest easy knowing this formula wont irritate.

Studies cited:

Telang P. S. (2013). Vitamin C in dermatology. Indian dermatology online journal, 4(2), 143146.

Al-Niaimi, F., & Chiang, N. (2017). Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications. The Journal of clinical and aesthetic dermatology, 10(7), 1417.

Get Even More From Bustle Sign Up For The Newsletter

From hair trends to relationship advice, our daily newsletter has everything you need to sound like a person whos on TikTok, even if you arent.

See the original post here:
Meet White Orange: The Vitamin C Skin Care Brand For Sensitive Skin - Bustle

To Read More: Meet White Orange: The Vitamin C Skin Care Brand For Sensitive Skin – Bustle
categoriaSkin Stem Cells commentoComments Off on Meet White Orange: The Vitamin C Skin Care Brand For Sensitive Skin – Bustle | dataSeptember 3rd, 2022
Read All

Rejuvenation Roundup August 2022 – Lifespan.io News

By daniellenierenberg

EARD2022 is over, but the research and events continue. Heres a summary of everything thats happened in August.

We are hiring! We are currently looking for a full-time chief of staff, a full-time data-driven Senior Marketing Manager, a part-time Youtube sponsorship/partnership acquisition lead, a social media intern, a part-time grant writer, and volunteers to support various programs. If you are interested in learning more about any of these positions, please contact us with your resume and salary expectations.

Announcing the Longevity Prize: The Longevity Prize is a series of prizes designed to honor the researchers who are helping to build a future in which age-related diseases are a thing of the past. This new initiative aims to accelerate progress in the rejuvenation biotechnology field and encourage innovation.

Stephanie Dainow to Present at the 9th ARDD Conference: On August 22, 2022, Lifespan.io Executive Director Stephanie Dainow participated in the Decentralized Science and Blockchain session as a part of the Emerging Tech Workshop at the worlds largest annual Aging Research and Drug Discovery conference (9th ARDD).

Longevity Camp: The Longevity Summer Camp is a four-day retreat featuring people from many longevity-related walks of life. Recently, somewhere between the former gold mining town of Nevada City and the infamous Donner Pass, a unique gathering took place.

Cells Return from Death: Cells, dead for an hour under warm conditions, have been revived. Questions about when life begins have been hot topics for awhile, but there is also debate about when life ends.

Rapamycin and Metformin: Rapamycin and metformin, two well-studied drugs in aging research, can be combined for synergistic effects in mice. Rapamycin and metformin are viewed by many as the two most promising anti-aging drugs, but now scientists have found that these drugs can work hand in hand.

Steve Horvath on the Present and Future of Epigenetic Clocks: Dr. Steve Horvath is the inventor of the epigenetic clock and, currently, principal investigator at Altos Labs. We talked about the recent developments in this immensely important field, including pan-mammalian clocks, two-species clocks, and single-cell clocks, along with the challenges the field faces.

Prof. Albert-Lszl Barabsi on Network Medicine: Albert-Lszl Barabsi is the Robert Gray Dodge Professor of Network Science at Northeastern University, and he also holds an appointment in the Department of Medicine at Harvard Medical School. We talked about a revolutionary network medicine approach that can greatly enhance our ability to understand biological processes and seek cures for disease.

Martin ODea Talks About the Longevity Summit: We recently had the opportunity to speak to Martin ODea about a new longevity-focused event happening in Irelands capital city on September 18th-20th. Martin holds an MBS and is a business lecturer at Dublin Business School in Dublin, Ireland. He is also the author of Beyond the Subjectivity Trap.

Dr. Aubrey de Grey Will Speak at the Longevity Summit Dublin: We recently caught up with Dr. Aubrey de Grey and talked to him about the upcoming Dublin Longevity Summit and how things are looking on the advocacy landscape.

Old Plasma Dilution Reduces Human Biological Age: The Journal Club has returned to our Facebook page with your host, Dr. Oliver Medvedik. This month, we have investigated a paper, Old plasma dilution reduces human biological age: a clinical study, in which Irina Conboy and her team investigated the effects of therapeutic plasma exchange on aging in people.

Vitamin D Fails to Improve Bone Health in Mega-Study: A high-quality, randomized, controlled trial found no effect of vitamin D supplementation or blood levels on the incidence of fractures in an aging population.

Hesperetin Upregulates Metabolism and Longevity in Mice: Researchers publishing in Journal of Biomedical Science have concluded that hesperetin, a compound found in various herbs, improves longevity in mice by promoting the expression of the pro-longevity gene Cisd2.

Caloric Restriction Improves Immune System Function: A new study published in Mechanisms of Aging and Development has shown that caloric restriction effectively restores T cell abundance in aged mice. Caloric restriction has become a well-known anti-aging intervention, as it can reverse several hallmarks of aging and extend lifespan in different animal models.

Ghrelin Is Associated with Worse Muscle Aging in Mice: A team of researchers publishing through Multidisciplinary Digital Publishing Institute has described an association between ghrelin and skeletal muscle aging in mice. Ghrelin is a peptide containing 28 amino acids. Its main function is to stimulate the appetite through receptors in the hypothalamus.

Sauna Combined with Exercise Improves Cardiovascular Health: In a randomized, controlled trial, scientists have shown that sauna and exercise, when taken together, might have a synergistic, beneficial effect on cardiovascular health and cholesterol levels. Sauna bathing has been credited with many health benefits, predominantly for the cardiovascular system.

Developing Nanobodies to Fight Parkinsons Disease: A team of researchers publishing in Nature Communications has described nanobodies that can destroy the -synuclein aggregates that characterize Lewy bodies, which are associated with dementia and Parkinsons disease. Traditional antibody therapies, while promising in some studies, are too large to enter cells in order to affect the aggregates there.

Scientists Move the Boundaries of Post-Mortem Recovery: Researchers have been able to achieve substantial recovery of cellular and organismal activity in pigs that had been dead for a full hour. Advances in resuscitation have already moved the boundaries of life and death, making it possible to revive a person several minutes after the heart stops beating.

An In-Depth Review of Skin Aging Genes: In a new systematic review published in Scientific Reports, multiple genes driving skin aging were identified. The authors start by explaining the intrinsic (genetic and chronological) and extrinsic (environmental) factors that drive skin aging.

Hypertension Is Associated with Brain Drainage Changes: Researchers publishing in Aging have found that enlarged perivascular spaces in the brain are correlated with vascular disorders. These spaces, which are part of the brains glymphatic system, allow for the drainage of potentially dangerous metabolites such as beta amyloid.

Rapamycin-Loaded Microneedles Reverse Hair Loss in Mice: Scientists have successfully regrown hair in a mouse model of hair loss using custom-made plastic microneedles loaded with rapamycin and epigallocatechin gallate (EGCG), an active ingredient in green tea.

Identifying Mitonuclear Genes for Longevity: Publishing in GeroScience, a team of researchers that included Nir Barzilai and Matt Kaeberlein examined genes that may affect both mitochondria and lifespan.

Dietary Restrictions Do Not Help Cognitive Function in Mice: A new study published in Neurobiology of Aging has shown that neither caloric restriction nor intermittent fasting improve late-life cognition in genetically diverse mice, but the effect depends on genetic composition.

Combining Senolytic Pathways Has Synergistic Effects: A team of researchers have explained in Aging how multiple compounds that target the BCL-2 protein family are considerably more effective against senescent cells than each compound by itself.

New Synthetic Molecule Alleviates Alzheimers in Mice: Scientists have synthesized a molecule that alleviates Alzheimers in a mouse model by targeting inflammation. Two of the most prominent and probably interconnected symptoms of Alzheimers disease are the accumulation of amyloid beta (A) and chronic neuroinflammation.

The Relationship Between Stroke and Inflammation: Publishing in Aging, a team of Chinese researchers has provided evidence showing a relationship between systemic inflammation and prognosis after a stroke. As the researchers point out, strokes are the leading cause of death in China.

Almost Half of Cancer Deaths Worldwide are Preventable: Researchers have shown that 44.4% of cancer deaths worldwide can be attributed to preventable risk factors, including behavioral and environmental ones. It is well known that many cancer cases occur due to behavioral and environmental and factors such as smoking and pollution, which makes them theoretically preventable.

Rapamycin and Metformin Show Synergy in Mice: Scientists have found that rapamycin and metformin work hand in hand in diabetes-prone mice, boosting each others effectiveness and blocking side effects. Both have been in use for various indications for decades and have decent safety profiles.

Plasma Dilution Appears to Rejuvenate Humans: Published in GeroScience, a groundbreaking study from the renowned Conboy lab has confirmed that plasma dilution leads to systemic rejuvenation against multiple proteomic aspects of aging in human beings. This paper takes the view that much of aging is driven by systemic molecular excess of signaling molecules, antibodies, and toxins.

Mitochondrial Drug Alleviates Atherosclerosis in Mice: Scientists have drastically improved various symptoms of atherosclerosis in mice by precisely targeting mitochondria with a plant-derived antioxidant. Atherosclerosis, the accumulation of plaques on arterial walls, is one of the deadliest age-related diseases.

Intravenous Stem Cells Alleviate Guinea Pig Osteoarthritis: Scientists have shown that intravenous delivery of mesenchymal stem cells, which has some advantages over the more conventional intra-articular injection, alleviates age-related osteoarthritis and decreases inflammation in guinea pigs. Osteoarthritis, a degenerative joint disease, is one of the most common causes of disability in old age.

Glycans as Biomarkers of Aging: In a new review published in Clinica Chimica Acta, researchers from the University of Zagreb discuss immunoglobulin G glycans, the changes that their composition undergoes with aging, and their potential as biomarkers of aging. One of the reviews co-authors is Prof. Gordan Lauc, who gave a presentation on them at EARD2022.

A wearable electrochemical biosensor for the monitoring of metabolites and nutrients: The monitoring of metabolites for the early identification of abnormal health conditions could facilitate applications in precision nutrition.

Epigenome-wide association study analysis of calorie restriction in humans, CALERIE TM Trial analysis: DNA methylation changes may contribute to caloric restrictions effects on aging.

Association of Leisure Time Physical Activity Types and Risks of All-Cause, Cardiovascular, and Cancer Mortality Among Older Adults: There were significant associations between participating in 7.5 to less than 15 MET hours per week of any activity and mortality risk.

Ginkgo biloba extract EGb 761 plus acetylcholinesterase inhibitors improved cognitive function in patients with mild cognitive impairment: These findings suggest that combined therapy with EGb 761 plus AChEI may provide added cognitive and functional benefits in patients with MCI.

Suppression of trimethylamine N-oxide with DMB mitigates vascular dysfunction, exercise intolerance, and frailty associated with a Western-style diet in mice: These therapies may be promising for mitigating the adverse effects of a Western diet on physiological function and thereby reducing the risk of chronic diseases.

Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogenous male mice: Canagliflozin can be considered a drug that acts to slow aging and should be evaluated for potential protective effects against many other late-life conditions.

Fecal microbiota transplantation can improve cognition in patients with cognitive decline and Clostridioides difficile infection: This study revealed important interactions between the gut microbiome and cognitive function. Moreover, it suggested that FMT may effectively delay cognitive decline in patients with dementia.

Mitochondrial dynamics maintain muscle stem cell regenerative competence throughout adult life by regulating metabolism and mitophagy: As mitochondrial fission occurs less frequently in the satellite cells in older humans, these findings have implications for regeneration therapies in sarcopenia.

Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation: These findings demonstrate that the plasticity of the aging brain can be selectively and sustainably exploited using repetitive and highly focalized neuromodulation

Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Aging Hallmarks: By combining the benefits of glycine, NAC and GSH, GlyNAC is an effective nutritional supplement that improves and reverses multiple age-associated abnormalities to promote health in aging humans.

VitaDAO Funds ApoptoSENS Project for $253,000: Preventing the dysfunction of natural killer cells may be a promising area to explore in the fight against cellular senescence. Researchers are hoping to define the correlation between the increase in senescent cells and the onset or worsening of disease in humans.

VitaDAO Backs Research into Chronic Oral Disease: Periodontal disease affects more than 47% of adults aged 30 and over. For people over 65 years of age, that number rises to over 70%, making periodontitis one of the most commonly observed age-related illnesses. Jonathan Ans lab seeks to research inflammation-targeting compounds that can help treat periodontal disease.

Researchers Propose Five New Hallmarks of Aging: Publishing in Aging five months after their panel discussion in Copenhagen, many well-known researchers have explained their reasons for wishing to add new hallmarks of aging to the existing paradigm.

SENS Research Foundation Announces Ending Aging Forum 2022: SENS Research Foundation has announced this years Ending Aging Forum, which will be held through a virtual conference platform with an immersive environment.

Longevity Investors Conference: Organized and sponsored by Maximon, the Longevity Investors Conference is focused on the investment aspects of longevity. The LIC welcomes everyone with an interest in the financial aspects of the longevity sector, including venture capitalists, asset managers, and managers of private equity funds and private banks.

Longevity Summit Dublin: This conference will feature two days of inspiring research developments along with top longevity entrepreneurs, biotech companies, longevity investors, and researchers from around the world.

Read more:
Rejuvenation Roundup August 2022 - Lifespan.io News

To Read More: Rejuvenation Roundup August 2022 – Lifespan.io News
categoriaSkin Stem Cells commentoComments Off on Rejuvenation Roundup August 2022 – Lifespan.io News | dataSeptember 3rd, 2022
Read All

To better understand Parkinson’s disease, this San Diego expert sent her own cells to space – The San Diego Union-Tribune

By daniellenierenberg

Jeanne Loring likes to say shes been to space without her feet even leaving the ground.

Just weeks ago, the Scripps Research Institute professor of molecular medicine sent some of her own genetically mapped cells to space as part of first-of-its-kind research to study the progression and onset of Parkinsons disease, multiple sclerosis and other neurodegenerative diseases.

I love traveling. Ive been on all the continents, and so I figured, whats left? Loring said jokingly. I just jumped at the opportunity when I learned that it was possible.

Newsletter

Get our essential investigative journalism

Sign up for the weekly Watchdog newsletter for investigations, data journalism and more.

Enter email address

Sign Me Up

You may occasionally receive promotional content from the San Diego Union-Tribune.

In July, the cells arrived via cargo spacecraft at the International Space Station, where they remained under close observation for about a month 250 miles above Earth, and traveling at 17,500 miles per hour before they splashed back down to Earth last week.

The study is part of new National Stem Cell Foundation-funded neurodegeneration research to observe how cells communicate in microgravity in a way not possible on Earth, explained Paula Grisanti, founder and CEO of the foundation.

Its really pure exploration at this point, because theres no history of anybody doing this before, she said. Were paving the path.

An organoid derived from Dr. Jeanne Lorings induced pluripotent stem cells is prepared to be sent to the International Space Station.

(Courtesy of Dr. Davide Marotta)

Loring, a Del Mar resident who is one of the worlds leading experts in Parkinsons and a senior scientific advisor for the foundation, has been working with human-induced pluripotent stem cells since the technology was first discovered in 2006.

Called organoids, these cells are made from human skin tissue, which is put into a culture dish and turned into pluripotent stem cells, Loring explained.

Pluripotent stem cells only exist in culture dishes, they dont exist in our bodies, she said. Pluripotent means they can form any cell type in the body so for Loring, that meant forming nerve cells to create brain-like structures.

Its hard to study peoples brains, Loring said. You can do all this external stuff like they do with physical exams, but theres not any window into the brain so this is providing a sort of brain avatar.

Organoids provide a stand-in for the brain that can be studied by researchers, Loring explained. They make connections with each other, the cells talk to each other, so in a lot of ways, its a really good model of the brain, she added.

Moreover, the organoids mimic the brains of people with MS and Parkinsons.

Loring has been working with these organoids for years through Aspen Neuroscience, a San Diego-based company she co-founded that is working to create the worlds first personalized cell therapy for Parkinsons, using a patients own cells so they dont have to worry about rejection. Clinical trials may start as early as next year, she said.

Tubes containing neural organoids are loaded into a rack in preparation for placement in Cube Lab to travel to the International Space Station.

(Courtesy of Space Tango)

For the last four years, the foundations team of bicoastal researchers has been working together to study these organoids in space.

While an experiment in space presents its own challenges, Loring said its worth the work, as researchers hope to gain valuable and unique insight into how disorders like Parkinsons and MS develop. You can see them interacting and talking to each other in 3-D in a way that you cannot on Earth, Grisanti said.

Along with Lorings healthy organoids, which are used as a control, organoids derived from patients with Parkinsons and MS were sent to the space station, while the entire experiment was replicated on Earth.

Specifically, researchers are studying the neuroinflammation in the organoids, which is like when the immune system in the brain is overactive, Grisanti explained.

Organoid cultures are sealed in holders and ready to be placed in Cube Lab for space flight. The cover shows National Stem Cell Foundations SpaceX CRS-25 mission patch.

(Courtesy of Space Tango)

What we hope to find is a point at which things start to go wrong in those neurodegenerative diseases, where we could then intervene with a new drug or cell therapy, she said. And were seeing signs that that happens more in space than it does on the ground, so it helps create the type of interaction that you would see early in a neurodegenerative disease.

Grisanti said they hope to be able to use this research to develop a new drug or cell therapy to treat these disorders and potentially other neurodegenerative diseases in the future.

I think weve cracked the door open, but weve got some more flying to do, she added.

Continued here:
To better understand Parkinson's disease, this San Diego expert sent her own cells to space - The San Diego Union-Tribune

To Read More: To better understand Parkinson’s disease, this San Diego expert sent her own cells to space – The San Diego Union-Tribune
categoriaSkin Stem Cells commentoComments Off on To better understand Parkinson’s disease, this San Diego expert sent her own cells to space – The San Diego Union-Tribune | dataAugust 26th, 2022
Read All

Inside the race to make human sex cells in the lab – MIT Technology Review

By daniellenierenberg

But there are other hurdlessome so challenging that many scientists have given up. For one thing, nudging the stem cells in the right direction requires, it seems, a unique touch and expertise. Not just anyone will be able to make egg and sperm cells in the lab, says Saitou.

Saitou and Hayashi, now at Kyushu University, lead world-renowned teams of extraordinary skill. Their achievements might not have been possible without the contributions of Hiroshi Ohta, for example. Ohta is an expert in anesthetizing newborn mice using ice, performing intricate surgery on them, and injecting cells into the animals miniature gonads. The entire procedure must be completed within five minutes or the animals die. Only a few people have such skills, which take months to develop. I think our group was kind of lucky, says Saitou. It was a get-together of many talented scientists.

The work is hampered by the lack of in-depth knowledge about how the primitive forms of egg and sperm cells develop naturally in the embryoa process that is far from fully worked out in humans. Some of the embryos cells begin to differentiate into these primitive sex cells at around 14 days. But in some countries, it is illegal for researchers to even grow human embryos beyond 14 days. They would send me to jail if I went beyond day 14, says Azim Surani, who is working with precursors to artificial sex cells at the University of Cambridge in the UK.

The problem, from a research point of view, is that the 14-day rule comes in just as the embryos start to get interesting, says Surani. Without being able to easily study the critical process of how primitive cells begin forming egg and sperm cells, scientists are limited in their ability to mimic it in the lab.

Even if scientists were able to study embryos more freely, some mysteries would remain. Once the cells that make eggs and sperm are created, they are held in a kind of suspended animation until puberty or ovulation. What happens to them in the years in between? And how important is this phase for the health of mature eggs and sperm? The honest answer is we dont know, says Surani.

The stem cells in the lab must also be generated and cared for under precise conditions. To survive, they must be bathed in a cocktail of nutrients that must be replaced every day. Its very time consuming and labor intensive and it takes a lot of money, says Bjorn Heindryckx at Ghent University in Belgium, one of the scientists who have given up on creating human eggs this way in the lab. The outcome was too limited for the effort and the money that we spent on it, he says.

Part of the challenge is that for the precursor stem cells to develop into fully matured egg or sperm cells, they must be placed in an environment mimicking that of newly developing ovaries or testes. Researchers studying mice use tissue taken from mouse embryos to induce the stem cells to differentiate into sex cells. But similarly using human tissue from discarded embryos is ethically and legally problematic. So scientists are working on ways to create the right environment without using tissue from embryos.

The upshot is that it will likely take a highly skilled team years of dedicated research. Its not impossible, but it would not be easy to do, says Surani.

Continue reading here:
Inside the race to make human sex cells in the lab - MIT Technology Review

To Read More: Inside the race to make human sex cells in the lab – MIT Technology Review
categoriaSkin Stem Cells commentoComments Off on Inside the race to make human sex cells in the lab – MIT Technology Review | dataAugust 26th, 2022
Read All

Global Biomaterials Market to Reach Value of $372.7 Billion by 2028 | Demand For Biomaterials in the Healthcare Industry will Grow by 53% Over the…

By daniellenierenberg

Westford, USA, Aug. 25, 2022 (GLOBE NEWSWIRE) -- As the world increasingly becomes connected and people live longer, surgery and medical procedures become more complex. Surgery, one of the most common medical procedures, is now estimated to use over 1 million surgical tools each year. In order to meet the rising demand for surgical tools, surgeons are turning to biomaterials as a key component in their procedures. The main reason for this growth of the global biomaterials market is the increasing demand for novel biomaterials in various sectors such as automotive, aerospace, construction, and medical applications.

The growing demand for biomaterials has led to several companies developing unique biomaterials specifically for surgery. Some of the most well-known biomedical materials including polypropylene microspheres, chitosan hydrogel, and alginate matrix were pioneers in the field of biomaterials. Today, there are numerous new types of biomaterials being developed and marketed for a variety of medical applications, such as wound healing and orthopedic surgery. Global biomaterials market is expanding rapidly due to increasing public awareness of the benefits of using these materials and growing demand from pharmaceutical and medical device companies.

SkyQuest has published a report on global biomaterials market. The report provides a detailed market analysis, which would help the market participant in gaining is insights about market forecast, company profiles, market share, pricing analysis, competitive landscape, value chain analysis, porters five, and pestle among others.

Get sample copy of this report:

https://skyquestt.com/sample-request/biomaterials-market

Demand For Biomaterials in the Healthcare Industry will Grow by 53% Over the Next Five Years

The demand for biomaterials market in the healthcare industry is growing rapidly, according to SkyQuest study. We studied global economic data and discovered that the demand for biomaterials in the healthcare industry will grow by 53% over the next five years. In 2021, 10.7 million patients used some kind of biomaterials across different applications such as wound care, tissue implant, surgeries, and medical devices, among others. This rising demand is impacting not only hospitals and clinics, but also diagnostic laboratories and pharmaceutical companies.

Most biomedical materials are manufactured from organic materials such as skin, bone, cartilage, and tendons. While these materials can be derived from a variety of sources, synthetic biomedical materials are often cheaper and more readily available. However, synthetic biomedical materials do not have the same properties as natural materials, which means they may not be as effective when used in medical treatments. Biologically based biomaterials are more effective because they can mimic the properties of natural tissues. Their potential benefits make them a highly desired commodity in the healthcare industry across the global biomaterials market. In 2021 alone, sales of artificial joints were worth $2.2 billion, while sales of regenerative medicine products such as stem cells and platelet-rich plasma were estimated to be worth $8.8 billion in the same year.

SkyQuest has done a detailed study on global biomaterials market and prepared a report that also covers current consumer base, potential demand for products, demand analysis by category and volume, expected growth, prominent growth factors, market dynamics, trends, opportunities, and innovation, among others.

Browse summary of the report and Complete Table of Contents (ToC):

https://skyquestt.com/report/biomaterials-market

Top 4 Biomaterials in Global Market

1. Stem cells- Stem cells have become one of the most promising areas of biomaterial research because they can be modified to create a wide variety of tissue types, including cartilage, skin, and bone.

2. Chitosan- Chitosan is a natural polymer found in creatures ranging from crabs to shrimp, and it is prized for its ability to form strong and durable bonds with other materials.

3. Polycaprolactone- Polycaprolactone is a modified form cellulose that has been shown to have many potential biomedical applications, including as a replacement for hard tissues like heart valves and bones.

4. Mesenchymal stem cells- Mesenchymal stem cells (MSCs) are adult cells found in the connective tissue and skeletal muscles of mammals. MSCs have characteristics that make them especially effective at repairing tissues damaged by disease or injury, which is why they are commonly used in studies on regenerative therapies.

Recent Advancements in Biomaterials Market

Successful applications of biomaterials in disease treatment have made them a preferred choice for many medical procedures. For example, use of biomaterials for artificial heart valves has revolutionized the way these devices are operated and prevented heart failure in patients.

In addition, various biomaterials are being developed for use in regenerative medicine. For example, researchers in the global biomaterials market are exploring the possibilities of using nano-sized polymers to promote the growth of new tissue in injured or damaged tissues. This approach may prove to be an effective way to restore function to damaged organs and limbs.

Biomaterials are also being used to create new types of prosthetic devices. For example, doctors are currently testing a new type of artificial hip that uses a biocompatible material as its main component.

Speak to Analyst for your custom requirements:

https://skyquestt.com/speak-with-analyst/biomaterials-market

SkyQuests report on global biomaterials market would help you in gaining insights about current developments and its impact on the overall market growth, pricing, demand and supply, change in growth strategies of existing players, among others. Also, the report would help in understanding how the market value is changing and affecting the forecast revenue over the period.

Top Players in the Global Biomaterials Market

Related Reports in SkyQuests Library:

Global Cell Therapy Market

Global Flow Cytometry Market

Global Bioinformatics Market

Global Synthetic Biology Market

Global Biopharmaceutical Analytical Testing Services Market

About Us:

SkyQuest Technologyis leading growth consulting firm providing market intelligence, commercialization and technology services. It has 450+ happy clients globally.

Address:

1 Apache Way, Westford, Massachusetts 01886

Phone:

USA (+1) 617-230-0741

Email:sales@skyquestt.com

LinkedInFacebookTwitter

Read the original:
Global Biomaterials Market to Reach Value of $372.7 Billion by 2028 | Demand For Biomaterials in the Healthcare Industry will Grow by 53% Over the...

To Read More: Global Biomaterials Market to Reach Value of $372.7 Billion by 2028 | Demand For Biomaterials in the Healthcare Industry will Grow by 53% Over the…
categoriaSkin Stem Cells commentoComments Off on Global Biomaterials Market to Reach Value of $372.7 Billion by 2028 | Demand For Biomaterials in the Healthcare Industry will Grow by 53% Over the… | dataAugust 26th, 2022
Read All

A Groovy Guide to Anti-Aging Products With CBD and Mushrooms – Out Magazine

By daniellenierenberg

We are what we eat. And drink. And how we sleep, detox, and exercise or not.

Nothing new there. But in a world where new-to-market serums, creams, and spiritual berry tonics extracted by hand by Tibetan monks are in our (digital) face every day, were being presented with so many cool options on how to cleanse, moisturize, and treat wrinkles, lackluster skin, and hair that its next to impossible to keep up, let alone care for.

And while I wont be ditching my tried-and-true products any time soon, these newer, technologically advanced plant-based offerings are, in truth, quite effective. Products flooded with adaptogens help the body respond and adapt to various kinds of stress and inflammation. And how we weave them into our lifestyle regimens can be fun too.

Rather than barrage you with a ton of products, I thought a conversation regarding upcoming trends that embrace these new, full-circle, inside-and-out additions to our anti-aging routines is in order. We may have to look a little harder for these over-the-counter retail items, but not for long. Keep in mind that several of these brands combine two or three categories as ingestibles and topicals, which include CBD, functional mushrooms, and waterless skin care all of it nonpsychoactive, of course.

While recreational and medicinal marijuana are slowly becoming legal in more and more states, its tempting to get into the weeds with a cannabis/hemp/CBD tutorial. Lets simplify: it all comes from the same hemp plant thats loaded with restorative and preventative properties. CBD is legal (no high) and widely used for general to advanced wellness. Categories include singular isolates (113+ CBD extracts); broad spectrum (whole plant extract minus THC); and full spectrum (whole plant extract with less than 0.3 percent THC, the legal limit for all CBD products in the U.S.).

See the rest here:
A Groovy Guide to Anti-Aging Products With CBD and Mushrooms - Out Magazine

To Read More: A Groovy Guide to Anti-Aging Products With CBD and Mushrooms – Out Magazine
categoriaSkin Stem Cells commentoComments Off on A Groovy Guide to Anti-Aging Products With CBD and Mushrooms – Out Magazine | dataAugust 26th, 2022
Read All

New milestone organoid synthesis will boost disease and drug development research – RegMedNet

By daniellenierenberg

The concept of synthesizing small-scale human organs in lab dishes has matured from pure science fiction to legitimate bioscientific reality in recent years. However, the usefulness of organoids as a research tool for studying the digestive system quickly ran into a roadblock, due to the fact that these in-demand tissues remain difficult to create.

Organoids are stem cell-derived three-dimensional tissue cultures that are designed to exhibit detailed characteristics of organs or act as model organs to produce a specific cell type in laboratory conditions. However, when growing organoids, the yield from each batch of starting material can vary massively and can even fail to produce any viable organoids at all. This of course results in severe delays in their production and utilization in pre-clinical experiments that test the efficacy and safety of drugs.

In a recently published paper from Stem Cell Reports, researchers from Cincinnati childrens (OH, USA) have developed a new practice that overcomes the organoid production hurdle. This novel procedure is already being utilized within the medical facility to boost organoid studies. However, because the materials utilized can be frozen and thawed while still producing high-quality organoids, this discovery allows for the shipment of starter materials to other labs anywhere in the world, foreseeably leading to a dramatic increase in the utilization of human gastrointestinal organoids in medical research.

This method can make organoids a more accessible tool, explains the first author Amy Pitstick, manager of the Pluripotent Stem Cell Facility at Cincinnati Childrens. We show that the aggregation approach consistently produces high yields and we have proven that precursor cells can be thawed from cryogenic storage to produce organoids of the small intestine.

Using this approach will make it possible for many research labs to use organoids in their experiments without the time and expense of learning how to grow induced pluripotent stem cells (iPSCs), states corresponding author Chris Mayhew, director of the Pluripotent Stem Cell Facility. The ability to freeze the precursor cells also will allow labs to easily make organoids without having to start each new experiment with complicated and highly variable iPSC differentiation.

Generally, organoid creation begins with the collection of skin or blood cells, which are then transformed in the lab to become induced pluripotent stem cells. To create intestinal organoids, highly skilled lab professionals produce a flat layer of organ precursor cells known as the mid-hindgut endoderm.

Under the correct conditions, early-stage organoids, termed spheroids, autonomously develop into a three-dimensional ball of cells. These are then collected and placed into a growth medium, which supplies the required signals for the cells to develop into the specialized cell types of a human organ.

However, the quantity of spheroids produced in this manner has been unpredictable. The Cincinnati Childrens researchers discovered that they could harvest the unused precursor cell layer and employ a centrifuge to transport cells into hundreds of tiny wells housed on small plastic plates. This causes the creation of 3D cell aggregates, which may then be collected and utilized to produce organoids.

The experiment described in the research paper demonstrates that the spheroids created in this manner had no discernible differences from those that formed naturally. The scientists then stored samples of the progenitor cells in freezers. These cells generated viable spheroids after being frozen and aggregated.

The paper goes on to verify that these spheroids can be consistently grown into mature organoids, which can simulate organ function. In the case of this research, the mature organoids went on to mimic the function of the small intestine, large intestine and the antrum, the portion of the stomach that links to the intestine.

Although this development is a welcome and promising advance in organoid fabrication, years of research will be required to create organoids large enough and complex enough to be utilized as replacement tissue in transplant surgery. However, having access to a large number of readily manufactured organoids offers up numerous possibilities for medical study.

More labs will be able to create patient-specific organoids in order to evaluate drugcombination therapiesfor precision treatment of complex or rare disease states that necessitate personalized care. Scientists also conducting basic research to understand more about the genetic factors and molecular pathways at play in digestive tract diseases will be able to incorporate organoids in their experiments by procuring frozen spheroid precursors.

In his current effort to generate transplantable intestinal tissues, Michael Helmrath, Director of Clinical Translation for the Center for Stem Cell & Organoid Medicine (CuSTOM) at Cincinnati Childrens, has already begun employing materials made from this new method.

This is a great step forward for the field on many fronts, Helmrath says. To be able to reduce the complexity of the process and provide higher yields is beneficial to our work. And to be able to translate the methods to other labs will help move regenerative medicine forward.

Source: https://linkinghub.elsevier.com/retrieve/pii/S2213671122003599

Continued here:
New milestone organoid synthesis will boost disease and drug development research - RegMedNet

To Read More: New milestone organoid synthesis will boost disease and drug development research – RegMedNet
categoriaSkin Stem Cells commentoComments Off on New milestone organoid synthesis will boost disease and drug development research – RegMedNet | dataAugust 10th, 2022
Read All

Victoria Beckham and Kim Kardashian are fans of Augustinus Baders skincare range – and you can get 20% off – The Mirror

By daniellenierenberg

Professor Augustinus Baders skincare products contain the patented TFC8 technology, backed by 30 years of science and research - and results have shown an increase by 110% of more elasticity in the skin as well!

Image: Augustinus Bader)

When we hear on the grapevine that celebrities are obsessing over skincare products or with a beauty brand - we too are equally eager to hear the secret behind their gorgeous, glowing skin.

Augustinus Bader, whos earned a cult-beauty status thanks to his rejuvenating skin care products, is the man whom Jennifer Aniston, Kim Kardashian and Victoria Beckham all love too. And its not just celebrities who hail his namesake products as the secret weapon behind nourished and renewed skin, but beauty editors and dermatologists too. Not to mention contain the patented TFC8 technology, which is backed by 30 years of science and research.

And we have a way to you can get 20% off your next order, thanks to the auto-replenish programme! Customers are able to save 20% on each order when they subscribe to regular, customisable, delivery cycles. How cool is that?

Augustinus Bader

Augustinus Bader

Augustinus Bader

And its so simple too!

The skincare formulas are hand crafted by Professor Augustinus Bader in his own laboratory. Hes a globally recognised biomedical scientist, physician and one of the foremost experts in the field of stem cell biology and regenerative medicine. So its no wonder why celebs are quick to reach for his products before hitting the red carpet.

Not to mention his products have received 90 industry awards in just four years - and products have been voted The Greatest Skincare Of All Time.

Best of all? The results of Augustinus Bader products are proven through extensive clinical trials - and who wouldnt want younger looking skin in as little as four weeks?

Based on a 4-week clinical trial, with participants using hero product The Rich Cream: Forehead wrinkles visibly reduced by 37%, crow's feet wrinkles visibly reduced by 54%, crow's feet fine lines visibly reduced by 46% and of those testers, skin felt 92% firmer and 110% more elasticity in the skin - in just 4 weeks!

So what are you waiting for? Give Augustinus Bader products a go and see how your skin can change in four weeks too!

Have you used any of the Augustinus Bader skincare products before? Or are you keen to give them a try and see what they could do for you? Let us know your thoughts in the comments section below.

See the rest here:
Victoria Beckham and Kim Kardashian are fans of Augustinus Baders skincare range - and you can get 20% off - The Mirror

To Read More: Victoria Beckham and Kim Kardashian are fans of Augustinus Baders skincare range – and you can get 20% off – The Mirror
categoriaSkin Stem Cells commentoComments Off on Victoria Beckham and Kim Kardashian are fans of Augustinus Baders skincare range – and you can get 20% off – The Mirror | dataAugust 10th, 2022
Read All

Mutant T Cells That Drive Amyotrophic Lateral Sclerosis (ALS) Progression May React To a Brain Antigen – The Scientist

By daniellenierenberg

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that targets motor neurons, gradually bereaving patients of their ability to control muscle movements. Scientists discovered more than 50 potential disease-causing genes and linked several cellular pathways to ALS, but the syndromes diverse clinical and genetic nature make it difficult to predict and interfere with disease progression.1

Researchers discovered a T cell population in mice that mirrors ALS-4 disease progression.

In a recent study published in Nature, Laura Campisi, Ivan Marazzi, and colleagues at Icahn School of Medicine at Mount Sinai discovered an immune cell signature in patients with early onset ALS (ALS-4) that mirrors disease progression and may contribute to neuronal death.2 These findings could have significant implications for ALS diagnostics, prognostics, and therapeutics.

Laura Campisi joined Marazzis laboratory wanting to better understand how the body mounts immune responses. She set out to molecularly profile activated immune cells and discovered several immunity regulators, including SENATAXIN (SETX). Because SETX mutations cause ALS-4, Campisi wondered if ALS might join the suite of other neurodegenerative diseases such as narcolepsy, Alzheimers disease, and Parkinsons disease that scientists recently connected to the immune system.3,4,5,6

To test whether the immune system plays a role in ALS-4 disease progression, Campisi turned to a mouse model that carries the most common human SETX mutation.7 She replaced their mutated hematopoietic stem cells (HSCs)progenitors that form immune cellswith wildtype ones and found that they protected against disease. In contrast, replacing healthy HSCs with SETXmutant ones in wildtype mice did not cause disease. This set of experiments showed that mutant HSCs and their progeny contribute to disease, but do not cause disease on their own. This is extremely strong preclinical evidence that forms a basis for pharmaceutically targeting these cells, said David Gate, an assistant professor of neurology at Northwestern University, who was not involved in this study.

Campisi and her colleagues next characterized the immune system in pre-symptomatic mice and discovered an ALS-specific immune cell signature: ALS-4 mice contained more CD8+ T cells in their blood and cerebrospinal fluid (CSF) prior to symptom onset, and this cell population continued to expand as the disease progressed. While Campisis team faced pandemic-related difficulties in recruiting enough ALS-4 patients to confirm these findings, they are now teaming up with clinicians to expand their preclinical trials. We want to follow this [T cell] population in patients to see if they express specific markers that can predict if and when the disease progresses, Campisi said.

My hypothesis is that the T cells are autoreactive, so they are reacting against a cellular antigen.Laura Campisi, Icahn School of Medicine at Mount Sinai

To find what these T cells responded to, Campisi sequenced them and found that nearly all cells expressed the same T cell receptor, suggesting they bind the same antigen. The problem is that it is very difficult to find the antigen. I dont think it is an infection because [the] mice live in a pathogen-free facility. My hypothesis is that the T cells we found are autoreactive, so they are reacting against a cellular antigen, Campisi said.

Given that ALS targets motor neurons, Campisi wondered if the ALS-4 T cells promoted disease progression because they react to and are activated by a protein in the brain. To test this hypothesis, Campisi injected ALS-4mice with brain cancer cells that express neuronal antigens to see if the T cell population would react and confer protection against the cancer type. It was pretty striking: the tumors became so big in wildtype mice that I had to stop the experiment, but the [mutant] mice that were in the same cage were completely fine, their tumor was not growing, Campisi said. In contrast, there was no protection against skin-related cancer cells that she injected as a control. The T cells that infiltrated the ALS-4 mices brain tumors expressed the same T cell receptor as cells found in their CSF. While Gate cautions that cancer cells typically express many newly created neoantigens, Campisis data suggests that the T cell population likely recognizes a brain cell-related antigen.

Campisis challenge now lies in identifying the actual antigen and therapeutically targeting these T cells to slow and restrict the disease course. In ALS, you probably have a defect that starts with neurons, triggering a cascade of events. So, even if you restore what is wrong in neurons, we have to [also] target the other players, Campisi said.

References

Excerpt from:
Mutant T Cells That Drive Amyotrophic Lateral Sclerosis (ALS) Progression May React To a Brain Antigen - The Scientist

To Read More: Mutant T Cells That Drive Amyotrophic Lateral Sclerosis (ALS) Progression May React To a Brain Antigen – The Scientist
categoriaSkin Stem Cells commentoComments Off on Mutant T Cells That Drive Amyotrophic Lateral Sclerosis (ALS) Progression May React To a Brain Antigen – The Scientist | dataAugust 10th, 2022
Read All

Why Glucose Restrictions Are Essential in Treating Cancer – The Epoch Times

By daniellenierenberg

The procedure recommended by most doctors might not always be a good option, as it could turn a potentially benign situation into a malignant one.

Thomas Seyfried, Ph.D., professor in the biology department at Boston College, is a leading expert and researcher in the field of cancer metabolism and nutritional ketosis. His book, Cancer as a Metabolic Disease: On the Origin, Management and Prevention of Cancer is a foundational textbook on this topic, and in August 2016, he received the Mercola.com Game Changer Award for his work.

Here, we discuss the mechanisms of cancer and the influence of mitochondrial function, which plays a crucial role in the development and treatment of this disease. Hislandmark cancer theory is available as a free PDF.

Many of his views are now encapsulated in his most paper,1Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis, published online December 27, 2018. Hes also published a number of other papers2,3,4on the metabolic underpinnings of cancer.

The paper is a review and hypothesis paper identifying the missing link in Otto Warburgs central theory,Seyfried explains. [Warburg] defined the origin of cancer very accurately back in the 1920s, 30s, 40s and 50s in his work in Germany. Basically, he argued and provided data showing that all cancer cells, regardless of tissue origin, were fermenters. They fermented lactic acid from glucose as a substrate.

Even in the presence of oxygen, these cells were fermenting. This is clearly a defect in oxidative phosphorylation. The problem is that for decades, people said Warburg was wrong mainly because we see a lot of cancer cells take up oxygen and make adenosine triphosphate (ATP) from within the mitochondria People began to question, If cancer cells have normal respiration, why would they want to use glucose as a fermentable fuel?

The whole concept became distorted The cancer cells simply choose to ferment rather than respire. Now, of course, if you look under the electron microscope at majority of cancers, youll see that the mitochondria are defective in a number of different ways. Their structures are abnormal. The numbers are abnormal. There are many abnormalities of mitochondria seen directly under electron microscopy. Clearly, Warburg was not wrong.

Before we delve into the meat of how cancer actually occurs it would be good to review a diagnostic strategy that nearly all of us are offered when confronted with a cancer diagnosis. It is vital to understand that this may not be your best strategy and that for many it would be wise to avoid the biopsy.

Seyfried warns against doing biopsies, as this procedure may actually cause the cancer to spread. A tumor is basically a group of proliferating cells in a particular part of your body. For purposes of diagnosis, a small biopsy sample will often be taken to ascertain whether the tumor is benign or malignant.

The problem is that when you stab into the cancer microenvironment to remove a part of the tissue, it creates a wound in that microenvironment that in turn elicits the invasion by macrophages and other immune cells.

If you already have an acidic microenvironment, you run the risk of causing a fusion hybridization event in that microenvironment between your macrophages and cancer stem cells (as discussed below). This could turn a potentially benign situation into a malignant one, and if the tumor is malignant, stabbing into it could make a bad situation worse.

The question is, what is the value of doing a biopsy in the first place? We take biopsies of breast tissue to get a genomic readout of the different kinds of mutations that might be in the cells. Now, if cancer is not a genetic disease and the mutations are largely irrelevant, then it makes no sense to do that in the first place. If the tumor is benign, why would you want to stab it? If the tumor is malignant, why would you ever want to stab it?

I came to this view by reading so many articles in the literature based on brain cancer, breast cancer, colon cancer, liver cancer showing how needle biopsies have led to the dissemination of these tumor cells, putting these people at risk for metastatic cancer and death,Seyfried says.

In metabolic therapy you would not touch the tumor; you would not disturb the microenvironment. By leaving it alone, you allow the tumor to shrink and go away.

When you start to look at this as a biological problem, many of the things that we do in cancer make no sense. We have, in brain cancer, people say, You have a very low-grade tumor. Lets go in and get it out. What happens is you go in and get it out, and then the following year it turns into a glioblastoma.

How did that happen? Well, you disturbed the microenvironment. You allowed these cells that are marginally aggressive to become highly aggressive. Then you lead to the demise of the patient,Seyfried says.

That happens significantly because its called secondary glioblastoma arising from therapeutic attempt to manage a low-grade tumor. The same thing can happen with all these different organs. You stab breast tumors, you stab colon tumors, you run the risk of spreading the cells

My argument is the following: If the patient has a lump, whether its in the breast, in the colon, lung or wherever or a lesion of some sort, that should be the cue to do metabolic therapy.

Do metabolic therapy first. In all likelihood, it will shrink down and become less aggressive. Then the option becomes, Should we debulk completely rather than doing some sort of a biopsy? We want to reduce the risk, because if we can catch the whole tumor completely, then we dont run the risk of spreading it

In our procedure, you bring the body back into a very high state of metabolic balance, and then you strategically go and degrade the tumors slowly without harming the rest of the body.

Radiation, chemo and the strategies that were using today dont do this. Theyre based on the gene theory of cancer that genetic mutations are causing the cell cycle to grow out of control. Well, this is not the case. Again, a lot of these toxic procedures need to be rethought, reanalyzed in my mind.

In biology, structure determines function. This is an evolutionarily conserved concept. So, how can mitochondria be structurally abnormal in tissue, yet have normal respiration? As Seyfried notes, this doesnt make sense. Confusion has arisen in part because many study cancer in culture, and make profound statements and comments regarding what happens in culture, Seyfried says.

If you look at cancer cells in culture, many of them do take in oxygen and make ATP, but at the same time, theyre fermenting. This was the conundrum. They called it the Warburg Effect. Theyre fermenting, but many people at the same time thought their respiration was normal.

This was the main problem with Warburgs theory. But Warburg clearly said in his papers [that] its not the fact that they take in oxygen; its how much ATP they can generate from oxidative phosphorylation, which is the normal respiratory capacity of the mitochondria.

As explained by Seyfried, if you measure ATP and look at oxygen consumption in tumor cells, it appears theyre making ATP and taking in oxygen, therefore, their respiration is assumed to be normal. However, when you look at the tissues in cancer patients, the mitochondria are abnormal.

What I and Dr. Christos Chinopoulos from Semmelweis University in Budapest, Hungary, who is the world-leading expert on mitochondrial physiology and biochemistry realized [was] that the mitochondria of tumor cells are actually fermenting amino acids, glutamine in particular. Theyre not respiring. Theyre fermenting an alternative fuel, which is glutamine,Seyfried says.

With this understanding, Warburgs theory can be proven correct cancer arises from damage to the mitochondrias ability to produce energy through respiration in their electron transport chain.

The compensatory fermentation involves not only lactic acid fermentation, but also succinic acid fermentation using glutamine as a fermentable fuel. Its been known for decades that glutamine is a main fuel for many different kinds of cancers, but most people thought it was being respired, not fermented.

Seyfried and Chinopoulos discovery confirms that cancer cells in fact have damaged respiration, and to survive, the cancer cells must use fermentation. The two most available fermentable fuels in the cancer microenvironment are glucose and glutamine. Hence, targeting glucose and glutamine is a crucial component of cancer treatment.

Without glucose and glutamine, the cancer cells will starve, as they cannot use ketones. The simplest approach to cancer then is to bring patients into therapeutic ketosis, and then strategically target the availability of glucose and glutamine.

Basically, what were saying [is] that mitochondrial substrate-level phosphorylation is a non-oxidative metabolism mechanism inside the mitochondria that would generate significant amounts of energy without oxidative phosphorylation,Seyfried says.

According to Seyfried, mitochondrial dysfunction is at the heart of nearly every type of cancer. Unfortunately, few oncologists have this understanding and many still believe cancer is the result of genetic defects. However, nuclear transfer experiments clearly show cancer cannot be a genetic disease.

Theres been no rational scientific argument that I have seen, to discredit the multitude of evidence showing that the [genetic] mutations are not the drivers but the effects [of mitochondrial dysfunction],Seyfried says.

As a matter of fact, theres new information now where people are finding so-called genetic drivers of cancer expressed and present in normal cells, normal skin and also esophagus This is another [issue] how you get these so-called driver mutations in normal tissues. Were also finding some cancers that have no mutations, yet, theyre fermenting and growing out of control.

There are a number of new observations coming out that challenge the concept that cancer is a genetic disease. And once you realize that its not a genetic disease, then you have to seriously question the majority of therapies being used to manage the disease. This [helps] explain [why] we have 1,600 people a day dying from cancer in the United States.

Why do we have such an epidemic of suffering and death when we have been studying this disease for decades? Well, if you look at the massive amounts of scientific papers being written on cancer, youll often find that theyre structured around gene defects.

What Im saying is that if cancer is not a genetic disease and the mutations are downstream epiphenomena, why would the field continue to focus on things that are mostly irrelevant to the nature of the disease? What Im saying is very devastating, because Im telling the majority of the people in the field that theyre basically wasting their time

I think we can drop the death rate of this disease by about 50% in 10 years if cancer is treated as a mitochondrial metabolic disease, targeting fermentable fuels rather than using toxic therapies that are focused on downstream effects.

Radiation is designed to stop DNA replication. DNA replication requires energy. If you pull the plug on their fermentable fuels, theyre not going to be able to replicate anyway All of the things that were doing to treat cancer is basically approaching the disease from a misunderstanding of the biology

We know viruses can cause cancer. We know radiation causes cancer. We know carcinogens cause cancer. We know intermittent hypoxia causes cancer. We know systemic inflammation causes cancer. We know just getting older puts you at risk for more cancer.

We know there are inherited mutations in the genome that can cause cancer. But how are all these things linked through a common pathophysiological mechanism? The common pathophysiological mechanism is damaged through the structure and function of the mitochondria.

Every one of the issues including inherited mutations, damage the respiration of a particular population of cells in a tissue. You look at the breast cancer gene (BRCA 1), for example. People will say, Cancer must be a genetic disease because you inherit a mutation that causes the disease.

You only get the disease if that mutation disrupts the function of the mitochondria. Fifty percent of women who carry the mutation never get cancer or breast cancer because the mutation, for some reason, did not damage the mitochondria in that person.

So, to summarize, the true origin of cancer is damage to the respiratory function of the mitochondria, triggering compensatory fermentation, which is run by oncogenes. Oncogenes play a role by facilitating the entry of glucose and glutamine into the cell to replace oxidative phosphorylation.

Seyfried also has a very different view on the biology of metastasis (the spread of cancer). He explains:

Weve looked at cancer stem cells in a number of our preclinical models These guys grow like crazy in place. The tumor just keeps expanding, but it doesnt spread. It doesnt spread into the bloodstream or metastasize to various organs.

We discovered a very unusual cancer 20 years ago. It took us 10 to 15 years to figure out what it was. You can put a few of these cells anywhere in the mouses body and within three to four weeks, this mouse is full of metastatic cancer. It made the cover of the International Journal of Cancer, when we published this back in 2008, but we had worked on the problem for years.

We couldnt figure out what it was that made these cells so incredibly metastatic. We found out that once we identified the biology of the cell, it turned out [it has] many characteristics in common with the macrophage, which is one of the most powerful immune cells in our body.

We said, Wow. Is this unique only to this kind of cell or do metastatic cancers in humans also express characteristics of macrophages? We looked and we found that almost every major cancer that metastasizes has characteristics of macrophages. Then we said, Well, how could this possibly happen? Is it coming from the macrophage?

A number of scientists have all clearly shown that there is some fusion hybridization character going on. In other words, macrophages, our wound-healing cells, they come into a microenvironment where you might find many proliferating neoplastic stem cells, but they dont have the capacity to metastasize.

Its only when the macrophages fuse with these stem cells that you have a dysregulated energy metabolism coming in this hybrid cell. This hybrid cell now has characteristics of both stem cells and macrophages.

The stem cell is not genetically equipped to enter and exit tissue. The macrophage, as a normal cell of your body, is genetically equipped to enter and exit tissue and live in the bloodstream. Theyre very strongly immunosuppressive. These are all characteristics of metastatic cancer.

According to Seyfried, metastatic cancer cells are essentially a hybrid, a mix of an immune system cell and a dysregulated stem cell, the latter of which could originate from a disorganized epithelial cell or something similar. In short, its a hybrid cell with macrophage characteristics.

Macrophages are essential for wound healing and part of our primary defense system against bacterial infections. They live both in the bloodstream and in tissues, and can go anywhere in the body. When an injury or infection occurs, they immediately move in to protect the tissue.

The metastatic cancer cell has many of those same properties,Seyfried explains,But the energy and the function of the cell is completely dysregulated, so it proliferates like crazy but has the capacity to move and spread through the body, so its a corrupted macrophage. We call it a rogue macrophage.

Like macrophages, metastatic cancer cells can also survive in hypoxic environments, which is why most angiogenic therapies are ineffective against metastatic cancer.

So, what do these metastatic hybrid cells need to survive? Both macrophages and immune cells are major glutamine consumers, and according to Seyfried, you can effectively kill metastatic cells by targeting glutamine.

However, it must be done in such a way so as to not harm the normal macrophages and the normal immune cells. In other words, it must be strategic. For this reason, Seyfried developed a press-pulse therapy for cancer, which allows the patient to maintain normal immune system function, while at the same time targeting the corrupted immune cells the macrophage fusion hybrid metastatic cells as well as inflammation.

The therapies we are using to attempt to kill these [metastatic] cells put us at risk for having the cells survive and kill us. You can control these cells for a short period of time, but they can hunker down and enter into some sort of a slightly dormant state, but they reappear.

People say, Oh, these tumor cells are so nifty and smart they can come back at you. The problem is youve never really challenged them on their very existence, which is they depend on fermentation to survive. If you dont target their fermentation, theyre going to continue to survive and come back at you.

Many of the therapies that we use radiation, chemo and some of these other procedures are not really going after the heart of the problem. That oftentimes puts you at risk for the recurrence of the disease. Your body is already seriously weakened by the toxic treatments. And in the battle, you lose. If you are fortunate enough to survive your body is still beat up.

You have now put your [body] at risk for other kinds of maladies Why are we using such toxic therapies to kill a cell when we know what its weaknesses are? These are the paradigm changes that will have to occur as we move into the new era of managing cancer in a logical way.

To properly address cancer, then, you need to clean up the microenvironment, because the microenvironment will strategically kill cells that are dependent on fermentation while enhancing cells that arent. At the same time, the microenvironment will also reduce inflammation.

You also have to be very careful not to kill your normal and healthy immune cells, because they need glutamine too,Seyfried says. What we find is that when we strategically attack the tumor this way, it turns out that our immune cells are paralyzed.

The cancer cells are killed, but the normal immune cells are paralyzed. Theyre not dying, theyre just not doing their job. What we do is we back off the therapy a little; allow the normal immune cells to regain their biological capacity, pick up dead corpses, heal the microenvironment, and then we go after the cancer cells again.

Its a graded response, knowing the biology of the normal cells and the abnormal biology of the tumor cells. This is a beautiful strategy. Once people know how you can play one group of cells off another, and how you can strategically kill one group of cells without harming the other cells, it really becomes a precision mechanism for eliminating tumor cells without harming the rest of the body.

You dont need to be poisoned and irradiated. You just have to know how to use these procedures to strategically kill the cells. Protecting normal macrophages is part of the strategic process. Killing the corrupted ones is part of the strategic process. Again, you have to put all of these together in a very logical path. Otherwise, youre not going to get the level of success that we should be getting.

This strategy is what Seyfried calls press-pulse treatment, and essentially involves restricting the fermentable fuels glucose and glutamine in a cyclical fashion to avoid causing damage to normal cells and tissues. Glucose is effectively restricted through a ketogenic diet. Restricting glutamine is slightly trickier.

The press-pulse strategy was developed from the concept of press-pulse in the field of the paleobiology. A press was some chronic stress on populations, killing off large numbers, but not everything, because some organisms can adapt to stress. The pulse refers to some catastrophic event.

The simultaneous occurrence of these two unlikely events led to the mass extinction of almost all organisms that existed on the planet. This was a cyclic event over many hundreds of millions of years. The geological records show evidence for this press-pulse extinction phenomenon.

What we simply did was take that concept and say, Lets chronically stress the tumor cells. They need glucose. You can probably kill a significant number of tumor cells by just stressing their glucose. Thats the press. The press is different ways to lower blood sugar. You put that chronic stress on top of the population either by restricted ketogenic diets [or] therapeutic fasting. There are a lot of ways that you can do this.

Also, emotional stress reduction. People are freaked out because they have cancer, therefore their corticoid steroids are elevated, which elevates blood sugar. Using various forms of stress management, moderate exercise all of these will lower blood sugar and contribute to a chronic press and stress on the cancer cells.

However, youre not going to kill all cancer cells if you just take away glucose. Because the other fuel thats keeping the beast alive is the glutamine. We have to pulse, because we cant use a press for glutamine targeting, because then youre going to kill your normal immune cells or impair them, and they are needed for the eventual resolution of the disease.

What were going to do is were going to pulse various drugs. We dont have a diet system that will target glutamine. Glutamine is everywhere. Its the most abundant amino acid in your body But you have to use [the drugs] very strategically; otherwise they can harm our normal immune system and then be counterproductive

I think that once we understand how we can target effectively glutamine without harming our normal immune cells this is the strategy that will make most of these other therapies obsolete Its cost-effective and non-toxic and it will work very well.

But were still at the very beginning of this. We need to continue to develop the doses, timing and scheduling of those drugs that are most effective in targeting glutamine that can be done without harming the rest of the cells in our body.

If you would like to support Dr. Seyfrieds research, please consider making a donation to the Foundation For Metabolic Cancer Therapies. The donation tag is on the top row of the of the foundationsite. This Foundation is dedicated to supporting Dr. Seyfrieds studies using metabolic therapy for cancer management with 100% of the donated funds going directly to research on metabolic therapy for cancer.

Originally published July 31, 2022 on Mercola.com

Views expressed in this article are the opinions of the author and do not necessarily reflect the views of The Epoch Times. Epoch Health welcomes professional discussion and friendly debate. To submit an opinion piece, please follow these guidelines and submit through our form here.

The rest is here:
Why Glucose Restrictions Are Essential in Treating Cancer - The Epoch Times

To Read More: Why Glucose Restrictions Are Essential in Treating Cancer – The Epoch Times
categoriaSkin Stem Cells commentoComments Off on Why Glucose Restrictions Are Essential in Treating Cancer – The Epoch Times | dataAugust 10th, 2022
Read All

Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia – GlobeNewswire

By daniellenierenberg

LAS VEGAS, NV, Aug. 01, 2022 (GLOBE NEWSWIRE) -- via NewMediaWire Meso Numismatics, Inc. (Meso Numismatics or the Company) (MSSV), a technology company specializing in Biotech and Numismatics, is pleased to announce additional global expansion by opening stem cell therapy and regenerative medicine facilities in Indonesia. The new facilities emphasize Global Stem Cells Group's objective of introducing its therapies and technology to meet market demands in populous parts of the world.

In partnership with the Dr. Yanti Aesthetic Clinics, which currently has 6 branches across Indonesia, this latest GSCG expansion will promote high standards of service in regenerative medicine across the country. As part of this effort, through GSCG the International Society for Stem Cells Applications (ISSCA) has granted Dr. Yanti Aesthetic Clinics membership and use of its brand, products, therapies, and training on how to apply stem cell therapies.

This new partnership seeks to expand the Global Stem Cells Group (GSCG) brand and create centers of excellence in cell therapy to meet the high demand within the vast Asian markets, said David Christensen, CEO of MSSV. GSCG is rapidly expanding its global operations as it seeks to become a significant player in the lucrative regenerative medicine industry. To achieve our expansion plans, our organization is partnering with healthcare providers specializing in regenerative medicine with at least five years of experience in the healthcare sector.

Video: https://youtu.be/T2CFjsps9qk

The vision behind the effort.

The Indonesia addition is the latest part of an expanding medical network of partners, and it will formalize and strengthen ties, establishing a global center of excellence to guarantee that we effectively use the underlying basic stem cell technology for medical conditions, where traditional therapeutic approaches seem to have failed. This is consistent with GSCG's overall strategy for developing regenerative medicine through data-driven studies, disease modeling, and cell-based therapeutics.

The Dr. Yanti Aesthetic Clinic is a key partnership because it provides the organizational and physical infrastructure needed to disseminate need-based stem cell locally. And Global Stem Cells Group's outstanding cell and stem cell biology and disease pathophysiology give an edge to patients for which they are prescribed.

The opening in Indonesia also presents the perfect opportunity to translate breakthrough therapies from basic discoveries to useful products by drawing upon the skills and local knowledge promoted within Dr. Yanti Aesthetic Clinics.

GSCG group managing director, Benito Novas, provided a clear description of the new strategic direction and objectives. "Our goal is to make regenerative medicine benefits a reality for both doctors and patients all around the world. We recently launched a very similar effort in Pakistan. Additional announcements are planned in the near future as we attempt to expand our presence." Meso Numismatics and Global Stem Cells Group Expand its Global Footprint

The current market outlook.

Stem cell therapy is striving to become an increasingly effective clinical solution to treat conditions that traditional or mainstream medicine offers only within palliative care and pain management. Patients all over the world are searching for a natural regenerative alternative without the potential risks and side effects sometimes associated with mainstream pharmaceuticals. With the opening of each new treatment center in populous regions such as Indonesia, GSCG is working to help stem cell therapy and regenerative medicine to eventually move from alternative and elective procedures to mainstream protocols.

This new clinic effort will play a significant role in the development of regenerative medicine in Indonesia and indeed the rest of the world by adding yet another opportunity for continuous improvement through research and development, Christensen continued. By adding busy clinics in population centers, we plan to consistently generate high volumes of reliable clinical data to assist us with the development and refinement of even more medicines and treatments.

About Dr. Yanti Aesthetic Clinics

Dr. Yanti Aesthetic Clinics is a premier cosmetic and aesthetics clinic based in Kelapa Gading, Jakarta Utara. Since its inception in 2004 in Surabaya by Dr. Khoe Yanti Khusmiran, the clinic has expanded to over 6 branches throughout Indonesia. Dr. Yanti clinics provide a range of skin and body enhancement treatments through minimally invasive and non-invasive procedures the expertise of which are a natural fit for the addition of a variety of stem cell therapies.

"Indonesians have a growing need for the latest medical technology that is reliable, potent, has reduced side effects, and leverages the bodys own healing biochemistry to resolve injury and aging, said Dr. Yanti. We are honored to be a part of GSCG, which has a proven 10-year track record in the market with a strong and growing international reputation. This new partnership is expected to create a wide variety of custom treatment options we can offer our patients and treat injury and illness in ways we could not before.

The newly formed partnership will deliver revolutionary medicines through Dr. Yanti clinics to assist patients in avoiding permanent harm and live a healthier life, while changing the paradigm from asymptomatic treatments to cures that may improve and restore quality of life.

More about Global Stem Cells Group

GSCG delivers leadership in regenerative medicine research, patient applications, and training through our strategic global networks. We endeavor to enable physicians to treat otherwise incurable diseases using stem cell therapy and to improve the quality of life and care across the world.

For this reason, GSCG works with innovative, next-generation therapy providers like Dr. Yanti Aesthetic Clinics to give access to one-of-a-kind holistic and safe treatment options.

More information regarding this transaction and the Global Stem Cells Group may be found at GSCG.

This press release should be read in conjunction with all other filings on http://www.sec.gov

For more information on Global Stem Cells Group please visit: http://www.stemcellsgroup.com

About Meso Numismatics: Meso Numismatics, Corp is an emerging Biotechnology and numismatic technology company. The Company has quickly become the central hub for rare, exquisite, and valuable inventory for not only the Meso region, but for exceptional items from around the world.

Meso has now added Biotechnology to its portfolio and will continue to grow the company in this new direction. With the Company's breadth of business experience and technology team, the Company will continue to help companies grow.

Forward-Looking Statements

Some information in this document constitutes forward-looking statements or statements which may be deemed or construed to be forward-looking statements, such as the closing of the share exchange agreement. The words plan, "forecast", "anticipates", "estimate", "project", "intend", "expect", "should", "believe", and similar expressions are intended to identify forward-looking statements. These forward-looking statements involve, and are subject to known and unknown risks, uncertainties and other factors which could cause the Company's actual results, performance (financial or operating) or achievements to differ from the future results, performance (financial or operating) or achievements expressed or implied by such forward-looking statements. The risks, uncertainties and other factors are more fully discussed in the Company's filings with the U.S. Securities and Exchange Commission. All forward-looking statements attributable to Meso Numismatics, Inc., herein are expressly qualified in their entirety by the above-mentioned cautionary statement. Meso Numismatics, Inc. disclaims any obligation to update forward-looking statements contained in this estimate, except as may be required by law.

For further information, please contact:investor.relations@mssvinc.com Telephone: (800) 956-3935

See more here:
Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia - GlobeNewswire

To Read More: Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia – GlobeNewswire
categoriaSkin Stem Cells commentoComments Off on Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia – GlobeNewswire | dataAugust 2nd, 2022
Read All

The Role of Cell Culture Media, Sera, and Reagents Market Industry Growth, Competitors Analysis, New Technology, Trends and Forecast 2021 2031 -…

By daniellenierenberg

Cell Culture Media, Sera, and Reagents Market: Introduction

According to the report, the globalcell culture media, sera, and reagents marketwas valued at US$6.1 Bnin 2020 and is projected to expand at a CAGR of10.3%from 2021 to 2031. Cell culture media, also known as growth media, is an umbrella term that encompasses any gel or liquid created to support cellular growth in an artificial environment. It is a combination of compounds and nutrients designed to support cellular growth.

Cell culture reagents include cell culture media, media supplements, and sterile reagents. Common cell culture reagents are antibiotics and amino acid supplements. Serum is a key component for growing and maintaining cells in culture. It contains a mixture of proteins, hormones, minerals, and other growth factors. It is added to media as a growth supplement, and specialized forms can be used for different experimental conditions.

Get a sample of the report @ https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=6598

Increase in Demand for Cost-effective and Highly Efficient Cell Culture Products to Drive Global Market

Cell culture technology is applied in various domains such as research, academics, bioprocessing & manufacturing, cell therapy, and regenerative medicines. Leading pharmaceutical companies are expanding their capabilities into biopharmaceutical manufacturing in order to leverage high market potential and due to increase in demand for these products.

Rise in demand for cost-effective and highly efficient cell culture products such as bioreactors, media, reagents, and sera for the production of high-yield cell lines has led to an increase in the number of new product launches. This factor is anticipated to provide lucrative opportunities in the global cell culture market during the forecast period.

Request For Custom Research @ https://www.transparencymarketresearch.com/sample/sample.php?flag=CR&rep_id=6598

Contract Research & Manufacturing and Focus on Stem Cell Research to Propel Market

The cell culture media, sera, and reagents market is witnessing a shift toward contract manufacturing & research, primarily due to significant capital investment and specificity of each biomanufacturing process. For instance, cell cultures could be 2D, 3D, rotating, continuously stirred, batch-fed, and several other types. The expanding scope of cell culture into areas such as stem cell research is boosts the growth of the global market. Rise in importance of stem cell therapy is underlined by the fact that these therapies help treat the cause of the disease, while conventional treatment methods help in managing only the symptoms. This requires advanced capabilities in terms of capital, equipment, and resources; hence, contract manufacturing presents an economically beneficial solution.

Make an Enquiry before Buying @ https://www.transparencymarketresearch.com/sample/sample.php?flag=EB&rep_id=6598

Major Players in Global Cell Culture Media, Sera, and Reagents Market

Key players operating in the global cell culture media, sera, and reagents market include Thermo Fisher Scientific, Inc., Merck KGaA, Cytiva (Danaher Corporation), Becton, Dickinson and Company, Corning Incorporated, HiMedia Laboratories, FUJIFILM Irvine Scientific, Inc., InvivoGen, SeraCare (LGC Clinical Diagnostics, Inc.), and Lonza. Each of these players has been profiled in the cell culture media, sera, and reagents market report based on parameters such as company overview, financial overview, business strategies, application portfolio, business segments, and recent developments.

More Related Reports by Transparency Market Research

PRP and PRF in Cosmetics Market: https://www.transparencymarketresearch.com/prp-and-prf-in-cosmetics-market.html

Acellular Skin Substitutes Market: https://www.transparencymarketresearch.com/acellular-skin-substitutes-market.html

Hematology Diagnostics Market: https://www.transparencymarketresearch.com/hematology-diagnostics-market.html

Life Sciences Software Market: https://www.transparencymarketresearch.com/life-sciences-software.html

Molecular Biology Enzymes, Kits & Reagents Market: https://www.transparencymarketresearch.com/molecular-biology-enzymes-kits-reagents.html

Collagenase Clostridium Histolyticum Market: https://www.transparencymarketresearch.com/collagenase-clostridium-histolyticum-market.html

Automated Microbiology Market: https://www.transparencymarketresearch.com/automated-microbiology-market-size.html

Operating Room Equipment Market: https://www.transparencymarketresearch.com/operating-room-equipment-market.html

About Transparency Market Research

Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, provides custom research and consulting services The firm scrutinizes factors shaping the dynamics of demand in various markets.The insights and perspectives on the markets evaluate opportunities in various segments. The opportunities in the segments based on source, application, demographics, sales channel, and end-use are analysed, which will determine growth in the markets over the next decade.

Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision-makers, made possible by experienced teams of Analysts, Researchers, and Consultants. The proprietary data sources and various tools & techniques we use always reflect the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in all of its business reports.

For More Research Insights on Leading Industries, Visit Our YouTube Channel and hit subscribe for Future Update https://www.youtube.com/channel/UC8e-z-g23-TdDMuODiL8BKQ

Contact

Rohit BhiseyTransparency Market Research Inc.CORPORATE HEADQUARTER DOWNTOWN,1000 N. West Street,Suite 1200, Wilmington, Delaware 19801 USATel: +1-518-618-1030USA Canada Toll Free: 866-552-3453Website:https://www.transparencymarketresearch.comBlog:https://tmrblog.comEmail:%5Bemailprotected%5D

Originally posted here:
The Role of Cell Culture Media, Sera, and Reagents Market Industry Growth, Competitors Analysis, New Technology, Trends and Forecast 2021 2031 -...

To Read More: The Role of Cell Culture Media, Sera, and Reagents Market Industry Growth, Competitors Analysis, New Technology, Trends and Forecast 2021 2031 -…
categoriaSkin Stem Cells commentoComments Off on The Role of Cell Culture Media, Sera, and Reagents Market Industry Growth, Competitors Analysis, New Technology, Trends and Forecast 2021 2031 -… | dataAugust 2nd, 2022
Read All

Mustang Bio Announces First Patient Successfully Treated by Ex Vivo Lentiviral Gene Therapy to Treat RAG1 Severe Combined Immunodeficiency – BioSpace

By daniellenierenberg

WORCESTER, Mass., July 27, 2022 (GLOBE NEWSWIRE) -- Mustang Bio, Inc.(Mustang) (NASDAQ: MBIO), a clinical-stage biopharmaceutical company focused on translating todays medical breakthroughs in cell and gene therapies into potential cures for hematologic cancers, solid tumors and rare genetic diseases, today announced that the first patient successfully received LV-RAG1 ex vivo lentiviral gene therapy to treat recombinase-activating gene-1 (RAG1) severe combined immunodeficiency (RAG1-SCID), in an ongoing Phase 1/2 multicenter clinical trial taking place in Europe. LV-RAG1 is exclusively licensed by Mustang for the development of MB-110, a first-in-class ex vivo lentiviral gene therapy for the treatment of RAG1-SCID.

Patients with SCID have mutations in blood stem cell genes that are responsible for the development and function of infection-fighting immune cells. As a result, they are unable to mount a normal defense response against infections. The administration of LV-RAG1 includes reduced intensity conditioning prior to reinfusion of the patients own gene-modified blood stem cells.

The patient was administered LV-RAG1 without any complications. LV-RAG1 allowed the patients body to create a functioning immune system, which is responding well to the standard vaccinations for newborns, said Arjan Lankester, Principal Investigator and Professor of Pediatrics and Stem Cell Transplantation at Leiden University Medical Centre (LUMC).

Manuel Litchman, M.D., President and Chief Executive Officer of Mustang said, This first successful administration to a RAG1-SCID patient of a stem-cell based gene therapy represents a significant positive step forward for our MB-110 development program. This treatment, along with our X-linked severe combined immunodeficiency (XSCID) programs, which includes MB-107 and MB-207, has established Mustang as a leader in developing treatments for SCID patients, who are in great need of these life-saving therapies. XSCID and RAG1-SCID make up almost 60% of all SCID cases combined.1 We look forward to continuing to advance these clinical candidates, including plans to initiate a multicenter pivotal Phase 2 trial for MB-107 under Mustangs IND in the second half of this year.

LV-RAG1 has been granted Orphan Drug Designation by the European Medicines Agency. Additional clinical trial sites are expected to be added in the near future.

Signed in 2021, Mustangs exclusive, worldwide license agreement for LV-RAG1 established an ongoing partnership with LUMC and LUMCs Frank J. Staal, Ph.D., molecular immunologist and professor of Molecular Stem Cell Biology. The license agreement grants Mustang rights to certain additional lentiviral gene therapies being developed in Dr. Staals lab.

About RAG1-SCIDSevere combined immunodeficiency (SCID) due to complete RAG1 deficiency is a rare, genetic severe combined immunodeficiency disorder caused by null mutations in the RAG1 gene resulting in less than 1% of wild type V(D)J recombination activity. Patients present with neonatal onset of life-threatening, severe, recurrent infections by opportunistic fungal, viral and bacterial micro-organisms, as well as skin rashes, chronic diarrhea, failure to thrive and fever. Immunologic observations include profound T- and B-cell lymphopenia, low or absent serum immunoglobulins, and normal natural killer cell counts. As is the case with other types of SCID, RAG1-SCID is fatal in infancy unless immune reconstitution is achieved with allogeneic hematopoietic stem cell transplantation (HSCT), or autologous stem cells corrected by gene therapy.

About MB-110 (Ex Vivo Lentiviral Gene Therapy)MB-110 is a first-in-class ex vivo lentiviral gene therapy under development to treat RAG1-SCID, utilizing the LV-RAG1 vector developed in the laboratory of Frank J. Staal, Ph.D., molecular immunologist and professor of Molecular Stem Cell Biology at LUMC. Exclusively licensed to Mustang in 2021, LV-RAG1 is currently being evaluated in a Phase 1/2 multicenter, academic clinical trial (RECOMB) in Europe. Additional information on the trial can be found at http://www.clinicaltrials.gov using the identifier NCT04797260.

The same lentiviral vector drug substance produced by LUMC will be used to transduce patients cells to create the MB-110 drug product produced at Mustang Bios Worcester, MA, cell processing facility for further clinical development and to facilitate eventual commercial launch of the product.

About Mustang BioMustang Bio, Inc. is a clinical-stage biopharmaceutical company focused on translating todays medical breakthroughs in cell and gene therapies into potential cures for hematologic cancers, solid tumors and rare genetic diseases. Mustang aims to acquire rights to these technologies by licensing or otherwise acquiring an ownership interest, to fund research and development, and to outlicense or bring the technologies to market. Mustang has partnered with top medical institutions to advance the development of CAR T therapies across multiple cancers, as well as lentiviral gene therapies for severe combined immunodeficiency. Mustang is registered under the Securities Exchange Act of 1934, as amended, and files periodic reports with the U.S. Securities and Exchange Commission (SEC). Mustang was founded by Fortress Biotech, Inc. (NASDAQ: FBIO). For more information, visit http://www.mustangbio.com.

ForwardLooking Statements This press release contains forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, each as amended. Such statements, which are often indicated by terms such as anticipate, believe, could, estimate, expect, goal, intend, look forward to, may, plan, potential, predict, project, should, will, would and similar expressions, include, but are not limited to, any statements relating to our growth strategy and product development programs, including the timing of and our ability to make regulatory filings such as INDs and other applications and to obtain regulatory approvals for our product candidates, statements concerning the potential of therapies and product candidates, and any other statements that are not historical facts. Forward-looking statements are based on managements current expectations and are subject to risks and uncertainties that could negatively affect our business, operating results, financial condition and stock value. Factors that could cause actual results to differ materially from those currently anticipated include: risks relating to our growth strategy; our ability to obtain, perform under, and maintain financing and strategic agreements and relationships; risks relating to the results of research and development activities; risks relating to the timing of starting and completing clinical trials; uncertainties relating to preclinical and clinical testing; our dependence on third-party suppliers; our ability to attract, integrate and retain key personnel; the early stage of products under development; our need for substantial additional funds; government regulation; patent and intellectual property matters; competition; as well as other risks described in Part I, Item 1A, Risk Factors, in our Annual Report on Form 10-K filed on March 23, 2022, subsequent Reports on Form 10-Q, and our other filings we make with the SEC. We expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any forward-looking statements contained herein to reflect any change in our expectations or any changes in events, conditions or circumstances on which any such statement is based, except as required by law, and we claim the protection of the safe harbor for forward-looking statements contained in the Private Securities Litigation Reform Act of 1995.

Company Contacts:Jaclyn Jaffe and Bill BegienMustang Bio, Inc.(781) 652-4500ir@mustangbio.com

Investor Relations Contact:Daniel FerryLifeSci Advisors, LLC(617) 430-7576daniel@lifesciadvisors.com

Media Relations Contact:Tony Plohoros6 Degrees(908) 591-2839tplohoros@6degreespr.com

1 Fischer A, et al. Nat Rev Dis Primers. 2015; article number 15061; doi: 10.1038/nrdp.2015.61

Read more from the original source:
Mustang Bio Announces First Patient Successfully Treated by Ex Vivo Lentiviral Gene Therapy to Treat RAG1 Severe Combined Immunodeficiency - BioSpace

To Read More: Mustang Bio Announces First Patient Successfully Treated by Ex Vivo Lentiviral Gene Therapy to Treat RAG1 Severe Combined Immunodeficiency – BioSpace
categoriaSkin Stem Cells commentoComments Off on Mustang Bio Announces First Patient Successfully Treated by Ex Vivo Lentiviral Gene Therapy to Treat RAG1 Severe Combined Immunodeficiency – BioSpace | dataAugust 2nd, 2022
Read All

McMaster in Hamilton founds burn injury research program that is working on 3-D skin | inTheHammer – insauga.com

By daniellenierenberg

Preferred RegionHow does this work?

By Nathan Sager

Published July 14, 2022 at 5:16 pm

A renowned burns specialist and his entire lab are continuing their work to develop 3-D printed skin at McMaster University in Hamilton.

Earlier this month, Dr. Marc Jeschke began a dual role at McMaster and Hamilton Health Sciences (HHS). Jeschke, who previously worked at the University of Toronto and Sunnybrook hospital, is now a professor of surgery at Mac and vice-president, research at HHS as well as medical director of its burns unit.

As part of the move, Jeschke is bringing his nearly 20-scientist burn research lab to Hamilton. The lab is supported by a gift from Charles and Margaret Juravinski through the Juravinski Research Institute. In a release from the university, Jeschke said McMaster is uniquely positioned for work across verious medical disciplines, since there are many partnerships with HHS and St. Josephs Healthcare Hmailton.

(McMaster) offers a more intimate environment than other institutions of its calibre and the quality of collaboration here is outstanding, said Jeschke.

People who suffer extensive and serious burns often end up with scarring for life. The Jeschke-headed lab has been developing a skin derivative that uses a patients own stem cells. It might one day greatly reduce scarring for people with extensive burns.

In 2020, researchers and developers from U of T and Sunnybrook became the first Canadian team to be honoured with a top prize from the 3D Pioneers Challenge for building and refining of the ReverTome handheld 3D skin printer. The printer can make new skin grown from stem cells in order to improve healing. Jeschke and his team contributed stem cell research to help inform development of the device.

The 3D Pioneers Challenge honours innovations in digital printing. The U of T-Sunnybrook team won from among a field of 52 finalists from 28 nations.

Jeschke said in the release that the therapy his lab is testing proved effective in porcine models. The clinical trial stage would be next.

The human body is so complex, but this stem-cell based therapy, if successful, will certainly change the way we care for burns and other injuries, he said.

Subscribe now to receive our daily email of today's top stories in your city!

Original post:
McMaster in Hamilton founds burn injury research program that is working on 3-D skin | inTheHammer - insauga.com

To Read More: McMaster in Hamilton founds burn injury research program that is working on 3-D skin | inTheHammer – insauga.com
categoriaSkin Stem Cells commentoComments Off on McMaster in Hamilton founds burn injury research program that is working on 3-D skin | inTheHammer – insauga.com | dataJuly 16th, 2022
Read All

The ‘Benjamin Button’ effect: Scientists can reverse aging in mice. The goal is to do the same for humans – KITV Honolulu

By daniellenierenberg

In molecular biologist David Sinclair's lab at Harvard Medical School, old mice are growing young again.

Using proteins that can turn an adult cell into a stem cell, Sinclair and his team have reset aging cells in mice to earlier versions of themselves. In his team's first breakthrough, published in late 2020, old mice with poor eyesight and damaged retinas could suddenly see again, with vision that at times rivaled their offspring's.

"It's a permanent reset, as far as we can tell, and we think it may be a universal process that could be applied across the body to reset our age," said Sinclair, who has spent the last 20 years studying ways to reverse the ravages of time.

"If we reverse aging, these diseases should not happen. We have the technology today to be able to go into your hundreds without worrying about getting cancer in your 70s, heart disease in your 80s and Alzheimer's in your 90s." Sinclair told an audience at Life Itself, a health and wellness event presented in partnership with CNN.

"This is the world that is coming. It's literally a question of when and for most of us, it's going to happen in our lifetimes," Sinclair told the audience.

"His research shows you can change aging to make lives younger for longer. Now he wants to change the world and make aging a disease," said Whitney Casey, an investor who is partnering with Sinclair to create a do-it-yourself biological age test.

While modern medicine addresses sickness, it doesn't address the underlying cause, "which for most diseases, is aging itself," Sinclair said. "We know that when we reverse the age of an organ like the brain in a mouse, the diseases of aging then go away. Memory comes back; there is no more dementia.

"I believe that in the future, delaying and reversing aging will be the best way to treat the diseases that plague most of us."

A reset button

In Sinclair's lab, two mice sit side by side. One is the picture of youth, the other gray and feeble. Yet they are brother and sister, born from the same litter -- only one has been genetically altered to age faster.

If that could be done, Sinclair asked his team, could the reverse be accomplished as well? Japanese biomedical researcher Dr. Shinya Yamanaka had already reprogrammed human adult skin cells to behave like embryonic or pluripotent stem cells, capable of developing into any cell in the body. The 2007 discovery won the scientist a Nobel Prize, and his "induced pluripotent stem cells," soon became known as "Yamanaka factors."

However, adult cells fully switched back to stem cells via Yamanaka factors lose their identity. They forget they are blood, heart and skin cells, making them perfect for rebirth as "cell du jour," but lousy at rejuvenation. You don't want Brad Pitt in "The Curious Case of Benjamin Button" to become a baby all at once; you want him to age backward while still remembering who he is.

Labs around the world jumped on the problem. A study published in 2016 by researchers at the Salk Institute for Biological Studies in La Jolla, California, showed signs of aging could be expunged in genetically aged mice, exposed for a short time to four main Yamanaka factors, without erasing the cells' identity.

But there was a downside in all this research: In certain situations, the altered mice developed cancerous tumors.

Looking for a safer alternative, Sinclair lab geneticist Yuancheng Lu chose three of the four factors and genetically added them to a harmless virus. The virus was designed to deliver the rejuvenating Yamanaka factors to damaged retinal ganglion cells at the back of an aged mouse's eye. After injecting the virus into the eye, the pluripotent genes were then switched on by feeding the mouse an antibiotic.

"The antibiotic is just a tool. It could be any chemical really, just a way to be sure the three genes are switched on," Sinclair said. "Normally they are only on in very young developing embryos and then turn off as we age."

Amazingly, damaged neurons in the eyes of mice injected with the three cells rejuvenated, even growing new axons, or projections from the eye into the brain. Since that original study, Sinclair said his lab has reversed aging in the muscles and brains of mice and is now working on rejuvenating a mouse's entire body.

"Somehow the cells know the body can reset itself, and they still know which genes should be on when they were young," Sinclair said. "We think we're tapping into an ancient regeneration system that some animals use -- when you cut the limb off a salamander, it regrows the limb. The tail of a fish will grow back; a finger of a mouse will grow back."

That discovery indicates there is a "backup copy" of youthfulness information stored in the body, he added.

"I call it the information theory of aging," he said. "It's a loss of information that drives aging cells to forget how to function, to forget what type of cell they are. And now we can tap into a reset switch that restores the cell's ability to read the genome correctly again, as if it was young."

While the changes have lasted for months in mice, renewed cells don't freeze in time and never age (like, say, vampires or superheroes), Sinclair said. "It's as permanent as aging is. It's a reset, and then we see the mice age out again, so then we just repeat the process.

"We believe we have found the master control switch, a way to rewind the clock," he added. "The body will then wake up, remember how to behave, remember how to regenerate and will be young again, even if you're already old and have an illness."

Science already knows how to slow human aging

Studies on whether the genetic intervention that revitalized mice will do the same for people are in early stages, Sinclair said. It will be years before human trials are finished, analyzed and, if safe and successful, scaled to the mass needed for a federal stamp of approval.

While we wait for science to determine if we too can reset our genes, there are many other ways to slow the aging process and reset our biological clocks, Sinclair said.

"The top tips are simply: Focus on plants for food, eat less often, get sufficient sleep, lose your breath for 10 minutes three times a week by exercising to maintain your muscle mass, don't sweat the small stuff and have a good social group," Sinclair said.

What controls the epigenome? Human behavior and one's environment play a key role. Let's say you were born with a genetic predisposition for heart disease and diabetes. But because you exercised, ate a plant-focused diet, slept well and managed your stress during most of your life, it's possible those genes would never be activated. That, experts say, is how we can take some of our genetic fate into our own hands.

Cutting back on food -- without inducing malnutrition -- has been a scientifically known way to lengthen life for nearly a century. Studies on worms, crabs, snails, fruit flies and rodents have found restricting calories "delay the onset of age-related disorders" such as cancer, heart disease and diabetes, according to the National Institute on Aging. Some studies have also found extensions in life span: In a 1986 study, mice fed only a third of a typical day's calories lived to 53 months -- a mouse kept as a pet may live to about 24 months.

Studies in people, however, have been less enlightening, partly because many have focused on weight loss instead of longevity. For Sinclair, however, cutting back on meals was a significant factor in resetting his personal clock: Recent tests show he has a biological age of 42 in a body born 53 years ago.

"I've been doing a biological test for 10 years now, and I've been getting steadily younger for the last decade," Sinclair said. "The biggest change in my biological clock occurred when I ate less often -- I only eat one meal a day now. That made the biggest difference to my biochemistry."

Additional ways to turn back the clock

Sinclair incorporates other tools into his life, based on research from his lab and others. In his book "Lifespan: Why We Age and Why We Don't Have To," he writes that little of what he does has undergone the sort of "rigorous long-term clinical testing" needed to have a "complete understanding of the wide range of potential outcomes." In fact, he added, "I have no idea if this is even the right thing for me to be doing."

With that caveat, Sinclair is willing to share his tips: He keeps his starches and sugars to a minimum and gave up desserts at age 40 (although he does admit to stealing a taste on occasion). He eats a good amount of plants, avoids eating other mammals and keeps his body weight at the low end of optimal.

He exercises by taking a lot of steps each day, walks upstairs instead of taking an elevator and visits the gym with his son to lift weights and jog before taking a sauna and a dip in an ice-cold pool. "I've got my 20-year-old body back," he said with a smile.

Speaking of cold, science has long thought lower temperatures increased longevity in many species, but whether it is true or not may come down to one's genome, according to a 2018 study. Regardless, it appears cold can increase brown fat in humans, which is the type of fat bears use to stay warm during hibernation. Brown fat has been shown to improve metabolism and combat obesity.

Sinclair takes vitamins D and K2 and baby aspirin daily, along with supplements that have shown promise in extending longevity in yeast, mice and human cells in test tubes.

One supplement he takes after discovering its benefits is 1 gram of resveratrol, the antioxidant-like substance found in the skin of grapes, blueberries, raspberries, mulberries and peanuts.

He also takes 1 gram of metformin, a staple in the arsenal of drugs used to lower blood sugars in people with diabetes. He added it after studies showed it might reduce inflammation, oxidative damage and cellular senescence, in which cells are damaged but refuse to die, remaining in the body as a type of malfunctioning "zombie cell."

However, some scientists quibble about the use of metformin, pointing to rare cases of lactic acid buildup and a lack of knowledge on how it functions in the body.

Sinclair also takes 1 gram of NMN, or nicotinamide mononucleotide, which in the body turns into NAD+, or nicotinamide adenine dinucleotide. A coenzyme that exists in all living cells, NAD+ plays a central role in the body's biological processes, such as regulating cellular energy, increasing insulin sensitivity and reversing mitochondrial dysfunction.

When the body ages, NAD+ levels significantly decrease, dropping by middle age to about half the levels of youth, contributing to age-related metabolic diseases and neurodegenerative disorders. Numerous studies have shown restoring NAD+ levels safely improves overall health and increases life span in yeast, mice and dogs. Clinical trials testing the molecule in humans have been underway for three years, Sinclair said.

"These supplements, and the lifestyle that I am doing, is designed to turn on our defenses against aging," he said. "Now, if you do that, you don't necessarily turn back the clock. These are just things that slow down epigenetic damage and these other horrible hallmarks of aging.

"But the real advance, in my view, was the ability to just tell the body, 'Forget all that. Just be young again,' by just flipping a switch. Now I'm not saying that we're going to all be 20 years old again," Sinclair said.

"But I'm optimistic that we can duplicate this very fundamental process that exists in everything from a bat to a sheep to a whale to a human. We've done it in a mouse. There's no reason I can think of why it shouldn't work in a person, too."

& 2022 Cable News Network, Inc., a WarnerMedia Company. All rights reserved.

The rest is here:
The 'Benjamin Button' effect: Scientists can reverse aging in mice. The goal is to do the same for humans - KITV Honolulu

To Read More: The ‘Benjamin Button’ effect: Scientists can reverse aging in mice. The goal is to do the same for humans – KITV Honolulu
categoriaSkin Stem Cells commentoComments Off on The ‘Benjamin Button’ effect: Scientists can reverse aging in mice. The goal is to do the same for humans – KITV Honolulu | dataJuly 16th, 2022
Read All

Page 6«..5678..2030..»


Copyright :: 2025