Stem Cell Use in Skin Care Products? – Science of Skincare
By Dr. Matthew Watson
The science behind skin care has been progressing at a faster and faster rate of speed. Twenty years ago, had you mentioned stem cell use in association with mainstream skin care, people would have stared at you as though you had three heads and steered their children in a path far around you.
Reality today paints a much cooler picture. One where stem cells are used to treat a variety of blood and bone marrow diseases, blood cancers, and immune disorders. And we are finding stem cells, both human and plant, on the ingredients lists of some very powerful and effective skin care products. Stem cell use in skin care products is coming of age.
Stem cells are a type of cell that are found in all living things and have the glorious ability to differentiate themselves into many different types of cells. They are capable of becoming any other type of cell in that type of organism and reproducing in a controlled manner. As a result, they are the building blocks of your tissues and have the unique ability to replace damaged and diseased cells. They can proliferate for long periods, dividing themselves over and over again into millions of new cells. That means they can play a pivotal role in how skin repairs itself.
Stem cells are extremely beneficial in the natural process of healing and regeneration, says Jessica Weiser, M.D., a board-certified dermatologist in New York City.
Many beauty products contain stem cells from fruits like Swiss apples, edelweiss, roses, date palms, grape, raspberry, lilac, and gotu kola that have the ability to stay fresh for long periods of times.
Human stem cells come from one of two sources: embryonic stem cells and adult (somatic) stem cells. For the case of skin care, stem cells of the adult origin are used. They remain in the body quietly in a non-dividing state for years until activated by disease or injury.
Because they play an essential role in tissue removal, stem cells residing just below the surface of the skin can help with restorative functions, such as cellular regeneration, and could play a vital role in helping to enhance our ability to repair aging skin.
You start off with an abundance of stem cells in your skin, but you lose them as you age. By the time you hit 50, youve lost about 98% of them.
The working theory is that by applying products containing stem cell extracts, you could encourage the growth of your own skins stem cells and possibly wake them up to trigger their anti-aging effects. Some research suggests that they can promote the production of collagen, which is the bodys firming protein.
Live cells need very specific conditions to remain alive and viable. Its difficult enough to maintain those conditions in a laboratory setting. Skin care products and their environments dont offer those types of conditions. When stem cells are included in skin care products, makers arent looking to provide you with live, functional cells. Extracts from the stem cells, not the actual cells themselves, are usually added to skin care products. Its not possible to maintain live stem cells in cosmetic emulsions, says Zoe Diana Draelos, a consulting professor of dermatology at the Duke University School of Medicine in Durham, North Carolina.
Most stem cell products you see on the shelf dont actually contain stem cells, but rather the proteins and amino acids that those cells secrete. Typically, if you see a product labeled as a stem cell product, youll see the stem cells key substances in the ingredients list. These include ferulic acid, ellagic acid, and quercetin. This is what your body is able to recognize and put to use to help rejuvenate and repair cells. Human stem cell byproducts (from skin or adipose tissue) seem to be the best solution for use in skin care products because of their ability to produce the same types of cellular components that your body uses naturally to maintain a youthful appearance.
Cultivating stem cells is a tedious process involving a very controlled environment without any contaminants in order to yield the most potent, stable, and pure extract. Because of this technology, the cost of stem cell products are usually greater than products without.
MDSUN is a perfect collaboration between medicine and beauty with the ability to deliver the highest quality skin care products, giving you long-lasting radiance and youth. Each formulation is effective, while free of harsh ingredients, perfumes, or chemical scent additives.
They offer multiple options incorporating powerful stem cell technology with proven effective results. The Wrinkle Smoothener reduces wrinkle depth and improves skins texture while quenching skin-damaging free radicals. It can stimulate skin repair and diminish the appearance of aging skin.
The Collagen Lift is a very potent treatment that can deliver obvious results, minimizing the appearance of wrinkles and lines, improving skin texture and tone. This luxurious gel-cream soothes redness and irritations and rejuvenates skin cells for a strong and long-lasting radiant renewal.
The Med-Eye Complex Cream visibly promotes firmness, increases blood circulation and deeply hydrates the eye area to reduce the signs of aging, lending a youthful appearance and glow.
Read more from the original source:
Stem Cell Use in Skin Care Products? - Science of Skincare
Stem Cell Skin Care – anti-aging cream and hydration Serum
By NEVAGiles23
SC21 BioTech: Stem Cell Skin Care Set
SC21 nowoffers a rejuvenating stem cell skin careset that is available to help restore aging skin. At SC21, we have been able to combine human mesenchymal stem cell growth factors, polypeptide complexes, and cytokines, with our day time anti-aging cream & evening hydration serum.
Our SC21 biotechnology scientists have developed a process to isolate potent rejuvenating factors from human stem cells. By resupplying the skin with these powerful missing factors, SC21 Day & Night Stem Cell Skin Care promotes cell renewal, boosts the production of collagen and elastin, restores aging cells, and, ultimately, provides you with more youthful looking skin.
It is important to note that as we age, the stem cell population that is vital in providing healing signals to the skin dramatically diminishes. As a result of this, the rejuvenating components the skin needs to maintain its appearance lessen. By replenishing lost peptides, cytokines & growth factors with the use of a topical product on the skin, we, through the day &night skin care set, are able to effectively re-engage the skins healing process.
The SC21 day & night stem cell skin care rejuvenation set also has a complete solution for restoring aging skin. We have, through the day anti-aging cream & night hydration serum been able to use: human mesenchymal stem cell growth factors, to regenerate human tissues; polypeptide complexes, (which penetrate the epidermis, outer layer of our skin) to send signals to the skin cells and cytokines proteins to send signals between the skin cells.
Focus Ingredient of Growth Factor Skin Care:
Mesenchymal Stem Cell (MSC) Peptide Complex = 15% (cytokines, growth factors, peptide complex)
Other Key Ingredients:
Focus Ingredient of Growth Factor Skin Care:
Mesenchymal Stem Cell (MSC) Peptide Complex = 20%(cytokines, growth factors, peptide complex)
Other Key Ingredients:
Apply 2-3 pumps to clean & dry skin.
Peptides are easier explained as signaling molecules produced by cells to instruct other cells.
As cellular messengers, cytokines influence and control our biological processes from start to finish. There are hundreds of unique cytokines in the human body. Cells talk with cytokines to repair injury, repel microbes, fight infections, and develop immunity.
Growth factors, are, on the other hand, diffusible signaling proteins that stimulate the growth of specific tissues and play a crucial role in promoting cell differentiation and division.
Many modern medical advances, including stem cell breakthroughs, are made possible due to our growing understanding of cytokines & growth factors. We use modern culture techniques (the same type used to produce human insulin and other naturally occurring substances) to grow human stem cells in the laboratory to harvest their regenerative cytokines and growth factors.
Mesenchymal stem cells (MSCs), which are traditionally found in the bone marrow, are used to improve function upon integration because they are self-renewing cells that have the capacity to differentiate, and are capable of replacing and repairing damaged tissues.
MSCs can consequently during culture, produce the following:
Our skin cells are biologically designed to continuously renew themselves, but, starting from our mid 20s, the skin cell renewal process slows down and our skin becomes thinner. This thinning causes us to be more prone to skin damage from external elements.
However, there are other factors that can contribute to our aging process, and in other cases even cause premature aging. Some of these factors include:
Follow this link:
Stem Cell Skin Care - anti-aging cream and hydration Serum
Are there enough stem cells in your knees to heal the …
By daniellenierenberg
Are there enough stem cells in your knees to heal the damage of osteoarthritis? If yes, why arent those stem cells fixing your knees now? Is it a lack of numbers?
Marc Darrow MD, JD. Thank you for reading my article. You can ask me your questions about bone marrow derived stem cells using the contact form below.
In 2011, doctors at the University of Aberdeen published research in the journal Arthritis and rheumatism that provided the first evidence that resident stem cells in the knee joint synovium underwent proliferation (multiplied) and chondrogenic differentiation (made themselves into cartilage cells) following injury.(1)
If the stem cells in your knee synovial lining are abundant and have the ability to rebuild cartilage after injury, why isnt your knee fixing itself?
One of those 40 studies was performed by researchers at theUniversity of Calgary in 2012. Among their questions, if the stem cells in the knee synovial lining are abundant and have the ability to rebuild cartilage after injury, why isnt the knee fixing itself? Here is what they published:
Since osteoarthritis leads to a progressive loss of cartilage and synovial progenitors (rebuilding) cells have the potential to contribute to articular cartilage repair, the inability of osteoarthritis synovial fluid Mesenchymal progenitor cells (stem cell growth factors) to spontaneously differentiate into chondrocytes suggests that cell-to-cell aggregation and/or communication may be impaired in osteoarthritis and somehow dampen the normal mechanism of chondrocyte replenishment from the synovium or synovial fluid. Should the cells of the synovium or synovial fluid be a reservoir of stem cells for normal articular cartilage maintenance and repair, these endogenous sources of chondro-biased cells would be a fundamental and new strategy for treating osteoarthritis and cartilage injury if this loss of aggregation & differentiation phenotype can be overcome.(2)
This research was supported in anew study from December 2017 In Nature reviews. The paper suggested that recognizing that joint-resident stem cells are comparatively abundant in the joint and occupy multiple niches (from the center of the joint to the out edges) will enable the optimization of single-stage therapeutic interventions for osteoarthritis.(3) The idea is to get these native stem cells to repair.
Now we know that there are many stem cells in the knee, when there is an injury there are more stem cells. If we can figure out how to get these stem cells turned on to the healing mode, the knee could heal itself of early stage osteoarthritis. So the problem is not the number of stem cells, BUT, communication.
This failure to communicate was also seen in other research. In 2016, another heavily cited paper, this time fromTehran University for Medical Sciences, noted that despite their larger numbers,the native stem cells act chaotically and are unable to regroup themselves into a healing mechanism and repair the bone, cartilage and other tissue. Introducing bone marrow stem cells into this environmentgets the native stem cells in line and redirects them to perform healing functions. The joint environmentis changed from chaotic to healing because of communication.(4) It should be pointed out that at the time of this article update (August 2018) 62 medical studies cited the research in this papers findings).
A recentpaper from a research team inAustralia confirms how this change of joint environment works. It starts with cell signalling a new communication network is built.
University of Iowa research published in theJournal of orthopaedic research
Serious meniscus injuries seldom heal and increase the risk for knee osteoarthritis; thus, there is a need to develop new reparative therapies. In that regard, stimulating tissue regeneration by autologous (from you, not donated) stem/progenitor cells has emerged as a promising new strategy.
(The research team) showed previously that migratory chondrogenic progenitor cells (mobile cartilage growth factors) were recruited to injured cartilage, where they showed a capability in situ (on the spot) tissue repair. Here, we tested the hypothesis that the meniscus contains a similar population of regenerative cells.
Explant studies revealed that migrating cells were mainly confined to the red zone (where the blood is and its growth factors) in normal menisci: However, these cells were capable of repopulating defects made in the white zone (the desert area where no blood flows. Migrating cell numbers increased dramatically in damaged meniscus. Relative to non-migrating meniscus cells, migrating cells were more clonogenic, overexpressed progenitor cell markers, and included a larger side population. (They were ready to heal) Gene expression profiling showed that the migrating population was more similar tochondrogenic progenitor cells (mobile cartilage growth factors) than other meniscus cells. Finally, migrating cells equaledchondrogenic progenitor cells in chondrogenic potential, indicating a capacity for repair of the cartilaginous white zone of the meniscus. These findings demonstrate that, much as in articular cartilage, injuries to the meniscus mobilize an intrinsic progenitor cell population with strong reparative potential.(6)
The intrinsic progenitor cell population with strong reparative potential are in your knee waiting to be mobilized.
So what are we to make of this research?There are a lot of stem cells in a knee waiting to repair. The problem is they are confused and not getting the correct instructions. Bone marrow stem cell therapy can fix the communication problem and begin the repair process anew.
A leading provider of bone marrow derived stem cell therapy, Platelet Rich Plasma and Prolotherapy11645 WILSHIRE BOULEVARD SUITE 120, LOS ANGELES, CA 90025
PHONE: (800) 300-9300
1 Kurth TB, Dellaccio F, Crouch V, Augello A, Sharpe PT, De Bari C. Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis Rheum. 2011 May;63(5):1289-300. doi: 10.1002/art.30234.
2 Krawetz RJ, Wu YE, Martin L, Rattner JB, Matyas JR, Hart DA. Synovial Fluid Progenitors Expressing CD90+ from Normal but Not Osteoarthritic Joints Undergo Chondrogenic Differentiation without Micro-Mass Culture. Kerkis I, ed.PLoS ONE. 2012;7(8):e43616. doi:10.1371/journal.pone.0043616.
3 McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nature Reviews Rheumatology. 2017 Dec;13(12):719.
4Davatchi F, et al. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis. 2016 Mar;19(3):219-25.
5. Freitag J, Bates D, Boyd R, Shah K, Barnard A, Huguenin L, Tenen A.Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy a review.BMC Musculoskelet Disord. 2016 May 26;17(1):230. doi: 10.1186/s12891-016-1085-9. Review.
6 Seol D, Zhou C, et al. Characteristics of meniscus progenitor cells migrated from injured meniscus. J Orthop Res. 2016 Nov 3. doi: 10.1002/jor.23472.
Read the original:
Are there enough stem cells in your knees to heal the ...
Stem Cells – MedicineNet
By daniellenierenberg
Stem cell facts
What are stem cells?
Stem cells are cells that have the potential to develop into many different or specialized cell types. Stem cells can be thought of as primitive, "unspecialized" cells that are able to divide and become specialized cells of the body such as liver cells, muscle cells, blood cells, and other cells with specific functions. Stem cells are referred to as "undifferentiated" cells because they have not yet committed to a developmental path that will form a specific tissue or organ. The process of changing into a specific cell type is known as differentiation. In some areas of the body, stem cells divide regularly to renew and repair the existing tissue. The bone marrow and gastrointestinal tract are examples of areas in which stem cells function to renew and repair tissue.
The best and most readily understood example of a stem cell in humans is that of the fertilized egg, or zygote. A zygote is a single cell that is formed by the union of a sperm and ovum. The sperm and the ovum each carry half of the genetic material required to form a new individual. Once that single cell or zygote starts dividing, it is known as an embryo. One cell becomes two, two become four, four become eight, eight become sixteen, and so on, doubling rapidly until it ultimately grows into an entire sophisticated organism composed of many different kinds of specialized cells. That organism, a person, is an immensely complicated structure consisting of many, many, billions of cells with functions as diverse as those of your eyes, your heart, your immune system, the color of your skin, your brain, etc. All of the specialized cells that make up these body systems are descendants of the original zygote, a stem cell with the potential to ultimately develop into all kinds of body cells. The cells of a zygote are totipotent, meaning that they have the capacity to develop into any type of cell in the body.
The process by which stem cells commit to become differentiated, or specialized, cells is complex and involves the regulation of gene expression. Research is ongoing to further understand the molecular events and controls necessary for stem cells to become specialized cell types.
Stem Cells:One of the human body's master cells, with the ability to grow into any one of the body's more than 200 cell types.
All stem cells are unspecialized (undifferentiated) cells that are characteristically of the same family type (lineage). They retain the ability to divide throughout life and give rise to cells that can become highly specialized and take the place of cells that die or are lost.
Stem cells contribute to the body's ability to renew and repair its tissues. Unlike mature cells, which are permanently committed to their fate, stem cells can both renew themselves as well as create new cells of whatever tissue they belong to (and other tissues).
Why are stem cells important?
Stem cells represent an exciting area in medicine because of their potential to regenerate and repair damaged tissue. Some current therapies, such as bone marrow transplantation, already make use of stem cells and their potential for regeneration of damaged tissues. Other therapies that are under investigation involve transplanting stem cells into a damaged body part and directing them to grow and differentiate into healthy tissue.
Embryonic stem cells
During the early stages of embryonic development the cells remain relatively undifferentiated (immature) and appear to possess the ability to become, or differentiate, into almost any tissue within the body. For example, cells taken from one section of an embryo that might have become part of the eye can be transferred into another section of the embryo and could develop into blood, muscle, nerve, or liver cells.
Cells in the early embryonic stage are totipotent (see above) and can differentiate to become any type of body cell. After about seven days, the zygote forms a structure known as a blastocyst, which contains a mass of cells that eventually become the fetus, as well as trophoblastic tissue that eventually becomes the placenta. If cells are taken from the blastocyst at this stage, they are known as pluripotent, meaning that they have the capacity to become many different types of human cells. Cells at this stage are often referred to as blastocyst embryonic stem cells. When any type of embryonic stem cells is grown in culture in the laboratory, they can divide and grow indefinitely. These cells are then known as embryonic stem cell lines.
Fetal stem cells
The embryo is referred to as a fetus after the eighth week of development. The fetus contains stem cells that are pluripotent and eventually develop into the different body tissues in the fetus.
Adult stem cells
Adult stem cells are present in all humans in small numbers. The adult stem cell is one of the class of cells that we have been able to manipulate quite effectively in the bone marrow transplant arena over the past 30 years. These are stem cells that are largely tissue-specific in their location. Rather than typically giving rise to all of the cells of the body, these cells are capable of giving rise only to a few types of cells that develop into a specific tissue or organ. They are therefore known as multipotent stem cells. Adult stem cells are sometimes referred to as somatic stem cells.
The best characterized example of an adult stem cell is the blood stem cell (the hematopoietic stem cell). When we refer to a bone marrow transplant, a stem cell transplant, or a blood transplant, the cell being transplanted is the hematopoietic stem cell, or blood stem cell. This cell is a very rare cell that is found primarily within the bone marrow of the adult.
One of the exciting discoveries of the last years has been the overturning of a long-held scientific belief that an adult stem cell was a completely committed stem cell. It was previously believed that a hematopoietic, or blood-forming stem cell, could only create other blood cells and could never become another type of stem cell. There is now evidence that some of these apparently committed adult stem cells are able to change direction to become a stem cell in a different organ. For example, there are some models of bone marrow transplantation in rats with damaged livers in which the liver partially re-grows with cells that are derived from transplanted bone marrow. Similar studies can be done showing that many different cell types can be derived from each other. It appears that heart cells can be grown from bone marrow stem cells, that bone marrow cells can be grown from stem cells derived from muscle, and that brain stem cells can turn into many types of cells.
Peripheral blood stem cells
Most blood stem cells are present in the bone marrow, but a few are present in the bloodstream. This means that these so-called peripheral blood stem cells (PBSCs) can be isolated from a drawn blood sample. The blood stem cell is capable of giving rise to a very large number of very different cells that make up the blood and immune system, including red blood cells, platelets, granulocytes, and lymphocytes.
All of these very different cells with very different functions are derived from a common, ancestral, committed blood-forming (hematopoietic), stem cell.
Umbilical cord stem cells
Blood from the umbilical cord contains some stem cells that are genetically identical to the newborn. Like adult stem cells, these are multipotent stem cells that are able to differentiate into certain, but not all, cell types. For this reason, umbilical cord blood is often banked, or stored, for possible future use should the individual require stem cell therapy.
Induced pluripotent stem cells
Induced pluripotent stem cells (iPSCs) were first created from human cells in 2007. These are adult cells that have been genetically converted to an embryonic stem celllike state. In animal studies, iPSCs have been shown to possess characteristics of pluripotent stem cells. Human iPSCs can differentiate and become multiple different fetal cell types. iPSCs are valuable aids in the study of disease development and drug treatment, and they may have future uses in transplantation medicine. Further research is needed regarding the development and use of these cells.
Why is there controversy surrounding the use of stem cells?
Embryonic stem cells and embryonic stem cell lines have received much public attention concerning the ethics of their use or non-use. Clearly, there is hope that a large number of treatment advances could occur as a result of growing and differentiating these embryonic stem cells in the laboratory. It is equally clear that each embryonic stem cell line has been derived from a human embryo created through in-vitro fertilization (IVF) or through cloning technologies, with all the attendant ethical, religious, and philosophical problems, depending upon one's perspective.
What are some stem cell therapies that are currently available?
Routine use of stem cells in therapy has been limited to blood-forming stem cells (hematopoietic stem cells) derived from bone marrow, peripheral blood, or umbilical cord blood. Bone marrow transplantation is the most familiar form of stem cell therapy and the only instance of stem cell therapy in common use. It is used to treat cancers of the blood cells (leukemias) and other disorders of the blood and bone marrow.
In bone marrow transplantation, the patient's existing white blood cells and bone marrow are destroyed using chemotherapy and radiation therapy. Then, a sample of bone marrow (containing stem cells) from a healthy, immunologically matched donor is injected into the patient. The transplanted stem cells populate the recipient's bone marrow and begin producing new, healthy blood cells.
Umbilical cord blood stem cells and peripheral blood stem cells can also be used instead of bone marrow samples to repopulate the bone marrow in the process of bone marrow transplantation.
In 2009, the California-based company Geron received clearance from the U. S. Food and Drug Administration (FDA) to begin the first human clinical trial of cells derived from human embryonic stem cells in the treatment of patients with acute spinal cord injury.
What are experimental treatments using stem cells and possible future directions for stem cell therapy?
Stem cell therapy is an exciting and active field of biomedical research. Scientists and physicians are investigating the use of stem cells in therapies to treat a wide variety of diseases and injuries. For a stem cell therapy to be successful, a number of factors must be considered. The appropriate type of stem cell must be chosen, and the stem cells must be matched to the recipient so that they are not destroyed by the recipient's immune system. It is also critical to develop a system for effective delivery of the stem cells to the desired location in the body. Finally, devising methods to "switch on" and control the differentiation of stem cells and ensure that they develop into the desired tissue type is critical for the success of any stem cell therapy.
Researchers are currently examining the use of stem cells to regenerate damaged or diseased tissue in many conditions, including those listed below.
References
REFERENCE:
"Stem Cell Information." National Institutes of Health.
See the original post:
Stem Cells - MedicineNet
plant stem cells – PCA SKIN
By JoanneRUSSELL25
Stem cells are a huge trend in skincare, but what do they really do for your skin? Stem cells are often called blank cells because they are undifferentiated, meaning they can be duplicated and made into any type of cell. Think of stem cells as blank scrabble pieces, they can fill in where there are needed because they have the ability to turn into specialized cells. They can boost collagen, protect against sun damage, brighten and repair damaged cells.
PCA SKIN uses plant stem cell extracts from oranges, lilac and grapes as ingredients in several products. All plant stem cells provide antioxidant protection, adding an extra boost of skin-health benefits to an established regimen. Specifically, they guard against inflammation, neutralize free radicals and reverse sun damage. Plant stem cell extracts, versus the actual stem cell, are used in skincare because they are the purest, most-stable way of ensuring the quality of the ingredient. While the actual stem cell cant survive outside of the plant, the extract is just as effective.
Skin & Human Stem Cells – BareFacedTruth.com
By LizaAVILA
We have a lot of knowledge to share with you about stem cells and their value in skin care. We thought we would start with a current review of ongoing work in human stem cell science to give you some context. In the next few days we will be getting a lot more specific about wound healing, anti-aging, and related applications.
Human Stem Cells: Introduction
Future advances in many medical fields are thought to be dependent on continued progress in stem cell research. In this section, BTF briefly looks at the future of stem cell based therapies in the treatment of traumatic injury, degenerative diseases, and other ailments, and concludes with a review of current cell based therapies (stem cell and non-stem cell) in the field of skin care.
While the possible indications for stem cell based therapies are numerous,the field of stem cell science is young and years (or decades) may pass before todays promising laboratory results translate into useful clinical treatments. Only time will tell whether successes evolve or remain frustratingly elusive. We do know that success is possible.
The first stem cell therapy was bone marrow transplantation, originally accomplished in the mid 1960s. Last year, there were more than 50,000 such transplants worldwide. In earlier years, infusion of filtered bone marrow cells was performed with stem cells comprising but a very small part of the volume. Newer techniques have made it possible to separate cellular types to enable use of much higher concentrations of stem cells.
Much progress has been made in characterizing stem cells and understanding how they function. There is much more to the story than differentiation into tissue specific cells. Recent research shows that perhaps even more important is the fact that stem cells, especially certain types of stem cells, communicate with the cells around them by producing cellular signals called cytokines, of which there are hundreds.
Cytokines trigger specific receptors on cell membranes that result in precise responses. This phenomenon is considered an essential element in the healing response of all tissues. Identifying and characterizing the large number of cytokines is an important part of stem cell research.
Not every induced response is necessarily beneficial. It is the symphony of responses that is important. How to promote helpful responses while inhibiting non-beneficial ones is a continuing focus of cellular biochemical research as well as the basis upon which drug companies spend huge resources developing drugs to either trigger or block particular cytokine receptors. Good examples in the field of dermatology are EGFR (epidermal growth factor receptor) blocking compounds for use in treating susceptible cells, most notably cancers stimulated by EGF.
Potential Treatments
Stem cell therapies hold potential to treat many conditions and diseases that affect millions of people in the U.S.
From the Laboratory to the Bedside
Going from the research laboratory to the bedside takes time. Only one month ago, the FDA granted marketing approval for the first licensed stem cell product. Derived from donated umbilical cord blood, the product contains stem cells that can restore a recipients blood cell levels and function. In the chart below, the type of cells recovered from umbilical cord blood are those designated as HSC cell. They are the exact cells responsible for the success of bone marrow transplantation.
Of particular note are the cells designated in the chart as MSC or mesenchymal stem cells. MSC cells are the focus of intense research in the treatment of a number of conditions because this type of stem cell can differentiate into a variety of cell types including bone, cartilage, muscles, nerve, and skin (fibroblast.)
Recent announcements about stem cells being used to fabricate replacement parts (bone, cartilage, heart muscle) are based on MSC research. They truly are the duct tape of the bodys repair tool box; a phrase coined because of their importance in the healing of injuries.
Research has shown MSC cells reside in a number of tissues, including the bone marrow. Through precise chemical signaling that originate from sites of injury, MSC cells have the ability to become mobile, enter the blood stream and travel through the circulation to the injury. Upon arrival, MSCs orchestrate the healing response. Local resident stem cells are also called into action, to produce more stem cells or to produce needed tissue specific cells. In large part, MSCs accomplish their tasks bio-chemically.
Secreted cytokines have been identified as themajormechanism by which MSCs perform their important reparative functions. There are hundreds of cytokines identified thus far. The healing response is an intricate and balanced process in which many cytokines participate.
Despite their inherent ability to differentiate into essentially any type of cell, embryonic stem cells are unlikely to be a major research focus in the foreseeable future. Ethical and political considerations limit the acceptability of their use. Federal regulations permit research only on existing cell lines which are few in number. It is difficult to see how this prohibition will end any time soon.
Getting Closer butNot There Yet
MSC (mesenchymal stem cell) therapies include use ofcellsanduse of MSC factors, the cytokines or chemical messengers mentioned above. Methods of administration will likely include intravenous infusion, injections into tissues or body spaces, or development of drugs that activate or block certain cytokine effects. Drugs already in development include epidermal growth factor receptor (EGFR) blockers for use in cancer treatment.
Stem Cells and Skin Health
From fetal life to death, the numbers and activity of stem cells diminish. The chart at left shows how the population of mesenchymal stem cells in the bone marrow dwindles with age.
Knowing that stem cells are important in producing differentiated daughter cells (such as fibroblasts within the dermis) and are instrumental in orchestrating the bodys response to injury, it is easy to understand how skin damage from sun exposure, gravity, smoking, trauma, toxins, even repetitive facial movement, accumulates over time.
This is one line of evidence (we will look at others) that mesenchymal stem cells (or more specifically the relative lack of same) has a lot to do with aging. Skin aging included.
Products Claiming to Activate Skin Stem Cells
The number of skin products claiming to activate human skin stem cells is large and growing. As discussed previously on BFT, a whole slew of plant derived stem cell products are being marketing, NONE of which can actually or theoretically activate anything, especially not a human stem cell.
Other products claim to have essential nutrients or antioxidants or some other magical ingredient that will suddenly make stem cells take notice and unleash their regenerative power. It is highly unlikely, except in the most extreme case of malnourishment, that any nutrient or antioxidant is deficient enough to cause a cell not to function.
These and the botanical stem cell products are marketing ploys. Human stem cells deep within the dermis will never know whether or not these substances are applied. Moisturizers and other recognized ingredients in these products can be beneficial to skin appearancebut not because a stem cell is involved.
This is worse than junk science. This is scamming.
Stem Cell Basics
By JoanneRUSSELL25
The human body comprises more than 200 types of cells, and every one of these cell types arises from the zygote, the single cell that forms when an egg is fertilized by a sperm. Within a few days, that single cell divides over and over again until it forms a blastocyst, a hollow ball of 150 to 200 cells that give rise to every single cell type a human body needs to survive, including the umbilical cord and the placenta that nourishes the developing fetus.
Each cell type has its own size and structure appropriate for its job. Skin cells, for example, are small and compact, while nerve cells that enable you to wiggle your toes have long, branching nerve fibers called axons that conduct electrical impulses.
Cells with similar functionality form tissues, and tissues organize to form organs. Each cell has its own job within the tissue in which it is found, and all of the cells in a tissue and organ work together to make sure the organ functions properly.
Regardless of their size or structure, all human cells start with these things in common:
Stem cells are the foundation of development in plants, animals and humans. In humans, there are many different types of stem cells that come from different places in the body or are formed at different times in our lives. These include embryonic stem cells that exist only at the earliest stages of development and various types of tissue-specific (or adult) stem cells that appear during fetal development and remain in our bodies throughout life.
Stem cells are defined by two characteristics:
Beyond these two things, though, stem cells differ a great deal in their behaviors and capabilities.
Embryonic stem cells are pluripotent, meaning they can generate all of the bodys cell types but cannot generate support structures like the placenta and umbilical cord.
Other cells are multipotent, meaning they can generate a few different cell types, generally in a specific tissue or organ.
As the body develops and ages, the number and type of stem cells changes. Totipotent cells are no longer present after dividing into the cells that generate the placenta and umbilical cord. Pluripotent cells give rise to the specialized cells that make up the bodys organs and tissues. The stem cells that stay in your body throughout your life are tissue-specific, and there is evidence that these cells change as you age, too your skin stem cells at age 20 wont be exactly the same as your skin stem cells at age 80.
Read more:
Stem Cell Basics
Stem Cells Can Create Skin For Burn Victims | IFLScience
By JoanneRUSSELL25
When burn victims need a skin graft they typically have to grow skin on other parts of their bodies - a process that can take weeks. A new technique uses stem cells derived from the umbilical cord to generate new skin much more quickly. The results were published in Stem Cells Translational Medicine by lead author Ingrid Garzn from the University of Granadas Department of Histology.
Not only can the stem cells develop artificial skin more quickly than regular normal skin growth, but the skin can also be stored so it is ready right when it is needed. Tens of thousands of grafts are performed each year for burn victims, cosmetic surgery patients, and for people with large wounds having difficulty healing. Traditionally, this involves taking a large patch of skin (typically from the thigh) and removing the dermis and epidermis to transplant elsewhere on the body.
The artificial skin requires the use of Wharton's jelly mesenchymal stem cells. As the name implies, Whartons jelly is a gelatinous tissue in the umbilical cord that contains uncommitted mesenchymal stemcells (MSC). The MSC is then combined with agarose(a polysaccharide polymer) and fibrin (the fibrous protein that aids in blood clotting). This yielded two results: skin and the mucosal lining of the mouth. The researchers are very pleased to have found two new uses for the stem cells of Whartons jelly, which have not previously been researched for epithelial applications.
Once the epithelial tissues have been created, researchers can store it in tissue banks. If someone is brought into the hospital following a devastating burn or accident, the tissue is ready to graft immediately; not in a few weeks. However, the stem-cell skin is not able to fully differentiate in vitro. After the graft, it has complete cell-cell junctions and will develop all of the necessary layers of normal epithelial tissue.
The MSCs are taken from the umbilical cord after the baby has been born, which poses no risk to either the mother or the child. This method is relatively inexpensive and has been shown to be more efficient than stem cells derived from bone marrow.
See the article here:
Stem Cells Can Create Skin For Burn Victims | IFLScience
Printing Skin Cells on Burn Wounds – Wake Forest School of …
By daniellenierenberg
Skin is the body's largest organ. Loss of the skin barrierresults in fluid and heat loss and the risk of infection. Thetraditional treatment for deep burns is to cover them with healthyskin harvested from another part of the body. But in cases ofextensive burns, there often isn't enough healthy skin toharvest.
During phase I of AFIRM, WFIRM scientists designed, built andtested a printer designed to print skin cells onto burn wounds. The"ink" is actually different kinds of skin cells. A scanner is usedto determine wound size and depth. Different kinds of skin cellsare found at different depths. This data guides the printer as itapplies layers of the correct type of cells to cover the wound. Youonly need a patch of skin one-tenth the size of the burn to growenough skin cells for skin printing.
During Phase II of AFIRM, the WFIRM team will explore whether atype of stem cell found in amniotic fluid and placenta (afterbirth)is effective at healing wounds. The goal of the project is to bringthe technology to soldiers who need it within the next 5 years.
This video -- with a mock hand and burn -- demonstrates the process.
Original post:
Printing Skin Cells on Burn Wounds - Wake Forest School of ...
Adult Stem Cells and Gene Therapy Save a Young Boy With …
By JoanneRUSSELL25
When people talk about something that saved their skin, they usually mean that it helped them out of a difficult situation. But a young boy in Germany has literally had his skinand his lifesaved through the use of genetically-engineered adult stem cells.
The boy suffered from a condition called junctional epidermolysis bullosa, a severe and often lethal disease in which a mutation leaves the skin cells unable to interconnect and maintain epidermal integrity. The skin blisters and falls off, and the slightest touch or abrasion can leave a patch of skin gone and a painful, difficult-to-heal wound behind. There is no cure for the disease and little other than palliative care available for sufferers of the most severe forms.
Now researchers have combined use of adult stem cells with genetic engineering to successfully treat the young boys life-threatening condition. The boys doctors in Germany called on Dr. Michele De Luca at the University of Modena and Reggio Emilia in Italy to use a technique he has developed to correct the genetic problem and grow new skin.
Over many years, Dr. De Luca has developed a method to grow skin from a patients own epidermal adult stem cells, correct the genetic mutation in the laboratory, and use the genetically-engineered adult stem cells to grow healthy new skin. Dr. De Luca and his team took a tiny patch of skin from the boy, isolated the epidermal stem cells and corrected the genetic problem in stem cell culture. Then they grew sheets of genetically-corrected skin and transplanted them onto the boy.
Reports called the boys recovery stunning, with successful replacement of 80 percent of his skin. Before the procedure, the boys doctors tried several treatments to no avail. One doctor even said, We had a lot of problems in the first days keeping this kid alive. Yet within six months of starting the process, the boy was back in school.
PRO-LIFE COLLEGE STUDENT? LifeNews is looking for interns interested in writing, social media, or video creation. Contact us today.
His skin has remained healthy and completely blister-free. According to the published reports now 21 months after the boys transplant, he loves to show off his new skin and is enjoying school, playing soccer, and being a normal kid. The research has also taught scientists much about the possibilities of using adult stem cells in combination with gene therapy for treatment of diseases.
LifeNews Note: File photo.
Read more:
Adult Stem Cells and Gene Therapy Save a Young Boy With ...
Hairy skin from mouse stem cells may hold a cure for …
By JoanneRUSSELL25
In a finding that may provide a potential cure for baldness, researchers have used stem cells from mice to develop a skin patch that is complete with hair follicles in a laboratory.
Using the skin model, the scientists developed both the epidermis (upper) and dermis (lower) layers of skin, which grow together in a process that allows hair follicles to form the same way as they would in a mouses body.
The novel skin tissue more closely resembles natural hair than existing models and may prove useful for testing drugs, understanding hair growth, and reducing the practice of animal testing, the researchers said.
You can see the organoids with your naked eye, said Karl Koehler, assistant professor at the Indiana University. It looks like a little ball of pocket lint that floats around in the culture medium. The skin develops as a spherical cyst, and then the hair follicles grow outward in all directions, like dandelion seeds.
The scientists developed both the epidermis (upper) and dermis (lower) layers of skin, which grow together in a process that allows hair follicles to form the same way as they would in a mouses body.(Getty Images/iStockphoto)
In the study, published in Cell Reports, Koehler and team originally began using pluripotent stem cells from mice, which can develop into any type of cells in the body, to create organoids -- miniature organs in vitro -- that model the inner ear.
But they discovered that they were generating skin cells in addition to inner ear tissue. Thus, they decided to coax the cells into sprouting hair follicles. Moreover, they found that mouse skin organoid technique could be used as a blueprint to generate human skin organoids.
It could be potentially a superior model for testing drugs, or looking at things like the development of skin cancers, within an environment thats more representative of the in vivo microenvironment, Koehler noted.
Follow @htlifeandstyle for more
Read the original post:
Hairy skin from mouse stem cells may hold a cure for ...
Regeneration of the entire human skin using transgenic …
By Sykes24Tracey
Epidermolysis bullosais is rare, but the charity DEBRA, which campaigns for EB patients, estimates half a million people are affected around the world.
There are different forms of epidermolysis bullosa, including simplex, dystrophic and, as in this case, junctional.
Each is caused by different genetic faults leading to different building blocks of skin being missing.
Prof Michele De Luca, from the University of Modena and Reggio Emilia, told the BBC: The gene is different, the protein is different and the outcome may be different [for each form of EB] so we need formal clinical trials.
But if they can make it work, it could be a therapy that lasts a lifetime.
An analysis of the structure of the skin of the first patient to get 80% of his replaced has discovered a group of long-lived stem cells are that constantly renewing his genetically modified skin.
Genetically modified skin cells were grown to make skin grafts totalling 0.85 sq m (9 sq ft). It took three operations over that winter to cover 80% of the childs body in the new skin. But 21 months later, the skin is functioning normally with no sign of blistering.
Nature Regeneration of the entire human epidermis using transgenic stem cells
Junctional epidermolysis bullosa (JEB) is a severe and often lethal genetic disease caused by mutations in genes encoding the basement membrane component laminin-332. Surviving patients with JEB develop chronic wounds to the skin and mucosa, which impair their quality of life and lead to skin cancer. Here we show that autologous transgenic keratinocyte cultures regenerated an entire, fully functional epidermis on a seven-year-old child suffering from a devastating, life-threatening form of JEB. The proviral integration pattern was maintained in vivo and epidermal renewal did not cause any clonal selection. Clonal tracing showed that the human epidermis is sustained not by equipotent progenitors, but by a limited number of long-lived stem cells, detected as holoclones, that can extensively self-renew in vitro and in vivo and produce progenitors that replenish terminally differentiated keratinocytes. This study provides a blueprint that can be applied to other stem cell-mediated combined ex vivo cell and gene therapies
SOURCES BBC News, Nature
Follow this link:
Regeneration of the entire human skin using transgenic ...
Fully Functional Skin Grown From Stem Cells Could Double …
By Sykes24Tracey
If theres one thing skin can do well, its grow. Each month our body replaces its skin,nearly 19 million skin cells per inch a feat thats been far less successful in the lab. However, the days of lab-grown skin may not be too far off:Recently, a team of Japanese scientists not only grew fully functional skin tissue, but also transplanted it successfully onto living organisms.
Though the technique has only been tested on mice so far, the team predicts it could one day revolutionize treatments for burn victims, or other patients that have suffered catastrophic skin damage. On a less gruesome note, the team says it may also be useful in treating a more common condition: baldness.
The study, published online in Science Advances, involved researchers from the Riken Center for Developmental Biology and Tokyo University of Science, among other Japanese institutions. The researchers first step was to transform cells from the gums of mice into induced pluripotent stem cells, or adult cells that have been genetically reprogrammed back into an embryonic stem cell state. This is done by forcing the cells to express genes associated with embryonic stem cells. Once transformed into stem cells, they can then be manipulated to become any type of cell in the body.
Next, the team placed the stem cells into a petri dish, where they added the molecule Wnt10b, which coaxed the stem cells to form into clusters that resembled a developing embryo. These clusters were then transplanted into mice bred without a fully functional immune system, which ensured that their bodies did not reject the transplant. Here, they underwent cell differentiation, the process by which unspecialized cells become specialized. In this case, they were becoming skin cells, and once the process had begun, the cells were transplanted again onto the skin of new mice, where they made normal connections with surrounding nerve and muscle tissue to become fully functional skin.
Skin is one of the largest and most important organs in the human body, yet its also one of the most difficult to treat when its damaged. Current treatment options involve painful skin grafts or barely functional artificial skin. According to the new study, however, being able to grow skin in the lab will account for more than just skin's use in protecting our inner bodies. The lab-grown skin also showed the ability to develop hair follicles and sweat glands, which play a role in controlling body temperature and keeping the skin moisturized it's in these areas that skin repair has often fallen short.
"Up until now, artificial skin development has been hampered by the fact that the skin lacked the important organs, such as hair follicles and exocrine glands, lead researcher, Takashi Tsuji of the RIKEN Center for Developmental Biology,said in a recent statement. With this new technique, we have successfully grown skin that replicates the function of normal tissue.
In addition to revolutionizing skin repair, the technique may also help those with certain types of hair loss. The study noted that using Wnet10b on the stem cells resulted in the production of a higher number of hair follicles than previous attempts at growing skin. Within two weeks of receiving the transplanted skin, the mice began to grow hair. Dr. Seth Orlow, chair of dermatology at NYU School of Medicine in New York City, told U.S. News Health that this feature of the lab-grown skin could be manipulated to help patients with both alopecia and pattern baldness.
In theory, we may eventually be able to create structures like hair follicles and other skin glands that could be transplanted back to people who need them, Orlow told U.S. Health News.
According to The Washington Post, the technique is still about five to 10 years away from being safe and effective enough to be used on humans. But with about 95 percent of men and 50 percent of women experiencing some degree of baldness over the course of their lives, its a safe bet that there will be no shortage of eager customers ready to get their hair back when the treatment is approved for use in doctors offices.
Source: Takagi R, Ishimaru J, Sugawara A, et al. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model. Science Advances . 2016
Link:
Fully Functional Skin Grown From Stem Cells Could Double ...
Glossary of Terms | Aplastic Anemia and MDS International …
By JoanneRUSSELL25
acute myelogenous leukemia
(uh-KYOOT my-uh-LAH-juh-nuss loo-KEE-mee-uh) A cancer of the blood cells. It happens when very young white blood cells (blasts) in the bone marrow fail to mature. The blast cells stay in the bone marrow and become to numerous. This slows production of red blood cells and platelets. Some cases of MDS become AML. But most do not. Also called AML, acute myeloblastic leukemia, acute myelocytic leukemia, acute myeloid leukemia.
A procedure where bone marrow stem cells are taken from a genetically matched donor (a brother, sister, or unrelated donor) and given to the patient through an intravenous (IV) line. In time, donated stem cells start making new, healthy blood cells.
See complementary and alternative medicine.
(an-uh-fuh-LAK-suss) A very severe allergic reaction to a foreign protein, as in a bee sting, or to a medicine. This reaction causes the blood pressure to drop and trouble breathing. Before a patient receives ATG, a treatment for aplastic anemia, a skin test is given to find out if they are likely to develop anaphylaxis. Also known as anaphylactic shock.
An approach to treating bone marrow failure using natural male hormones. Androgen therapy can help the bone marrow make more blood cells. This is an older treatment for bone marrow failure that is rarely used because of the side effects. Scientists are studying these medicines to try to better understand why they work in some cases of acquired and genetic bone marrow failure.
(uh-NEE-mee-uh) A condition in which there is a shortage of red blood cells in the bloodstream. This causes a low red blood cell count. Symptoms of anemia are fatigue and tiredness.
(an-tee-by-AH-tik) A medicine that fights bacterial infections. When a person with bone marrow failure does not have enough neutrophils, the white blood cells that fight infection, antibiotics may help to prevent and fight infection.
(ant-i-ko-AG-yuh-lunt) See blood thinner.
(ay-PLASS-tik uh-NEE_mee-uh) A rare and serious condition in which the bone marrow fails to make enough blood cells: red blood cells, white blood cells, and platelets. The term aplastic is a Greek word meaning not to form. Anemia is a condition that happens when red blood cell count is low. Most scientists believe that aplastic anemia happens when the immune system attacks the bone marrow stem cells. Aplastic anemia can be acquired (begin any time in life) or can be hereditary (less common, passed down from parent to child).
Programmed cell death.
(uh-SITE-eez) Extra fluid and swelling in the belly area (abdomen). Also called hydroperitoneum.
Any condition that happens when the immune system attacks the body's own normal tissues by mistake.
A procedure in which some of the patient's own bone marrow stem cells are removed, frozen, and then returned to the through an intravenous (IV) line. In time, the stem cells start making new, healthy blood cells.
Describes one of several ways that a trait or disorder can be inherited, or passed down through families. "Autosomal" means that the mutated, or abnormal, gene is located on one of the numbered, or non-sex, chromosomes. "Dominant" means that only one copy of the mutated gene is enough to cause the disease. Dyskeratosis congenita is a rare cause of bone marrow failure disease. It may have an autosomal dominant, autosomal recessive or x-linked pattern of inheritance.
Describes one of several ways that a trait or disorder can be inherited, or passed down through families. "Autosomal" means that the mutated, or abnormal, gene is located on one of the numbered, or non-sex, chromosomes. "Recessive" means that two copies of a mutated gene must be present to cause the disease. Dyskeratosis congenita is a rare cause of bone marrow failure. It may have an autosomal dominant, autosomal recessive or x-linked pattern of inheritance.
The study of a subject to increase knowledge and understanding about it. The goal of basic research in medicine is to better understand disease. In the laboratory, basic research scientists study changes in cells and molecules linked to disease. Basic research helps lead to better ways of diagnosing, treating, and preventing disease. Also called basic science research.
A type of white blood cell that plays a role in allergic reactions.
A chemical that is widely used by the chemical industry in the United States to make plastics, resins, nylon and synthetic fibers. Benzene is found in tobacco smoke, vehicle emissions, and gasoline fumes. Exposure to benzene may increase the risk of developing a bone marrow failure disease. Benzene can affect human health by causing bone marrow stem cells not to work correctly.
(bil-i-ROO-bun) A reddish yellow substance formed when red blood cells break apart. It is found in the bile and in the blood. Yellowing of the skin and eyes can occur with high levels of bilirubin. Also called total bilirubin.
A substance made from a living system, such as a virus, and used to prevent or treat disease. Biological drugs include antibodies, globulin, interleukins, serum, and vaccines. Also called a biologic or biological drug.
A young white blood cell. The number of blast cells in the bone marrow helps define how severe MDS is in a person. When 20 out of 100 cells in the bone marrow are blasts, this is considered acute myeloid leukemia.
See Blast Cells.
A mass of blood that forms when platelets stick together. Harmful blood clots are more likely to happen in PNH. The term thrombus describes a blood clot that develops and attaches to a blood vessel. The term embolus describes a blood clot or other foreign matter that gets into the bloodstream and gets stuck in a blood vessel.
A medicine used to stop blood clots from forming. Blood thinners can be used to treat or prevent clots. Some common blood thinners are enoxaprin (Lovenox), heparin (Calciparine or Liquaemin), and warfarin (Coumadin). Also called and anticoagulant or thrombopoiesis inhibitor.
A procedure in which whole blood or one of its components is given to a person through an intravenous (IV) line into the bloodstream. A red blood cell transfusion or a platelet transfuson can help some patients with low blood counts.
The soft, spongy tissue inside most bones. Blood cells are formed in the bone marrow.
A medical procedure to remove of a small amount of liquid bone marrow through a needle inserted into the back of the hip. The liquid bone marrow is examined for abnormalities in cell size, shape, or look. Tests may also be run on the bone marrow cells to look for any genetic abnormalities.
A medical procedure to remove a small piece of solid bone marrow using a needle that goes into the marrow of the hip bone. The solid bone marrow is examined for cell abnormalities, the number of different cells and checked for scaring of the bone marrow.
A condition that occurs when the bone marrow stops making enough healthy blood cells. The most common of these rare diseases are aplastic anemia, myelodysplastic syndromes (MDS) and paroxysmal nocturnal hemoglobinuria (PNH). Bone marrow failure can be acquired (begin any time in life) or can be hereditary (less common, passed down from parent to child).
A procedure where bone marrow stem cells are collected from marrow inside the donor's hipbone and given to the patient through an intravenous (IV) line. In time, donated stem cells start making new, healthy blood cells.
(bud-kee-AR-ee SIN-drome) A blood clot in the major vein that leaves the liver (hepatic vein). The liver and the spleen may become enlarged. Budd-Chiari syndrome can occur in PNH.
How much of the bone marrow volume is occupied by various types of blood cells.
(kee-moe-THER-uh-pee) The use of medicines that kill cells (cytotoxic agents). People with high-risk or intermediate-2 risk myelodysplastic syndrome (MDS) may be given chemotherapy to kill bone marrow cells that have an abnormal size, shape, or look. Chemotherapy hurts healthy cells along with abnormal cells. If chemotherapy works in controlling abnormal cells, then relatively normal blood cells will start to grow again. Low-dose chemotherapy agents include: cytarabine (Ara-C) and hydroxyurea (Hydrea). High-dose chemotherapy agents include: daunorubicin (Cerubidine), idarubicin (Idamycin), and mitoxanrone (Novantrone).
The part of the cell that contains our DNA or genetic code.
A medical condition that lasts a long time. A chronic illness can affect a person's lifestyle, ability to work, physical abilities and independence.
A person who gives advice, or counsel, to people who are coping with long-term illness. A chronic illness counselor helps people understand their abilities and limitations, cope with the stress, pain, and fatigue associated with long-term illness. A chronic illness counselor can often be located by contacting a local hospital.
A type of research that involves individual persons or a group of people. There are three types of clinical research. Patient-oriented research includes clinical trials which test how a drug, medical device, or treatment approach works in people. Epidemiology or behavioral studies look at the patterns and causes of disease in groups of people. Outcomes and health services research seeks to find the most effective treatments and health services.
A type of research study that tests how a drug, medical device, or treatment approach works in people. There are several types of clinical trials. Treatment trials test new treatment options. Diagnostic trials test new ways to diagnose a disease. Screening trials test the best way to detect a disease or health problem. Quality of life (supportive care) trials study ways to improve the comfort of people with chronic illness. Prevention trials look for better ways to prevent disease in people who have never had the disease.
Trials are in four phases: Phase I tests a new drug or treatment in a small group to see if it is safe. Phase II expands the study to a larger group of people to find out if it works. Phase III expands the study to an even larger group of people to compare it to the standard treatment for the disease; and Phase IV takes place after the drug or treatment has been licensed and marketed to find out the long-term impact of the new treatment.
To make copies. Bone marrow stem cells clone themselves all the time. The cloned stem cells eventually become mature blood cells that leave the bone marrow and enter the bloodstream.
To thicken. Normal blood platelets cause the blood to coagulate and stop bleeding.
A group of proteins that move freely in the bloodstream. These proteins support (complement) the work of white blood cells by fighting infections.
A medical approach that is not currently part of standard practice. Complementary medicine is used along with standard medicine. Alternative medicine is used in place of standard medicine. Example of CAM therapies are acupuncture, chiropractic, homeopathic, and herbal medicines. There is no complementary or alternative therapy that effectively treats bone marrow failure. Some CAM therapies may even hinder the effectiveness of standard medical care. Patients should talk with their doctor if they are currently using or considering using a complementary or alternative therapy.
A group of tests performed on a small amount of blood. The CBC measures the number of each blood cell type, the size of the red blood cells, the total amount of hemoglobin, and the fraction of the blood made up of red blood cells. Also called a CBC.
A procedure where umbillical cord stem cells are given to the patient through an intravenous (IV) line. Stem cells are collected from an umbilical cord right after the birth of a baby. They are kept frozen until needed. In time, donated stem cells given to the patient begin making new, healthy blood cells.
An imaging technique using x-ray technology and computerization to create a three-dimentional image of a body part. Also called a CT scan, it can be used to locate a blood clot in the body.
A response to treatment indicating that no sign of abnormal chromosomes are found. When a test is done on a patient with 5q deletion MDS, and there are no signs of an abnormal chromosome 5, then that patient has achieved a cytogenetic remission. Also called cytegenetic response.
(sie-toe-juh-NEH-tiks) The study of chromosomes (DNA), the part of the cell that contains genetic information. Some cytogenetic abnormalities are linked to different forms of myelodysplastic syndromes (MDS).
(sie-tuh-PEE-nee-uh) A shortage of one or more blood cell types. Also called a low blood count.
(sie-tuh-TOK-sik) A medicine that kills certain cells. Chemotherapy for MDS patients often involves the use of cytotoxic agents.
A test that helps doctors find out if a person has a problem with blood clotting.
(di-NO-vo) Brand new, referring to the first time something occurs. MDS that is untreated or that has no known cause is called de novo MDS.
The death of part of the intestine. This can happen if the blood supply in the intestine is cut off, for example, from a blood clot in the abdomen. Also called intestinal necrosis, ischemic bowel, dead gut.
A rare form of pure red cell aplasia that can be passed down from parent to child. Diamond-Blackfan anemia (DBA) is characterized by low red blood cell counts detected in the first year of life. Some people with DBA have physical abnormalities such as small head size, low frontal hairline, wide-set eyes, low-set ears. Genetic testing is used to diagnose DBA.
Vitamins, minerals, herbs and other substances meant to improve your nutritional intake. Dietary supplements are taken by mouth in the form of a pill, capsule, tablet or liquid.
To become distinct or specialized. In the bone marrow, young parent cells (stem cells) develop, or differentiate, into specific types of blood cells (red cells, white cells, platelets).
The gene that always expresses itself over a recessive gene. A person with a dominant gene for a disease has the symptoms of the disease. They can pass the disease on to children.
An inherited disease that may lead to bone marrow failure.
Refers to how well a graft (donor cells) is accepted by the host (the patient) after a bone marrow or stem cell transplant. Several factors contribute to better engraftment: physical condition of the patient, how severe the disease is, type of donor available, age of patient. Successful engraftment results in new bone marrow that produces healthy blood cells.
A type of white blood cell that kills parasites and plays a role in allergic reactions.
The study of patterns and causes of disease in groups of people. Epidemiology researchers study how many people have a disease, how many new cases are diagnosed each year, where patients are located, and environmental or other factors that influence disease.
(i-RITH-ruh-site) See red blood cell.
(i-rith-row-POY-uh-tun) A protein made by the kidneys. Erythropoietin, also called EPO, is created in response to low oxygen levels in the body (anemia). EPO causes the bone marrow to make more red blood cells. A shortage of EPO can also cause anemia.
A medicine used to help the bone marrow make more red blood cells. Epoetin alfa (Epogen, Procrit) and darbepoetin alfa (Aranesp) are erythropoietin-stimulating agents that can help boost the red blood cell count of some bone marrow failure patients. Also called red blood cell growth factor.
A form of estrogen, it is the most potent female hormone. It is also present in males. Estradiol is involved in many body functions beyond the reproductive system. Researchers are investigating the role of estradiol in the treatment of genetic bone marrow failure.
The cause or origin of a disease.
A criteria used for classifying different types of myelodysplastic syndromes (MDS). The FAB (French, American, British) Classification System was developed by a group of French, American and British scientists. This system is based on 2 main factors: the percentage of blast cells in bone marrow, and the percentage of blast cells in the bloodstream. The FAB system is somewhat outdated, but is still used by some doctors today. The World Health Organization (WHO) Classification System has largely replaced the FAB Classification System.
A rare inherited disorder that happens when the bone marrow does not make enough blood cells: red cells, white cells, and platelets. Fanconi anemia is diagnosed early in life. People with Fanconi anemia have a high likelihood of developing cancer. Genetic testing is used to diagnose Fanconi anemia.
(FER-i-tin) A protein inside of cells that stores iron for later use by your body. Sometimes ferritin is released into the blood. The ferritin level in the blood is called serum ferritin.
(FER-i-tin) A blood test used to monitor how much iron the body is storing for later use.
(fie-BRO-suss) Scarring of tissue. Fibrosis of the bone marrow is an feature seen in some types of unclassified myeldysplastic syndrome (MDS).
See fluorescence in situ hybridization.
(sy-TOM-uh-tree) A laboratory test that gives information about cells, such as size, shape, and percentage of live cells. Flow cytometry is the test doctors use to see if there are any proteins missing from the surface of blood cells. It is the standard test for confirming a diagnosis of paroxysmal nocturnal hemoglobinuria (PNH).
(flor-EH-sense in SIT-tyoo hy-bru-duh-ZAY-shun) An important laboratory test used to help doctors look for chromosomal abnormalities and other genetic mutations. Fluorescence in situ hybridization, also called FISH, directs colored light under a microscope at parts of chromosomes or genes. Missing or rearranged chromosomes are identified using FISH.
(FOE-late) A B-vitamin that is found in fresh or lightly cooked green vegetables. It helps the bone marrow make normal blood cells. Most people get enough folate in their diet. Doctors may have people with paroxysmal nocturnal hemaglobinuria (PNH) take a man-made form of folate called folic acid.
See folate.
A laboratory test that looks at the whether red blood cells break apart too easily when they are placed in mild acid. This test has been used in the past to diagnose paroxysmal nocturnal hemoglobinuria (PNH). Most doctors now use flow cytometry, a more accurate method of testing for PNH. Ham Test is also called acid hemolysin test.
(hi-MA-tuh-crit) A blood test that measures the percentage of the blood made up of red blood cells. This measurement depends on the number of red blood cells and their size. Hematocrit is part of a complete blood count. Also called HCT, packed cell volume, PCV.
(hee-muh-TOL-uh-jist) A doctor who specializes in treating blood diseases and disorders of blood producing organs.
(hi-mat-uh-poy-EE-suss) The process of making blood cells in the bone marrow.
A condition that occurs when the body absorbs and stores too much iron. This leads to a condition called iron overload. In the United States, hemochromatosis is usually caused by a genetic disorder. Organ damage can occur if iron overload is not treated.
A protein in the red blood cells. Hemoglobin picks up oxygen in the lungs and brings it to cells in all parts of the body.
(hee-muh-gloe-buh-NYOOR-ee-uh) The presence of hemoglobin in the urine.
(hi-MOL-uh-suss) The destruction of red blood cells.
See human leukocyte antigen.
A part of the endocrine system that serves as the body's chemical messengers. Hormones move through the bloodstream to transfer information and instruction from one set of cells to another.
(LEW-kuh-site ANT-i-jun) One of a group of proteins found on the surface of white blood cells and other cells. These antigens differ from person to person. A human leukocyte antigen test is done before a stem cell transplant to closely match a donor and a recipient. Also called HLA.
A condition in which there are too many cells, for example, within the bone marrow. Patients with leukemia have hypercellular bone marrow filled with to many immature white blood cells.
A condition in which there are too few cells, for example, within the bone marrow. Patients with aplastic anemia have hypocellular bone marrow.
Usually refers to any condition with no known cause.
(i-myoo-no-KOM-pruh-mized) Occurs when the immune system is not functioning properly, leaving the patient open to infection. A person can be immunocompromised due to low white blood cell count or due to some medicines. Also called immune compromised.
(i-myoo-no-suh-PREH-siv) Drugs that lower the body's immune response and allow the bone marrow stem cells to grow and make new blood cells. ATG (antithymocyte globulin) or ALG (antilymphocyte globulin) with cyclosporine are used to treat bone marrow failure in aplastic anemia. Immunosuppressive drugs may help some patients with myelodysplastic syndromes (MDS) and paroxysmal nocturnal hemoglobinuria (PNH).
A committee that makes sure a clinical trial is safe for patients in the study. Each medical center, hospital, or research facility doing clinical trials must have an active Institutional Review Board (IRB). Each IRB is made up of a diverse group of doctors, faculty, staff and students at a specific institution.
A system that turns patient data into a score. The score tells how quickly a myelodysplastic syndrome (MDS) case is progressing and helps predict what may happen with the patient's MDS in the future. Also called IPSS.
A method of getting fluids or medicines directly into the bloodstream over a period of time. Also called IV infusion.
A new drug, antibiotic drug, or biological drug that is used in a clinical trial. It also includes a biological product used in the laboratory for diagnostic purposes. Also called IND.
(kee-LAY-shun) A drug therapy to remove extra iron from the body. Patients with high blood iron (ferritin) levels may receive iron chelation therapy. The U.S. Food and Drug Administratin (FDA) has approved two iron chelators to treat iron overload in the U.S.: deferasirox, an oral iron chelator, and deferoxamine, a liquid given by injection.
A condition that occurs when too much iron accumulates in the body. Bone marrow failure disease patients who need regular red blood cell transfusions are at risk for iron overload. Organ damage can occur if iron overload is not treated.
(iss-KEE-mee-uh) Occurs when the blood supply to specific organ or part of the body is cut off, causing a localized lack of oxygen.
Go here to see the original:
Glossary of Terms | Aplastic Anemia and MDS International ...
A boy with a rare disease gets new skin, thanks to gene …
By daniellenierenberg
A new therapy could restore healthy and protective skin to patients with a rare genetic disease.
iStock.com/Andrey Prokhorov
By Kelly ServickNov. 8, 2017 , 1:00 PM
A 7-year-old who lost most of his skin to a rare genetic disease has made a dramatic recovery after receiving an experimental gene therapy, researchers announced today. The treatmenta whole-body graft of genetically modified stem cellsis the most ambitious attempt yet to treat a severe form of epidermolysis bullosa (EB), an often-fatal group of conditions that cause skin to blister and tear off at the slightest touch.
The new approach can address only a subset of the genetic mutations that cause EB. But the boys impressive recoveryhes now back inschool and is even playing soccercould yield insights that help researchers use stem cells to treat other genetic skin conditions.
It is very unusual that we would see a publication with a single case study anymore, but this one is a little different, says Jakub Tolar, a bone marrow transplant physician at the Masonic Cancer Center, University of Minnesotain Minneapolis who is developing therapies for EB. This is one of these [studies] that can determine where the future of the field is going to go.
EB results from mutations to any of several genes that encode proteins crucial for anchoring the outer layer of skin, the epidermis, to the tissue below. The missing or defective protein can cause skin to slough off from minor damage, creating chronic injuries prone to infection. Some forms of EB can be lethal in infancy, and some predispose patients to an aggressive and deadly skin cancer. The only treatment involves painfully dressing and redressing wounds daily. Bandage costs can approach $100,000 a year, says Peter Marinkovich, a dermatologist at Stanford University in Palo Alto, California, who treats EB patients. Theyre like walking burn victims, he says.
In fact, the new approach is similar to an established treatment for severe burns, in which sheets of healthy skin are grown from a patients own cells and grafted over wounds. But stem cell biologist and physician Michele De Luca of the University of Modena and Reggio Emilia in Italy and his colleagues have been developing a way to counteract an EB-causing mutation by inserting a new gene into the cells used for grafts. His group has already treated two EB patients with this approach. They publishedencouraging resultsfrom their first attemptwith small patches of gene-corrected skin on a patients legsin 2006.
In 2015, De Lucas team got a desperate request from doctors in Germany. Their young patient had a severe form of the disease known as junctional EB, caused by a mutation in a gene encoding part of the protein laminin 332, which makes up a thin membrane just below the epidermis. It was the same gene De Lucas team was targeting in an ongoing clinical trial, but this case was especially dire: Lacking most of his skin, the boy had contracted multiple infections and was in a life-threatening septic state. The emergency treatment would be the first test of their gene therapy approach over such a large and severely damaged area.
De Lucas team used a patch of skin a little bigger than a U.S. postage stamp from an unblistered part of the boys groin to culture epidermal cells, which include stem cells that periodically regenerate the skin. They infected those cells with a retrovirus bearing healthy copies of the needed gene,LAMB3, and grew them into sheets ranging from 50 to 150 square centimeters. In two surgeries, a team at Ruhr University in Bochum, Germany, covered the boys arms, legs, back, and some of his chest in the new skin.
After a month,most of the new skin had begun to regenerate, covering 80% of the boys body in strong and elastic epidermis, the researchers report online today inNature. Whats more, hes developed no blisters in the grafted areas in the 2 years since the surgery.
Other researchers have long been concerned that using a retrovirus to insert genes at random points in cells genomes might cause cancer. (In the early 2000s, five children who participated in a retrovirus-based gene therapy trial for severe combined immunodeficiencydeveloped leukemia.) But the current study found no evidence that the insertion affected cancer genes.
De Luca and colleagues were also able to track which grafted cells regenerated the skin over time by using the different locations of the genetic insert as markers for individual cells and their progeny. They found that most cells from the graft disappeared after a few months, but a small population of long-lived cells called holoclones formed colonies that renewed the epidermis.
Epidermal stem cells known as holoclones (shown in pink) were responsible for regenerating the young epidermolysis bullosapatients skin, whileother cell types disappeared over time.
News & Views/Nature; adapted by E. Petersen/Science
Thats an important lesson, Tolar says; it suggests that future attempts to correct genetic skin diseases should focus on culture conditions that nourish these stem cells, and potentially even target them for modification. If you have a gene correction strategy, he says, youd better have these primitive epidermal stem cells in mind.
The current results could benefit several thousand EB patients across the world, Marinkovich says, but it wont work for all of them. More than half have a form of the disease called EB simplex, which is causednot by a missing protein, but by mutations that produce an active but dysfunctional protein. For these errors, correction with a gene-editing tool like CRISPR makes more sense, De Luca says.
The grafts also cant repair damage to internal surfaces such as the esophagus, Tolar notes, which occurs in some EB cases. Fortunately, that wasnt an issue for the boy in this study. The treatment is a good step in the right direction, he says, but its not curative.
Both De Luca and Marinkovichs teams are exploring a similar gene therapy for another major form of the disease, called dystrophic EB, caused by a different genetic error affecting a larger protein. Biotech companies are working with each group to test the approach in larger clinical trials.
Here is the original post:
A boy with a rare disease gets new skin, thanks to gene ...
‘Extraordinary’ tale: Stem cells heal a young boy’s lethal …
By raymumme
T
he complications of the little boys genetic skin disease grew as he did. Tiny blisters had covered his back as a newborn. Then came the chronic skin wounds that extended from his buttocks down to his legs.
By June 2015, at age 7, the boy had lost nearly two-thirds of his skin due to an infection related to the genetic disorder junctional epidermolysis bullosa, which causes the skin to become extremely fragile. Theres no cure for the disease, and it is often fatal for kids. At the burn unit at Childrens Hospital in Bochum, Germany, doctors offered him constant morphine and bandaged much of his body, but nothing not even his fathers offer to donate his skin worked to heal his wounds.
We were absolutely sure we could do nothing for this kid, Dr. Tobias Rothoeft, a pediatrician with Childrens Hospital in Bochum, which is affiliated with Ruhr University. [We thought] that he would die.
advertisement
As a last-ditch effort, the boys father asked if there were any available experimental treatments. The German doctors reached out to Dr. Michele De Luca, an Italian stem cell expert who heads the Center for Regenerative Medicine at the University of Modena and Reggio Emilia, to see if a transplant of genetically modified skin cells might be possible. De Luca knew the odds were against them such a transplant had only been performed twice in the past, and never on such a large portion of the body. But he said yes.
The doctors were ultimately able to reconstruct fully functional skin for 80 percent of the boys body by grafting on genetically modified cells taken from the boys healthy skin. The researchers say the results of this single-person clinical trial, published on Wednesday in Nature, show that transgenic stem cells can regenerate an entire tissue. De Luca told reporters the procedure not only offers hope to the 500,000 epidermolysis bullosa patients worldwide but also could offer a blueprint for using genetically modified stem cells to treat a variety of other diseases.
To cultivate replacement skin, the medical team took a biopsy the size of a matchbook from the boys healthy skin and sent it to De Lucas team in Italy. There, researchers cloned the skin cells and genetically modified them to have a healthy version of the gene LAMB3, responsible for making the protein laminin-332. They grew the corrected cultures into sheets, which they sent back to Germany. Then, over a series of three operations between October 2015 and January 2016, the surgical team attached the sheets on different parts of the boys body.
The gene-repaired skin took, and spread. Within just a month the wounds were islands within intact skin. The boy was sent home from the hospital in February 2016, and over the next 21 months, researchers said his skin healed normally. Unlike burn patients whose skin grafts arent created from genetically modified cells the boy wont need ointment for his skin and can regrow his hair.
And unlike simple grafts of skin from one body part to another, we had the opportunity to reproduce as much as those cells as we want, said plastic surgeon Dr. Tobias Hirsch, one of the studys authors. You can have double the whole body surface or even more. Thats a fantastic option for a surgeon to treat this child.
Dr. John Wagner, the director of the University of Minnesota Masonic Childrens Hospitals blood and marrow transplant program, told STAT the findings have extraordinary potential because, until now, the only stem cell transplants proven to work in humans was of hematopoietic stem cells those in blood and bone marrow.
Theyve proven that a stem cell is engraftable, Wagner said. In humans, what we have to demonstrate is that a parent cell is able to reproduce or self-renew, and differentiate into certain cell populations for that particular organ. This is the first indication that theres another stem cell population [beyond hematopoietic stem cells] thats able to do that.
The researchers said the aggressive treatment outlined in the study necessary in the case of the 7-year-old patient could eventually help other patients in less critical condition. One possibility, they noted in the paper, was to bank skin samples from infants with JEB before they develop symptoms. These could then be used to treat skin lesions as they develop rather than after they become life-threatening.
The treatment might be more effective in children, whose stem cells have higher renewal potential and who have less total skin to replace, than in adults, Mariaceleste Aragona and Cdric Blanpain, stem cell researchers with the Free University of Brussels, wrote in an accompanying commentary for Nature.
But De Luca said more research must be conducted to see if the methods could be applied beyond this specific genetic disease. His group is currently running a pair of clinical trials in Austria using genetically modified skin stem cells to treat another 12 patients with two different kinds of epidermolysis bullosa, including JEB.
For the 7-year-old boy, life has become more normal now that it ever was before, the researchers said. Hes off pain meds. While he has some small blisters in areas that didnt receive a transplant, they havent stopped him from going to school, playing soccer, or behaving like a healthy child.
The kid is doing quite well. If he gets bruises like small kids [do], they just heal as normal skin heals, Rothoeft said. Hes quite healthy.
Southern Correspondent
Max covers hospitals and health care.
More:
'Extraordinary' tale: Stem cells heal a young boy's lethal ...
Genetically modified skin grown from stem cells saved a 7 …
By NEVAGiles23
Scientists reported Wednesday that they genetically modified stem cells to grow skin that they successfully grafted over nearly all of a child's body - a remarkable achievement that could revolutionize treatment of burn victims and people with skin diseases.
The research, published in the journal Nature, involved a 7-year-old boy who suffers from a genetic disease known as junctional epidermolysis bullosa (JEB) that makes skin so fragile that minor friction such as rubbing causes the skin to blister or come apart.
By the time the boy arrived at Children's Hospital of Ruhr-University in Germany in 2015, he was gravely ill. Doctors noted that he had "complete epidural loss" on about 60 percent of his body surface area, was in so much pain that he was on morphine, and fighting off a systemic staph infection. The doctors tried everything they could think of: Antibiotics, changing dressings, grafting skin donated by his father. But nothing worked, and they told his parents to prepare for the worst.
"We had a lot of problems in the first days keeping this kid alive," Tobias Hirsch, one of the treating physicians, recalled in a conference call with reporters this week.
Hirsch and his colleague Tobias Rothoeft began to scour the medical literature for anything that might help and came across an article describing a highly experimental procedure to genetically engineer skin cells. They contacted the author, Michele De Luca, of the Center for Regenerative Medicine University of Modena and Reggio Emilia in Italy. De Luca flew out right away.
Using a technique he had used only twice before and even then only on small parts of the body, De Luca harvested cells from a four-square-centimeter patch of skin on an unaffected part of the boy's body and brought them into the lab. There, he genetically modified them so that they no longer contained the mutated form of a gene known to cause the disease and grew the cells into patches of genetically modified epidermis. They discovered, the researchers reported, that "the human epidermis is sustained by a limited number of long-lived stem cells which are able to extensively self-renew."
In three surgeries, the child's doctors took that lab-grown skin and used it to cover nearly 80 percent of the boy's body - mostly on the limbs and on his back, which had suffered the most damage. The procedure was permitted under a "compassionate use" exception that allows researchers under certain dire circumstances to make a treatment available even though it is not approved by regulators for general use. Then, over the course of the next eight months while the child was in the intensive care unit, they watched and waited.
The boy's recovery was stunning.
The regenerated epidermis "firmly adhered to the underlying dermis," the researchers reported. Hair follicles grew out of some areas. And even bumps and bruises healed normally. Unlike traditional skin grafts that require ointment once or twice a day to remain functional, the boy's new skin was fine with the normal amount of washing and moisturizing.
"The epidermis looks basically normal. There is no big difference," De Luca said. He said he expects the skin to last "basically the life of the patient."
In an analysis accompanying the main article in Nature, Mariacelest Aragona and Cedric Blanpain wrote that this therapy appears to be one of the few examples of truly effective stem-cell therapies. The study "demonstrates the feasibility and safety of replacing the entire epidermis using combined stem-cell and gene therapy," and also provides important insights into how different types of cells work together to help our skin renews itself.
They said there are still many other lingering questions, including whether such procedures might work better in children than adults and whether there would be longer-term adverse consequences, such as the development of cancer.
There are also many challenges to translating this research to treating wounds sustained in fires or other violent ways. In the skin disease that was treated in the boy, the epidermis is damaged but the layer beneath it, the dermis, is intact. The dermis is what the researchers called an ideal receiving bed for the lab-grown skin. But if deeper layers of the skin are burned or torn off, it's possible that the artificial skin would not adhere as well.
"No matter how you prepare, it's a bad situation," De Luca said. For the time being, he says he's continuing to study the procedure in two clinical trials that involve genetic diseases.
Meanwhile, Hirsch and Rothoeft report that the boy is continuing to do well and is not on any medication for the first time in many years. Doctors are carefully monitoring the child for any signs that there may be some cells that were not corrected and that the disease may re-emerge, but right now that does not appear to be happening in the transplanted areas. However, the child does have some blistering in about 2 to 3 percent of his body in non-grafted areas and they are considering whether to replace that skin as well.
But for now, they are giving the boy time to be a boy, Rothoeft said: "The kid is now back to school and plays soccer and spends other days with the children."
Read more:
Genetically modified skin grown from stem cells saved a 7 ...
Doctors replace boys skin using breakthrough gene therapy …
By raymumme
In a breakthrough treatment, researchers at a burn unit in Europe found a way to replace 80 percent of a boys skin using a combination of gene therapy and stem cells. The grafted skin attached to his body has continued to replace itself, even months later.
The patient - a boy who was 7 years old at the time of the treatment - was born with a rare skin condition called junctional epidermolysis bullosa. The condition causes the outer layer of the skin to peel away easily from the lower skin layers, making it incredibly fragile and prone to injury.
This is a very severe, devastating disease, where kids suffer a lot, said Dr. Michele De Luca, one of the authors of the research.
Experts not involved in the research have said this successful grafting treatment is a big step for those suffering from genetic skin conditions like this one.
This is really quite exciting, to have this translation for these patients, said Dr. Dennis Orgill, medical director of the Brigham and Womens Hospital Wound Center in Boston, who was not involved with the study. "That they can do these genetic manipulations and then have a long term result, which theyve demonstrated here, is a major breakthrough."
In this case, the treatment may have been lifesaving. The patient arrived at the hospital with a life-threatening bacterial skin infection spread over much of his body. Over the following weeks, his doctors tried everything they could to treat him without success.
Out of options, his treatment team was preparing to start end-of-life care when his parents pleaded with them to try an experimental therapy.
Surgeons in Germany took a sample of the boys skin, less than one square inch in size, that was unharmed by the bacterial infection. In a lab, researchers infected the skin biopsy with a virus specially designed to alter the genetic code within the skin cells, correcting the mutation responsible for his fragile skin. The researchers "grew" the skin and used it to surgically replace the patients blistered and destroyed skin.
After 21 months, the new skin is regenerating itself without problems and has been resilient; it can hold up to normal wear much better than his original skin.
While this result only applies to one rare skin disorder right now, experts said the approach could be used more widely for other diseases in the future.
We are running other clinical trials on other kinds of junctional epidermolysis bullosa," De Luca said. "In the future, it could be applied to other genetic diseases of the skin.
Researchers hope that it could help other people with seriously damaged skin in the future, too.
This technology could be extended into other patients with genetic conditions, or patients with extensive burns, Orgill said.
Read more:
Doctors replace boys skin using breakthrough gene therapy ...
Scientists replace skin using genetically modified stem cells
By LizaAVILA
Related content
(CNN) - For the first time, doctors were able to treat a child who had a life-threatening rare genetic skin disease through a transplant of skin grown using genetically modified stem cells.
The grafts replaced 80% of the boy's skin.
The skin of his arms, legs, back and flanks, and some of the skin on his stomach, neck and face was missing or severely affected due to epidermolysis bullosa.
The compassionate-use experimental treatment is detailed in a case study published in the journal Nature on Wednesday.
Skin as fragile as a butterfly's wings -- that's how children with epidermolysis bullosa are described and why they're often called butterfly children.
The disease, of which there are five major types and at least 31 subtypes, is incurable. People with the condition have a defect in the protein-forming genes necessary for skin regeneration.
About 500,000 people worldwide are affected by forms of the disease. More than 40% of patients die before reaching adolescence.
Their skin can blister and erode due to something as simple as bumping into something or even the light friction of clothing, according to an email from Dr. Jouni Uitto, a professor and chairman of the Department of Dermatology and Cutaneous Biology at the Sidney Kimmel Medical College in Philadelphia. Uitto was not involved with this study.
Epidermolysis bullosa makes the skin incredibly susceptible to infections, and in the case of 7-year-old Hassan, whose treatment was detailed in Nature, those infections can be life-threatening.
A week after he was born in Syria, Hassan had a blister on his back, his father said through an interpreter in an interview provided by the hospital in Germany where the boy was treated.
Hassan's last name, as well as the first names of his family members, are not being disclosed to protect the privacy of the family.
In his first few weeks of life, Hassan was immediately diagnosed with epidermolysis bullosa, and their doctor in Syria told Hassan's family that there was no cure or therapy.
Over the years, their efforts to find help for their son's disease led the family to the Muenster University hospital in Germany in 2015, when Hassan was 7. His condition worsened, and he struggled with severe sepsis and a high fever. He weighed just over 37 pounds.
They didn't think he would make it, and doctors at Muenster decided in summer 2015 to transfer Hassan to the Ruhr-Universitt Bochum's University Hospitals, including the burn center -- one of the oldest in the country.
By the time Hassan arrived at Bochum, he had lost two-thirds of his surface skin.
"We had a lot of problems in first days just keeping him alive," said Dr. Tobias Rothoeft, consultant at the University Children's Hospital at Katholisches Klinikum Bochum.
Doctors tried to promote healing by changing his dressings and treating him with antibiotics, as well as putting him on an aggressive nutrition schedule, but nothing helped. They even tried transplanting skin from Hassan's father.
"By that time, he had lost 60% of his epidermis, the upper skin layer, and had 60% open wounds all over his body," said Dr. Maximilian Kueckelhaus of the Department of Plastic Surgery at Bochum's Burn Center.
Every approach failed, so the doctors prepared Hassan's family for what end-of-life care would entail. But the parents pleaded, asking the doctors to consult studies and research for experimental treatments that might help.
They found Dr. Michele De Luca at the University of Modena's Center for Regenerative Medicine in Italy. His publications described an experimental treatment transplanting genetically modified epidermal stem cells that healed small, non-life-threatening wounds in adults.
The medical team reached out to De Luca, asking whether he could help them replicate the procedure on a larger scale to help Hassan, and he agreed. De Luca told Hassan's parents that he believed there was a 50% chance of the treatment being successful.
They were more than willing to accept the risk, to do anything to help their son have a chance at a normal life.
Hassan "was in severe pain and was asking a lot of questions: 'Why do I suffer from this disease? Why do I have to live this life? All children can run around and play. Why am I not allowed to play soccer?' I couldn't answer these questions," his father said. "It was a tough decision for us, but we wanted to try for Hassan."
To obtain the skin's stem cells, the doctors took a small biopsy -- only accounting for 1 square inches -- from an unaffected part of Hassan's skin. The stem cells were processed by De Luca in Italy. A healthy version of the gene that is normally defective in epidermolysis bullosa patients was added to the cells, along with retroviral vectors: virus particles that assist the gene transfer.
This genetic transfer would essentially "correct" the cells.
The single cells were grown and cultivated on plastic and fibrin substrate, which is used to treat large skin burns, to form a large piece of epidermis. This method enabled the researchers to grow as much skin as they needed. The whole process took three to four weeks, Kueckelhaus said.
Once the sheets were ready, they were transferred from Italy to Germany and transplanted onto the well-cleaned wounds right away during two surgeries. The first procedure in October 2015 applied the sheets to Hassan's arms and legs. The second surgery, in November, grafted the sheets to Hassan's entire back and the other affected areas.
Hassan began to improve immediately. The researchers noticed that the grafts were not rejected; they bound to all of the areas they were transplanted.
"For everyone that was involved, taking off the bandages and seeing for the first time that this is working out, that the transplants are actually attached to the patient and growing skin, that's an incredible moment," Kueckelhaus said.
Hassan was discharged from the hospital in February 2016.
After steady followups over 21 months, the researchers found that Hassan's new skin healed normally, didn't blister anymore, and was resistant to stress. It was even growing hair. Unlike some skin graft patients, he doesn't require any ointment to keep his skin smooth and hydrated. And like any growing kid, he bruises and recovers normally.
They also learned that only a few stem cells contribute to the long-term maintenance of the epidermis, shedding light on cellular hierarchy in this regard.
"The investigators removed of small piece of patient's skin, isolated cells with stem cell potential for growth, introduced a normal copy of the mutated gene to the cells, propagated a large number of these cells in culture and then grafted them back to the skin," Uitto said. "This concept is not new, but what is remarkable here is that they were able to change essentially the entire skin of the patient with normal cells."
Hassan's family is currently living in Germany. Hassan, now 9, is able to go to school and play sports, but he maintains a schedule of frequent monitoring at the hospital to ensure that the initial success of the treatment continues. The area of his skin that was not treated sometimes shows small blisters, and if it worsens, he may receive transplants there as well.
"Seeing him 18 months after the initial surgery with an intact skin is incredible because he has been in the ICU for so long," Kueckelhaus said. "He had bandages all over his body except his hands, feet and face. He was on extremely strong pain medication. So the quality of life was really, really bad for him. Seeing him play soccer, play sports, play with other kids, that is just amazing because that's something he couldn't do before."
"It felt like a dream for us," the boy's father said. "Hassan feels like a normal person now. He plays. He's being active. He loves life."
Everything points to a good long-term outcome for Hassan.
The researchers will continue to monitor him for complications. Sometimes, genetic modifications can cause malignancies in cells.
"That is of course one thing we really have to be aware of," Kueckelhaus said. "However, analyzing the integration profile of that gene into the boy's DNA, which we did, we saw that it's mostly in areas that don't cause too much concern about developing malignancies."
Epidermolysis bullosa patients can be at a very high risk of developing skin cancer simply because of the disease. Because Hassan now has intact skin and intact DNA, this risk might even decrease, but that will have to be proved through follow-up, Kueckelhaus said.
Given that this was one successful outcome for one patient, the experimental treatment can't be applied for other patients just yet. De Luca is conducting clinical trials using the treatment.
"This is one case with a distinct type of EB, and further studies will show whether this approach is applicable to other forms of EB as well," Uitto said. "It should be noted that in some severe forms of EB, the patients also suffer from fragility of the gastrointestinal and vesico-urinary tract, and some forms are associated with the development of muscular dystrophy. Obviously, gene therapy of the skin cannot correct them, and these issues have to be addressed in further studies."
Hassan's treatment also cost hundreds of thousands of dollars. Although the process could be optimized, doctors would still have to individually grow transplants for each patient, which could get very expensive.
But for patients' families, epidermolysis bullosa is already expensive.
"Standard maintenance treatment of patients with EB, including daily bandaging, antibiotics and special moisturizer, as well as frequent hospitalizations, can be extremely costly, and gene correction as described in this paper may well be cost-effective over the lifetime of these patients," Uitto noted.
Brett Kopelan, executive director of the Dystrophic Epidermolysis Bullosa Research Association of America, has a 10-year-old daughter, Rafi, with recessive dystrophic EB. Between January and August, $751,1778 for wound/burn dressings was charged to Kopelan's insurance company, he says. That doesn't account for drugs or hospital visits and surgeries.
Kopelan's nonprofit sends free supplies and bandages to families. The nonprofit can provide its employees with insurance that covers the medical equipment, but that isn't the case for everyone impacted by the condition, he said.
Kopelan is hopeful about the results of the study. The baths and bandage changes that are necessary for epidermolysis bullosa patients to stave off life-threatening infections can last hours and feel torturous.
"Do you remember the last time you got a paper cut and put Purell on it? It burned, right? Now think of 60% of body being an open wound, and opioids don't really work for this kind of pain," Kopelan wrote in an email. "This is what make EB kids and adults the strongest people on Earth."
The study "confirms our hopes that gene therapy is potentially the most efficacious path forward to providing a significant treatment option for those with epidermolysis bullosa," Kopelan said. "While it's important to remember that this is only one patient and more work needs to be done to demonstrate how effective this gene therapy platform may prove to be, I am very enthused."
"I wish that all children with the same disease could be treated in this way," Hassan's father said.
Here is the original post:
Scientists replace skin using genetically modified stem cells
Skin Stem Cells – Methods and Protocols | Kursad Turksen …
By Sykes24Tracey
During the last decade, an increased interest in somatic stem cells has led to a flurry of research on one of the most accessible tissues of the body: skin. Much effort has focused on such topics as understanding the heterogeneity of stem cell pools within the epidermis and dermis, and their comparative utility in regenerative medicine applications. In Skin Stem Cells: Methods and Protocols, expert researchers in the field detail many of the methods which are now commonly used to study skin stem cells. These include methods and techniques for the isolation, maintenance and characterization of stem cell populations from skin. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.
Authoritative and practical, Skin Stem Cells: Methods and Protocols seeks to aid scientists in the further understanding of these diverse cell types and the translation of their biological potential to the in vivo setting.
Originally posted here:
Skin Stem Cells - Methods and Protocols | Kursad Turksen ...