Scientists have created 'pain in a dish'
By Dr. Matthew Watson
Scientists have created pain in a dish by converting skin cells into sensitive neurons.
The laboratory-generated nerve cells respond to a range of different kinds of pain stimulation, including physical injury, chronic inflammation, and cancer chemotherapy.
In future they could be used to investigate the origins of pain and develop better pain-relieving drugs.
The work followed years of unsuccessful attempts to produce nerve cells from embryonic stem cells, immature blank slate cells with the potential to become any tissue in the body.
A turning point came with the development of technology that allowed ordinary skin cells to be re-programmed into induced stem cells.
A team led by Dr Clifford Woolf at Harvard Medical School used a cocktail of transcription factors proteins that control the activity of genes to transform mouse and human skin cells directly into pain-sensing neurons.
The researchers, whose findings are reported in the journal Nature Neuroscience, were able to model pain hypersensitivity experienced by patients who donated skin cells to the study.
Originally posted here:
Scientists have created 'pain in a dish'
Nail stem cells prove more versatile than press ons
By JoanneRUSSELL25
PUBLIC RELEASE DATE:
20-Nov-2014
Contact: Cristy Lytal lytal@med.usc.edu 323-442-2172 University of Southern California - Health Sciences
There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the reasons why.
A team of USC Stem Cell researchers led by principal investigator Krzysztof Kobielak and co-first authors Yvonne Leung and Eve Kandyba has identified a new population of nail stem cells, which have the ability to either self-renew or undergo specialization or differentiation into multiple tissues.
To find these elusive stem cells, the team used a sophisticated system to attach fluorescent proteins and other visible "labels" to mouse nail cells. Many of these cells repeatedly divided, diluting the fluorescence and labels among their increasingly dim progeny. However, a few cells located in the soft tissue attached to the base of the nail retained strong fluorescence and labels because they either did not divide or divided slowly -- a known property of many stem cells.
The researchers then discovered that these slow-dividing stem cells have the flexibility to perform dual roles. Under normal circumstances, the stem cells contribute to the growth of both the nails and the adjacent skin. However, if the nail is injured or lost, a protein called "Bone Morphogenic Protein," or BMP, signals to the stem cells to shift their function exclusively to nail repair.
The researchers are now wondering whether or not the right signals or environmental cues could induce these nail stem cells to generate additional types of tissue -- potentially aiding in the repair of everything from nail and finger defects to severe skin injuries and amputations.
"That was very surprising discovery, since the dual characteristic of these nail stem cells to regenerate both the nail and skin under certain physiological conditions is quite unique and different from other skin stem cells, such as those of the hair follicle or sweat gland," said Kobielak.
###
See more here:
Nail stem cells prove more versatile than press ons
Mount Sinai researchers awarded grant to find new stem cell therapies for vision recovery
By LizaAVILA
PUBLIC RELEASE DATE:
20-Nov-2014
Contact: Jessica Mikulski jmikulski@nyee.edu 212-979-4274 The Mount Sinai Hospital / Mount Sinai School of Medicine @mountsinainyc
The National Eye Institute (NEI), a division of the National Institutes of Health, has awarded researchers at the Icahn School of Medicine at Mount Sinai a five-year grant totaling $1 million that will support an effort to re-create a patients' ocular stem cells and restore vision in those blinded by corneal disease.
About six million people worldwide have been blinded by burns, trauma, infection, genetic diseases, and chronic inflammation that result in corneal stem cell death and corneal scarring.
There are currently no treatments for related vision loss that are effective over the long term. Corneal stem cell transplantation is an option in the short term, but availability of donor corneas is limited, and patients must take medications that suppress their immune systems for the rest of their lives to prevent rejection of the transplanted tissue.
A newer proposed treatment option is the replacement of corneal stem cells to restore vision. The grant from the NEI will fund Mount Sinai research to re-create a patient's own stem cells and restore vision in those blinded by corneal disease. Technological advances in recent years have enabled researchers to take mature cells, in this case eyelid or oral skin cells, and coax them backward along the development pathways to become stem cells again. These eye-specific stem cells would then be redirected down pathways that become needed replacements for damaged cells in the cornea, in theory restoring vision.
"Our findings will allow the creation of transplantable eye tissue that can restore the ocular surface," said Albert Y. Wu, MD, PhD, Assistant Professor, Department of Ophthalmology at the Icahn School of Medicine at Mount Sinai and principle investigator for the grant-funded effort. "In the future, we will be able to re-create a patient's own corneal stem cells to restore vision after being blind," added Dr. Wu, also Director of the Ophthalmic Plastic and Reconstructive Surgery, Stem Cell and Regenerative Medicine Laboratory in the Department of Ophthalmology and a member of the Black Family Stem Cell Institute at Icahn School of Medicine. "Since the stem cells are their own, patient's will not require immunosuppressive drugs, which would greatly improve their quality of life."
Specifically, the grant will support efforts to discover new stem cell therapies for ocular surface disease and make regenerative medicine a reality for people who have lost their vision. The research team will investigate the most viable stem cell sources, seek to create ocular stem cells from eyelid or oral skin cells, explore the molecular pathways involved in ocular and orbital development, and develop cutting-edge biomaterials to engraft a patient's own stem cells and restore vision.
###
See the article here:
Mount Sinai researchers awarded grant to find new stem cell therapies for vision recovery
Health Beat: Stem cells to repair broken chromosomes
By JoanneRUSSELL25
CLEVELAND -
Our bodies contain 23 pairs of them, 46 total, but if chromosomes are damaged, they can cause birth defects, disabilities, growth problems, even death.
Case Western Reserve University scientist Anthony Wynshaw-Boris is studying how to repair damaged chromosomes with the help of a recent discovery. He's taking skin cells and reprogramming them to work like embryonic stem cells, which can grow into different cell types.
"You're taking adult or a child's skin cells. You're not causing any loss of an embryo, and you're taking those skin cells to make a stem cell," said Wynshaw-Boris.
Scientists studied patients with a specific defective chromosome that was shaped like a ring. They took the patients' skin cells and reprogrammed them into embryonic-like cells in the lab. They found this process caused the damaged "ring" chromosomes to be replaced by normal chromosomes.
"It at least raises the possibility that ring chromosomes will be lost in stem cells," said Wynshaw-Boris.
While this research was only conducted in lab cultures on the rare ring-shaped chromosomes, scientists hope it will work in patients with common abnormalities like Down syndrome.
"What we're hoping happens is we might be able to use, modify, what we did, to rescue cell lines from any patient that has any severe chromosome defect," Wynshaw-Boris explained.
It's research that could one day repair faulty chromosomes and stop genetic diseases in their tracks.
The reprogramming technique that transforms skin cells to stem cells was so groundbreaking that a Japanese physician won the Nobel Prize in medicine in 2012 for developing it.
Originally posted here:
Health Beat: Stem cells to repair broken chromosomes
Mount Sinai Researchers Awarded $1 Million Grant to Find New Stem Cell Therapies for Vision Recovery
By raymumme
Contact Information
Available for logged-in reporters only
Newswise NEW YORK November 20, 2014 The National Eye Institute (NEI), a division of the National Institutes of Health, has awarded researchers at the Icahn School of Medicine at Mount Sinai a five-year grant that will support an effort to re-create a patients ocular stem cells and restore vision in those blinded by corneal disease.
About six million people worldwide have been blinded by burns, trauma, infection, genetic diseases, and chronic inflammation that result in corneal stem cell death and corneal scarring. There are currently no treatments for related vision loss that are effective over the long term. Corneal stem cell transplantation is an option in the short term, but availability of donor corneas is limited, and patients must take medications that suppress their immune systems for the rest of their lives to prevent rejection of the transplanted tissue.
A newer proposed treatment option is the replacement of corneal stem cells to restore vision. The grant from the NEI will fund Mount Sinai research to re-create a patients own stem cells and restore vision in those blinded by corneal disease. Technological advances in recent years have enabled researchers to take mature cells, in this case eyelid or oral skin cells, and coax them backward along the development pathways to become stem cells again. These eye-specific stem cells would then be redirected down pathways that become needed replacements for damaged cells in the cornea, in theory restoring vision.
Our findings will allow the creation of transplantable eye tissue that can restore the ocular surface, said Albert Y. Wu, MD, PhD, Assistant Professor, Department of Ophthalmology at the Icahn School of Medicine at Mount Sinai and principle investigator for the grant-funded effort. In the future, we will be able to re-create a patients own corneal stem cells to restore vision after being blind, added Dr. Wu, also Director of the Ophthalmic Plastic and Reconstructive Surgery, Stem Cell and Regenerative Medicine Laboratory in the Department of Ophthalmology and a member of the Black Family Stem Cell Institute at Icahn School of Medicine. Since the stem cells are their own, patients will not require immunosuppressive drugs, which would greatly improve their quality of life.
Specifically, the grant will support efforts to discover new stem cell therapies for ocular surface disease and make regenerative medicine a reality for people who have lost their vision. The research team will investigate the most viable stem cell sources, seek to create ocular stem cells from eyelid or oral skin cells, explore the molecular pathways involved in ocular and orbital development, and develop cutting-edge biomaterials to engraft a patients own stem cells and restore vision.
Other investigators from Mount Sinai include Ihor Lemischka, PhD, Director, Black Family Stem Cell Institute and J. Mario Wolosin, PhD, Professor of Ophthalmology. The research is supported by NEI grant EY023997.
###
View post:
Mount Sinai Researchers Awarded $1 Million Grant to Find New Stem Cell Therapies for Vision Recovery
Researchers Convert Skin Cells To Replace HD-Damaged Brain Cells
By JoanneRUSSELL25
By Estel Grace Masangkay
A team of researchers at the Washington University School of Medicine in St. Louis reported that they have discovered a way to directly convert human skin cells into a type of brain cell that has been damaged by Huntingtons disease.
The team chose to produce a certain type of brain cell known as medium spiny neurons, which play a key part in controlling movement. Medium spiny neurons are the cells most affected by Huntingtons disease, a neurodegenerative disorder characterized by involuntary muscle movements and cognitive decline. The disease symptoms typically begin showing in mid-adulthood, and they steadily worsen over time.
For their experiment, the scientists used adult human skin cells instead of the typical mouse cells or embryonic human cells. The team placed the skin cells in an environment similar to the environment of brain cells and then exposed them to two small molecules of RNA named miR-9 and miR-124. In their past research, the scientists have discovered that these microRNAs turn skin cells into a mix of various neuron types. Dr. Yoo and his colleagues fine-tuned the chemical signals by further exposing the cells to transcription factors they knew are found in the part of the brain where medium spiny neurons thrive. Results show that the converted cells survived for at least six months after they were injected into mices brains. The cells also behaved in a similar fashion to native brain cells.
Not only did these transplanted cells survive in the mouse brain, they showed functional properties similar to those of native cells. These cells are known to extend projections into certain brain regions. And we found the human transplanted cells also connected to these distant targets in the mouse brain. That's a landmark point about this paper, said Dr. Andrew S. Yoo, assistant professor of developmental biology in Washington University School of Medicine and senior author of the study.
The new process differs from other techniques in that it does not need to undergo a stem cell phase, thereby avoiding production of multiple cell types. The scientists added that using adult human cells offers the opportunity to use the patients own cells in future procedures, which would radically minimize the risk of rejection by the patients immune system. Dr. Yoos team is now preparing to test skin cells taken from patients with Huntingtons disease using the approach. They also intend to inject healthy reprogrammed human cells into mice models of Huntingtons disease to check whether these have any effect on the diseases symptoms.
The researchers work was published in the previous months issue of the journal Neuron.
Read the original:
Researchers Convert Skin Cells To Replace HD-Damaged Brain Cells
Fat and Bone Marrow-Derived Stem Cells Combo Shows Promise in Preventing Transplant Rejection
By raymumme
Durham, NC (PRWEB) November 20, 2014
With more soldiers returning from combat suffering devastating injuries, doctors are turning to a reconstructive surgery that uses tissue transplantation along with immuno-suppression therapy. This approach has had encouraging results; however, rejection of transplanted tissue from an unmatched donor remains a critical complication. A new study found in the latest issue of STEM CELLS Translational Medicine reports that researchers may have found a way around that.
We demonstrated in mice that a single infusion of adipose-derived stromal cells (ASC) which are stem cells taken from fat in a minimally invasive procedure from an unmatched donor combined with an extremely low dose of bone marrow cells resulted in stable long-term tolerance of the skin graft without undo consequences such as graft versus host disease, said Thomas Davis, Ph.D., a contractor from the Henry M. Jackson Foundation who is working at the Naval Medical Research Centers Regenerative Medicine Department. Dr. Davis is lead author of the study.
He added, As we move forward, we are cautiously optimistic, appreciating that the transition from these laboratory models to proof-of-principle preclinical studies is challenging and not straightforward. If successful, the technology has diverse therapeutic applications in clinical transplantation in both military and civilian settings.
The research team wanted to try using ASCs because these cells have proven to be more potent than bone marrow and cord-blood derived stem cells when it comes to inhibiting the bodys rejection of transplantations from an unmatched donor. They conducted the study by doing skin grafts in mice. One group of grafted mice received no stem cell transfusions; one group received human-derived ASCs after the graft occurred; and another group received a combination of human ASCs and stem cells harvested from the mouses own bone marrow, also after placement of the graft.
More than 200 days later, the combination of human ASC and limited numbers of blood marrow stem cells effectively prevented rejection, with no evidence of graft versus host disease, Dr. Davis reported.
Navy Capt. Eric A. Elster, M.D., professor and chair of the surgery department at Uniformed Services University of the Health Sciences, helped lead the study. ASC constitutively produced high levels of anti-inflammatory/immunoregulatory factors, he said. While further work is needed to validate this approach in other laboratory models before clinical trials can begin, the ability to use ASC, which are non-donor specific and clinically feasible, to induce tolerance opens a new horizon in transplantation.
The implications of this research are broad, said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. If these findings are duplicated in additional models and in human trials, there is potential to apply this strategy to many areas of transplantation.
###
This article, Adipose-derived Stromal Cells Promote Allograft Tolerance Induction, and more can be accessed at http://www.stemcellsTM.com.
Read more:
Fat and Bone Marrow-Derived Stem Cells Combo Shows Promise in Preventing Transplant Rejection
NR Skin Launches Anti-Aging Product Line
By LizaAVILA
Woodland Hills, CA (PRWEB) November 19, 2014
Longtime skincare industry professional Nancy Ryan announces the launch of NR Skin, featuring a line of efficacious products that deliver various skin rejuvenation and age repair benefits for all skin types.
According to Dr. Lisa Benest, Board-certified dermatologist, Burbank, CA, the NR Skin line offers a range of daily skincare and skin rejuvenation products distinguished by high concentrations of powerhouse ingredients that are known for their anti-aging properties, such as antioxidant vitamins and minerals, plant stem cells, lipids, as well as peptides. Dr. Benest notes that NR Skin products offer pure, clean ingredients that feel great on the skin and deliver visible results.
Backed by more than 20 years of skincare industry experience and expertise, NR Skin Founder and CEO Nancy Ryan comments, the creation of NR Skin is a culmination of my lifes work and lifelong passion for excellence in skincare. Im thrilled to help people improve their quality of life by achieving healthy, beautiful skin through such pure and effective products.
Before establishing NR Skin in 2014, Ms. Ryan led Pro-Med Consulting, Inc. for 21 years, which was built upon the core mission of giving dermatologists, plastic surgeons and medical spas a viable way to build their own brand equity and expand their businesses with private label, medical-grade skin care products. Over the years, she developed numerous relationships with leading physicians, whose businesses grew significantly by offering patients her high-performance products that bore each doctors name.
Prior to this successful venture, she worked for two pioneering skin care companies, Ortho Dermatologics, (makers of Retin-A Micro/Renova) and NeoStrata, where she had the opportunity to learn about skin care chemistry and the most effective ways to treat various skin conditions with specific product ingredients.
The NR Skin product line consists of: the following clinically tested products: Age-defying Peptide Cream; Citrus Stem Cell Fusion Cream, Neuro-Peptide Serum. Retinol Complex Treatment Super Antioxidant Cream, Super C Serum Treatment, Comfort Cleanser, Lash Teez Eyelash Growth Serum and Sunscreen Lotion SPF30.
To view products and recommended regimens, visit: http://www.nrskin.com Follow us on Facebook: http://www.facebook.com/nrskin and on Twitter: @nrskincompany
Read more from the original source:
NR Skin Launches Anti-Aging Product Line
Anti Aging Stem Cell Serums Renew Skin – Life Line Skin Care
By NEVAGiles23
Stem cells are the building blocks of your skin. They have a unique ability to replace damaged and diseased cells. As they divide, they can proliferate for long periods into millions of new skin cells.
As we age, our stem cells lose their potency. Your skin's ability to repair itself just isn't what it used to be. The result can be fine lines, wrinkles, age spots, and sagging skin. But non-embryonic stem cells -- the same stem cells active early in life -- are highly potent. Lifeline anti-aging stem cell serums tap into the potency of these stem cells to help renew your skin.
Scientists at Lifeline Skin Care discovered that human non-embryonic stem cell extracts can help renew skin -- by replacing old cells with healthy new ones. These stem cell extracts help stimulate your own skin's abilities to repair itself. And Lifeline anti-aging stem cell serums were born.
Where Stem Cells in Anti Aging Products Come From
The first types of human stem cells to be studied by researchers were embryonic stem cells, donated from in vitro fertilization labs. But because creating embryonic stem cells involves the destruction of a fertilized human embryo, many people have ethical concerns about the use of such cells.
Lifeline Skin Care (through its parent company, ISCO) is the first company in the world to discover how to create human non-embryonic stem cells -- and how to take extracts from them. As a result, you need never be concerned that a viable human embryo was damaged or destroyed to create these anti-aging products.
The non-embryonic stem cells in Lifeline stem cell serums are derived from unfertilized human oocytes (eggs) which are donated to ISCO from in vitro fertilization labs and clinics.
Lifeline Anti Aging Stem Cell Serums are Based in Science
Lifeline Skin Care's exclusive anti-aging products are a combination of several discoveries and unique high-technology, patent-pending formulations.
Read this article:
Anti Aging Stem Cell Serums Renew Skin - Life Line Skin Care
What is a Stem Cell Support Serum? | RG Cell | Agerite Solutions – Video
By Sykes24Tracey
What is a Stem Cell Support Serum? | RG Cell | Agerite Solutions
What is a Stem Cell Support Serum? Paloma: And I suppose my next question would be what is a stem cell support serum? Dean: Well, in skin care, serums are co...
By: BusinessTrendsTV
More here:
What is a Stem Cell Support Serum? | RG Cell | Agerite Solutions - Video
The Binding of Isaac: Rebirth Unlimited Fart Sound Glitch – Video
By JoanneRUSSELL25
The Binding of Isaac: Rebirth Unlimited Fart Sound Glitch
I played the FART SNDS seed and a bug happened, ED, or tyrone... Tyrone is a black name but he is Hispanic but appears to be white skin... Stem Cells The Binding of Isaac: Rebirth https://store.so...
By: djsponge10
See more here:
The Binding of Isaac: Rebirth Unlimited Fart Sound Glitch - Video
A mature approach
By raymumme
AP Glowing: Model Kate Moss
For someone who has mature skin, it is annoying watching 20-somethings with blemish-less complexions worrying about wrinkles and crowfeet. No one seems to be concerned about those over 40 who, for the better part of their 20s and 30s, were busy cooking, cleaning and washing up instead of pandering to their skin.
So when Page 3 Salon, in Race Course, issued an invitation to try its new award-winning skin therapy for mature skin all the way from Spain, one jumped at it. It is supposed to be the same treatment celebrities such as Elton John, Penelope Cruz, Jemima Khan and Kate Moss use to keep their skin glowing and young.
If you have mature skin, this treatment is the one for you, says a spokesperson for the brand Skeyndor (meaning golden skin), who was in Coimbatore recently to promote the product and train the beauty therapists at Page 3 the correct way to use the products. Skeyndor has over 200 products to suit other skin types, too. R&D is the companys strength and it is also one of the first in the cosmetic industry to use nano-technology for skin care.
She says, comfortingly, that my skin is still not too bad and sits me down to explain what I can do to keep it from aging too fast.
The special facial that is recommended for me uses products that are gentle on the skin and one particular treatment that has the same effect as Botox. And, without being invasive at all. Before the facial commences a photograph is taken focussing on the problem areas of the skin. And once the hour-plus, soothing treatment is done (so soothing that I fall asleep), it is time for another photograph. And strangely enough, even the sceptic in me has to admit there is a discernible difference in skin texture. It felt more elastic and from the photographs I could tell there were fewer few lines.
The beautician recommends a series of facials at regular intervals (depending on the condition of the skin and the amount of repair it needs). The salon will make a schedule for you and remind you when it is time to come for a treatment. The salon also provides you with tips on home care. Page 3 offers two high-end special facials. Both sound tempting: One is called Revisit your youth and the other Turn Back Time.
Anyone who is 35 plus can go for the Turn Back Time facial, says Shan of Page 3. This treatment is supposed to arrest ageing and promote the production of epidermal stem cells. It holds off the fine lines, wrinkles and sagging. Revisit Your Youth on the other hand is corrective. It promises to reduce the crows feet and lines that have already appeared on your face. The products in this line work like Botox without being invasive, says Shan.
The products are available at the salon. For appointments and details call:0422-4393333/4223331
What is mature skin?
Read the original here:
A mature approach
Stem cells to repair broken chromosomes
By NEVAGiles23
(Ivanhoe Newswire) CLEVELAND, Ohio -- In 1990 the Human Genome Project started. It was a massive scientific undertaking that aimed to identify and map out the body's complete set of DNA. This research has paved the way for new genetic discoveries; one of those has allowed scientists to study how to fix bad chromosomes.
Our bodies contain 23 pairs of them, 46 total. But if chromosomes are damaged, they can cause birth defects, disabilities, growth problems, even death.
Case Western scientist Anthony Wynshaw-Boris is studying how to repair damaged chromosomes with the help of a recent discovery. He's taking skin cells and reprogramming them to work like embryonic stem cells, which can grow into different cell types.
You're taking adult or a child's skin cells. You're not causing any loss of an embryo, and you're taking those skin cells to make a stem cell. Anthony Wynshaw-Boris, M.D., PhD, of Case Western Reserve University, School of Medicine told Ivanhoe.
Scientists studied patients with a specific defective chromosome that was shaped like a ring. They took the patients' skin cells and reprogrammed them into embryonic-like cells in the lab. They found this process caused the damaged ring chromosomes to be replaced by normal chromosomes.
It at least raises the possibility that ring chromosomes will be lost in stem cells, said Dr. Wynshaw-Boris.
While this research was only conducted in lab cultures on the rare ring-shaped chromosomes, scientists hope it will work in patients with common abnormalities like Down syndrome.
What we're hoping happens is we might be able to use, modify, what we did, to rescue cell lines from any patient that has any severe chromosome defect, Dr. Wynshaw-Boris explained.
It's research that could one day repair faulty chromosomes and stop genetic diseases in their tracks.
The reprogramming technique that transforms skin cells to stem cells was so ground-breaking that a Japanese physician won the Nobel Prize in medicine in 2012 for developing it.
Original post:
Stem cells to repair broken chromosomes
SCNT derived cells, IPS cells are similar, study finds
By daniellenierenberg
A team led by New York Stem Cell Foundation (NYSCF) Research Institute scientists conducted a study comparing induced pluripotent stem (iPS) cells and embryonic stem cells created using somatic cell nuclear transfer (SCNT). The scientists found that the cells derived from these two methods resulted in cells with highly similar gene expression and DNA methylation patterns. Both methods also resulted in stem cells with similar amounts of DNA mutations, showing that the process of turning an adult cell into a stem cell introduces mutations independent of the specific method used. This suggests that both methods of producing stem cells need to be further investigated before determining their suitability for the development of new therapies for chronic diseases.
The NYSCF Research Institute is one of the only laboratories in the world that currently pursues all forms of stem cell research including SCNT and iPS cell techniques for creating stem cells. The lack of laboratories attempting SCNT research was one of the reasons that the NYSCF Research Institute was established in 2006.
"We do not yet know which technique will allow scientists to create the best cells for new cellular therapies," said Susan L. Solomon, NYSCF CEO and co-founder. "It is critical to pursue both SCNT and iPS cell techniques in order to accelerate research and bring new treatments to patients."
While both techniques result in pluripotent stem cells, or cells that can become any type of cell in the body, the two processes are different. SCNT consists of replacing the nucleus of a human egg cell or oocyte with the nucleus of an adult cell, resulting in human embryonic stem cells with the genetic material of the adult cell. In contrast, scientists create iPS cells by expressing a few key genes in adult cells, like a skin or blood cell, causing the cells to revert to an embryonic-like state. These differences in methods could, in principle, result in cells with different properties. Advances made earlier this year by NYSCF Research Institute scientists that showed that human embryonic stem cells could be derived using SCNT revived that debate.
"Our work shows that we now have two methods for the generation of a patient's personal stem cells, both with great potential for the development of treatments of chronic diseases. Our work will also be welcome news for the many scientists performing basic research on iPS cells. It shows that they are likely working with cells that are very similar to human embryonic stem cells, at least with regard to gene expression and DNA methylation. How the finding of mutations might affect clinical use of stem cells generated from adult cells is the subject of an ongoing debate," said Dr. Dieter Egli, NYSCF Senior Research Fellow, NYSCF -- Robertson Investigator, Assistant Professor in Pediatrics & Molecular Genetics at Columbia University, and senior author on the paper.
The study, published today in Cell Stem Cell, compared cell lines derived from the same sources using the two differing techniques, specifically contrasting the frequency of genetic coding mutations seen and measuring how closely the stem cells matched the embryonic state through the analysis of DNA methylation and of gene expression patterns. The scientists showed that both methods resulted in cell types that were similar with regard to gene expression and DNA methylation patterns. This suggested that both methods were effective in turning a differentiated cell into a stem cell.
The scientists also showed that cells derived using both SCNT and iPS techniques showed similar numbers of genetic coding mutations, implying that neither technique is superior in that regard. A similar number of changes in DNA methylation at imprinted genes (genes that are methylated differentially at the maternal versus the paternal allele) were also found. It is important to note that both types of techniques led to cells that had more of these aberrations than embryonic stem cells derived from an unfertilized human oocyte, or than embryonic stem cells derived from leftover IVF embryos. These findings suggest that a small number of defects are inherent to the generation of stem cells from adult differentiated cells and occur regardless of the method used.
Story Source:
The above story is based on materials provided by New York Stem Cell Foundation. Note: Materials may be edited for content and length.
See the original post here:
SCNT derived cells, IPS cells are similar, study finds
Scientists find that SCNT derived cells and IPS cells are similar
By JoanneRUSSELL25
PUBLIC RELEASE DATE:
6-Nov-2014
Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation @nyscf
New York, NY (November 6, 2014) - A team led by New York Stem Cell Foundation (NYSCF) Research Institute scientists conducted a study comparing induced pluripotent stem (iPS) cells and embryonic stem cells created using somatic cell nuclear transfer (SCNT). The scientists found that the cells derived from these two methods resulted in cells with highly similar gene expression and DNA methylation patterns. Both methods also resulted in stem cells with similar amounts of DNA mutations, showing that the process of turning an adult cell into a stem cell introduces mutations independent of the specific method used. This suggests that both methods of producing stem cells need to be further investigated before determining their suitability for the development of new therapies for chronic diseases.
The NYSCF Research Institute is one of the only laboratories in the world that currently pursues all forms of stem cell research including SCNT and iPS cell techniques for creating stem cells. The lack of laboratories attempting SCNT research was one of the reasons that the NYSCF Research Institute was established in 2006.
"We do not yet know which technique will allow scientists to create the best cells for new cellular therapies," said Susan L. Solomon, NYSCF CEO and co-founder. "It is critical to pursue both SCNT and iPS cell techniques in order to accelerate research and bring new treatments to patients."
While both techniques result in pluripotent stem cells, or cells that can become any type of cell in the body, the two processes are different. SCNT consists of replacing the nucleus of a human egg cell or oocyte with the nucleus of an adult cell, resulting in human embryonic stem cells with the genetic material of the adult cell. In contrast, scientists create iPS cells by expressing a few key genes in adult cells, like a skin or blood cell, causing the cells to revert to an embryonic-like state. These differences in methods could, in principle, result in cells with different properties. Advances made earlier this year by NYSCF Research Institute scientists that showed that human embryonic stem cells could be derived using SCNT revived that debate.
"Our work shows that we now have two methods for the generation of a patient's personal stem cells, both with great potential for the development of treatments of chronic diseases. Our work will also be welcome news for the many scientists performing basic research on iPS cells. It shows that they are likely working with cells that are very similar to human embryonic stem cells, at least with regard to gene expression and DNA methylation. How the finding of mutations might affect clinical use of stem cells generated from adult cells is the subject of an ongoing debate," said Dr. Dieter Egli, NYSCF Senior Research Fellow, NYSCF - Robertson Investigator, Assistant Professor in Pediatrics & Molecular Genetics at Columbia University, and senior author on the paper.
The study, published today in Cell Stem Cell, compared cell lines derived from the same sources using the two differing techniques, specifically contrasting the frequency of genetic coding mutations seen and measuring how closely the stem cells matched the embryonic state through the analysis of DNA methylation and of gene expression patterns. The scientists showed that both methods resulted in cell types that were similar with regard to gene expression and DNA methylation patterns. This suggested that both methods were effective in turning a differentiated cell into a stem cell.
The scientists also showed that cells derived using both SCNT and iPS techniques showed similar numbers of genetic coding mutations, implying that neither technique is superior in that regard. A similar number of changes in DNA methylation at imprinted genes (genes that are methylated differentially at the maternal versus the paternal allele) were also found. It is important to note that both types of techniques led to cells that had more of these aberrations than embryonic stem cells derived from an unfertilized human oocyte, or than embryonic stem cells derived from leftover IVF embryos. These findings suggest that a small number of defects are inherent to the generation of stem cells from adult differentiated cells and occur regardless of the method used.
More here:
Scientists find that SCNT derived cells and IPS cells are similar
Stem Cell Skin Care – BlueHorizonSkinCare.com
By LizaAVILA
Blue Horizon's Special Skin Serum Stem Product Fact Sheet
Our Stem Cell Skin Care is a potent anti-aging innovation derived from non-embryonic human stem cell research. Blue Horizon International has infused medicines most promising clinical advances into this powerful skin care product.
Cytokine action, epidermal growth factors (EGFs), short and long-chained hyaluronic acid and ceramides combat the effects of aging and deliver unique skin benefits without surgery.
Our formulation is safe, having passed toxicology tests in accordance with European Union regulation 1223/2009/EC.
Patents are pending.
Our skin care is derived from what stem cell scientists call a conditioned medium. Here, human stem cells from placentas and umbilical cords condition the culture medium by releasing cytokines and other skin regenerating proteins that become available for skin repair. We stabilize the liberated cytokines, rendering them safe and accessible for aesthetic skin improvement. The conditioned medium is the base for our stem cell skin care products.
An independent skin test on twenty individuals aged 46 to 81 found a 23% reduction in skin roughness, including a decrease in the appearance of fine lines, wrinkles and scars.
Cytokines are one of todays most exciting captured biological processes, because they govern so many regenerative functions. The cytokine group of chemical regulators includes a diverse assortment of interleukins, interferons and growth factors that control anti-aging and activate the bodys immune system.
Cytokines stimulate, propagate and regulate new cell production in human skin. These messaging molecules mobilize cell division to help heal age related damage. Cytokines have powerful influence over skin texture and quality because they regulate cell shape, metabolism and migration from one location to another.
Several stem cell skin care ranges claim cytokine-style benefits. However, human stem cell cytokines are more biologically compatible with human skin than cytokine proteins from other sources.
Continued here:
Stem Cell Skin Care - BlueHorizonSkinCare.com
Identifying the source of stem cells
By raymumme
3 hours ago Amy Ralston, MSU biochemist and molecular biologist, has identified a possible source of stem cells, which can advance regenerative and fertility research. Credit: G.L. Kohuth
When most animals begin life, cells immediately begin accepting assignments to become a head, tail or a vital organ. However, mammals, including humans, are special. The cells of mammalian embryos get to make a different first choice to become the protective placenta or to commit to forming the baby.
It's during this critical first step that research from Michigan State University has revealed key discoveries. The results, published in the current issue of PLOS Genetics, provide insights into where stem cells come from, and could advance research in regenerative medicine. And since these events occur during the first four or five days of human pregnancy, the stage in which the highest percentage of pregnancies are lost, the study also has significant implications for fertility research.
Pluripotent stem cells can become any cell in the body and can be created in two ways. First, they can be produced when scientists reprogram mature adult cells. Second, they are created by embryos during this crucial four-day window of a mammalian pregnancy. In fact, this window is uniquely mammalian, said Amy Ralston, MSU assistant professor of biochemistry and molecular biology, and lead author on the study.
"Embryos make pluripotent stem cells with 100 percent efficiency," she said. "The process of reprogramming cells, manipulating our own cells to become stem cells, is merely 1 percent efficient. Embryos have it figured out, and we need to learn how they're doing it."
The researchers' first discovery is that in mouse embryos, the gene, Sox2, appears to be acting ahead of other genes traditionally identified as playing crucial roles in stem cell formation. Simply put, this gene could determine the source of stem cells in mammals. Now researchers are trying to decipher why Sox2 is taking the lead role.
"Now we know Sox2 is the first indicator that a cell is pluripotent," Ralston said. "In fact, Sox2 may be the pre-pluripotent gene. We show that Sox2 is detectable in just one or two cells of the embryo earlier than previously thought, and earlier than other known stem cell genes."
The second discovery is that Sox2 has broader influence than initially thought. The gene appears to help coordinate the cells that make the fetus and the other cells that establish the pregnancy and nurture the fetus.
Future research will focus on studying exactly why Sox2 is playing this role. The team has strong insights, but they want to go deeper, Ralston said.
"Reprogramming is amazing, but it's inefficient," she said. "What we've learned from the embryo is how to improve efficiency, a process that could someday lead to generating stem cells for clinical purposes with a much higher success rate."
Read this article:
Identifying the source of stem cells
Regulating genes to treat illness, grow food, and understand the brain
By Dr. Matthew Watson
For his contribution to the understanding of gene regulation and its potential ability to change agriculture and the treatment of disease and mental health, Professor Ryan Lister has been awarded the 2014 Frank Fenner Prize for Life Scientist of the Year.
Genes are not enough to explain the difference between a skin cell and a stem cell, a leaf cell and a root cell, or the complexity of the human brain. Genes dont explain the subtle ways in which your parents environment before you were conceived might affect your offspring.
Another layer of complexitythe epigenomeis at work determining when and where genes are turned on and off.
Ryan Lister is unravelling this complexity. Hes created ways of mapping the millions of molecular markers of where genes have been switched on or off, has made the first maps of these markers in plants and humans, and revealed key differences between the markers in cells with different fates.
Hes created maps of the epigenome in plants, which could enable plant breeders to modify crops to increase yields without changing the underlying DNA.
Hes explained a challenge for stem cell medicineshowing how, when we persuade, for example, skin cells to turn into stem cells, these cells retain a memory of their past. Their epigenome is different to that of natural embryonic stem cells. He believes this molecular memory could be reversed.
He has also recently explored the most complex system we knowthe human braindiscovering that its epigenome is extensively reconfigured in childhood during critical stages when the neural circuits are forming and maturing. These epigenome patterns may even underpin learning and memory. All of this in just 15 years since the beginning of his PhD.
For his contribution to the understanding of gene regulation and its potential ability to change agriculture and the treatment of disease and mental health, Professor Ryan Lister of the Australian Research Council Centre of Excellence in Plant Energy Biology at the University of Western Australia has been awarded the 2014 Frank Fenner Prize for Life Scientist of the Year.
The human body is composed of hundreds of different types of cells. Yet all are formed from the same set of instructions, the human genome. How does this happen?
On top of the genetic code sits another code, the epigenome. It can direct which genes are switched on and which are switched off, Ryan Lister says. The genome contains a huge volume of information, a parts list to build an entire organism. But controlling when and where the different components are used is crucial. The epigenetic code regulates the release of the genomes potential. Cells end up with different forms and functions through using different parts of the genome.
See the original post:
Regulating genes to treat illness, grow food, and understand the brain
Mini-Stomachs Let Scientists Study Ulcers in a Lab Dish
By NEVAGiles23
Scientists have grown miniature stomachs in a lab dish using stem cells, and are already using them to study stomach cancer. They hope they can grow patches to fix ulcers, find new drugs to treat and even prevent stomach cancer, and perhaps even grow replacement stomachs some day.
They discovered that the bacteria that cause stomach cancer begin doing their dirty work almost immediately, attaching to the stomach lining and causing tumors to start growing in response. Helicobacter pylori causes many, if not most, cases of stomach cancer, which affects more than 22,000 Americans a year and kills half of them. Stomach cancer is a major killer globally, affecting close to a million people a year and killing more than 70 percent of them.
And the team grew their mini-stomachs using two different types of stem cells human embryonic stem cells, grown from very early human embryos, but also induced pluripotent stem cells or iPS cells, which are made by tricking bits of skin or other tissue into acting like a stem cell.
In our hands they worked exactly the same, James Wells of Cincinnati Childrens Hospital Medical Center, who led the research. Both were able to generate, in a petri dish, human stomach tissue.
Immunofluorescent image of human stomach tissue made using stem cells
Stem cells are the body's master cells. Embryonic stem cells and iPS cells are both pluripotent meaning they can give rise to any tissue in the body. They've been used to grow miniature human livers, retinas, brain tissue and have been injected into eyes to treat eye disease.
Growing anything close to a real stomach or even a patch for an ulcer is a long way off. The gastric organoids Wellss team made the name up are just about the size of a BB bullet.
Its not easy getting stem cells to do what you want them to do. Wells and his team, including graduate student Kyle McCracken, had to use various growth factors and chemicals, each introduced at precisely the right time, to coax the cells into becoming three-dimensional blobs of stomach tissue. The stomach is a complex organ, with layers of muscle cells, cells that make up the stomach lining and glands that secrete proteins and acid to digest food.
"The bacteria immediately know what to do and they behaved as if they were in the stomach.
But the process worked, and the mini-stomachs look just like stomach tissue, the team reports in this weeks issue of the journal Nature.
Read more:
Mini-Stomachs Let Scientists Study Ulcers in a Lab Dish
Cellular Dynamics receives contract to make eye cells
By daniellenierenberg
Cellular Dynamics International(CDI) is getting a $1.2 million contract from the National Eye Institute, part of the National Institutes of Health, as part of an effort to fight macular degeneration, a condition that leads to loss of vision.
By reprogramming skin and blood samples from patients with age-related macular degeneration, CDI will create induced pluripotent stem cells and will turn them into human retina cells. The cells will be put back into the patient's eyes to treat the disorder.
Ten patients have been chosen for a pilot study of the process by the National Eye Institute, CDI said.
The Madison company said the process, called autologous cellular therapy, will be the first in the U.S. using a patient's own reprogrammed cells.
Publicly traded CDI was founded by UW-Madison stem cell pioneer James Thomson in 2004 and manufactures large quantities of human stem cells for drug discovery, safety screening and for stem cell banks.
The rest is here:
Cellular Dynamics receives contract to make eye cells