Page 78«..1020..77787980..90100..»

INDERMICA Oxyderm Wrinkle Cream Featured in Elevate Magazine

By LizaAVILA

Greenbrae, CA, March 03, 2015 --(PR.com)-- Oxyderm Wrinkle Cream by INDERMICA Inc. is an innovative skin care product which is free of artificial preservatives; uses innovative apple, grape and alpine rose stem cells to help reverse the signs of aging, helps filling in fine lines while hydrating and smoothing-out skin texture for a youthful glow.

The Patent Pending formula offers the benefits of: -Fast penetration -Cell cleansing by displacing CO2 from the skin -Forehead globular muscular relaxation -Wrinkle reduction and an overall soft-skin feel. The combination of natural ingredients blended with new-age compounds bridge the gap between science and nature.

About Earth Day 2015 Earth Days 45th anniversary (April 22nd) - could be the most exciting year in environmental history. The year in which economic growth and sustainability join hands. This is the year in which world leaders finally pass a binding climate change treaty.

About Elevate Magazine: Elevate Magazine has been Canada's authority on cosmetic enhancement, wellness and anti-aging for over 13 years. Elevate covers every aspect of cosmetic enhancement, offering readers the latest health and beauty news.

About INDERMICA Inc.

INDERMICA Inc. is a manufacturer and global distributor of comprehensive skin restoration professional treatments and take-home systems. The global presence of INDERMICA labs allows them to provide skin-rebuilding formulations that accommodate all skin types throughout the world; committed to creating products that gently return the skin to a young, healthy glow.

Hydroquinone and paraben free; the INDERMICA innovative skin care and treatment products boast a combination of natural ingredients blended with leading-edge compounds. They use a comprehensive and scientific process of layering molecules to prepare, correct and protect damaged and aging skin.

Contact Information: Media Enquiries: Sandra J. Freer comments@sdapublishing.com 416-239-0781 For product information: http://www.indermica.com

Continue reading here:
INDERMICA Oxyderm Wrinkle Cream Featured in Elevate Magazine

To Read More: INDERMICA Oxyderm Wrinkle Cream Featured in Elevate Magazine
categoriaSkin Stem Cells commentoComments Off on INDERMICA Oxyderm Wrinkle Cream Featured in Elevate Magazine | dataMarch 3rd, 2015
Read All

Quality control for adult stem cell treatment

By NEVAGiles23

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected and cultivated, genetically modified and single cells isolated before being rigorously tested to make sure they meet the highest possible safety criteria. The strategy, which is published online in EMBO Molecular Medicine, is inspired by the approaches the biotechnology industry and regulatory affairs authorities have adopted for medicinal proteins produced from genetically engineered mammalian cells.

"Until now there has not been a systematic way to ensure that adult epidermal stem cells meet all the necessary requirements for safety before use as treatments for disease," says EMBO Member Yann Barrandon, Professor at Lausanne University Hospital, the Swiss Federal Institute of Technology in Lausanne and the lead author of the study. "We have devised a single cell strategy that is sufficiently scalable to assess the viability and safety of adult epidermal stem cells using an array of cell and molecular assays before the cells are used directly for the treatment of patients. We have used this strategy in a proof-of-concept study that involves treatment of a patient suffering from recessive dystrophic epidermolysis bullosa, a hereditary condition defined by the absence of type VII collagen which leads to severe blistering of the skin."

The researchers cultivated epidermal cells from the patient that can be used to regenerate skin. The scientists used their array of tests to determine which of the transduced cells met the necessary requirements for stemness -- the characteristics of a stem cell that distinguish it from a regular cells -- and safety. Clonal analysis revealed that the transduced stem cells varied in their ability to produce functional type VII collagen. When the most viable, modified stem cells were selected, transplantation onto immunodeficient mice regenerated skin that did not blister in the mouse model system for recessive dystrophic epidermolysis bullosa and produced functional type VII collagen. Safety was assessed by determining the sites of integration of the viral vector, looking for rearrangements and hit genes, as well as whole genome sequencing.

"Our work shows that at least for adult epidermal stem cells it is possible to use a clonal strategy to deliver a level of safety that cannot be obtained by other gene therapy approaches. A clonal strategy should make it possible to integrate some of the more recent technologies for targeted genome editing that offer more precise ways to change genes in ways that may further benefit the treatment of disease. Further work is in progress in this direction."

Story Source:

The above story is based on materials provided by EMBO - excellence in life sciences. Note: Materials may be edited for content and length.

See more here:
Quality control for adult stem cell treatment

To Read More: Quality control for adult stem cell treatment
categoriaSkin Stem Cells commentoComments Off on Quality control for adult stem cell treatment | dataFebruary 28th, 2015
Read All

Growth signal can influence cancer cells' vulnerability to drugs, study suggests

By NEVAGiles23

Exposure to TGF-beta prompts changes that help mouse tumor stem cells evade drugs

IMAGE:To see how the growth signal TGF-beta influences cancer cells, the researchers used a red tag (top) to mark mouse tumor stem cells that received the signal, and a green... view more

Credit: Laboratory of Mammalian Cell Biology and Development

In theory, a tumor is an army of clones, made up of many copies of the original cancerous cell. But tumor cells don't always act like duplicates, and their unpredictable behavior can create problems for treatment. For while some cells within a tumor succumb to anti-cancer drugs, others may survive to bring the cancer back to life once therapy has ended.

In a study published today (February 26) in Cell, researchers at Rockefeller University home in on one culprit that fuels this variable vulnerability within squamous cell cancers: exposure to a signal known as TGF-, given off by immune cells that congregate next to a tumor's blood vessels.

"There are several reasons why some cancer stem cells, the cells at the root of tumors and metastases, can withstand therapy meant to eradicate them. Our results point to the importance of the environment immediately surrounding the skin cancer stem cells, specifically, their exposure to the signal TGF-," says senior researcher Elaine Fuchs, Rebecca C. Lancefield Professor, head of the Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development and a Howard Hughes Medical Institute investigator. "Ultimately, we hope this new insight could lead to better means for preventing the recurrence of these life-threatening cancers, which can occur in the skin, head, neck, esophagus, and lung, and often evade treatment."

Her team, which included first author Naoki Oshimori, a postdoctoral research associate in the lab and lab technician Daniel Oristian, focused on squamous cell carcinomas in the skin of mice. Like many normal tissue stem cells, the stem cells that produce squamous cell tumors can be classified into two types: those that divide and proliferate rapidly, and those that do so more slowly. This has led scientists to wonder whether the more dormant stem cells in a tumor might evade cancer drugs.

To investigate this possibility, the team zeroed in on TGF- (transforming growth factor beta) which is known to restrict growth in many healthy tissues. The lab's previous research has shown that mice whose normal skin stem cells cannot respond to TGF- become susceptible to develop tumors that grow rapidly. Paradoxically, however, TGF- contributes to metastasis in many cancers. The researchers wanted to know: How can TGF- act both to suppress cancers and promote them?

By visualizing TGF- signaling within developing mouse tumors, the researchers found that the cancer stem cells located nearest to the blood vessels of the tumor receive a strong TGF- signal, while others further away don't receive any. To see this difference and its effects, they used a red tag to illuminate those cells exposed and responding to TGF-, and a green genetic tag, which they could switch on, to track the stem cells' progeny. Over time, they saw that TGF--responding stem cells proliferate more slowly but they simultaneously invade, scatter and move away from the tumor. The opposite was true of cancer stem cells too far away to receive TGF-, which proliferated rapidly, but were less invasive, growing as a tumor mass.

"We tested the implications for drug resistance by injecting cisplatin, a commonly used chemotherapy drug for these types of cancers, into the mice with tumors. While the drug killed off most of the TGF- nonresponding cancer cells, it left behind many of the responders," Oshimori says. "When the drug was withdrawn, the lingering TGF- responding cancer stem cells grew back the tumor."

More here:
Growth signal can influence cancer cells' vulnerability to drugs, study suggests

To Read More: Growth signal can influence cancer cells' vulnerability to drugs, study suggests
categoriaSkin Stem Cells commentoComments Off on Growth signal can influence cancer cells' vulnerability to drugs, study suggests | dataFebruary 27th, 2015
Read All

Graphene derivative interferes with seemingly invincible cancer stem cells

By LizaAVILA

While well known for its unique electromechanical properties, graphene may also prove key in preventing cancer tumor recurrence. A drawback of traditional cancer treatment with radiation and chemotherapy is that the primary developmental source of future tumors is not eradicated. Cancer stem cells, or CSCs, can survive treatment and give rise to recurring tumors, metatasis, and drug resistance after repeated treatments. Researchers from the University of Manchester and the University of Calabria have discovered that graphene oxides targets and neutralize CSCs in a manner that is not yet fully understood.

One CSC can develop into a ball of new CSCs called a tumor-sphere, or into new tumor cells, such as what happens in metastasis. They're immortal, divide rapidly, and resist stress. A potential solution? Graphene oxide, GO, which is an oxidized form of its well-known carbon cousin and soluble in many solvents.

For a complete look at the efficacy of GO across cancers, researchers used CSCs from six types of cancer: breast, pancreatic, lung, brain, ovarian and prostate. They also used normal skin cells to confirm that GO would not be toxic to the body.

After cells were treated for 48 hours with a GO solution, the researchers found that not only did GO interrupt the ability of CSCs in all cancer types to proliferate by forming spheres, but that GO was safe to the skin cells.

Dr Aravind Vijayaraghavan of the National Graphene Institute at the University of Manchester says that GO seems to force the cancer stem cells to differentiate into non-cancer stem cells. In this way, GO effectively takes the CSC out of commission for creating future tumors. Currently the theory is that GO interferes with the signalling pathways in the cell membranes, curbing the proliferation mechanism.

Interestingly, this graphene derivative had already been researched for as a targeted delivery vehicle in tumors, but has now been found to have an important effect itself on the tumor.

While the researchers acknowledge that the mechanisms at play need to be researched more before the material can be used to treat cancers, the ability to destroy cancer stem cells is an an important component of a cancer treatment protocol that kills existing tumors as well as shuts down future metatasis.

Vijayaraghavan and the Graphene Institute have previously made headlines as a recipient of research money from the Bill and Melinda Gates Foundation towards the development of a better condom. Their proposal, of course, used graphene.

The team's research was originally published in Oncotarget on February 24, 2015.

Source: University of Manchester

See the original post:
Graphene derivative interferes with seemingly invincible cancer stem cells

To Read More: Graphene derivative interferes with seemingly invincible cancer stem cells
categoriaSkin Stem Cells commentoComments Off on Graphene derivative interferes with seemingly invincible cancer stem cells | dataFebruary 27th, 2015
Read All

Sperm and egg created from skin cells of two same sex adults

By Sykes24Tracey

February 25, 2015

Credit: Thinkstock

Chuck Bednar for redOrbit.com @BednarChuck

Scientists from the UK and Israel have demonstrated for the first time that it is possible to make human egg and sperm cells using skin from two adults of the same sex a breakthrough that may make it possible for same-sex couples to have children with shared DNA.

The research, which was funded by the Wellcome Trust, was completed at Cambridge University with the assistance of experts from the Weizmann Institute of Science, Cambridge News reported on Monday. They were able to use stem cell lines from embryos and from five different adults (a total of 10 different donor sources) to successfully create germ-cell lines.

According to CBS Atlanta, the experiment had previously been successful in creating live baby mice, but this new study marks the first time in which engineered human cells were found to be an identical match to aborted fetuses. It also marks the first time that human stem and skin cells were combined to form entirely new germ-cell lines.

[STORY: FDA reconsidering ban on homosexual, bisexual blood donors]

We have succeeded in the first and most important step of this process, which is to show we can make these very early human stem cells in a dish, Azim Surani, project leader at the Wellcome Trust and a professor of physiology and reproduction at Cambridge, told The Sunday Times.

Hope for those who cant conceive

The key to the process was SOX17, a master gene which typically works to direct stem cells to form whatever type of tissue or organ is required. Their new process works by manipulating this gene so that it becomes part of a primordial germ cell specification (causing it to create cells that will form an entire person), making it possible to create primordial germ cells in the lab.

Read more here:
Sperm and egg created from skin cells of two same sex adults

To Read More: Sperm and egg created from skin cells of two same sex adults
categoriaSkin Stem Cells commentoComments Off on Sperm and egg created from skin cells of two same sex adults | dataFebruary 25th, 2015
Read All

The Reason Same-Sex Couples May One Day Have Biological Kids

By raymumme

null World News Videos | US News VideosCopy

A stem cell research breakthrough might someday allow same-sex couples to have their own biological children.

Researchers at Cambridge University in England have taken the first steps towards creating artificial sperm and eggs by reprogramming skin cells from adults and converting them into embryonic-like stem cells. The team then compared the engineered stem cells with human cells from fetuses to confirm they were in fact, identical.

The researchers published their findings in the journal Cell earlier this week, stressing that its early days for this type of research.

We have succeeded in the first and most important step of the process, Dr. Jacob Hanna, an investigator with the Weizmann Institute of Science in Israel, told ABC News.

Hanna said the team will now attempt to complete the process by creating fully developed artificial sperm and eggs, either in a dish or by implanting them in a rodent. Once this is achieved, the technique could become useful for any individual with fertility problems, he said, including couples of the same sex.

"It has already caused interest from gay groups because of the possibility of making egg and sperm cells from parents of the same sex," Hanna said.

However, the prospect of creating a baby by these artificial means alone is probably a long way off, Hanna said.

It is really important to emphasize that while this scenario might be technically possible and feasible, it is remote at this stage and many challenges need to be overcome, he said. Further, there are very serious ethical and safety issues to be considered when and if such scenarios become considered in the distant future.

The research was funded by the Wellcome Trust and the Britain Israel Research and Academic Exchange Partnership.

Read this article:
The Reason Same-Sex Couples May One Day Have Biological Kids

To Read More: The Reason Same-Sex Couples May One Day Have Biological Kids
categoriaSkin Stem Cells commentoComments Off on The Reason Same-Sex Couples May One Day Have Biological Kids | dataFebruary 25th, 2015
Read All

Stem cell breakthrough may allow same gender couples to create babies

By daniellenierenberg

Researchers from Cambridge University and Israels Weizmann Institute of Science are claiming a stem cell research breakthrough that would allow a baby to be created from the skin cells from two adults, no matter their gender. This potentially allows for infertile couples to have their own children without resorting to sperm or egg donors, and may provide the means for same sex couples to produce their own babies.

Previously only successful in experiments on mice, the new research has been conducted on human cells for the first time. In this study, the researchers paired stem cell lines from embryos with the skin of a range of different adults, with the resultant cells compared to aborted fetuses to determine an identical match.

Techniques devised to create same-sex offspring are not new. Some experiments involve the manipulation of fibroblasts in mice resulting in offspring with the genetic traits of multiple male mice, whilst others have used bone marrow stem cells extracted from males to trigger spermatogonia.

However, in this latest research, stem cells and adult human skin have been combined for the first time to create an entire new germ-cell line (that is, cells that will become embryos). Derived from ten different donor sources, the new germ-cell lines were created from 10 different donor sources five embryos and five adults.

Intrinsic to this pairing was the SOX17 gene. A master gene, SOX17 usually works to direct stem cells to be programmed to become whatever organs or body parts are required in other research this techniques has been used to create lung, gut, and pancreas cells.

The manipulation of the gene to be part of a primordial germ cell specification (that is, direct it to create cells that will become an entire human), however, is a new development pioneered by the team and has allowed them to follow this discovery with actually making primordial germ cells in the lab. This stage in a babys development is known as "specification", and once primordial germ cells become specified, they continue to develop inexorably toward precursor sperm or ova cells.

Creating human egg and sperm cells from the skin of two adults of the same gender immediately raises the possibility of same sex couples procreating and offering an alternate pregnancy path for infertile couples. Of course, it also opens the door to a new minefield of ethical and moral implications, but the researchers note that many people may potentially benefit from the technique.

The results of the research were published in the online journal Cell.

Read this article:
Stem cell breakthrough may allow same gender couples to create babies

To Read More: Stem cell breakthrough may allow same gender couples to create babies
categoriaSkin Stem Cells commentoComments Off on Stem cell breakthrough may allow same gender couples to create babies | dataFebruary 23rd, 2015
Read All

Scientists claim they can create babies for gay couples

By JoanneRUSSELL25

A scientific breakthrough gets gay groups all excited about the possibility of creating egg and sperm cells from parents of the same sex.

CAMBRIDGE: Scientists at the University of Cambridge in collaboration with the Weitzmann Institute in Israel successfully used skin from five adults to artificially create germ cells or stem cells, responsible for making sperm and eggs in the body.

According to The Daily Mail UK, Jacob Hanna, the specialist leading the projects Israeli arm claimed that the technique could be developed to create a baby, in just two years time.

They also reported Cambridge Universitys Professor Azim Surani as saying:We have succeeded in the first and most important step of this process, which is to show we can make these very early human stem cells in a dish.

The Daily Nation, however, explained that what the Cambridge researchers did was identify the gene which determined which cells would become sperm and egg, and harvested them by culturing them with human embryonic stem cells, for five days.

When an egg is fertilised by a sperm, they develop into foetus or the placenta. Some become stem cells, while others become germ cells and subsequently sperm and eggs. But this isnt the same as artificial sperm and eggs.

For now, Surani said the process would contribute to scientists understanding human genetics and diseases related to aging, as they discovered that one of the occurrences in germ cells included epigenetic mutations, where cell mistakes that occur with age, were wiped out so the cell is regenerated and reset.

The views expressed in the contents are those of our users and do not necessarily reflect the views of FMT.

See the original post:
Scientists claim they can create babies for gay couples

To Read More: Scientists claim they can create babies for gay couples
categoriaSkin Stem Cells commentoComments Off on Scientists claim they can create babies for gay couples | dataFebruary 23rd, 2015
Read All

Cambridge university researchers' breakthrough paves way for same sex couple babies

By JoanneRUSSELL25

Comments(0)

Researchers from Cambridge University have shown for the first time that it is possible to make human egg and sperm cells using skin from two adults of the same sex.

The scientific breakthrough may lead to a baby being made in a dish from the skin cells of two adults of the same sex, bringing hope to gay people.

The project, funded by the Wellcome Trust, was achieved at Cambridge University with Israels Weizmann Institute of Science.

The scientists used stem cell lines from embryos as well as from the skin of five different adults.

Ten different donor sources have been used so far and new germ-cell lines have been created from all of them, researchers said.

A gene called SOX1 has turned out to be critical in the process of reprogramming human cells, according to a report in a national newspaper.

The details of the technique were published in the journal Cell.

View post:
Cambridge university researchers' breakthrough paves way for same sex couple babies

To Read More: Cambridge university researchers' breakthrough paves way for same sex couple babies
categoriaSkin Stem Cells commentoComments Off on Cambridge university researchers' breakthrough paves way for same sex couple babies | dataFebruary 22nd, 2015
Read All

Stem cells offer promising key to new malaria drugs: US research

By raymumme

NEW YORK (Thomson Reuters Foundation) - Human stem cells engineered to produce renewable sources of mature, liver-like cells can be grown and infected with malaria to test potentially life-saving new drugs, according to researchers at the Massachusetts Institute of Technology.

The advance comes at a time when the parasitic mosquito-borne disease, which kills nearly 600,000 people every year, is showing increased resistance to current treatment, especially in Southeast Asia, according to the World Health Organization.

The liver-like cells, or hepatocytes, in the MIT study were manufactured from stem cells derived from donated skin and blood samples.

The resulting cells provide a potentially replenishable platform for testing drugs that target the early stage of malaria, when parasites may linger and multiply in the liver for weeks before spreading into the bloodstream.

Sangeeta Bhatia, a biomedical engineer and senior author of the MIT report, told the Thomson Reuters Foundation that the breakthrough study not only showed that these liver-like cells could host a malaria infection but also described a way to mature the young cells so that an adult-like metabolism, necessary for drug development, could be established.

The study is published in the Feb. 5 online issue of Stem Cell Reports.

Stem cells retain the genetic makeup of their donors, affording researchers the potential to test drugs against a large variety of genetic types and a variety of diseases.

"This allows us to explore in depth how different diseases affect different people, in this case malaria," Bob Palay, chairman and CEO of Cellular Dynamics International (CDI), told the Thomson Reuters Foundation.

"This allows you to study it in a dish and find new drugs," he added, noting that CDI uses blood samples for its stem cells.

Before this development, researchers tested new drugs using human liver cells from cadavers and cancerous liver cells.

See the original post:
Stem cells offer promising key to new malaria drugs: US research

To Read More: Stem cells offer promising key to new malaria drugs: US research
categoriaSkin Stem Cells commentoComments Off on Stem cells offer promising key to new malaria drugs: US research | dataFebruary 14th, 2015
Read All

Theres a lot to love at The Body Shop

By daniellenierenberg

DROPS of Youth Bouncy Sleeping Mask is designed to be left on overnight without washing off. The lightweight, pliable mask molds itself like a second skin, making skin look younger and fresher.

The Body Shop introduces its Drops of Youth, Red Musk Fragrance, and Limited-Edition Forbidden Flower collections.

Drops of Youth, made from edelweiss flower stem cells sourced from the Alps, replenishes your skin in the most natural way. Left on overnight, the lightweight mask is like a second skin. In the morning, skin feels smooth and hydrated, and looks younger and fresher.

Red Musk, The Body Shops most unconventional scent to date, turns up the heat.

The Limited-Edition Forbidden Flower Collection is a body care and fragrance line inspired by the poppy flower.

DROPS of YouthWonderblur is a skin smoother that reduce fine lines and pores for an even, flawless finish.

Known for its thrust in protecting the planet, The Body Shop never tests its products on animals. The line has a Community Fair Trade program, where high-quality natural ingredients are sourced in different parts of the world where small stakeholders and artisans can benefit.

The Drops of Youth and Red Musk collections are available at The Body Shop stores nationwide, while Forbidden Flower Collection is available at selected The Body Shop branches. SM Advantage Card members can now earn and redeem points in all The Body Shop stores.

THE RED Musk Fragrance Collection. I wanted to create a fragrance that wasnt the typical girly girl scent. I wanted to change the rules of fragrance. Instead, I used the sensuality and the warmth of spices blended withmusk to approach femininity differently, says Corinne Cachen, master perfumer.

FORBIDDEN Flower Body Butter gives your skin the pleasure of pure potent moisture.

Read more:
Theres a lot to love at The Body Shop

To Read More: Theres a lot to love at The Body Shop
categoriaSkin Stem Cells commentoComments Off on Theres a lot to love at The Body Shop | dataFebruary 12th, 2015
Read All

Human stem cells repair damage caused by radiation therapy for brain cancer in rats

By daniellenierenberg

For patients with brain cancer, radiation is a powerful and potentially life-saving treatment, but it can also cause considerable and even permanent injury to the brain. Now, through preclinical experiments conducted in rats, Memorial Sloan Kettering Cancer Center researchers have developed a method to turn human stem cells into cells that are instructed to repair damage in the brain. Rats treated with the human cells regained cognitive and motor functions that were lost after brain irradiation. The findings are reported in the February 5 issue of the journal Cell Stem Cell.

During radiation therapy for brain cancer, progenitor cells that later mature to produce the protective myelin coating around neurons are lost or significantly depleted, and there is no treatment available to restore them. These myelinating cells--called oligodendrocytes--are critical for shielding and repairing the brain's neurons throughout life.

A team led by neurosurgeon Viviane Tabar, MD, and research associate Jinghua Piao, PhD, of the Memorial Sloan Kettering Cancer Center in New York City, wondered whether stem cells could be coaxed to replace these lost oligodendrocyte progenitor cells. They found that this could be achieved by growing stem cells--either human embryonic stem cells or induced pluripotent stem cells derived from skin biopsies--in the presence of certain growth factors and other molecules.

Next, the investigators used the lab-grown oligodentrocyte progenitor cells to treat rats that had been exposed to brain irradiation. When the cells were injected into certain regions of the brain, brain repair was evident, and rats regained the cognitive and motor skills that they had lost due to radiation exposure. The treatment also appeared to be safe: none of the animals developed tumors or inappropriate cell types in the brain.

"Being able to repair radiation damage could imply two important things: improving the quality of life of survivors and potentially expanding the therapeutic window of radiation," said Dr. Tabar. "This will have to be proven further, but if we can repair the brain effectively, we could be bolder with our radiation dosing, within limits." This could be especially important in children, for whom physicians deliberately deliver lower radiation doses.

Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.

View original post here:
Human stem cells repair damage caused by radiation therapy for brain cancer in rats

To Read More: Human stem cells repair damage caused by radiation therapy for brain cancer in rats
categoriaSkin Stem Cells commentoComments Off on Human stem cells repair damage caused by radiation therapy for brain cancer in rats | dataFebruary 5th, 2015
Read All

Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research

By raymumme

The Hormel Institute has announced Rebecca Morris, leader of the Stem Cells and Cancer research section, has received a one-year, $100,000 grant from the Minnesota Chemoprevention Consortium to study bone marrow-derived cells as potential new targets for preventing skin cancer.

The consortium includes the University of Minnesota's Hormel Institute, Mayo Clinic, the U of M's Masonic Cancer Center and Hormel Foods Consortium. The consortium goes by the moniker "MC^2."

An online service is needed to view this article in its entirety. You need an online service to view this article in its entirety.

Need an account? Create one now.

kAmQ%96 |r/a C6D62C49 C6=2E6D E@ 2?@E96C AC@;64E =65 3J sC] |@CC:D E92E 92D 366? ECJ:?8 E@ 56E6C>:?6 H96E96C 3@?6 >2CC@H56C:G65 46==D A=2J 2 C@=6 😕 3C62DE 42?46Cj E92E H@C< 92D 366? 7F?565 3J 5@?2E:@?D C2:D65 E9C@F89 pFDE:?VD 2??F2= V!2:?E E96 %@H? !:?6= x?DE:EFE6 AC6DD C6=62D6]k^Am

kAmw@C>6= x?DE:EFE6 H2D 7@F?565 😕 `hca 3J y2J r] w@C>6= 2D A2CE @7 E96 & @7 | 8C25F2E6 D49@@=]k^Am

kAmxE 92D 364@>6 2 =625:?8 42?46CAC6G6?E:@?[ @C 496>@AC6G6?E:@?[ C6D62C49 724:=:EJ[ H:E9 >F=E:A=6 6IA2?D:@? 2E :ED pFDE:? =@42E:@?[ g_` `eE9 pG6] }t] #6D62C49 DEF5:6D 92G6 AC@5F465 52E2 762EFC65 😕 >2;@C D4:6?E:7:4 ;@FC?2=D[ DF49 2D r2?46C !C6G6?E:@? #6D62C49[ r6== #6A@CED[ tq:@|65:4:?6[ ~?4@D4:6?46 2?5 }2EFC6]k^Am

kAm%96 AC@;64ED F?56CE2<6? 3J |@CC:D 2C6 4@?D:56C65 3J w@C>6= x?DE:EFE6 2D 2 DE6A E@H2C5 2AA=J:?8 7@C 255:E:@?2= >2;@C 7656C2= C6D62C49 8C2?5D[ E96 AC6DD C6=62D6 D2JD] k6>my677 w2?D6=k^6>mk^Am

More:
Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research

To Read More: Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research
categoriaSkin Stem Cells commentoComments Off on Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research | dataFebruary 2nd, 2015
Read All

Trial to test stem cells in MS patients

By Sykes24Tracey

TORONTO Two Canadian research centres are gearing up for a clinical trial to determine if a type of stem cell can help alleviate the symptoms of multiple sclerosis.

Researchers at the Ottawa Hospital and Winnipegs Health Sciences Centre will each recruit 20 MS patients for the trial that will test whether mesenchymal stem cells can reduce inflammation and even help repair damage already caused by the disease.

MS is thought to be an autoimmune disease that creates inflammation in the central nervous system, resulting in injury to myelin, the protective sheath that covers nerves. This damage can create a host of symptoms, leading to varying degrees of physical disability and cognitive impairment.

Mesenchymal stem cells, which are found in bone marrow, fat, skin tissue and umbilical cord blood, have the ability to modify the immune system and reduce inflammation, said neurologist Dr. Mark Freedman of the Ottawa Hospital Research Institute, who is leading the clinical trial.

Freedman said researchers want to determine if these stem cells can demonstrate anti-inflammatory properties in patients with MS.

But thats not why were doing it, he said of the study, called MESCAMS (MEsenchymal Stem cell therapy for CAnadian MS patients). We have lots of drugs that can control inflammation in multiple sclerosis thats what all the new medicines do.

The ultimate hope is that we will be able to exploit some of their other very important biological properties, which is to promote repair.

The two research centres are ready to begin enrolling patients for the trial, which has specific acceptance criteria. While most of those accepted will likely have the relapsing-remitting form of the disease, Freedman said some people with more severe primary- or secondary-progressive MS may also be eligible if they fit the criteria.

The study protocol can be accessed at http://www.clinicaltrials.gov/show/NCT02239393. It will later be posted on the website of the MS Society of Canada, which along with the Multiple Sclerosis Scientific Research Foundation has provided a $4.2-million grant for the study.

To conduct the trial, half the patients will be randomly assigned to receive their own mesenchymal stem cells within weeks of them being extracted from the bone marrow and grown in the lab; the remainder of the participants will instead be infused with a mock stem-cell solution, and wont receive their actual stem cells for about six months. The two groups will then be compared.

Here is the original post:
Trial to test stem cells in MS patients

To Read More: Trial to test stem cells in MS patients
categoriaSkin Stem Cells commentoComments Off on Trial to test stem cells in MS patients | dataJanuary 30th, 2015
Read All

Stem cell-grown hair could help those with hair loss

By NEVAGiles23

For the first time, researchers have been able to use pluripotent stem cells to generate cells that can grow new hair.

Hair growing on hairless mice thanks to induced pluripotent stem cells. Sanford-Burnham Medical Research Institute

It's been theorised for years, but now human stem cells have resulted in hair growth for the very first time.

"We have developed a method using human pluripotent stem cells to create new cells capable of initiating human hair growth. The method is a marked improvement over current methods that rely on transplanting existing hair follicles from one part of the head to another," said Alexey Terskikh, Ph.D., associate professor in the Development, Aging and Regeneration Program at Sanford-Burnham.

"Our stem cell method provides an unlimited source of cells from the patient for transplantation and isn't limited by the availability of existing hair follicles."

The process started with human pluripotent embryonic stem cells -- that is, stem cells that are capable of developing into any other cell -- which were then developed into neural crest cells. These are cells that can develop into a variety of cells on the head, including brain cells, cartilage, bone and muscle cells.

From the neural crest cell point, the team coaxed the cells to grow into dermal papillae cells, the cells that nourish the skin and regulate follicle growth and formation. When transplanted -- in the case of this study, into hairless mice -- these cells flourish.

Another part of the study examined whether the same result could be achieved using dermal papillae cells taken from the scalps of adult humans. Outside the body, living in culture, these cells are not suitable for hair transplants, since they lost their ability to induce follicle formation. The number of hairs their produced was insignificant.

"In adults, dermal papilla cells cannot be readily amplified outside of the body and they quickly lose their hair-inducing properties," said Terskikh. "We developed a protocol to drive human pluripotent stem cells to differentiate into dermal papilla cells and confirmed their ability to induce hair growth when transplanted into mice."

The researchers say that their research represents the first step towards a cell-based treatment for hair loss, which affects 40 million men and 21 million women in the United States.

Read more from the original source:
Stem cell-grown hair could help those with hair loss

To Read More: Stem cell-grown hair could help those with hair loss
categoriaSkin Stem Cells commentoComments Off on Stem cell-grown hair could help those with hair loss | dataJanuary 29th, 2015
Read All

Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea

By NEVAGiles23

A way to eradicate cancer stem cells, using the side-effects of commonly used antibiotics, has been discovered by a University of Manchester researcher following a conversation with his young daughter.

Professor Michael P. Lisanti, Director of the Breakthrough Breast Cancer Unit, led the research. He was inspired to look at the effects of antibiotics on the mitochondria of cancer stem cells by a conversation with his daughter Camilla about his work at the University's Institute of Cancer Sciences.

His new paper, published in Oncotarget, opens up the possibility of a treatment for cancer, which is highly effective and repurposes drugs which have been safely used for decades.

Mitochondria are the 'engine' parts of the cells and are the source of energy for the stem cells as they mutate and divide to cause tumours. Cancer stem cells are strongly associated with the growth and recurrence of all cancers and are especially difficult to eradicate with normal treatment, which also leads to tumours developing resistance to other types of therapy.

Professor Lisanti said: "I was having a conversation with Camilla about how to cure cancer and she asked why don't we just use antibiotics like we do for other illnesses. I knew that antibiotics can affect mitochondria and I've been doing a lot of work recently on how important they are to the growth of tumours, but this conversation helped me to make a direct link."

Professor Lisanti worked with colleagues from The Albert Einstein College of Medicine, New York and the Kimmel Cancer Centre, Philadelphia. The team used five types of antibiotics -- including one used to treat acne (doxycycline) -- on cell lines of eight different types of tumour and found that four of them eradicated the cancer stem cells in every test. This included glioblastoma, the most aggressive of brain tumours, as well as lung, prostate, ovarian, breast, pancreatic and skin cancer.

Mitochondria are believed to be descended from bacteria which joined with cells early on in the evolution of life. This is why some of the antibiotics which are used to destroy bacteria also affect mitochondria, though not to an extent which is dangerous to people. When they are present in stem cells, mitochondria provide energy for growth and, crucially, for division, and it is this process going wrong which leads to cancer.

In the lab, the antibiotics had no harmful effect on normal cells, and since they are already approved for use in humans, trials of new treatments should be simpler than with new drugs -- saving time and money.

Professor Lisanti said: "This research makes a strong case for opening new trials in humans for using antibiotics to fight cancer. Many of the drugs we used were extremely effective, there was little or no damage to normal cells and these antibiotics have been in use for decades and are already approved by the FDA for use in humans. However, of course, further studies are needed to validate their efficacy, especially in combination with more conventional therapies."

Dr Matthew Lam, Senior Research Officer at Breakthrough Breast Cancer, said: "The conclusions that the researchers have drawn, whilst just hypotheses at this stage, are certainly interesting. Antibiotics are cheap and readily available and if in time the link between their use and the eradication of cancer stem cells can be proved, this work may be the first step towards a new avenue for cancer treatment.

Visit link:
Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea

To Read More: Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea
categoriaSkin Stem Cells commentoComments Off on Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea | dataJanuary 29th, 2015
Read All

Schoolgirl comment points to antibiotics as new cancer treatments

By daniellenierenberg

Professor Michael P. Lisanti, Director of the Breakthrough Breast Cancer Unit, led the research. He was inspired to look at the effects of antibiotics on the mitochondria of cancer stem cells by a conversation with his daughter Camilla about his work at the University's Institute of Cancer Sciences.

His new paper, published in Oncotarget, opens up the possibility of a treatment for cancer, which is highly effective and repurposes drugs which have been safely used for decades.

Mitochondria are the 'engine' parts of the cells and are the source of energy for the stem cells as they mutate and divide to cause tumours. Cancer stem cells are strongly associated with the growth and recurrence of all cancers and are especially difficult to eradicate with normal treatment, which also leads to tumours developing resistance to other types of therapy.

Professor Lisanti said: "I was having a conversation with Camilla about how to cure cancer and she asked why don't we just use antibiotics like we do for other illnesses. I knew that antibiotics can affect mitochondria and I've been doing a lot of work recently on how important they are to the growth of tumours, but this conversation helped me to make a direct link."

Professor Lisanti worked with colleagues from The Albert Einstein College of Medicine, New York and the Kimmel Cancer Centre, Philadelphia. The team used five types of antibiotics - including one used to treat acne (doxycycline) - on cell lines of eight different types of tumour and found that four of them eradicated the cancer stem cells in every test. This included glioblastoma, the most aggressive of brain tumours, as well as lung, prostate, ovarian, breast, pancreatic and skin cancer.

Mitochondria are believed to be descended from bacteria which joined with cells early on in the evolution of life. This is why some of the antibiotics which are used to destroy bacteria also affect mitochondria, though not to an extent which is dangerous to people. When they are present in stem cells, mitochondria provide energy for growth and, crucially, for division, and it is this process going wrong which leads to cancer.

In the lab, the antibiotics had no harmful effect on normal cells, and since they are already approved for use in humans, trials of new treatments should be simpler than with new drugs - saving time and money.

Professor Lisanti said: "This research makes a strong case for opening new trials in humans for using antibiotics to fight cancer. Many of the drugs we used were extremely effective, there was little or no damage to normal cells and these antibiotics have been in use for decades and are already approved by the FDA for use in humans. However, of course, further studies are needed to validate their efficacy, especially in combination with more conventional therapies."

Dr Matthew Lam, Senior Research Officer at Breakthrough Breast Cancer, said: "The conclusions that the researchers have drawn, whilst just hypotheses at this stage, are certainly interesting. Antibiotics are cheap and readily available and if in time the link between their use and the eradication of cancer stem cells can be proved, this work may be the first step towards a new avenue for cancer treatment.

"This is a perfect example of why it is so important to continue to invest in scientific research. Sometimes there are answers to some of the biggest questions right in front of us but without ongoing commitment to the search for these answers, we'd never find them."

Originally posted here:
Schoolgirl comment points to antibiotics as new cancer treatments

To Read More: Schoolgirl comment points to antibiotics as new cancer treatments
categoriaSkin Stem Cells commentoComments Off on Schoolgirl comment points to antibiotics as new cancer treatments | dataJanuary 29th, 2015
Read All

Researchers advance the science behind treating patients with corneal blindness

By NEVAGiles23

LOS ANGELES (Jan. 27, 2015) - Researchers in the Cedars-Sinai Board of Governors Regenerative Medicine Institute have devised a novel way to generate transplantable corneal stem cells that may eventually benefit patients suffering from life-altering forms of blindness.

Scientists used human corneal cells to generate pluripotent stem cells that have a capacity to become virtually any body cell. Then, putting these cells on natural scaffolds, researcher's facilitated differentiation of these stem cells back to corneal cells.

"Our research shows that cells derived from corneal stem cells are attractive candidates for generating corneal cells in the laboratory," said Alexander Ljubimov, PhD, director of the Eye Program at the Board of Governors Regenerative Medicine Institute and principal investigator on this research study.

This research, published in the journal Stem Cells Translational Medicine, marks an important first step toward creating a bank of corneal stem cells that may potentially benefit patients who suffer from many forms of corneal blindness. The group is now working to optimize the process with National Institutes of Health funding.

Corneal deficiencies may have genetic or inflammatory roots or be caused by injuries, like burns to the skin in occupational accidents. They result in damage or death of stem cells that renew the outermost part of the cornea. If left untreated, they often cause compromised vision or blindness.

Over 150,000 Americans and more than 3 million individuals worldwide are affected by corneal blindness.

###

Study collaborators include Clive Svendsen, PhD, director of the Board of Governors Regenerative Medicine Institute and professor of biomedical sciences and medicine; Dhruv Sareen, PhD, director of the Induced Pluripotent Stem Cell Core and assistant professor of biomedical sciences; Mehrnoosh Saghizadeh, PhD, assistant professor of biomedical sciences; Yaron Rabinowitz, MD, director of the Division of Ophthalmology Research; and Vincent A. Funari, PhD, director of the Genomics Core and assistant professor of pediatrics.

Citation: Sareen D, Saghizadeh M, Ornelas L, et al. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med. 2014; 3(9):1002-12.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read the rest here:
Researchers advance the science behind treating patients with corneal blindness

To Read More: Researchers advance the science behind treating patients with corneal blindness
categoriaSkin Stem Cells commentoComments Off on Researchers advance the science behind treating patients with corneal blindness | dataJanuary 27th, 2015
Read All

A cure for hair loss? Scientists grow hair on rats using stem cells – and they say the treatment could work on humans …

By Dr. Matthew Watson

Achievementmade after coaxing stem cells to become papilla cells Dermal papilla is a special type of cell which is vital to follicle formation It could provide an unlimited source of cells for hair transplant procedures

By Ellie Zolfagharifard For Dailymail.com

Published: 14:15 EST, 27 January 2015 | Updated: 16:16 EST, 27 January 2015

52 shares

33

View comments

Finding a cure for baldness has become the holy grail for scientists the world over.

Now researchers in Orlando have come a step closer to a natural treatment after successfully growing new hair using human stem cells.

The breakthrough was achieved after coaxing stem cells to become dermal papilla cells a special type of cell which is vital to follicle formation.

Researchers in Orlando have come a step closer to a natural treatment for baldness after successfully growing new hair using human stem cells. Pictured is the hair growth on the leg of an adult rat

Continued here:
A cure for hair loss? Scientists grow hair on rats using stem cells - and they say the treatment could work on humans ...

To Read More: A cure for hair loss? Scientists grow hair on rats using stem cells – and they say the treatment could work on humans …
categoriaSkin Stem Cells commentoComments Off on A cure for hair loss? Scientists grow hair on rats using stem cells – and they say the treatment could work on humans … | dataJanuary 27th, 2015
Read All

Sanford-Burnham's hair-raising study

By LizaAVILA

Hair growing from human dermal papillae cells, which were cultivated from pluripotent stem cells.

Cells needed to grow hair have been produced from human stem cells, according to a study led by scientists at the Sanford-Burnham Medical Research Institute in La Jolla. The first-time feat could uncork a bottleneck in developing hair-replacement therapies, the scientists say.

Called the dermal papillae, these cells regulate hair follicle formation and growth cycles. They rapidly lose their hair-generating ability after being grown outside the body, limiting their use for hair regrowth. Another cell type derived from stem cells effectively substitutes for the dermal papillae, the scientists found.

These artificial dermal papillae cells were grown from pluripotent stem cells, which can be derived either from human embryos or a patient's own skin cells. The latter, called induced pluripotent stem cells, are of the most interest, said lead researcher Alexey V. Terskikh. Patients can donate their own IPS cells, which can be grown into the replacement dermal papillae in "unlimited" quantities," he said.

Alexey V. Terskikh, Principal Investigator, Sanford-Burnham Medical Research Institute / Sanford-Burnham Medical Research Institute

Sanford-Burnham is now looking for business partners to commercialize the discovery. More information can be found at: utsandiego.com/sbhair.

The study was published last week in the journal PLOS One. Terskikh is the study's senior author. Ksenia Gnedeva is first author.

In the lab, the human embryonic stem cells were first turned into neural crest cells, which produce brain cells, cartilage, bone, pigment and muscle cells. The cells were then converted into the artificial dermal papillae cells. These human cells induced hair formation, when transplanted along with mouse skin epidermal cells into immune-deficient and nearly hairless "nude mice".

Because nude mice were created from albino ancestors, the transplanted skin cells were chosen from dark-haired mice. This let the scientists distinguish hairs grown by the mice from cells grown by the transplanted cells.

Transplanted epidermal cells alone caused "minimal" growth, the study said.

Continue reading here:
Sanford-Burnham's hair-raising study

To Read More: Sanford-Burnham's hair-raising study
categoriaSkin Stem Cells commentoComments Off on Sanford-Burnham's hair-raising study | dataJanuary 27th, 2015
Read All

Page 78«..1020..77787980..90100..»


Copyright :: 2025