Humectant: Examples and benefits for skin, hair, and lips – Medical News Today
By daniellenierenberg
Humectants are substances that attract water. In personal care products, they help hydrate the skin, hair, or nails. Hyaluronic acid and glycerin are examples of humectants.
The benefits of humectants depend on the ingredient. In general, however, the effects include relief of dry skin, reduction of thickened skin, and strengthening of the skin barrier.
Humectants are different from emollients and occlusives. These ingredients are also in many personal care products for dry skin. However, they work by forming a barrier over the skin, trapping moisture inside rather than attracting it. Oils, butters, and waxes, such as lanolin, are examples.
This article discusses humectants and the products that contain them, as well as examples and benefits. It also outlines the difference between a humectant and an emollient and an occlusive.
Humectants are ingredients that attract and bind water. In skin care, they draw water from the deeper layers of the skin to the outermost layer. If air humidity is higher than 70%, they also draw water from the surrounding environment to the skin.
In hair care, humectants perform a similar function. They attract water to the hair shaft, helping keep it hydrated.
Examples of products that can contain humectants include:
Many ingredients act as humectants, including:
All humectants have slightly different properties. Below is some of the research on common humectants.
The outermost layer of the skin, the stratum corneum, has an important function of serving as a barrier. It slows the evaporation of water from the skin and helps protect against microbes.
A 2021 review notes that urea helps enhance the stratum corneum by increasing hydration and improving the skin barriers integrity. Because of this, it has a long history as a skin care ingredient.
Urea can help with many skin conditions, such as:
An older 2013 study evaluated the effects of once and twice daily applications of a humectant-rich moisturizer containing 15% AHAs and 15% urea. The study involved 62 participants. Of them, 12 had no skin conditions, and 50 had hyperkeratosis, or thickened skin, on the feet.
Among the participants with hyperkeratosis, the results indicated that the moisturizer:
The participants with no skin conditions experienced an improvement in skin barrier function.
As people age, they have a higher risk of developing dry skin. A 2019 review analyzed databases from 19902018 that dealt with skin conditions of people over the age of 50 years. It found that leave-on products containing lipophilic humectants decreased skin dryness and itching. A lipophilic humectant is one that manufacturers have dissolved in fats or lipids.
Additionally, a 2021 research article notes that the humectant lactic acid can relieve rough, dry skin at concentrations up to 12%.
Older research from 2012 states that hyaluronic acid helps speed up wound repair and reduces scar appearance. These benefits stem from the humectants actions of promoting new blood vessel formation and increasing fibroblasts, which are cells in connective tissue that produce collagen and other fibers.
Another popular group of ingredients for moisturizing the skin and hair are emollients and occlusives. These work by creating a barrier, often consisting of a plant oil or butter, over the skin or hair. Instead of attracting moisture, they trap it beneath this barrier, preventing it from evaporating.
In comparison to humectants, emollients and occlusives tend to be thicker, heavier ingredients.
A 2017 study notes that emollients consist mostly of lipids, such as natural oils and waxes. They increase skin:
Examples of emollients include:
Occlusives are mostly oil-based. They provide a layer on the skin surface that helps protect against water evaporation. This preservation of skin hydration helps prevent dry skin and eczema, reports research from 2018.
Examples of occlusives include:
Whether a person should use humectants, emollients, or both depends on their skin type.
Emollients and occlusives tend to be heavier ingredients. Some add more oil to the skin and hair, which can be helpful for those with dry skin. However, individuals with oily skin or hair may find this unhelpful.
Some emollients and occlusives are also comedogenic, which means they have the potential to block pores and cause acne.
Humectants, on the other hand, tend to be noncomedogenic and non-oily. They can add hydration without the use of heavier ingredients. Some also have other benefits. For example, AHAs are also exfoliants.
According to the American Academy of Dermatology Association, a person with oily skin should choose skin care products that have oil-free and noncomedogenic on the label. People with hair that gets greasy quickly may prefer to look for hair products that do not contain much oil, if any.
In contrast, someone with dry skin or hair could benefit from products that contain humectants, emollients, and occlusives.
Learn about skin types and how to identify them here.
A humectant is a substance that draws water into the skin, hair, or nails. In the skin, this may come from the deeper layers, or from the air if it is humid enough. Humectants are useful for adding hydration without feeling heavy or oily.
Humectants include ingredients such as glycerin, urea, AHAs, and hyaluronic acid. People can find them in a wide range of personal care products.
Aside from humectants, personal care products often contain emollients and occlusives. While humectants provide hydration, emollients soften the skin, and occlusives help prevent water in the skin from evaporating.
People can consult a dermatologist to identify their skin type and find the best regimen for them.
See more here:
Humectant: Examples and benefits for skin, hair, and lips - Medical News Today
Disease in a dish: What mini-hearts and other organs reveal about long COVID – telegraphherald.com
By daniellenierenberg
Country
United States of AmericaUS Virgin IslandsUnited States Minor Outlying IslandsCanadaMexico, United Mexican StatesBahamas, Commonwealth of theCuba, Republic ofDominican RepublicHaiti, Republic ofJamaicaAfghanistanAlbania, People's Socialist Republic ofAlgeria, People's Democratic Republic ofAmerican SamoaAndorra, Principality ofAngola, Republic ofAnguillaAntarctica (the territory South of 60 deg S)Antigua and BarbudaArgentina, Argentine RepublicArmeniaArubaAustralia, Commonwealth ofAustria, Republic ofAzerbaijan, Republic ofBahrain, Kingdom ofBangladesh, People's Republic ofBarbadosBelarusBelgium, Kingdom ofBelizeBenin, People's Republic ofBermudaBhutan, Kingdom ofBolivia, Republic ofBosnia and HerzegovinaBotswana, Republic ofBouvet Island (Bouvetoya)Brazil, Federative Republic ofBritish Indian Ocean Territory (Chagos Archipelago)British Virgin IslandsBrunei DarussalamBulgaria, People's Republic ofBurkina FasoBurundi, Republic ofCambodia, Kingdom ofCameroon, United Republic ofCape Verde, Republic ofCayman IslandsCentral African RepublicChad, Republic ofChile, Republic ofChina, People's Republic ofChristmas IslandCocos (Keeling) IslandsColombia, Republic ofComoros, Union of theCongo, Democratic Republic ofCongo, People's Republic ofCook IslandsCosta Rica, Republic ofCote D'Ivoire, Ivory Coast, Republic of theCyprus, Republic ofCzech RepublicDenmark, Kingdom ofDjibouti, Republic ofDominica, Commonwealth ofEcuador, Republic ofEgypt, Arab Republic ofEl Salvador, Republic ofEquatorial Guinea, Republic ofEritreaEstoniaEthiopiaFaeroe IslandsFalkland Islands (Malvinas)Fiji, Republic of the Fiji IslandsFinland, Republic ofFrance, French RepublicFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabon, Gabonese RepublicGambia, Republic of theGeorgiaGermanyGhana, Republic ofGibraltarGreece, Hellenic RepublicGreenlandGrenadaGuadaloupeGuamGuatemala, Republic ofGuinea, RevolutionaryPeople's Rep'c ofGuinea-Bissau, Republic ofGuyana, Republic ofHeard and McDonald IslandsHoly See (Vatican City State)Honduras, Republic ofHong Kong, Special Administrative Region of ChinaHrvatska (Croatia)Hungary, Hungarian People's RepublicIceland, Republic ofIndia, Republic ofIndonesia, Republic ofIran, Islamic Republic ofIraq, Republic ofIrelandIsrael, State ofItaly, Italian RepublicJapanJordan, Hashemite Kingdom ofKazakhstan, Republic ofKenya, Republic ofKiribati, Republic ofKorea, Democratic People's Republic ofKorea, Republic ofKuwait, State ofKyrgyz RepublicLao People's Democratic RepublicLatviaLebanon, Lebanese RepublicLesotho, Kingdom ofLiberia, Republic ofLibyan Arab JamahiriyaLiechtenstein, Principality ofLithuaniaLuxembourg, Grand Duchy ofMacao, Special Administrative Region of ChinaMacedonia, the former Yugoslav Republic ofMadagascar, Republic ofMalawi, Republic ofMalaysiaMaldives, Republic ofMali, Republic ofMalta, Republic ofMarshall IslandsMartiniqueMauritania, Islamic Republic ofMauritiusMayotteMicronesia, Federated States ofMoldova, Republic ofMonaco, Principality ofMongolia, Mongolian People's RepublicMontserratMorocco, Kingdom ofMozambique, People's Republic ofMyanmarNamibiaNauru, Republic ofNepal, Kingdom ofNetherlands AntillesNetherlands, Kingdom of theNew CaledoniaNew ZealandNicaragua, Republic ofNiger, Republic of theNigeria, Federal Republic ofNiue, Republic ofNorfolk IslandNorthern Mariana IslandsNorway, Kingdom ofOman, Sultanate ofPakistan, Islamic Republic ofPalauPalestinian Territory, OccupiedPanama, Republic ofPapua New GuineaParaguay, Republic ofPeru, Republic ofPhilippines, Republic of thePitcairn IslandPoland, Polish People's RepublicPortugal, Portuguese RepublicPuerto RicoQatar, State ofReunionRomania, Socialist Republic ofRussian FederationRwanda, Rwandese RepublicSamoa, Independent State ofSan Marino, Republic ofSao Tome and Principe, Democratic Republic ofSaudi Arabia, Kingdom ofSenegal, Republic ofSerbia and MontenegroSeychelles, Republic ofSierra Leone, Republic ofSingapore, Republic ofSlovakia (Slovak Republic)SloveniaSolomon IslandsSomalia, Somali RepublicSouth Africa, Republic ofSouth Georgia and the South Sandwich IslandsSpain, Spanish StateSri Lanka, Democratic Socialist Republic ofSt. HelenaSt. Kitts and NevisSt. LuciaSt. Pierre and MiquelonSt. Vincent and the GrenadinesSudan, Democratic Republic of theSuriname, Republic ofSvalbard & Jan Mayen IslandsSwaziland, Kingdom ofSweden, Kingdom ofSwitzerland, Swiss ConfederationSyrian Arab RepublicTaiwan, Province of ChinaTajikistanTanzania, United Republic ofThailand, Kingdom ofTimor-Leste, Democratic Republic ofTogo, Togolese RepublicTokelau (Tokelau Islands)Tonga, Kingdom ofTrinidad and Tobago, Republic ofTunisia, Republic ofTurkey, Republic ofTurkmenistanTurks and Caicos IslandsTuvaluUganda, Republic ofUkraineUnited Arab EmiratesUnited Kingdom of Great Britain & N. IrelandUruguay, Eastern Republic ofUzbekistanVanuatuVenezuela, Bolivarian Republic ofViet Nam, Socialist Republic ofWallis and Futuna IslandsWestern SaharaYemenZambia, Republic ofZimbabwe
Here is the original post:
Disease in a dish: What mini-hearts and other organs reveal about long COVID - telegraphherald.com
This Hair Care Line Gives You Luscious Locks By Improving Your Scalp Health – HuffPost
By daniellenierenberg
HuffPosts Small Business Spotlight is a series aimed at highlighting the small businesses that are making a positive difference while forging new and significant futures in commerce.
Your scalp is really just an extension of the skin on your face, so why dont we care for it in the same way? Studies have shown that theres a direct correlation between scalp health and hair health and retention.
Helen Reavey, a hair stylist and trichologist, set out to solve that problem and found a solution in creating Act+Acre, a sustainable hair care line that focuses on improving the condition of the scalp first so that healthy hair can follow.
Throughout her 20-year career in the hair industry, Reavey worked in salons and at fashion weeks across the globe, and began to notice a pattern in the hair she saw and styled. Scalps were red and raw from overstyling and product buildup on the scalp, accompanied by dead and damaged hair.
I said to myself that I wished I had something to send these girls home with to dissolve the product, calm down inflammation and just really deliver nutrients to the scalp, the skin and the hair follicle, Reavey told HuffPost.
Now, products like Act+Acres Scalp Detox and Scalp Renew do just that by breaking down excess sebum, dead skin cells and product buildup, making the way for more abundant and healthier hair growth. Among other treatments, theres also a Stem Cell Serum that nourishes the hair follicle and helps to extend the growth phase.
Reavey said that the connection between scalp health and hair health seemed to be widely overlooked within the beauty industry, noting that caring for the scalp really goes beyond just the immediate improvements you may see once you start to address some of the most common concerns like itching, flaking and lack of hair volume.
Its really about from five to seven years from now that the hair in that cycle will really start to show what you were doing to it five, seven years ago. Its like when we work to prevent lines, wrinkles or sun damage now because we dont want them to appear in another five to 10 years, she said.
For Reavey, the conception and subsequent launch of Act+Acre in 2019 was also about challenging the norms and processes of the larger corporations that came before her their systems of transparency (or lack thereof) with their consumers, their wasteful approach to production and product development, and the kinds of ingredients being used.
Act+Acre uses a cold process method to create all of their products, a patented system that involves a hyperbaric chamber, cold air and pressure to extract the most from ingredients at their highest concentrations, which is possible because they arent evaporated off in the process. It also uses 90% less energy than traditional and cheaper methods with heat.
The rest is here:
This Hair Care Line Gives You Luscious Locks By Improving Your Scalp Health - HuffPost
Chemotherapy-induced Anemia: Symptoms, Treatment & More – Healthline
By daniellenierenberg
Chemotherapy is a standard treatment for many different types of cancer.
Chemicals in chemotherapy drugs stop cancer cells from growing and spreading. These chemicals can also damage healthy cells, especially ones that divide quickly. This includes cells in your skin, digestive tracts, and bone marrow.
Damage to these cells can cause side effects. One common side effect is chemotherapy-induced anemia.
Anemia means you dont have enough red blood cells to properly carry oxygen around your body. This condition develops when chemotherapy drugs damage the cells in your bone marrow that create red blood cells.
Anemia usually goes away once chemotherapy stops but can lead to potentially serious complications when it develops. In this article, we break down causes of chemotherapy-induced anemia, signs and symptoms, and potential complications.
More than 100 types of medications have been developed to treat cancer, according to the University of Iowa Hospitals and Clinics. Different medications disrupt cancer growth in different ways, and all have potential side effects.
The chemicals in chemotherapy drugs mainly target cells that replicate quickly. Along with cancer cells, these drugs can damage healthy cells. A low red blood cell count caused by these medications is called chemotherapy-induced anemia.
The erythroid progenitor cell is particularly vulnerable to chemotherapy, according to 2018 research. These cells are found in your bone marrow and become red blood cells. If many of these cells are damaged, you can develop a low red blood cell count.
A low red blood cell count means your blood has less hemoglobin than average. Hemoglobin is the protein in red blood cells that carries oxygen to all your bodily tissues.
Its estimated that 70 percent of people who receive chemotherapy develop anemia. Its most common in people with:
At least 50 to 60 percent of people with these cancers require at least one blood transfusion. A transfusion is a procedure where youre given donated blood through an IV.
Chemotherapy-induced anemia is also common in people with low hemoglobin levels prior to treatment and people receiving platinum-based chemotherapy medications, according to the American Cancer Society. These medications include:
According to 2019 research, signs and symptoms of chemotherapy-induced anemia can overlap with cancer symptoms. These symptoms often include:
Other signs and symptoms may include:
Research from 2020 suggests anemia can negatively affect the survival rate of people receiving treatment for cancer. Severe anemia may delay or reduce part of your chemotherapy treatment, which can lead to worsened results.
Treatment for anemia may include:
A blood transfusion involves receiving blood from a donor through an IV. Donated blood needs to match your blood type or your immune system may attack the foreign blood cells. Transfusions can help quickly reduce your symptoms by increasing the circulation of oxygen to your organs and tissues.
Transfusions are commonly performed when hemoglobin levels drop below 8.0 grams per deciliter (g/dL) of blood.
A medical professional can administer erythropoietin-stimulating agents as a shot under your skin. Theyre synthetic versions of the hormone erythropoietin produced by your kidneys. This hormone stimulates the production of red blood cells.
It usually takes 4 to 6 weeks for these drugs to have a significant effect, and about a third of people dont respond at all. Healthcare professionals usually only recommend them for people receiving palliative treatment to ease symptoms of anemia when cancer isnt considered curable, according to 2019 research.
Erythropoietin-stimulating agents can help increase your hemoglobin levels and reduce the need for blood transfusions, but theyre associated with serious health complications and an increased risk of death, according to 2009 research.
About 65 percent of your bodys iron is found in hemoglobin, a protein in your blood that carries oxygen to your bodys organs and tissues. Without enough iron, blood cells cant carry oxygen to cells throughout your body. Low iron levels can also lead to anemia.
Your doctor may give you a prescription for an iron supplement or tell you to eat more high iron foods, like:
Researchers are still investigating the potential benefits of iron supplementation for people receiving erythropoietin-stimulating agents. Research from 2017 suggests that it may help reduce the need for blood transfusions.
Your doctor may also give you a prescription for folic acid (vitamin B9) or vitamin B12. These vitamins are also necessary to produce red blood cells.
Chemotherapy-induced anemia often goes away once treatment ends and your body has time to repair itself. According to the Canadian Cancer Society, low blood cell counts typically begin to recover 2 to 4 weeks after chemotherapy ends.
In the meantime, you can do the following to manage your symptoms:
According to the American Cancer Society, anemia has been found to shorten the lifespan of people with cancer. It may delay cancer treatment, and sometimes the lack of oxygen to your cells can be life threatening.
If your tissues arent getting enough oxygen, your heart has to work harder to move blood through your body. According to the National Heart, Lung, and Blood Institute, increased stress on your heart can worsen already present heart problems or lead to conditions such as:
Breathing problems from anemia can make everyday tasks, like walking, difficult and impact your quality of life.
Anemia is a common side effect of chemotherapy. The chemicals in chemotherapy medications that destroy cancer cells can also damage healthy cells in your body. Anemia usually passes once chemotherapy stops.
Your cancer team can help you manage symptoms of anemia through medications, blood transfusions, and prescribing vitamins and minerals. Its important to communicate with your team about any new symptoms you develop so you can build the best treatment plan possible.
Follow this link:
Chemotherapy-induced Anemia: Symptoms, Treatment & More - Healthline
Global Stem Cell Therapy Market valued at USD 200 million is set to witness a healthy growth of 17% in the upcoming years : Medi-Tech Insights -…
By daniellenierenberg
Stem cells are the bodys raw materials. They are unspecialized cells that have ability to renew themselves through mitotic cell division and differentiate into a diverse range of specialized cell types. They are critical for the development, growth, maintenance and repair of bones, muscles, blood, brain, nerves, skin and other organs. There are several sources of stem cells:
Embryonic Stem Cells: These stem cells come from embryos that are three to five days old. These are pluripotent stem cells and can be used to regenerate or repair diseased tissues and organsAdult Stem Cells: These stem cells are found in most adult tissues (bone marrow or fat) in small numbers. As compared to embryonic stem cells, they have more limited ability to give rise to various cells of the bodyInduced Pluripotent Stem Cells: Using genetic reprogramming, adult cells are transformed by scientists into stem cells that act similar to embryonic stem cellsPerinatal Stem Cells: These stem cells are found in amniotic fluid & umbilical cord blood. They have the ability to change into specialized cells
Factors Igniting Interest in Stem Cells
To Develop Understanding of How Diseases Occur: By observing how stem cells mature into cells in nerves, bones, heart muscles and other organs and tissues, researchers and healthcare professionals may better understand how diseases and conditions developHelp in Generating Healthy Cells to Replace Diseased Cells: Stem cells possess the potential to transform into specific cells that can be used to regenerate and repair diseased or damaged tissuesTo Test Safety and Effectiveness of New Drugs: Prior to using investigational drugs on people, researchers can use stem cells to test drugs for quality & safety
Transplantation of Blood Stem Cells Most Established Stem Cell Treatment
Currently, there are only limited stem cell therapies that have been thoroughly established as safe and effective treatment. The most well-established and widely used stem cell treatment is the transplantation of blood stem cells to treat diseases and conditions of the blood and immune system, or to restore the blood system after treatments for specific cancers.
Favorable investment environment, rising clinical trials for stem cell based-therapies, increasing demand for induced pluripotent stem cells (iPSCs) as an alternative to embryonic stem cells (ESCs) and the rising demand for cell & gene therapies are some of the key factors driving the growth of the Stem Cell Therapy Market.
Get Customized Report on Stem Cell Therapy Market @ https://meditechinsights.com/stem-cell-therapy-market/
Other areas/indications where stem cell therapies are being used are:
For the treatment of knee cartilage defects in patients with Osteoarthritis (OA)For the treatment of Crohns fistulaFor regeneration of subcutaneous adipose tissueFor the treatment of ALS (Amyotrophic Lateral Sclerosis)For the treatment of acute graft versus host disease (aGVHD) in children and adults, among others
Derivation of embryonic stem cells (ESCs) requires destruction of human embryos. Ethical concerns related to embryonic stem cells is one the of key factors that is likely to hamper the growth of the Stem Cell Therapy Market. Increasing number of clinics offering unproven stem cell-based treatments is another ethical issue faced in the field of stem cell-based therapies.
Stem cells have a bright future for the therapeutic world by promising stem cell therapy. We hope to see new horizon of therapeutics in the form of bone marrow transplant, skin replacement, organ development, and replacement of lost tissue such as hairs, tooth, retina and cochlear cells.
CEO, South Korea Based Stem Cell Therapy Provider
Future Outlook of Stem Cell Therapy Market
Stem cell therapy could be the medical innovation of the century. It has emerged as a promising new approach in almost every medicine specialty. Despite an enormous amount of research being undertaken, there are still limited safe and effective treatments available to patients. This is partially because complex diseases which are currently incurable require complex treatments and a personalized approach.
However, the future growth prospects of stem cell therapy market looks promising as there are several ongoing and completed clinical trials involving stem cells which are showcasing positive outcomes.
In clinical studies and treatment attempts, stem cell therapies have been tested with the following indications:
Macular DegenerationNeurological ConditionsDiabetesGraft-versus-host disease (GvHD)Cirrhosis of the Liver, among others
Stem cell therapies are increasingly being seen as the transformative step in treating conditions with unmet needs. This, coupled with growing investment in the sector and an increasing number of stem cell donors is expected to drive the global Stem Cell Therapy market forward in the coming years.
Sources: Medi-Tech Insights Analysis, Interviews, Company Websites
For Detailed Insights on Stem Cell Therapy Market, Contact Us @ https://meditechinsights.com/contact-us/
About Us:
Medi-Tech Insights is a healthcare-focused business research & insights firm. Our clients include Fortune 500 companies, blue-chip investors & hyper-growth start-ups. We have successfully completed 100+ projects in Digital Health, Healthcare IT, Medical Technology, Medical Devices & Pharma Services in the areas of market assessments, due diligence, competitive intelligence, market sizing and forecasting, pricing analysis & go-to-market strategy. Our methodology includes rigorous secondary research combined with deep-dive interviews with industry leading CXO, VPs and key demand/supply side decision-makers.
Contact Us:
Ruta HaldeAssociate, Medi-Tech Insights+32 498 86 80 79info@meditechinsights.com
The rest is here:
Global Stem Cell Therapy Market valued at USD 200 million is set to witness a healthy growth of 17% in the upcoming years : Medi-Tech Insights -...
NIH researchers develop first stem cell model of albinism to study related eye conditions – National Institutes of Health
By daniellenierenberg
News Release
Tuesday, January 11, 2022
Use of patient-derived stem cells will enable high-throughput drug screening for potential therapeutics.
Researchers at the National Eye Institute (NEI) have developed the first patient-derived stem cell model for studying eye conditions related to oculocutaneous albinism (OCA). The models development is described in the January issue of the journal Stem Cell Reports. NEI is part of the National Institutes of Health.
This disease-in-a-dish system will help us understand how the absence of pigment in albinism leads to abnormal development of the retina, optic nerve fibers, and other eye structures crucial for central vision, said Aman George, Ph.D., a staff scientist in the NEI Ophthalmic Genetics and Visual Function Branch, and the lead author of the report.
OCA is a set of genetic conditions that affects pigmentation in the eye, skin, and hair due to mutation in the genes crucial to melanin pigment production. In the eye, pigment is present in the retinal pigment epithelium (RPE), and aids vision by preventing the scattering of light. The RPE is located right next to the eyes light-sensing photoreceptors and provides them nourishment and support. People with OCA lack pigmented RPE and have an underdeveloped fovea, an area within the retina that is crucial for central vision. The optic nerve carries visual signals to the brain.
People with OCA have misrouted optic nerve fibers. Scientists think that RPE plays a role in forming these structures and want to understand how lack of pigment affects their development.
Animals used to study albinism are less than ideal because they lack foveae, said Brian P. Brooks, M.D., Ph.D., NEI clinical director and chief of the Ophthalmic Genetics and Visual Function Branch. A human stem cell model that mimics the disease is an important step forward in understanding albinism and testing potential therapies to treat it.
To make the model, researchers reprogrammed skin cells from individuals without OCA and people with the two most common types of OCA (OCA1A and OCA2) into pluripotent stem cells (iPSCs). The iPSCs were then differentiated to RPE cells. The RPE cells from OCA patients were identical to RPE cells from unaffected individuals but displayed significantly reduced pigmentation.
The researchers will use the model to study how lack of pigmentation affects RPE physiology and function. In theory, if fovea development is dependent on RPE pigmentation, and pigmentation can be somehow improved, vision defects associated with abnormal fovea development could be at least partially resolved, according to Brooks.
Treating albinism at a very young age, perhaps even prenatally, when the eyes structures are forming, would have the greatest chance of rescuing vision, said Brooks. In adults, benefits might be limited to improvements in photosensitivity, for example, but children may see more dramatic effects.
The team is now exploring how to use their model for high-throughput screening of potential OCA therapies.
NEI leads the federal governments research on the visual system and eye diseases. NEI supports basic and clinical science programs to develop sight-saving treatments and address special needs of people with vision loss. For more information, visit https://www.nei.nih.gov.
About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.
NIHTurning Discovery Into Health
Aman George, Ruchi Sharma, Tyler Pfister, Mones Abu-Asab, Nathan Hotaling, Devika Bose, Charles DeYoung, Justin Chang, David R. Adams, Tiziana Cogliati, Kapil Bharti, Brian P. Brooks. In Vitro Disease Modeling of Oculocutaneous Albinism Type I and II Using Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium (2022). doi: 10.1016/j.stemcr.2021.11.01.https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(21)00597-X.
###
Read more here:
NIH researchers develop first stem cell model of albinism to study related eye conditions - National Institutes of Health
The role of gel wound dressings loaded with stem cells in the treatment of diabetic foot ulcers – DocWire News
By daniellenierenberg
This article was originally published here
Am J Transl Res. 2021 Dec 15;13(12):13261-13272. eCollection 2021.
ABSTRACT
Diabetic foot ulcers (DFUs) are a serious complication of diabetes and the main cause of nontraumatic lower limb amputations, resulting in a serious economic burden on society. The main causes of DFUs include peripheral neuropathy, foot deformity, chronic inflammation, and peripheral artery disease. There are many clinical approaches for the treatment of DFUs, but they are all aimed at addressing a single aetiological factor. Stem cells (SCs), which express many cytokines and a variety of nerve growth factors and modulate immunological function in the wound, may accelerate DFU healing by promoting angiogenesis, cell proliferation, and nerve growth and regulating the inflammatory response. However, the survival time of SCs without scaffold support in the wound is short. Multifunctional gel wound dressings play a critical role in skin wound healing due to their ability to maintain SC survival for a long time, provide moisture and prevent electrolyte and water loss in DFUs. Among the many methods for clinical treatment of DFUs, the most successful one is therapy with gel dressings loaded with SCs. To accelerate DFU healing, gel wound dressings loaded with SCs are needed to promote the survival and migration of SCs and increase wound contraction. This review summarizes the research advancements regarding multifunctional gel wound dressings and SCs in the treatment of DFU to demonstrate the effectiveness and safety of this combinational therapeutic strategy.
PMID:35035674 | PMC:PMC8748097
Read the original:
The role of gel wound dressings loaded with stem cells in the treatment of diabetic foot ulcers - DocWire News
Genome Editing Market: Rise in drug discovery and development activities to drive the market – BioSpace
By daniellenierenberg
Genome Editing Market: Snapshot
Genome editing tools have come a long way from the mid-twentieth century. In 1970s and 1980s, gene targeting was done using largely homologous combination, but was only possible in mice. Since then, the expanding science of genetic analysis and manipulation extended to all types of cells and organisms. Advent of new tools helped scientists achieve targeted DNA double-strand break (DSB) in the chromosome, and is a key pivot on which revenue generation in the genome editing market prospered. New directions for programmable genome editing emerged in the decades of the twenty-first century, expanding the arena.
Request Brochure of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=46494
Cutting-edge platforms at various points in time continue to enrich genome editing market. Various classes of nucleases emerged, most notable of which is CRISPR-Cas. Research labs around the world have extensively used the platforms in making DSBs at any target of choice. Aside from this, agricultural sciences and medical sectors make substantial use of zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) in genome editing. Strides made in stem cell therapies, particularly in rectifying an aberrant mutation, have boosted the growth of the genome editing market. Genetic diseases such as muscular dystrophy and sickle cell disease present an incredible revenue prospect in the genome editing market. Ongoing research on novel vectors and non-vector approaches are expected to bolster the outlook of the market.
Request for Analysis of COVID-19 Impact on Genome Editing Market
https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=46494
Genomic editing refers to the strategies and techniques implemented for the modification of target genetic information of any living organism. Genome editing involves gene modification at specific areas through recombinant technology, which increases precision in insertion and decreases cell toxicity. Current advancement in genome editing is based on programmable nucleases. The genome editing market is presently witnessing significant growth due to increase in R&D expenditure, rise in government funding for genomic research, technological advancements, and growth in production of genetically modified crops. Companies have made significant investments in R&D in the past few years to develop cutting-edge technologies, such as, CRISPR and TALEN. For instance, Thermo Fisher Scientific is investing significantly in the development of its CRISPR technology for providing better efficiency and accuracy in research and also to fulfil the unmet demands in research and therapeutics. Cas9 protein and FokI protein have been combined to form a dimeric CRISPR/Cas9 RNA-guided FokI nucleases system, which is expected to have wide range of genome editing applications.
Pre book Genome Editing Market Report at
https://www.transparencymarketresearch.com/checkout.php?rep_id=46494<ype=S
The genome editing market is growing rapidly due to its application in a large number of areas, such as mutation, therapeutics, and agriculture biotechnology. Genome editing techniques offer large opportunities in crop improvement. However, the real potential of homologous recombination for crop improvement in targeted gene replacement therapy is yet to be realized. Homologous recombination is expected to be used as an effective methodology for crop improvement, which is not possible through transgene addition. Rise in the number of diseases and applications is likely to expand the scope of genome editing in the near future. It includes understanding the role of specific genes and processes of organ specific stem cells, such as, neural stem cells and spermatogonial stem cells. Genome editing has a significant scope to treat genetically affected cells, variety of cancers, and agents of infectious diseases such as viruses, bacteria, parasites, etc. However, genetic alteration of human germline for medicinal purpose has been debated for years. Ethical issues, comprising concern for animal welfare, can arise at all stages of generation and life span of genetically engineered animal.
Read More Information: https://www.transparencymarketresearch.com/genome-editing-market.html
The global genome editing market can be segmented based on technology, application, end-user, and geography. In terms of technology, the genome editing market can be categorized into CRISPR, TALEN, ZFN, and other technologies. Bioinformatics has eased the process of data analysis through various technological applications. On the basis of application, the global genome editing market can be classified cell-line engineering, animal genome engineering, plant genome engineering, and others. Based on end-user, the genome editing market can be segmented into pharmaceutical and biotechnological companies and academic and clinical research organizations. In terms of region, the global genome editing market can be segmented into North America, Europe, Asia Pacific, Latin America, and Middle East & Africa. North America is projected to continue its dominance in the global genome editing market owing to high government funding for research on genetic modification in the region. Asia Pacific is a rapidly growing genome editing market due to rise in investments by key players in the region. Rise in drug discovery and development activities, coupled with increasing government initiatives toward funding small and start-up companies in the biotechnology and life sciences industry, is a major factor expected to drive the genome editing market in North America during the forecast period. Players should invest in the emerging economies and the countries of Asia-Pacific like China, South Korea, Australia, India and Singapore in which the genome editing market is expected to grow at rapid pace in future, due to growing funding in research.
Key players operating in the global genome editing market are CRISPR Therapeutics, Thermo Fisher Scientific, GenScript Corporation, Merck KgaA, Sangamo Therapeutics, Inc., Horizon Discovery Group, Integrated DNA Technologies, New England Biolabs, OriGene Technologies, Lonza Group, and Editas Medicine.
Browse More Trending Reports by Transparency Market Research:
North America Direct to Consumer Laboratory Testing Market :
The widespread diagnostic and serological testing is emerging as one of the key measures to mitigate the COVID-19 pandemic. The increased load on healthcare systems, social distancing, and convenience needs of individuals is anticipated to boost the growth of the North America direct-to-consumer laboratory testing market.
Topical Antibiotics Market :
Topical antibiotics have emerged as a popular drug class for the treatment and management of a range of medical conditions. Among different indications such as the skin, eye, and Bromhidrosis, the use of topical antibiotics to fight bacterial skin infection has witnessed consistent growth over the past few decades a trend that is expected to continue over the upcoming years. Research and development activities around the world are likely to fuel the growth of the global topical antibiotics market, as new topical antibiotics continue to enter the market. While the growing popularity of antiseptics could potentially hinder market growth, the growing awareness pertaining to the benefits of topical antibiotics is anticipated to boost the demand.
About Us
Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.
Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through ad hoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.
TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key to help enterprises reach right decision.
Contact
Mr. Rohit BhiseyTransparency Market Research
State Tower,
90 State Street,
Suite 700,
Albany NY - 12207
United States
USA - Canada Toll Free: 866-552-3453
Email: sales@transparencymarketresearch.com
Regenerative Medicine: The Promise Of Undoing The Ravages Of Time – Hackaday
By daniellenierenberg
In many ways, the human body is like any other machine in that it requires constant refueling and maintenance to keep functioning. Much of this happens without our intervention beyond us selecting what to eat that day. There are however times when due to an accident, physical illness or aging the automatic repair mechanisms of our body become overwhelmed, fail to do their task correctly, or outright fall short in repairing damage.
Most of us know that lizards can regrow tails, some starfish regenerate into as many new starfish as the pieces which they were chopped into, and axolotl can regenerate limbs and even parts of their brain. Yet humans too have an amazing regenerating ability, although for us it is mostly contained within the liver, which can regenerate even when three-quarters are removed.
In the field of regenerative medicine, the goal is to either induce regeneration in damaged tissues, or to replace damaged organs and tissues with externally grown ones, using the patients own genetic material. This could offer us a future in which replacement organs are always available at demand, and many types of injuries are no longer permanent, including paralysis.
Our level of understanding of human physiology and that of animals in general has massively expanded since the beginning of the 20th century when technology allowed us to examine the microscopic world in more detail than ever before. Although empirical medical science saw its beginnings as early as the Sumerian civilization of the 3rd millennium BCE, our generalized understanding of the processes and components that underlie the bodys functioning are significantly more recent.
DNA was first isolated in 1869 by Friedrich Miescher, but its structure was not described until 1953. This discovery laid the foundations for the field of molecular biology, which seeks to understand the molecular basis for biological activity. In a sense this moment can be seen as transformative as for example the transition from classical mechanics to quantum mechanics, in that it changed the focus from macroscopic observations to a more fundamental understanding of these observations.
This allowed us to massively increase our understanding of how exactly the body responds to damage, and the molecular basis for regenerative processes, as well as why humans are normally not able to regrow damaged limbs. Eventually in 1999 the term regenerative medicine was coined by William A. Haseltine, who wrote an article in 2001 on what he envisions the term to include. This would be the addressing of not only injuries and trauma from accidents and disease, but also aging-related conditions, which would address the looming demographic crisis as the average age of the worlds populations keeps increasing.
The state of the art in regenerative medicine back in 2015 was covered by Angelo S. Mao et al. (2015). This covers regenerative methods involving either externally grown tissues and organs, or the stimulating of innate regenerative capabilities. Their paper includes the biomedical discipline of tissue engineering due to the broad overlap with the field of regenerative medicine. Despite the very significant time and monetary requirement to bring a regenerative medicine product to market, Mao et al. list the FDA-approved products at that time:
While these were not miracle products by any stretch of the imagination, they do prove the effectiveness of these approaches, displaying similar or better effectiveness as existing products. While getting cells to the affected area where they can induce repair is part of the strategy, another essential part involves the extracellular matrix (ECM). These are essential structures of many tissues and organs in the body which provide not only support, but also play a role in growth and regeneration.
ECM is however non-cellular, and as such is seen as a medical device. They play a role in e.g. the healing of skin to prevent scar tissue formation, but also in the scaffolding of that other tantalizing aspect of regenerative medicine: growing entire replacement organs and body parts in- or outside of the patients body using their own cells. As an example, Mase Jr, et al. (2010) report on a 19-year old US Marine who had part of his right thigh muscle destroyed by an explosion. Four months after an ECM extracted from porcine (pig) intestinal submucossa was implanted in the area, gradual regrowth of muscle tissue was detected.
An important research area here is the development of synthetic ECM-like scaffolding, as this would make the process faster, easier and more versatile. Synthetic scaffolding makes the process of growing larger structures in vitro significantly easier as well, which is what is required to enable growing organs such as kidneys, hearts and so on. These organs would then ideally be grown from induced pluropotent stem cells (iPS), which are a patients own cells that are reverted back to an earlier state of specialization.
It should come as little surprise that as a field which brings together virtually every field that touches upon (human) biology in some fashion, regenerative medicine is not an easy one. While its one thing to study a working system, its a whole different level to get one to grow from scratch. This is why as great as it would be to have an essentially infinite supply of replacement organs by simply growing new ones from iPS cells, the complexity of a functional organ makes this currently beyond our reach.
Essentially the rule is that the less complicated the organ or tissue is, the easier it is to grow it in vitro. Ideally it would just consist out of a single type of cell, and happy develop in some growth medium without the need for an ECM. Attractive targets here are for example the cornea, where the number of people on a waiting list for a corneal transplant outnumber donor corneas significantly.
In a review by Mobaraki et al. (2019), the numerous currently approved corneal replacements as well as new methods being studied are considered. Even though artificial corneas have been in use for years, they suffer from a variety of issues, including biocompatibility issues and others that prevent long-term function. Use of donor corneas comes with shortages as the primary concern. Current regenerative research focuses on the stem cells found in the limbus zone (limbal stem cells, LSC). These seem promising for repairing ocular surface defects, which has been studied since 1977.
LSCs play a role in the regular regenerative abilities of the cornea, and provide a starting point for either growing a replacement cornea, or to repair a damaged cornea, along with the addition of an ECM as necessary. This can be done in combination with the inhibiting of the local immune response, which promotes natural wound healing. Even so, there is still a lot more research that needs to be performed before viable treatments for either repairing the cornea in situ, or growing a replacement in vitro can be approved the FDA or national equivalent.
A similar scenario can be seen with the development of artificial skin, where fortunately due to the large availability of skin on a patients body grafts (autografts) are usually possible. Even so, the application of engineered skin substitutes (ESS) would seem to be superior. This approach does not require the removal of skin (epidermis) elsewhere, and limits the amount of scar formation. It involves placing a collagen-based ECM on the wound, which is optionally seeded with keritanocytes (skin precursor cells), which accelerates wound closure.
Here the scaffolding proved to be essential in the regeneration of the skin, as reported by Tzeranis et al. (2015). This supports the evidence from other studies that show the cell adhesion to the ECM to be essential in cell regulation and development. With recent changes, it would seem that both the formation of hair follicles and nerve innervation may be solved problems.
It will likely still be a long time before we can have something like a replacement heart grown from a patients own iPS cells. Recent research has focused mostly on decellularization (leaving only the ECM) of an existing heart, and repopulating it with native cells (e.g. Glvez-Montn et al., 2012). By for example creating a synthetic scaffold and populating it with cells derived from a patients iPS cells, a viable treatment could be devised.
Possibly easier to translate into a standard treatment is the regrowth of nerves in the spinal cord after trauma, with a recent article by lvarez et al, (2021) (press release) covering recent advances in the use of artificial scaffolds that promotes nerve regeneration, reduces scarring and promotes blood vessel formation. This offers hope that one day spinal cord injures may be fully repairable.
If we were to return to the body as a machine comparison, then the human body is less of a car or piece of heavy machinery, and more of a glued-together gadget with complex circuitry and components inside. With this jump in complexity comes the need for a deeper level of understanding, and increasingly more advanced tools so that repairs can be made efficiently and with good outcomes.
Even so, regenerative medicine is already saving the lives of for example burn victims today, and improving the lives of countless others. As further advances in research continue to translate into treatments, we should see a gradual change from youll have to learn to live with that, to a more optimistic give it some time to grow back, as in the case of an injured veteran, or the victim of an accident.
Go here to see the original:
Regenerative Medicine: The Promise Of Undoing The Ravages Of Time - Hackaday
The first successful pig heart transplant into a human was a century in the making – Popular Science
By daniellenierenberg
Last Friday, January 7, David Bennett went into the operating room at the University of Maryland Medical Center for a surgical procedure never performed before on a human. The 57-year-old Maryland resident had been hospitalized and bedridden for months due to a life-threatening arrhythmia. His heart was failing him and he needed a new one.
Bennetts condition left him unresponsive to treatments and ineligible for the transplant list or an artificial heart pump. The physician-scientists at the Baltimore medical center, however, had anotheralbeit riskyoption: transplant a heart from a genetically-modified pig.
It was either die or do this transplant, Bennett had told surgeons at the University of Maryland Medical Center a day before the operation. I want to live. I know its a shot in the dark, but its my last choice.
On Monday, the team reported that they completed the eight-hour procedure, making Bennett the first human to successfully receive a pigs heart. Its working and it looks normal. We are thrilled, but we dont know what tomorrow will bring us. This has never been done before, Bartley Griffith, M.D., physician and director of the cardiac transplant program at the University of Maryland Medical Center who led the transplant team, told the New York Times.
While its only been five days since the operation, the surgeons say that Bennetts new pig heart was, so far, functioning as expected and his body wasnt rejecting the organ. They are still monitoring his condition closely.
I think its extremely exciting, says Robert Montgomery, M.D., transplant surgeon and director of the NYU Langone Transplant Institute, who was not involved in Bennetts operation. The results of the procedure were also personally meaningful for Montgomery, who received a heart transplant in 2018 due to a genetic disease that may also impact members of his family in the future. Its still in the early days, but still the heart seems to be functioning. And that in and of itself is an extraordinary thing.
[Related: Surgeons transplanted a pig kidney into a person, and it worked like normal]
Pig heart transplant operations are still not officially approved by the U.S. Food and Drug Administration, but the agency granted emergency authorization for the surgery on December 31. The experimental procedure comes at a time of growing need for organ transplants. More than 100,000 people in the United States are on the list to receive one, while around 17 die each day waiting, according to the latest data from the federal governments organdonor.gov. The desperate demand far exceeds the number of human organ donors.
There arent enough organs, period, Montgomery says, who was part of the team that successfully transplanted a genetically modified pig kidney in a human in 2021. Of an estimated 800,000 patients on dialysis whove developed end-stage kidney disease, only 90,000 are on the list for a human organ transplant, he points out. Pig organ transplants give another potential way to to fill that gap between the supply and the demand.
The field of research and the techniques behind animal to human organ transplants has come a long way to reach this momentfrom myth and pseudoscience to sophisticated medical application. Xenotransplantation, or grafting and transplanting of organs and tissues between two species, has a long history, says Montgomery, who has been involved in this field for more than 30 years.
It has really been considered since the dawn of transplantation, he says. People were thinking about the use of animal organs for over a hundred years.
Throughout the 19th century, chickens, rats, dogs, frogs, and other animals were used for skin grafts. Researchers continued to encounter incompatibility issues between humans and animal organs and tissues. This was because many animal species have a cell membrane sugar called galactose-1,3-galactose, commonly referred to as alpha-gal. That sugar is also on the surface of bacteria, explains Montgomery. Humans are exposed to these bacteria from birth in the GI tract, which triggers the immune system to make antibodies against alpha-gal to prevent those bacteria from entering the blood. People have a huge reserve of these antibodies just circulating in our blood all the time, Montgomery says, and those antibodies will attack animal organs because they recognize alpha-gal as a target.
Around the 1960s, surgeons began to look towards closer relatives to humans: primates. Primates are obviously much closer to humans on the evolutionary scale, and so you dont have that immediate incompatibility with alpha-gal in some of the primates, Montgomery says. A surgeon at Tulane University in New Orleans transplanted chimpanzee kidneys into patients, one of whom survived for nine months. Most famously in 1984, Baby Fae, a newborn infant with an underdeveloped heart, received a baboon heart, but her body rejected it after 20 days.
By the 1990s, the public perception towards primates as organ donors had soured. Theyre much more scarce on the planet, says Montgomery. I was at a xenotransplant meeting in the 1990s and Jane Goodall was the keynote speaker At the end of that, it was really clear to all of us that primates were not going to be the organ donors we were going to use. Concerns over zoonosis, or the transmission of disease from animal to human host, were also rising, likely because of the HIV/AIDS epidemic, Montgomery adds.
[Related: Lab-grown pig lungs are great news for the future of organ transplantation]
The scientific stage was set for swine. Pigs became prime donor candidates because of their abundance, large litters, ease of breeding, rapid growth, and generally similar organ size to humans.
Plus, most people have a much different relationship with the animal as a longtime food staple, says Montgomery, though he expects ethical concerns to continue to rise as the field progresses, such as whether or not animals should be genetically modified for transplants.
But there were two big hurdles the research field had to jump over before pigs could be a viable option: the issues with alpha-gal and the potential cross transmission of viruses, particularly the porcine endogenous retrovirus (PERV) discovered in 1997. Now, researchers have been able to genetically edit out the alpha-gal target from the pig genome. Today, people have undergone pig skin graft treatments for burns, have pig heart valves, or received pig cells, like those that help produce insulin, and have not experienced any diseases.
The genetic modification, particularly now with CRISPR, has become pretty easy, Montgomery says. Almost 200 people have received pig cells, pig stem cells, pig tissue, and skin grafts without exposure to zoonoses, he says.
The genetically modified pigs used for organ donation are bred, studied, and cared for in extremely clean facilities, and theyre surveilled for potential pathogens. Its almost like an operating room, says Montgomery. They are very humanely treated.
Up until now, most experimental transplant procedures have been done between pigs and other animals. Taking it into a living human, thats the leap, Montgomery says about the University of Maryland Medical Centers transplant. The genie is out of the bottle. Now, we really need to understand what this is going to look like in humans, and start to work on optimizing the outcomes. But time is of the essence, lets move ahead boldly.
Go here to read the rest:
The first successful pig heart transplant into a human was a century in the making - Popular Science
University of Alberta study shows positive signs to get patients with diabetes off injected insulin – Global News
By daniellenierenberg
Editors note: This article has been updated to remove incorrect information provided by the University of Alberta.
Researchers at the University of Alberta say they have reached a milestone in the efforts to get people with diabetes off injected insulin for good.
A recent first-in-humans clinical trial is reporting early signs that pancreatic cells grown from stem cells can be safely implanted, and in some cases, begin to produce insulin.
The trial saw 17 adults with Type 1 diabetes at six centres in Canada, the United States and Europe receive implants of pluripotent stem cell-derived pancreatic endoderm cells.
Each patient received implants of several small permeable devices filled with millions of cells each. The cells were derived from stem cells then chemically transformed into stem cells programmed to become islet cells.
Story continues below advertisement
Of the 17 patients who received implants, U of A researchers said 35 per cent showed signs in their blood of insulin production after meals within six months of the implant. On top of that, 63 per cent had evidence of insulin production inside the implant devices when they were removed after a year.
This is a very positive finding, said James Shapiro, professor of surgery, medicine and surgical oncology in the University of Albertas Faculty of Medicine & Dentistry.
Its not the endgame, but its a big milestone along the road to success, demonstrating that stem cell-derived islet therapies are safe and can begin to show some signal of efficacy in patients in the clinic.
Trending Stories
Story continues below advertisement
Shapiro also led the team that developed the Edmonton Protocol in the 1990s, which developed a way to transplant donated islet cells, reducing their need for insulin. However, the U of A says patients continue to need anti-rejection drugs which can have side effects such as an increased risk of cancer and kidney damage. The number of donated islet cells is also limited.
Shapiro said the main goal of this phase of the trial was to ensure safety, but added at least one patient who had 10 devices implanted was able to significantly reduce her insulin dose, which indicates the potential effectiveness of the treatment.
Were seeing some improvement in the patients blood sugar, but these cells are being transplanted right now in only very small quantities, so were not expecting big changes in insulin requirement, Shapiro said.
Story continues below advertisement
But we can see in about 65 per cent of devices that we take out from under the skin that there are human insulin-producing cells surviving, and in about a third of patients they have measurable insulin levels in the bloodstream. So its a really good first start with this treatment, Im very excited about it.
The ultimate goal of the new research is to develop an unlimited supply of islet cells that can be safely transplanted without the need for anti-rejection drugs.
Weve seen a lot of advances in the last 100 years since the Canadian discovery of insulin, Shapiro said. The race isnt over yet, but were on our last laps and I really do believe that we can cross that ribbon.
Cell-based therapies have the promise to deliver something far better than insulin therapy.
Again, were not expecting to be curing diabetes in the first wave of this, were trying to do safety testing for first patients. And we see that really is helping mankind in the future of diabetes rather than any particular one patient at this point, but it will change as we move forward.
The next step will try to determine how many stem cell-derived pancreatic cells are needed for transplant to optimize insulin production in patients with both Type 1 and Type 2 diabetes.
2022 Global News, a division of Corus Entertainment Inc.
Read the original post:
University of Alberta study shows positive signs to get patients with diabetes off injected insulin - Global News
Few Skincare Treatments That is Expected to Dominate in 2022 – News18
By daniellenierenberg
Though there are several skin care treatments available, people should look for the one which is most suitable for their skin and their bank balance (Image: Shutterstock)
If you are looking forward to taking extra care of your skin in the upcoming year, you should be well aware of the best products and treatments available in the market. When it comes to picking a product or a treatment for your face, people are very cautious and they want to go with a brand that has a good reputation in the market and has garnered good reviews. Though there are several skin care treatments available, people should look for the one which is most suitable for their skin and their bank balance. Dr Kiran Sethi Lohia, Integrative Aesthetic and Skin Specialist, who hails from New Delhi in a chat with ETimes, shared some trends that are likely to dominate the beauty industry in 2022.
Stem cells: Stem cells are new to the game, they are added post laser or through micro-needling or even injecting for anti-ageing. In case you have suffered an injury on the face, they are known for wound healing too. Stem cells promote cell turnover, and they also increase collagen production.
Patch-based skincare: We get patches to apply on zits to make them smaller, and soon you will be able to buy and apply patches with tiny microneedles.
Skin boosters: Skin boosters that use injections to hydrate the skin deeply will definitely become a big trend in 2020. As we get older our skin becomes weaker letting out hydration, hence it is difficult to stay hydrated by just drinking water and good skincare. These skin boosters keep our skin supple, elastic, moist, and also prevents aging!
Sculpsure: Sculpsure is the new treatment to lose fat in 2020. The side effect free Sculpsure is approved by the US FDA. It takes 25 minutes per area.
Read all the Latest News, Breaking News and Coronavirus News here.
Read more from the original source:
Few Skincare Treatments That is Expected to Dominate in 2022 - News18
Exploring the potential of stem cell-based therapy for aesthetic and plastic surgery – Newswise
By daniellenierenberg
Abstract:
Over the last decade, stem cell-associated therapies are widely used because of their potential in self-renewable and multipotent differentiation ability. Stem cells have become more attractive for aesthetic uses and plastic surgery, including scar reduction, breast augmentation, facial contouring, hand rejuvenation, and anti-aging. The current preclinical and clinical studies of stem cells on aesthetic uses also showed promising outcomes. Adipose-derived stem cells are commonly used for fat grafting that demonstrated scar improvement, anti-aging, skin rejuvenation properties, etc. While stem cell-based products have yet to receive approval from the FDA for aesthetic medicine and plastic surgery. Moving forward, the review on the efficacy and potential of stem cell-based therapy for aesthetic and plastic surgery is limited. In the present review, we discuss the current status and recent advances of using stem cells for aesthetic and plastic surgery. The potential of cell-free therapy and tissue engineering in this field is also highlighted. The clinical applications, advantages, and limitations are also discussed. This review also provides further works that need to be investigated to widely apply stem cells in the clinic, especially in aesthetic and plastic contexts.
View original post here:
Exploring the potential of stem cell-based therapy for aesthetic and plastic surgery - Newswise
K2bio Welcomes Ponce Therapeutics to Houston – PRNewswire
By daniellenierenberg
"We started speaking with Kieron Jones and Andrew Strong as we were funded and started to execute our R&D plan, and the rest is history. We appreciate the variety of support services K2bio offers in addition to rental lab space," stated Kevin Slawin, CEO of Ponce Therapeutics. Ponce Therapeutics was the first client to enter into a contract with K2bio.
"We are very excited to welcome Ponce Therapeutics to the K2bio family," said Kieron Jones, Co-founder, CEO, and President of K2bio. "Our goal is to build a collaborative environment That allows companies within our facility to focus on efficiently developing their product. For companies outside of our facility, we offer a suite of contracted services to support their in-vivo and in-vitro needs as a long-term partner built on quality and timeliness."
About K2bio K2bio is a state-of-the-art facility with a unique model of providing preclinical contract research services and an incubator environment. We provide a unique and flexible co-working facility for high-potential, early-stage life science companies, with experienced biotech research managers and staff, in addition to a mouse vivarium to allow companies access to the research environment that they need to progress at an affordable cost. We've created the concierge of biolabs, offering researchers the option to add or subtract services based on their individual needs.
For more information, visit https://K2-biolabs.com.
About Ponce Therapeutics - Ponce Therapeutics is currently developing a biotechnology platform to restore young cells in the skin, targeting p16-expressing senescent cells for elimination. While initially focused on skin, Ponce plans to develop a wide-ranging portfolio of anti-aging products, which could ultimately lead to new cancer treatments. The elimination of pro-inflammatory senescent cells has been shown to suppress cancer and rejuvenate tissues by restoring stem cell niches to their healthy state. Ponce is headquartered in Miami, Florida, with research facilities located in Houston, TX.
For more information, visit https://poncetherapeutics.com.
SOURCE K2bio
See the original post:
K2bio Welcomes Ponce Therapeutics to Houston - PRNewswire
This Startup Is Makingand ProgrammingHuman Cells – Wired.co.uk
By daniellenierenberg
Our cells are packed with unrealized potential. Almost every human cell contains the genetic information it needs to become any other kind of cell. A skin cell, for example, has the same genes as a muscle cell or a brain neuron, but in each type of cell only some of those genes are switched on, while others remain silent. Its a little like making different meals out of the same ingredients cupboard. If we understand the recipe behind each type of cell, then theoretically we can use this information to engineer every single cell type in the human body.
That is Mark Kotters goal. Kotter is the CEO and cofounder of bit.bioa Cambridge, UK, based company that wants to revolutionize clinical research and drug discovery by producing precisely engineered batches of human cells. Basic scientific research into new drugs and treatments often starts with tests in mice, or in the most widely used human cell lines: kidney cells and cervical cancer cells. This can be a problem, because the cells being experimented on may have major differences to the cells that a candidate drug is supposed to target in the human body. A drug that works in a mouse may turn out not to work when it's tested in humans. There is no mouse on this planet that has ever suffered from Alzheimers, it just doesnt exist, Kotter says. But testing a potential Alzheimers drug on a human brain cell engineered to have signs of Alzheimers disease could give a much clearer indication of whether that drug is likely to be successful.
Every cell type has its own little program, or postcodea combination of transcription factors that defines it, says Kotter. By inserting the right program into a stem cell, researchers can activate genes that code for these transcription factors and turn a stem cell into a specific type of mature cell. Unfortunately, biology has a way of fighting back. Cells often silence these genes, stopping the transcription factors from being produced. Kotters solutiondiscovered as part of his research at the University of Cambridgeis to insert this program in a region of the genome thats protected against gene silencing, something Kotter refers to as a genetic safe harbor.
Bit.bio currently sells two different reprogrammed cell lines: muscle cells and a specific kind of brain neuron, but the plan is to create bespoke cell lines for use in the pharmaceutical industry and academic research. What were doing with our partners in the industry now is to create genetic modifications that are relevant for diseases, Kotter says. He compares this approach to running software on a computer. By inserting the right bit of code into a cells genome, you can control how that cell behaves. That means that we can now run programs, and we can reprogram human cells, Kotter says. The cell reprogramming technology could also go well beyond model cell lines and help develop whole new kinds of treatment, such as cell therapy.
In some cell therapies, a patients own immune cells are grown outside of their body before being modified and inserted back into it to help fight a diseasea long and expensive process. One kind of cell therapy used to treat young people with leukemia costs more than 280,000 ($371,400) per patient. Bit.bios chief medical officer Ramy Ibrahim says that the firms technology could help drive down the cost of cell therapy and make it easier to manufacture immune cells at a large scale. Having abundant numbers of the right cell types that we can now make edits to, I think will be transformational, he says.
More Great WIRED Stories
See original here:
This Startup Is Makingand ProgrammingHuman Cells - Wired.co.uk
20 of the best retinol creams & serums for every skin type – VOGUE Paris
By daniellenierenberg
The question really, is what should you be using retinol with. Hydrating ingredients like glycerin, peptides, ceramides, when sandwiched with your retinol, all help to support the integrity of the skin.
Ultimately, you should listen to your skin and let it be your guide. Ayodele advises keeping a diary noting any changes and taking pictures of your skin, comparing week one to week six. And remember: it is crucial to use SPF every day with retinol.
From the best formula for dark spots to products that are perfect for mature skins, heres Vogues edit of the best retinol creams and serums to try now:
The Best Retinol For Sensitive Skin: La Roche-Posay Retinol 0.3% + Vitamin B3 Serum
La Roche Posay - Retinol B3
La Roche Posay via Marionnaud.fr
La Roche-Posay knows its way around an excellent skincare product this serum is just one among many. Combining vitamin B3 with 0.3 per cent retinol, its a gentle one, and good for even the most sensitive skins.
Best Affordable Retinol: The Ordinary Granactive Retinoid 2% in Squalane
The Ordinary - mulsion de Granactive Retinoid* 2%
The Ordinary via Nocibe.fr
The Ordinary is renowned for bringing us premium ingredients at affordable prices, and this product comes in at well under 10. High potency, minimal irritation, low price whats not to love?
Retinol for Beginners: REN's Organic Retinoid Youth Serum for Sensitive Skin.
REN - Srum Jeunesse Bio Retinoid
Concerned about dryness and irritation? This REN formula is suitable for even the most sensitive skin, especially those that have previously reacted to retinol. The formula's unique delivery system allows for effective cell renewal without causing irritation.
Best Retinol Serum: Institut Esthederm Intensive Retinol Face Serum
Institut Esthederm - Intensive Retinol
6347
Institut Esthederm via Nocibe.fr
Perfect for deep-set wrinkles, this emollient-rich retinol serum effectively locks in moisture while working hard to bring plumpness back to the most sullen skin.
Best Retinol Booster: Paulas Choice 1% Retinol Booster
Paula's Choice - Boost Retinol 1%
Paula's Choice via Amazon.fr
Designed to be added to your favourite serum or moisturiser, Paulas Choice 1% Retinol Booster offers a more customisable approach to retinol use, making it perfect for beginners.
Best Retinol Overnight Mask: Allies of Skin 1A Retinal and Peptides Overnight Mask
Allies of Skin - 1A Retinal + Peptides Overnight Mask
Allies of Skin via Galerieslafayette.com
This antioxidant-rich formula delivers a jolt of nourishment to thirsty mature skin. Fortified with Ally-R, an encapsulated form of time-release retinaldehyde (a vitamin A even more powerful than retinol), this moisture barrier-maintaining formula helps promote firmness and smoothness in lacklustre skin.
Best Retinol For Acne: Lixir Night Switch Retinol 1%
Lixir Skin - Srum pour le visage Night Switch Retinol 1%
Lixir Skin via Net-a-porter.com
Lixirs Night Switch range is based on the idea that using too many active ingredients at once can confuse the skin. Instead, it advocates the frequent switching up of products. Night Switch Retinol 1% refines skin texture and boosts plumpness and firmness.
The most nourishing: Ideal Resource Youth Oil Concentrate with retinol by Darphin
Darphin - Ideal Resource Concentr huile jeunesse au retinol
9063
Darphin via Marionnaud.fr
Thanks to micro-encapsulated retinol, these mini-doses accelerate cell renewal and reinforce collagen production, helping to fight the signs of aging. Each one also contains a blend of plant oils that nourish the face and plump the eye area.
Fastest results: Este Lauder Perfectionist Pro
Este Lauder - Perfectionist Pro
12090
Este Lauder via Marionnaud.fr
Only 28 days to see visible results on the skin: that's the promise of this express treatment by Este Lauder. The result is smoother, softer, supple skin and a more radiant complexion. A must-have.
The best face cream: A-Passioni Retinol Cream by Drunk Elephant
Drunk Elephant - Crme A-Passioni Retinol
Drunk Elephant via Cultbeauty.com
Specially designed for sun-damaged skin, this cream combines 1% retinol with a cocktail of fruit extracts such as passion fruit, apricot and winter cherry to reduce the appearance of fine lines and deep wrinkles.
The Best Retinol Cream Available Over The Counter: SkinCeuticals Retinol 0.3% Cream
SkinCeuticals - Retinol 0.3 Peeling De Nuit Rides & Imperfections
SkinCeuticals via Nocibe.fr
The SkinCeuticals formula utilises encapsulation technology, to minimise irritation and allow the chamomile-derived bisabolol to counter any that does occur.
Best Retinol Night Oil: Sunday Riley Luna Sleeping Night Oil
Luna - Huile de nuit Sunday Riley
Luna via Cultbeauty.com
Sunday Rileys bestselling Luna Sleeping Night Oil combines retinoid oil with blue tansy and cold-pressed chia, grape seed and avocado oils to renew the skins surface overnight. A celebrity favourite.
Best Retinol For Wrinkles: Elizabeth Arden Retinol Ceramide Capsules Line Erasing Night Serum
Elizabeth Arden - Retinol Ceramide Capsules
5340
Elizabeth Arden via Marionnaud.fr
By combining retinol with skin-loving ceramides, Elizabeth Arden allows you to swerve any flaking. The capsule format means you wont apply too much, and also keeps the formula fresh.
Best Retinol For Dullness: Medik8 R-Retinoate Intense
Medik8 - Crme rajeunissante intense r-Retinoate
Medik8 via Net-a-porter.com
Suffering from dull skin? Look no further than Medik8s ultimate time-defying treatment. Combining retinol with clinical-strength retinoic acid, as well as nourishing peptides, ceramides, and hyaluronic acid, this miracle cream works overnight to plump and smooth the skin, firming it up and leaving it brighter and more replenished.
Best Retinol For Mature Skin: LOral Paris Pure Retinol Revitalift Laser Night Serum
L'Oral - Revitalift Laser Srum Nuit Rtinol Pur
For those in need of some extra TLC, LOrals powerhouse serum is formulated with a high concentration of pure retinol. One of the brands most potent blends, it targets fine lines and wrinkles, while added hyaluronic acid replenishes the skin with moisture.
Best Retinol Alternative: The Inkey List Bakuchiol Moisturiser
The Inkey List - Bakuchiol Moisturiser
The Inkey List via Cultbeauty.com
If youre finding retinol too harsh, there is a gentler alternative: bakuchiol, a plant-based super ingredient. Powered by bakuchiol, this moisturiser works to reduce the appearance of fine lines and wrinkles and smooths uneven skin, without causing irritation. Meanwhile added squalane, glycerin and sach inchi oil provide hydration and nourishment.
Best Retinol For Brightening: StriVectin Super-C Retinol Brighten & Correct Vitamin C Serum
Strivectin - Super-C Retinol Srum Illuminateur & Correcteur Vitamine C
Strivectin via 1001pharmacies.com
With two hardworking actives vitamin C and retinol this lightweight serum is a multi-tasking wonder. Expect it to brighten, smooth, ease fine lines and strengthen the skin barrier, too.
Best Retinol For Tackling Signs Of Ageing: Sarah Chapman Skinesis Retinol Oil
Combining plant stem cells, platinum peptide delivery and time-release retinol, Sarah Chapmans Skinesis Platinum Stem Cell Elixir is a true super serum, acting on fine lines and wrinkles, increasing collagen synthesis, and improving skin elasticity.
Available at Lookfantastic.com.
Best Retinol For Wrinkles: Murad Retinol Youth Renewal Serum
Murad Cosmetic - Resurgence Renewing Eye Cream
Murad Cosmetic via Nocibe.fr
With clever three-part retinol technology, which comprises a fast-acting retinoid, a time-released retinol and a retinol booster, expect uneven texture (and the like) to be addressed from all angles with the help of this Murad serum.
The best night cream with retinol: Lancme Corrective Night Concentrate
Lancme - Concentr nuit correcteur
Lancme via Galerieslafayette.com
A powerful treatment, rich in retinol, vitamin A and hyaluronic acid, which moisturizes and firms the skin while reducing the appearance of wrinkles. However, we recommend avoiding it if you have sensitive skin.
This article was previously published on Vogue.co.uk
Original post:
20 of the best retinol creams & serums for every skin type - VOGUE Paris
The 37 Best Beauty Products Of 2021 – British Vogue
By daniellenierenberg
I first dismissed this as a fancy version of those old heat patches you can get in the chemist, but I couldnt have been more wrong. Embedded within the lightweight but stretchy plaster-type fabric is enough clove and safflower to help get your blood flowing, as well as borneol to reduce inflammation and pain. And they really work.
15, available at Victoriahealth.com.
Jones Road The Best Pencil in Ultra Opaque
You cant go wrong with this one-style-fits-all eye pencil from make-up maverick Bobbi Browns newest cosmetic venture, which can outline, graphic line, feline line, smoky smudge line, whatever you choose. Point it at your lids and it pretty much does the rest by itself, its the very definition of fuss-free for those who dont like to overthink their eyeliner.
20, available at Jonesroadbeauty.com.
Ffern Organic Seasonal Fragrance
This is as small batch and as sustainable as it gets. Its also highly exclusive as you have to sign up for each new-season limited-edition release. But youll be happy you did, with each perfume created by master perfumer Francois Robert and his protg Elodie Durande, and delivered in entirely sustainable packaging. My favourite this year was Spring 2021, which had top notes of ginger underpinned by neroli, jasmine sambac absolute and orange absolute.
Available at Ffern.co.
Read this article:
The 37 Best Beauty Products Of 2021 - British Vogue
Mesoblast has long been the one poster child for stem cell therapy. Now Cynata and other ASX stocks have e … – Stockhead
By daniellenierenberg
Stem cell therapy, sometimes called regenerative medicine, is one of the most exciting areas of the life sciences sector right now.
Since the pandemic, the sector has emerged into the publics spotlight with new developments in mRNA-based vaccines and therapies.
Nasdaq is the obvious breeding ground for world-class stem cell companies with the likes of Moderna and BioNTech, and lesser known names like Anavex and Enochian.
In Australia, Mesoblast (ASX:MSB) has long been the local poster child for the regenerative medicine industry.
Mesoblast has developed a platform of innovative cellular medicines, but the company has struggled since the FDA rejected its drug in October last year.
Now, other ASX companies like Cynata Therapeutics (ASX:CYP)are making rapid progress to take over the mantle from MSB in this hot field.
Cynata is developing a mesenchymal stem cells (or MSC) technology, which it says has huge therapeutic potential for numerous unmet medical needs.
This includes asthma, heart attack, sepsis, and acute respiratory distress syndrome (ARDS), which all add up to a market opportunity worth $46bn, says the company.
According to CEO Dr Ross Macdonald, who spoke to Stockhead today, MSC is the hottest segment of stem cell therapy at the moment, and has gained a lot of attention recently.
There is a huge interest, and theres been more than 1000 clinical trials conducted around the world using MSC, Dr Macdonald told Stockhead.
He explains that the humans immune system controls many of the bodys functions responsible for repairing tissue after injury or disease, and defending against invading germs like viruses or bacteria.
And just like an orchestral conductor, MSC seems to be playing a central role in that coordination within our immune system.
We now have a firm understanding of how those cells coordinate the bodys responses, and can use that knowledge to enhance those processes that they control, Dr Macdonald explained.
In short, MSC therapies work by expressing a variety of chemokines and cytokines that aid in repair of degraded tissue, restoration of normal tissue metabolism and, most importantly, counteracting inflammation.
And because MSCs play that co-ordination role within the immune system, they can be used to treat different diseases.
However theres one big problem with cell-based therapies, and its not to do with the safety and efficacy.
Its how to manufacture these products on a mass scale, that is the greatest challenge right now, says Dr Macdonald.
Unlike aspirin where it can be synthesised in a chemical lab and produced in bulk, manufacturing a living drug like a cell is a whole lot more complicated.
But that big challenge is the exact area of strength and competitive advantage that Cynata has, Dr Macdonald told Stockhead.
He says Cynata has a technology platform which allows it to manufacture essentially limitless quantities of MSCs, consistently and economically.
Dr Macdonald explains there are two approaches to using cell therapy, the autologous and the allogeneic approach.
The autologous approach is where the patient themselves serves as their own donor.
This is obviously bespoke and inefficient, because the drug can only be manufactured for that one patient, and is obviously not an industrialised process, he said.
But by taking an allogeneic approach, Cynata has the ability to start with a one time donation of cells from one single donor.
Well never have to go back to that human donor ever again, so our process of producing cells has become a very much more typical industrialised process.
The company has a patent for this, with two clinical trials underway and two more under preparation.
A Phase 3 clinical trial for osteoarthritis which is funded by a NHMRC grant has progressed the furthest, while a Phase 2 trial in COVID-19 is ongoing.
Meanwhile a Phase 1 study in GvHD, which was published in prestigious journal Nature Medicine, is probably the closest to commercialisation according to Dr Macdonald.
GvHD is a challenging disease which occurs in patients who have had a bone marrow transplant as part of their chemotherapy treatment for cancer.
Chemo is still very much a sledgehammer therapy where you use very toxic drugs that do kill the cancer cells, but they also kill the surrounding healthy cells that grow hair and bone marrow.
Unfortunately for many patients, the bone marrow transplant reacts against their body and starts to attack all of the tissues in the body, and its ultimately fatal.
Its a horrible death, destroying the lungs, liver, intestines and the skin, Macdonald explains.
Cynatas MSC therapy has been shown to reset that reaction, so the patient can recover from the GvHD, and also recover from their underlying cancer.
With all these clinical trials concurrently under way, Macdonald believes there is a clear significant upside potential for Cynata, particularly given its small market cap of $70m compared to other similar plays like Mesoblast ($1 billion market cap).
Osteopore (ASX:OSX) focuses in bones and specialises in the production of 3D printed bioresorbable implants that are used in surgical procedures to assist with the natural stages of bone healing.
The 3D bio-printer makes a scaffold that mimics bone, with a patented micro-architecture which traps the patients own stem cells.
Orthocell (ASX:OCC) develops collagen medical devices and cellular therapies for the repair and regeneration of human tendons, bone, nerve and cartilage defects.
Its flagship product, the CelGro, is a naturally derived collagen medical device for tissue repair.
Aroa Biosurgery (ASX:ARX) develops FDA-approved medical devices for wounds and tissue repair using its extracellular matrix (ECM) technology, mainly in the United States.
Recent study shows 100% success rates from the use of its Myriad product when patients underwent surgical reconstruction of exposed vital structures such as bone and tendon.
Regeneus (ASX:RGS) Progenza is a cellular therapy targeting pain and inflammation which uses Secretome to improve not only the resident tissue, but the MSCs themselves.
It fills a gap in the current treatment market for osteoarthritis, by providing disease modification and pain relief to address patient symptoms.
Anteris Technologies (ASX:AVR) claims that its Adapt Technology is the first and only bio-scaffold technology that completely re-engineers xenograft tissue into a pure collagen scaffold.
A recent study indicated that Adapt-treated tissue has superior anti-calcification attributes compared with tissues used in competitor valves.
Get the latest Stockhead news delivered free to your inbox.
It's free. Unsubscribe whenever you want.
You might be interested in
Syrian refugee is thriving five years after last-gasp gene therapy – STAT – STAT
By daniellenierenberg
In the summer of 2015, a 7-year-old named Hassan was admitted to the burn unit of the Ruhr University Childrens Hospital in Bochum, Germany, with red, oozing wounds from head to toe.
It wasnt a fire that took his skin. It was a bacterial infection, resulting from an incurable genetic disorder. Called junctional epidermolysis bullosa, the condition deprives the skin of a protein needed to hold its layers together and leads to large, painful lesions. For kids, its often fatal. And indeed, Hassans doctors told his parents, Syrian refugees who had fled to Germany, the young boy was dying.
The doctors tried one last thing to save him. They cut out a tiny, unblistered patch of skin from the childs groin and sent it to the laboratory of Michele de Luca, an Italian stem cell expert who heads the Center for Regenerative Medicine at the University of Modena and Reggio Emilia. De Lucas team used a viral vector to ferry into Hassans skin cells a functional version of the gene LAMB3, which codes for laminin, the protein that anchors the surface of the skin to the layers below.
advertisement
Then the scientists grew the modified cells into sheets big enough for Ruhr University plastic surgeons Tobias Hirsch and Maximilian Kueckelhaus to graft onto Hassans raw, bedridden body, which they did over the course of that October, November, and the following January.
It worked better than the boys doctors could have imagined. In 2017, de Luca, Hirsch, Kueckelhaus, and their colleagues reported that Hassan was doing well, living like a normal boy in his lab-grown skin. At the time though, there was still a big question on all their minds: How long would it last? Would the transgenic stem cells keep replenishing the skin or would they sputter out? Or worse could they trigger a cascade of cancer-causing reactions?
advertisement
Today, the same team is out with an update. Five years and five months after the initial intervention, Hassan is still, for the most part, thriving in fully functional skin that has grown with the now-teenager. He is attending school, and playing sports with his friends and siblings, though he avoids swimming due to blistering in the areas that werent replaced by the lab-grown skin. One of his favorite activities is a pedal-powered go kart. There are no signs his modified stem cells have lost their steam, and no traces of tumors to be found.
The encouraging follow-up data has been instrumental in moving forward a larger clinical trial of the approach, offering hope to the 500,000 epidermolysis bullosa patients worldwide currently living without treatment options.
We were astonished by the speedy recovery, Kueckelhaus, now at University Hospital Muenster, told STAT via email. But experience from skin transplantation in other settings made him and his colleagues wary of the grafts failing as the months and years wore on. Thankfully, wrote Kueckelhaus, those fears never materialized. We are very happy to be able to prove that none of these complications appeared and the genetically modified skin remains 100% stable. The chances are good that he will be able to live a relatively normal life.
Over the last five years, Hassans team of doctors and researchers has put his new skin through a battery of tests checking it for sensitivity to hot and cold, water retention, pigmentation and hemoglobin levels, and if it had developed all the structures youd expect healthy skin to have, including sweat glands and hair follicles. Across the board, the engineered skin appeared normal, without the need for moisturizers or medical ointments. The only flaw they found was that Hassans skin wasnt as sensitive to fine touch, especially in his lower right leg. This mild neuropathy they attributed not to the graft itself, but to how that limb was prepared doctors used a more aggressive technique that might have damaged the nerves there.
The team also used molecular techniques to trace the cells theyd grown in the lab as they divided and expanded over Hassans body. They found that all the different kinds of cells composing the boys new skin were being generated by a small pool of self-renewing stem cells called holoclone-forming cells, carrying the Italian teams genetic correction.
This was quite an insight into the biology of the epidermis, said de Luca. Its an insight he expects will have huge consequences for any efforts to advance similar gene therapies for treating other diseases affecting the skin. You have to have the holoclone-forming cells in your culture if you want to have long-lasting epidermis, he said.
The approach pioneered by de Lucas team will soon be headed for its biggest clinical test yet, after nearly a decade of fits and starts. They expect to begin recruiting for a multi-center Phase 2/3 trial sometime next year.
De Luca first successfully treated a junctional EB patient in 2005. But then a change to European Union laws governing cell and gene therapies forced his team to stop work while they found ways to comply with the new rules. It took years of paperwork, building a manufacturing facility, and spinning out a small biotech company called Holostem to be ready to begin clinical research again. Hassan came along right as they were gearing up for a Phase 1 trial, but data from the boys case, which was granted approval under a compassionate use provision, convinced regulators that the cell grafts could move to larger, more pivotal trials, according to de Luca.
We didnt cure the disease, he told STAT. But the skin has been restored, basically permanently. We did not observe a single blister in five years. The wound healing is normal, the skin is robust. From this point of view, the quality of life is not even comparable to what it was before.
Original post:
Syrian refugee is thriving five years after last-gasp gene therapy - STAT - STAT
In This Issue – pnas.org
By daniellenierenberg
Inbreeding and wild tigers at risk of extinction
As habitat fragmentation increases worldwide, wild animal populations are shrinking and becoming more isolated, thus facing a heightened risk of inbreeding and extinction. The extent to which the viability of small, isolated populations could be improved by purging deleterious alleles through natural selection is unclear. Anubhab Khan et al. analyzed whole-genome sequences from 57 wild Bengal tigers from either a small, isolated population or large, connected populations in India. The results revealed evidence of partial purging of highly detrimental variants across populations. However, the small, isolated population showed genomic signs of greater inbreeding and a higher overall frequency of deleterious alleles, compared with two large populations. On average, pairs of individuals from the small, isolated population shared approximately 40% of their genomes in tracts at least 1 megabase long, whereas pairs from the large, connected populations shared approximately 1525% of their genomes. Together, the findings suggest that purging may not eliminate all detrimental alleles and inbreeding-associated fitness costs in small, isolated populations. According to the authors, the findings highlight the need for genetic rescue strategies that enhance the fitness of inbred populations by decreasing the frequency of harmful mutations and increasing genetic variation. J.W.
Read online
Go here to read the rest:
In This Issue - pnas.org