Grace Century Attends Provia Labs First Quarter Expansion Meeting January 5-10
By NEVAGiles23
Ras Al Khaimah, UAE (PRWEB) January 05, 2014
The executive team of UAE based international research and private equity consultancy, Grace Century, FZ LLC is in Boston, Massachusetts this week to attend Provia Laboratories' first quarterly meeting of 2014. The meeting is designed specifically to implement the next phase of the health services company's dental stem cell bio banking service.
According to Scott Wolf, CEO of Grace Century, this week's meeting will be much more than a typical quarterly meeting for Provia Labs and its bio-banking service, Store-A-Tooth. Upon moving into its new headquarters--triple the companys previous space---and bringing all of its operations under one roof, Provia Labs has been able to simultaneously reduce fixed costs and accommodate dramatic growth. The company is ready for its planned North American, European, and Middle East expansion. "These are incredibly exciting times for Provia and its expansion. When we promote a firm, we believe that there is an obligation of oversight to our members that is ongoing. This will be our third visit to Provia," said Wolf.
"2013 was designed to prove our model works. With tremendous dental professional interest and acceptance, we have built not only an existing dentist network of over 6,000, but the model to replicate this nationwide," explains Provia Laboratories CEO, Howard Greenman. "While each geographical territory has its challenges, the common denominator is that there is tremendous demand by families to harvest and bank their childrens stem cells. The key is increasing awareness of their opportunities to do so from teeth."
Provia Labs is presently providing services directly or through collaborators in seven countries and three states in the U.S. The plan is to expand into ten states in 2014. Europe, the Caribbean, and possibly the Middle East will also be added in the New Year.
Besides the bio banking of dental stem cells, Provia has also completed numerous federal consulting contracts and provides bio-specimen containers to some of the worlds premier research facilities through its Proviasette division.
About Grace Century, FZ LLC
Grace Century is an international research and private equity consultancy located in Ras Al Khaimah (north of Dubai) in the United Arab Emirates (UAE). Grace Century specializes in "game-changing" life science and health related private equity projects. For more information, visit: http://gracecentury.com.
About Provia Laboratories, LLC
Provia Laboratories is a health services company specializing in high quality stem cell bio banking (the collection, transport, processing, and cryogenic storage of biological specimens). Its dental stem cell banking service, Store-A-Tooth, gives parents the option to store stem cells today to protect their childrens health tomorrow. Store-A-Tooth preserves stem cells from baby and wisdom teeth that would otherwise be discarded, so parents can be prepared for advances in stem cell therapies that someday may help treat conditions such as type 1 diabetes, spinal cord injury, heart attack, stroke, and neurological disorders like Parkinsons and Alzheimers. For more information about Store-A-Tooth dental stem cell banking, call 1-877-867-5753 or visit http://www.store-a-tooth.com.
More:
Grace Century Attends Provia Labs First Quarter Expansion Meeting January 5-10
Spinal Cord Injury Treatment Status | Stem Cell …
By LizaAVILA
Till June of 2013, our department has treated 1508 patients with sequela of spinal cord injury, including 713 patients with cervical cord injury, 562 patients with thoracic cord injury (do not include T12-L1), 51 patients with both cervical cord and thoracic cord injury, and 182 patients with thoracic and lumbar cord injury (mainly T12-L1). We invented CT-guided intraspinal injection in 2006 and stem cell transplantation via endovascular intervention in 2011 to treat sequela of spinal cord injury, which apparently improved the treatment effect. Form the end of 2011 to now, the improvement rate of patients with sequela of cervical cord injury is 91.9%; 82.4% improvement rate of patients with sequela of thoracic cord injury (do not include T12-L1); 70.3% improvement rate of patient with sequela of thoracic and lumbar cord injury (mainly T12-L1); the total improve rate of patients with sequela of spinal cord injury is 87.4%. The improvement can be seen from 1) increase of muscle strength under the injured surface, better motor function than before. 2) Lower sensory level and skin temperature come back to almost normal. 3) Improvement in postural hypotension which was caused by damaged vegetative nerve function (especially for high-level spinal cord injury patients), and the body temperature is close to or back to normal. 4) A certain degree of improvement in dysdefecation and urinate disorder which were caused by sphincter disturbances, patients will have better bowls movement than before and can be aware of and control urinating. 5) Reduction of abnormal high muscular tension.
Our department work closely with CT room, and by using advanced 64 rank CT and double source CT, we performed more than 800 CT-guided intraspinal stem cell injections for patients with sequela of spinal cord injury. This is a new transplantation method invented by our department, which has many advantages such as minimally invasive, short time of surgery (only about half an hour), precise localization, little pain, no need of general anesthesia, fast recovery time (only need to stay in bed for 12 hours), and obviously effective. This treatment covers patients with injury of cervical cord, thoracic cord and thoracic lumbar cord.
In addition, our department started using transplantation via endovascular intervention to treat sequela of spinal cord injury in the end of 2011, and our treating effect keeps improving.
These new methods help us to improve our treating effect and increase the improvement rate, now these methods are becoming the unique feature and main means of our department to treat sequela of spinal cord injury.
Excerpt from:
Spinal Cord Injury Treatment Status | Stem Cell ...
StemCells, Inc. – Therapeutic Programs: Spinal Cord Injury
By NEVAGiles23
In December 2010, we received authorization from Swissmedic, the Swiss regulatory agency for therapeutic products, to initiate a Phase I/II clinical trial in Switzerland of our HuCNS-SC human neural stem cells in chronic spinal cord injury. Enrollment in this trial is expected to begin inearly 2011.
Learn more about our clinical trial in spinal cord injury
Human neural stem cells promote long-term functional motor recovery. Learnmore
Human neural stem cells were transplanted into a group of spinal-cord injured mice and their motor function over time was compared against a control (non-transplanted) group of similarly injured mice as measured by the BBB score (a standard measure of function). The motor function of the transplanted mice was shown to be higher to a statistically significant degree. When the transplanted human cells were subsequently ablated by the researchers using Diphtheria toxin (DT), the greater function of the transplanted group was lost, demonstrating that the presence of the human cells was necessary for the functional motor recovery.
Hide
DT treatment to ablate transplanted cells
Restored motor function lost
1
2
3
Continued here:
StemCells, Inc. - Therapeutic Programs: Spinal Cord Injury
What to expect in 2014: Neural feats
By LizaAVILA
C. Carreau/ATG Medialab/ESA
An artists impression of the European Space Agencys Rosetta probe, which aims to be the first to land on a comet.
Several research groups, including a team led by geneticist Erika Sasaki and stem-cell biologist Hideyuki Okano at Keio University in Tokyo, hope to create transgenic primates with immune-system deficiencies or brain disorders. This could raise ethical concerns, but might bring us closer to therapies that are relevant to humans (mice can be poor models for such disorders). The work will probably make use of a gene-editing method called CRISPR, which saw rapid take-up last year.
The European Space Agencys Rosetta spacecraft could become the first mission to land a probe on a comet. If all goes well, it will land on comet ChuryumovGerasimenko in November. Mars will also be a busy place: Indias orbiter mission should arrive at the planet in September, about the same time as NASAs MAVEN probe. And NASAs Curiosity rover should finally make it to its mission goal, the slopes of the 5.5-kilometre-high Aeolis Mons, where it will look for evidence of water. Back on Earth, NASA hopes to launch an orbiter to monitor atmospheric carbon dioxide.
Neurobiologist Miguel Nicolelis at Duke University in Durham, North Carolina, has developed a brain-controlled exoskeleton that he expects will enable a person with a spinal-cord injury to kick the first ball at the 2014 football World Cup in Brazil. Meanwhile, attempts are being made in people with paralysis to reconnect their brains directly to paralysed areas, rather than to robotic arms or exoskeletons. In basic research, neuroscientists are excited about money from big US and European brain initiatives, such as Europes Human Brain Project.
In the pharmaceutical industry, all eyes are on trial results from two competing antibody treatments that harness patients immune systems to fight cancer. The drugs, nivolumab and lambrolizumab, work by blocking proteins that prevent a persons Tcells from attacking tumours. In early tests, the drugs evoked a better level of response in patients than ipilimumab, a similar therapy that was launched in 2011 to treat advanced melanoma.
Semiconductors known as perovskites convert light energy into electricity. They are cheap to build and have already shown conversion rates of more than 15% (a leap from 4% when the feat was first reported in 2009). Expect to see still-higher efficiencies this year, perhaps reaching 20% the same as the lower end of existing commercial silicon-based photo-voltaics. A team at the University of Oxford, UK, also hopes to make lead-free perovskites.
In 2013, two research teams showed that broadly neutralizing antibodies that target an array of HIV types quickly cleared an HIV-related virus in monkeys. The therapy will be tested in people who carry HIV, with results expected in the autumn. Meanwhile, last years curing of a baby born with the virus might lead to wider trials of the technique used: high doses of antiretroviral drugs given at birth.
Technology that rapidly sequences DNA as it is fed through a ring of proteins, known as a biological nanopore, will hit the market this year after decades of development. Oxford Nano-pore Technologies in Oxford, UK, aims to release the first data from a disposable sequencer the size of a memory stick, which it is sending to scientists for testing. It promises to read longer strands of DNA than other techniques (potentially useful in sequencing mixed samples of bacterial DNA, for example), and to show results in real time.
The Intergovernmental Panel on Climate Change will complete its fifth assessment report by November. The findings of working groups II and III will focus on the impacts of climate change, and on how societies can adapt to or mitigate those effects (working groupI published its findings last year). Away from formal negotiations, United Nations secretary-general Ban Ki-moon is hoping for bold pledges on emissions at a summit in New York in September. In research, a large carbon capture and storage project in Canada the Can$1.24-billion (US$1.17-billion) Boundary Dam coal power-plant in Saskatchewan begins commercial operation in April.
Here is the original post:
What to expect in 2014: Neural feats
What to expect in 2014
By daniellenierenberg
C. Carreau/ATG Medialab/ESA
An artists impression of the European Space Agencys Rosetta probe, which aims to be the first to land on a comet.
Several research groups, including a team led by geneticist Erika Sasaki and stem-cell biologist Hideyuki Okano at Keio University in Tokyo, hope to create transgenic primates with immune-system deficiencies or brain disorders. This could raise ethical concerns, but might bring us closer to therapies that are relevant to humans (mice can be poor models for such disorders). The work will probably make use of a gene-editing method called CRISPR, which saw rapid take-up last year.
The European Space Agencys Rosetta spacecraft could become the first mission to land a probe on a comet. If all goes well, it will land on comet ChuryumovGerasimenko in November. Mars will also be a busy place: Indias orbiter mission should arrive at the planet in September, about the same time as NASAs MAVEN probe. And NASAs Curiosity rover should finally make it to its mission goal, the slopes of the 5.5-kilometre-high Aeolis Mons, where it will look for evidence of water. Back on Earth, NASA hopes to launch an orbiter to monitor atmospheric carbon dioxide.
Neurobiologist Miguel Nicolelis at Duke University in Durham, North Carolina, has developed a brain-controlled exoskeleton that he expects will enable a person with a spinal-cord injury to kick the first ball at the 2014 football World Cup in Brazil. Meanwhile, attempts are being made in people with paralysis to reconnect their brains directly to paralysed areas, rather than to robotic arms or exoskeletons. In basic research, neuroscientists are excited about money from big US and European brain initiatives, such as Europes Human Brain Project.
In the pharmaceutical industry, all eyes are on trial results from two competing antibody treatments that harness patients immune systems to fight cancer. The drugs, nivolumab and lambrolizumab, work by blocking proteins that prevent a persons Tcells from attacking tumours. In early tests, the drugs evoked a better level of response in patients than ipilimumab, a similar therapy that was launched in 2011 to treat advanced melanoma.
Semiconductors known as perovskites convert light energy into electricity. They are cheap to build and have already shown conversion rates of more than 15% (a leap from 4% when the feat was first reported in 2009). Expect to see still-higher efficiencies this year, perhaps reaching 20% the same as the lower end of existing commercial silicon-based photo-voltaics. A team at the University of Oxford, UK, also hopes to make lead-free perovskites.
In 2013, two research teams showed that broadly neutralizing antibodies that target an array of HIV types quickly cleared an HIV-related virus in monkeys. The therapy will be tested in people who carry HIV, with results expected in the autumn. Meanwhile, last years curing of a baby born with the virus might lead to wider trials of the technique used: high doses of antiretroviral drugs given at birth.
Technology that rapidly sequences DNA as it is fed through a ring of proteins, known as a biological nanopore, will hit the market this year after decades of development. Oxford Nano-pore Technologies in Oxford, UK, aims to release the first data from a disposable sequencer the size of a memory stick, which it is sending to scientists for testing. It promises to read longer strands of DNA than other techniques (potentially useful in sequencing mixed samples of bacterial DNA, for example), and to show results in real time.
The Intergovernmental Panel on Climate Change will complete its fifth assessment report by November. The findings of working groups II and III will focus on the impacts of climate change, and on how societies can adapt to or mitigate those effects (working groupI published its findings last year). Away from formal negotiations, United Nations secretary-general Ban Ki-moon is hoping for bold pledges on emissions at a summit in New York in September. In research, a large carbon capture and storage project in Canada the Can$1.24-billion (US$1.17-billion) Boundary Dam coal power-plant in Saskatchewan begins commercial operation in April.
See original here:
What to expect in 2014
San Diego’s top science stories of 2013
By JoanneRUSSELL25
Artist's rendering of planet Kepler-62f, which NASA says "orbits (its sun) every 267 days and is only 40 percent larger than Earth, making it the smallest exoplanet known in the habitable zone of another star." SDSU helped confirm that the planets are in the habitable zone.
Scientists in San Diego experienced one of their most productive and, in some cases, dangerous years ever in 2013, with breakthroughs and adventures that involved everything from the tiniest forms of life on Earth to the discovery of possibly habitable planets orbiting intriquing stars in a distant constellation.
Heres a look at the five top science stories, and a list of noteworthy events, advances and achievements.
Philanthropist T. Denny Sanford
CELL CHAMP: Billionaire philanthropist Denny Sanford donated $100 million to UC San Diego in November to accelerate efforts to transform basic discoveries about stem cells into drugs and therapies for afflictions ranging from Parkinsons disease to failing hearts. It was the second largest gift in campus history. Sanford, who has a home in La Jolla, said, It is time to move stem cell research from animals into humans for trials, especially in areas like ALS (Lou Gehrigs disease) and spinal cord injuries, where I believe we can make a lot of progress. His gift is the centerpiece of a $275 million effort by the University of California San Diego to create some of the first clinical trials based on human stem cells. Sanfords money will allow for the hiring of 20-25 scientists, and the recruitment of patients for drug trials. (Full story)
President Obama confers the Presidential Medal of Freedom on UCSD Nobel laureate Mario Molina.
NATIONAL HEROES: At a November ceremony at the White House, President Barack Obama conferred the Presidential Medal of Freedom on UC San Diego Nobel laureate Mario Molina, and awarded the medal posthumously to Sally Ride of La Jolla, the first American woman to travel in space. Molina was honored for discovering that a class of common chemicals has been damaging Earths protective ozone layer. Obama said, Today, inspired by his work, we are working to leave our planet safer and cleaner for future generations. The president said Ride didnt just break the stratospheric glass ceiling, she blasted through it. When she came back to Earth, she devoted her life to helping girls excel in fields like math, science and engineering. (Full story)
Portrait of two SDSU astronomers Jerome Orosz, left, and Bill Welsh, at right, in the school's planetarium. They helped find two planets that are more like Earth the anything they've ever seen. Charlie Neuman
FAMILIAR WORLDS: NASA announced in April that scientists had found two planets that are more like Earth in size and temperature than anything thats ever been seen. The discovery was made with the help of San Diego State University astronomers Bill Welsh and Jerome Orosz. Using data from the Kepler Telescope, Welsh helped confirm that planets 62-E and 62-F exist in the habitable zone, a region of space where it is possible for water to exist on the surface -- if a planet has enough atmospheric pressure. Some scientists call these worlds Goldilocks planets. Orosz helped prove that the planets are circling a single sun. Both planets are located in constellation Lyra, roughly 1,200 light years from Earth. Orosz said, Theres a possibility that theres liquid water on their surfaces. And that means theres a possibility of life. (Full story)
Craig Venter leads a tour of his new J. Craig Venter Institute campus, under construction on Torrey Pines Mesa. Howard Lipin
See the article here:
San Diego's top science stories of 2013
Promising Stem Cell Research for Spinal Cord Injuries …
By daniellenierenberg
The complex world of Stephen Davies, PhD, is populated by nerve cells and fibers, star-shaped cells, precursor cells, and proteins. But the work he does with it all has one simple goal: to give hope to the victims of spinal cord injuries, and, ultimately, a wide array of neurological disorders that cause misery and exact an enormous individual and societal price.
Davies lab in Research Complex 1 on the Anschutz Medical Campus has attracted attention throughout the worldwide medical research community.
Stephen Davies, PhD
Davies is pushing forward with promising treatments hes developed that use stem cells to regenerate nerve growth in injured spinal cords. The approach has helped laboratory mice with spinal cord injuries (or SCIs) regain their mobility. He hopes to bring the treatments to clinical trial and, one day, mainstream medicine.
Im optimistic well have therapies for both acute and chronic injuries in the future, he says. Hopefully sooner rather than later.
The scar tissue that results from SCIs is the primary target of Davies work.
Davies found that treating animals with SCIs with a protein called decorin not only suppressed formation of molecules responsible for producing scarring, but also stimulated the growth of neurons (nerve cells) and axons, the long nerve cell fibers that conduct electrical impulses between the spinal cord and the brain.
Decorin overrides the inhibitors to new nerve growth and allows new communications to be made," Davies explains. He says new neuron and axon growth in laboratory mice with decorin increased at 15 times the rate of untreated mice.
The therapies were working on have an obvious application for the treatment of wounded warriors coming home from the Middle East," Davies says. There are terrible neurologic problems being accrued on the battlefield and from [improvised explosive devices].
He believes his research could ultimately lead to treatments for far more than spinal cord injuries. Its a technical approach to general repair of the central nervous system, he asserts. It could be developed for use in stroke, traumatic brain injuries and a variety of neurologic disorders. And it could prove effective at preventing atrophy of damaged brain neurons and protecting them from dying. That advance would offer hope to Alzheimers patients.
More here:
Promising Stem Cell Research for Spinal Cord Injuries ...
Spinal cord injury: do stem cells have the answer? | Science …
By Sykes24Tracey
By Andrew Brown
Spinal cord injury typically causes permanent paralysis and is currently a condition without a cure. Could stem cell therapy provide hope?
American actor and activist Christopher Reeve will be remembered for his leading role in the 1978 blockbuster movie Superman. Sadly, he will also be remembered as a man whose tremendously active life, both on and off screen, was shattered by a catastrophic injury that left him paralysed from the neck downwards a state in which he remained until he died in 2004.
In May 1995, during an equestrian competition, Reeve was thrown headfirst off his horse. The weight of his body was thrust through his spine, breaking two of the vertebrae in his neck and causing extensive damage to his spinal cordw1.
What happened during his accident at the level of blood, bones, cells and molecules to cause his life-long paralysis? And how might research into new treatments based on stem cells offer hope for people paralysed by spinal cord injury? Could it help them to regain some control over their bodies and their lives?
What is spinal cord injury?
Your spinal cord is an information highway connecting your brain to the rest of your body (figure 1). Injuries to it are usually caused by sudden trauma, such as that sustained in sports or car accidents, and result in dislocation and / or breakage of vertebrae, which rip into the spinal cord tissue, damaging or severing axons. Sensation and motor control are lost below the level of the injury (figure 2).
Multiple cell types die at or near the site of the spinal cord injury, due tosecondary effects of the trauma, such as changes in blood supply, immune responses and an increase in free radicals and excitatory neurotransmitters (see box on the secondary effects of spinal cord injury).
Figure 1: Anatomy and function of the spinal cord. Click on image to enlarge.
The spinal cord is a soft, jelly-like structure that extends from the base of the brain to the lower back (A). It is 38 to 43 cm long and, at its maximum width, is about as wide as a thumb. It sits in a hollow channel that runs through the spinal columns 33 stacked vertebrae (B).
View post:
Spinal cord injury: do stem cells have the answer? | Science ...
Cedars-Sinai Medical Tipsheet for Dec. 2013
By Dr. Matthew Watson
Contact Information
Available for logged-in reporters only
Scientists Design and Test New Approach for Corneal Stem Cell Treatments Researchers in the Cedars-Sinai Regenerative Medicine Institute have designed and tested a novel, minute-long procedure to prepare human amniotic membrane for use as a scaffold for specialized stem cells that may be used to treat some corneal diseases. This membrane serves as a foundation that supports the growth of stem cells in order to graft them onto the cornea. This new method, explained in a paper published in the journal PLOS ONE, may accelerate research and clinical applications for stem cell corneal transplantation. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org; Twitter @CedarsSinaiCara
Cancer Science Evolves, One Consent Form at a Time Tucked away in freezers chilled to minus 80 degrees Celsius are blood and tissue samples from Cedars-Sinai patients. The freezers that hold these samples also contain the hopes of investigators determined to uncover new treatments for cancer patients across the globe. As cancer research continues to evolve, scientists rely on specimen samples, such as tissue, blood or urine, from generous patients to advance discoveries and personalize care. Biobanks, like the state-of-the-art biobank at the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, allow patients to make invaluable contributions to medical research and treatment advances that may ultimately be the solution to their own diagnosis or disease down the road. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org; Twitter @CedarsSinaiCara
Cedars-Sinai, UCLA Health System and Select Medical Announce Partnership to Open Medical Rehabilitation Hospital Cedars-Sinai, UCLA Health System and Select Medical announced today a partnership to create a 138-bed acute inpatient rehabilitation hospital located in the former Century City Hospital. With an expected opening in late 2015, the rehabilitation hospital will serve the growing needs in the community for inpatient rehabilitation, and is also expected to serve as a center for treating complex rehabilitation cases from throughout the nation. The joint venture is an LLC partnership among Cedars-Sinai, UCLA Health System and Select Medical. The vision of the partnership is to develop a world-class regional rehabilitation center providing highly specialized care, advanced treatment, and leading-edge technologies to treat individuals with spinal cord injuries, brain injuries, stroke, amputation, neurological disorders, and musculoskeletal and orthopedic conditions. CONTACT: Sally Stewart, 310-248-6566; Email sally.stewart@cshs.org
Cedars-Sinai Receives Fourth Straight Magnet Recognition for Nursing Excellence from American Nurses Credentialing Center For the fourth time in a row, the American Nurses Credentialing Center has granted Cedars-Sinai the Magnet recognition, the most prestigious designation a healthcare organization can receive for excellence in nursing and patient outcomes. Cedars-Sinai in 2000 became the first Southern California hospital to earn the Magnet honor; it is the only hospital in the state to be granted the designation four times. Cedars-Sinai joins a select list of only 12 hospitals worldwide that have earned Magnet recognition four times. CONTACT: Sally Stewart, 310-248-6566; Email sally.stewart@cshs.org
Ovarian Cancer Discovery Deepens Knowledge of Survival Outcomes Researchers in the Womens Cancer Program at Cedars-Sinais Samuel Oschin Comprehensive Cancer Institute have identified a series of 10 genes that may signify a trifecta of benefits for women diagnosed with ovarian cancer and ultimately reflect improved survival outcomes. The research found that the 10-gene biomarker panel may identify the aggressiveness of a patients disease, help predict survival outcomes and result in novel therapeutic strategies tailored to patients with the most adverse survival outcomes. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org; Twitter @CedarsSinaiCara
# # #
View post:
Cedars-Sinai Medical Tipsheet for Dec. 2013
Brain cancer treatment may lie in reactivating immune cells
By LizaAVILA
Current ratings for: Brain cancer treatment may lie in reactivating immune cells
Ratings require JavaScript to be enabled.
When they examined tumor samples of glioblastoma, the deadliest form of brain cancer, researchers in Canada discovered they contained deactivated forms of specialized immune cells that normally fight tumor-generating cells. When they tested a drug that reactivates these immune cells in diseased mice, the animals lived two to three times longer.
The researchers, from the University of Calgary's Hotchkiss Brain Institute (HBI) and Southern Alberta Cancer Research Institute, hope their discovery will lead to clinical trials and eventually to a new standard of care for brain tumor patients.
They write about their findings in a recent online issue of Nature Neuroscience.
Even though treatments already exist, the median survival for patients with glioblastoma is only 15 months - fewer than 1 in 20 survive more than 5 years.
Our brains have their own specialized immune cells called microglia that protect against injury and infection.
They are the brain's "dedicated immune system," explains senior author V. Wee Yong, a professor in Calgary's Departments of Oncology and Clinical Neurosciences.
As with other cancers, brain tumors start from stem cells. In the case of brain tumors, they are called brain tumor initiating cells (BTICs).
BTICs grow and divide rapidly, eventually forming a mass, the tumor itself.
Follow this link:
Brain cancer treatment may lie in reactivating immune cells
Phoenix Pain Management Doctors at Arizona Pain Stem Cell Institute Now Offering 4 Stem Cell Treatments for Arthritis
By JoanneRUSSELL25
Phoenix, Arizona (PRWEB) December 11, 2013
The top Phoenix stem cell treatment clinic, Arizona Pain Stem Cell Institute, is now offering four stem cell therapies for arthritis. The treatments offered are very low risk and offered as an outpatient. For more information and scheduling on the regenerative medicine treatments offered, call (602) 507-6550.
The Board Certified, Award Winning pain management doctors in Arizona provide either bone marrow, fat derived or amniotic stem cell injections. The fat or bone marrow is harvested from the patient, and immediately processed for injection into the target area. Since the material comes directly from the patient, the risks are exceptionally low.
With regards to the amniotic derived injections, the fluid is obtained from consenting donors and processed at an FDA regulated lab. The treatment does not involve any fetal tissue, and contains a high concentration of stem cells, growth factors and anti-inflammatory factors.
The additional treatment offered is platelet rich plasma therapy, known as PRP therapy for short. PRP therapy involves a simple blood draw from the patient, which is then centrifuged and spun down for 15 minutes to obtain a solution rich in platelets and growth factors.
The PRP is then injected into the target area, where published studies have shown impressive results for arthritis and soft tissue injury such as rotator cuff tendonitis, tennis elbow, Achilles tendonitis, ligament injury and more. The treatments have the potential to not only provide pain relief, but also regenerate the damaged tissue or cartilage.
Numerous athletes over the past few years have turned to regenerative medicine to obtain pain relief and get back into playing condition. This has included athletes such as Hines Ward, Tiger Woods, Kobe Bryant, Rafael Nadal and many more.
The Arizona Pain Stem Cell Institute treats everyone from athletes to college students to executives, manual laborers, senior citizens and more. Board Certified and Award Winning Phoenix pain management doctors offer the stem cell treatments along with other cutting edge pain relief options such as radiofrequency ablation and spinal cord stimulator implants.
Over 50 insurance plans are accepted, and Arizona Pain Specialists offers 5 locations for convenience. Call (602) 507-6550 for scheduling.
JCI – Advances in stem cell therapy for spinal cord injury
By raymumme
Article tools
Author information
Need help?
Andrea J. Mothe and Charles H. Tator
Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Ontario, Canada.
Address correspondence to: Charles H. Tator, Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8. Phone: 416.603.5889; Fax: 416.603.5745; E-mail: charles.tator@uhn.on.ca.
Published November 1, 2012
Spinal cord injury (SCI) is a devastating condition producing great personal and societal costs and for which there is no effective treatment. Stem cell transplantation is a promising therapeutic strategy, though much preclinical and clinical research work remains. Here, we briefly describe SCI epidemiology, pathophysiology, and experimental and clinical stem cell strategies. Research in stem cell biology and cell reprogramming is rapidly advancing, with the hope of moving stem cell therapy closer to helping people with SCI. We examine issues important for clinical translation and provide a commentary on recent developments, including termination of the first human embryonic stem cell transplantation trial in human SCI.
Spinal cord injury (SCI) is a devastating condition, with sudden loss of sensory, motor, and autonomic function distal to the level of trauma. Despite major advances in the medical and surgical care of SCI patients, no effective treatment exists for the neurological deficits of major SCI (1). Current treatment includes surgery to decompress and stabilize the injury, prevention of secondary complications, management of any that do occur, and rehabilitation. Unfortunately, neurological recovery is limited, and most SCI patients still face substantial neurological dysfunction and lifelong disability. Stem cell therapy offers several highly attractive strategies for spinal cord repair, including replacement of damaged neuronal and glial cells, remyelination of spared axons, restoration of neuronal circuitry, bridging of lesion cavities, production of neurotrophic factors, antiinflammatory cytokines, and other molecules to promote tissue sparing and neovascularization, and a permissive environment for plasticity and axonal regeneration. This review builds on several excellent previous reviews (28) and discusses the incidence and pathophysiology of SCI as well as the key experimental and clinical stem cell strategies for SCI.
Worldwide, the annual incidence of SCI is 1540 cases per million people (9). In Canada, the Rick Hansen Institute estimates there are currently 85,000 people living with SCI, with more than 4,000 new cases per year (10), and in the United States, the Christopher and Dana Reeve Foundation estimates a prevalence of over 1 million patients with SCI and more than 12,000 new cases each year (11).
Read the original here:
JCI - Advances in stem cell therapy for spinal cord injury
Americans seek stem cell treatments in China – Health …
By JoanneRUSSELL25
BEIJING Theyre paralyzed from diving accidents and car crashes, disabled by Parkinsons, or blind. With few options available at home in America, they search the Internet for experimental treatments and often land on Web sites promoting stem cell treatments in China.
They mortgage their houses and their hometowns hold fundraisers as they scrape together the tens of thousands of dollars needed for travel and the hope for a miracle cure.
A number of these medical tourists claim some success when they return home.
Jim Savage, a Houston quadriplegic, says he can move his right arm. Penny Thomas of Hawaii says her Parkinsons tremors are mostly gone. The parents of 6-year-old Rylea Barlett of Missouri, born with an optical defect, say she can see.
But documentation is mostly lacking, and Western doctors warn that patients are serving as guinea pigs in a country that isnt doing the rigorous lab and human tests that are needed to prove a treatment is safe and effective.
Effectiveness questioned Noting the lack of evidence, three Western doctors undertook their own limited study. It involved seven patients with spinal cord injuries who chose to get fetal brain tissue injections at one hospital in China. The study reported no clinically useful improvements even though most patients believed they were better. Five developed complications such as meningitis.
Experts in the West have theories about why some people think theyve improved when the evidence is thin. Some are often getting intensive physical therapy, along with the mysterious injections; the placebo effect may also be a factor.
John Steeves, a professor at the University of British Columbia who heads an international group that monitors spinal cord treatments, has another theory. Some patients may be influenced by the amount of money they paid and the help they got from those who donated or helped raise money.
Needless to say, when they come back, what are they going to report to their friends and neighbors? That it didnt work? said Steeves. Nobody wants to hear that.
He and other experts have written a booklet advising patients who are considering such treatments.
The rest is here:
Americans seek stem cell treatments in China - Health ...
Spinal Cord Injuries – Regenocyte
By JoanneRUSSELL25
Spinal Cord Injury Patient Walks After 26 Years in Wheel Chair Thanks To Stem Cells
Chicago, Illinois; August 22, 2012
After 26 years in a wheel chair William Orr is walking. Granted it is with the assistance of a walker, but he is walking. Orr is walking to get his mail, he is walking to rehab from his parked car and he is planning on walking into his 35th high school reunion.
The 52-year-old Aurora man has been a quadriplegic for half his life, since a car hit him while he was riding his bike back in 1986. He suffered a C6-C7 incomplete spinal cord injury and has used a wheel chair since.
In August of 2010, Orr underwent what many believe is a first of its kind stem cell procedure in Naples, Florida, using bone marrow from his hip that doctors believe has regenerated damaged cells in his spinal cord. He had such a good response that a second treatment was performed in July 2012. Subsequently, Orr has gained both motor and sensory improvement, as well as having the majority of his muscle spasms dissipate.
There is a remarkable difference. The results for Mr. Orr and others in the treatment group are truly remarkable and have exceeded our expetations said Michael Calcaterra for Intercellular Sciences. Frankly, this is an area that regeneration was thought not to be possible.
I feel like a new person, said Orr. And its only going to get better. He hopes to someday be walking without the walker. Doctors believe that if his quadriceps strength continues to improve as well as his foot lift, then its a real possibility. In the meantime, hes relishing every new sensation, big or small. Its this amazing work ethic and attitude along with the stem cells, his doctor insists, that will help get this man back on his feet again.
UPDATE:
Follow this link:
Spinal Cord Injuries - Regenocyte
Stem cell transplantation for treat spinal cord injury offers …
By Sykes24Tracey
An experiment conducted by a team of Japanese researchers from the Keio University School of Medicine, offers new hope for patients with spinal cord injuries. They managed to obtain motor functional recovery after injecting neural stem / progenitor cells (NS / PCs ) in mice. It was known for some time that transplantation of neural stem / progenitor cells (NS / PCs ) promotes functional recovery in spinal cord injury, but it was not very clear what is the optimal transplantation site. Therefore, researchers made an experiment in which they injected NS / PCs in four groups of mice in several sites : at the lesion epicenter, caudal and rostral sites; the control group received phosphate buffered saline. It should be noted that all mice included in the study received contusivespinal cord injury at the T10 level.
Dr. Masaya Nakamura of the Department of Orthopedic Surgery at the Keio University School of Medicine, emphasizedthat it is critical to determine the optimal site for transplanting NS / PCs designed to treat spinal cord injury.Previous studies conducted by the same team showed that NS / PCs injected intravenously or intrathecally in non injury sites, did not engraft at the lesion site in sufficient numbers; the researchers observed that instead these NS / PCs were trapped in the lungs or kidney. In this way they concluded that the optimal outcome for transplantation of NS / PCs can be obtained by intralesional application. To determine how effective isintralesional injection, researchers conducted another study on laboratory mice with spinal cord injury. They injected NS / PCstaken from transgenic mice for Venus and luciferase fusion protein, a method that allowed the researchers to track the cells after transplantation by bioluminescence imaging ( BLI ).
Dr. Nakamura explained that wild-type mice received a spinal cord injury at T10 and thatlow and high doses of NS / PCs taken from fetal transgenic mice were administered to four groups of mice; the fifth group received phosphate buffered saline. Researchers reported that all four groups of mice had functional motor recovery while mice in the control group did not. The researchers also mentioned that in all four groups, the photon counts from BLI transplant were similar. In other words, the survival of stem cells was uniform when it was transplanted more than acertain threshold number of cells. However, it seems that there is a difference between rostral and caudal (RC ) sites and lesion epicenter (E ) because brain -derived neurotropic factor expression was higher in RC.This may mean that the microenvironments of the E and RC sites are similarly able to support NS/PCs transplanted during the sub-acute phase of SCI, researchers said.
Like Loading...
See more here:
Stem cell transplantation for treat spinal cord injury offers ...
Spinal Cord Injury – Stem Cell Network
By Dr. Matthew Watson
Last updated: 03/2012
The brain and spinal cord together form the central nervous system (CNS) which is responsible for processing all the information coming from our senses, keeping our organs and reflexes functioning, and directing our movements, thoughts and feelings.
The spinal cord is the critical organ that connects the brain to the rest of the body by conveying electrical impulses along the long nerve fibres that are bundled within it.
The nerves that branch out from the spinal cord to the rest of the body comprise the peripheral nervous system (PNS). These peripheral nerves both receive and convey messages creating a feedback loop that allows us to feel sensation and enable movement.
A nerve cell, or neuron, has a long slender projection, called the axon that acts like a transmission line coming from the control centre of the cell. Even though axons are microscopic in diameter, they may be many feet long. Wrapped around the nerve fibres is a fatty substance called myelin that is similar to insulation on a telephone wire. Myelin is a critical component of the nervous system in that it speeds up the electrical signals and protects the nerves. In addition to neurons, the brain is also home to glial cells which play a critical role in stabilizing the environment, making myelin and supporting and protecting the neurons.
Spinal cord injury (SCI) may occur anywhere from the neck to the lower back. During an initial trauma in which the spinal vertebrae fracture or dislocate, the delicate spinal cord is violently struck. While the cord itself typically remains in one piece, many of the tiny nerve fiber bundles within it are severed. After this initial mechanical injury, inflammation, swelling, and other metabolic processes are triggered, causing further damage and disruption of the nerve fibers. The severity of paralysis experienced by the patient is dependent upon the degree of damage done to the spinal cord. However, even in cases of complete paralysis where the patient has no feeling or movement below the injury, the spinal cord itself is not severed completely, and in fact, there are some axons that remain intact across the injury site. Some of these are thought to have lost their myelin sheaths (their insulation) and therefore do not conduct electrical signals well.
Spinal cord injury affects mostly young adults, about 80% of whom are males. Car accidents are responsible for about 50% of cases. Sporting accidents, serious falls, wounds, and diseases of the spine, such as spina bifida, can also cause permanent injury to the spinal cord. In North America, it is estimated that more than a million individuals live with a disability resulting from some type of spinal cord injury.
Because spinal cord injuries are often the result of terrible accidents which paralyze otherwise fit and mostly healthy young people, they can cause significant and prolonged suffering. Depending on the severity of the injury, rehabilitation may help many people to regain some degree of function.
Unlike the skin, blood, muscle and other organs, for many reasons the CNS does not routinely regenerate after damage hence, the disability caused by spinal cord injury may be permanent and profound. In contrast, the nerves in the PNS tend to regenerate after injury, both because they are intrinsically better programmed to regenerate, and because the cells that myelinate axons in the PNS (called Schwann cells) tend to encourage regeneration.
After spinal cord injuries occur, there is only a small window of opportunity hours, maybe weeks in which therapies may reduce the disability. Restoring the electrical transmission between the brain and spinal cord requires repairing the myelin sheath around the damaged neurons and, in severe cases, the regrowth of severed nerve fibres across the site of injury and into the neural network below the lesion. Scarring and other cellular damage that occurs when the body responds to injury often compounds the difficulties in bridging the lesion site in the aftermath of the injury, and in many cases rehabilitation is the only recourse.
View post:
Spinal Cord Injury - Stem Cell Network
Spinal Cord Injury Treatment (Adult Stem Cell Therapy)
By LizaAVILA
For years we have seen immobilized rats walking after getting an injection of stem cells for their spinal cord injuries. The good thing is that along the way, stem cells have started to be used in studies and experimental therapies to attempt to get SCI patients walking again. While the results for humans have not been nearly as miraculous as for mice, many patients have reported, and some studies have shown, that these early treatments do bring back some sensory ability and improved motor function. Most importantly, a good percentage of patients who have received stem cell transplantsfeel that the treatment has helped not only to improve their quality of life but also that of their caretaker.
Clinical trials and studies using stem cell treatment for spinal cord injuries have been done in Argentina, China, Portugal and are now starting in the United States. The signs are quite positive that within ten to fifteen years, stem cell treatment will be widely available to the general public. The stem cells that being tested in clinical trials today in the west will be approved for medical use for the public in ten years. For patients who dont want to wait for this process, Beike provides an option chosen by over 1000 patients since 2003 making it one of the most established experimental therapies available today.
Stem cell treatment, using Beikes cord mensenchymal stem cells and protocols for spinal cord injuries, is available at various hospitals in China and one in Thailand. Generally, many patients have reported improvements soon after treatment, and continue to notice more improvements for up to 12 months following the stem cell transplants.
Patients who report that they do benefit from the procedure, most always report that those improvements are retained permanently, without regression. Reported improvements differ from patient to patient (depending on the severity of their injury and specifics of their case) - some patients may experience mild increases in sensation, while some regain muscle control and strength where there was little or none before. Many of the patients who see the greatest benefits from the treatment focus heavily on rehabilitation after their stem cell transplant. Like any medical procedure or medicine, there are some patients who report no improvement.
To learn first hand from other patients who have had the treatment, contact us and we will do our best to put you in touch with past patients with similar spinal cord injuries (including those who saw good results and those with no results) who were treated with Beikes stem cell treatment.
Read more here:
Spinal Cord Injury Treatment (Adult Stem Cell Therapy)
Stem Cell Treatment for Spinal Cord Injury (SCI) with CT Guidance
By NEVAGiles23
When injury occurs to the spinal cord, the connections between the brain and the body are hampered or broken, which results in some level of impairment and a certain degree of paralysis. Symptoms may include movement disability, loss of sensation, impaired control of urination and defecation, cramps, pain and depression.
Conventional treatments for spinal cord injury are focused on prevention of secondary damage and providing rehabilitation.
Background information on this condition
With the advancement of stem cell treatments in China now you have a novel treatment option for Spinal Cord Injury. Stem cell therapy can support the natural regeneration processes of the body by stimulating the repair of damaged tissues. It goes beyond symptomatic treatment and may potentially help you to improve or regain some of the impaired functions.
Cell death occurs when cells are injured. However, these dead cells are surrounded by damaged and healthy cells. Stem cells have the potential to stimulate the healing of these injured cells by the secretion of cytokines, such as nerve growth factor to promote the bodys self-repair mechanisms.
Stem cells are injected by an innovative procedure known as a CT-guided intraspinal injection technique and this is supplemented by further stem cell transplantation via lumbar punctures or IV injections.
We are proud to be the pioneers of the CT-guided intraspinal stem cell transplantation surgical procedure, which is a landmark in the field of stem cell therapy for Spinal Cord Injury. To date, CT-guided intraspinal stem cell transplantation is only available at our hospital in China. CT guidance enables the neurosurgeon to target the stem cells precisely, administering the stem cells inside healthy spinal cord tissue adjacent to the lesion. This technique avoids open surgery of the spine. Thus pain, risks, and healing time are all minimized.
Our doctors understand that a variety of factors may influence decisions regarding your treatment. Our team is dedicated to patient education and collaboration so that you are clearly aware of your condition and treatment options. The hospital offers a wide range of treatments and related services. Therefore we advise you to consult with one of our specialists for personalized treatment information before you arrive to China.
We also encourage you to carefully study our CT Guided Transplantation Method and our stem cell treatment schedule.
Read more here:
Stem Cell Treatment for Spinal Cord Injury (SCI) with CT Guidance
Spinal Cord Injury Stem Cell Treatment – ASCI – Stem Cell Rejuvenation
By raymumme
Stem Cells and Spinal Cord Injury:
Spinal cord injuries are described at various levels of "incomplete", which can vary from having no effect on the patient to a "complete" injury which means a total loss of function.
Treatment of spinal cord injuries starts with restraining the spine and controlling inflammation to prevent further damage. The actual treatment can vary widely depending on the location and extent of the injury. In many cases, spinal cord injuries require substantial physical therapy and rehabilitation, especially if the patient's injury interferes with activities of daily life.
After a spinal cord injury, many of the nerve fibers at the injury site lose their insulating layer of myelin. As a result, the fibers are no longer able to properly transmit signals between the brain and the spinal cord contributing to paralysis. Unfortunately, the spinal cord lacks the ability to restore these lost myelin-forming cells after trauma.
Tissue engineering in the spinal cord involves the implantation of scaffold material to guide cell placement and foster cell development. These scaffolds can also be used to deliver stem cells at the site of injury and maximize their regenerative potential.
When the spinal cord is damagedeither accidentally (car accidents, falls) or as the result of a disease (multiple sclerosis, infections, tumors, severe forms of spinal bifida, etc.)it can result in the loss of sensation and mobility and even in complete paralysis.
Spinal Cord Injury and Stem Cell Treatment
Adult stem cell transplants for spinal cord injury repair: current state in preclinical research.
Hernndeza J, Torres-Espna A, Navarro X.
Read the original here:
Spinal Cord Injury Stem Cell Treatment - ASCI - Stem Cell Rejuvenation
Stem Cells and Diseases [Stem Cell Information]
By Dr. Matthew Watson
The Promise of Stem Cells
Studying stem cells will help us understand how they transform into the dazzling array of specialized cells that make us what we are. Some of the most serious medical conditions, such as cancer and birth defects, are due to problems that occur somewhere in this process. A better understanding of normal cell development will allow us to understand and perhaps correct the errors that cause these medical conditions.
Another potential application of stem cells is making cells and tissues for medical therapies. Today, donated organs and tissues are often used to replace those that are diseased or destroyed. Unfortunately, the number of people needing a transplant far exceeds the number of organs available for transplantation. Pluripotent stem cells offer the possibility of a renewable source of replacement cells and tissues to treat a myriad of diseases, conditions, and disabilities including Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury, burns, heart disease, diabetes, and arthritis.
Scientists have been able to do experiments with human embryonic stem cells (hESC) since 1998, when a group led by Dr. James Thomson at the University of Wisconsin developed a technique to isolate and grow the cells. Although hESCs are thought to offer potential cures and therapies for many devastating diseases, research using them is still in its basic stages. hESCs are thought to offer potential cures and therapies for many devastating diseases, and we are now seeing the first clinical trials using cells derived from hESCs.
The NIH funded its first basic research study on hESCs in 2002. Since that time, biotechnology companies have built upon those basic foundations to begin developing stem cell-based human therapies. There are currently two active clinical trials using cells derived from human embryonic stem cells, both being conducted by a biotechnology company called ACT. The company has laboratories in Marlborough, Massachusetts and corporate offices in Santa Monica, California. ACT has begun enrolling patients for Phase I (safety and tolerability) clinical trials of two hESC-derived stem cell products:
In January, 2012, the investigators published a preliminary report on the first two patients treated with hESC-derived cells: http://www.ncbi.nlm.nih.gov/pubmed/22281388. A third patient was treated on April 20, 2012.
Late in 2007, scientists reported that they had been able to reprogram adult human skin cells to behave like hESCs. This type of stem cells is known as induced pluripotent stem cells, or iPSCs. Since these first reports, researchers have rapidly improved the techniques to generate iPSCs, creating a powerful new way to "de-differentiate" cells whose developmental fates were thought to be determined. In July 2013, Japans health minister approved the first clinical trial using cells derived from iPSCs. Masayo Takahashiin Kobe, Japan will use the cells to attempt to treat a form of blindness - age-related macular degeneration.
Bone marrow contains blood-forming stem cells (hematopoietic stem cells) that have been used for decades to treat blood cancers and other blood disorders. Umbilical cord blood is another source of hematopoietic stem cells that is being used in treatment. You can see a list of diseases that may currently be treated with hematopoietic stem cells at the website of the National Marrow Donor Program. You may also search for clinical trials testing "bone marrow stem cells" or "umbilical cord blood" on the ClinicalTrials.gov website.
A biotechnology company called Neuralstem (corporate headquarters in Rockville, Maryland) is conducting a clinical trial testing the use of human spinal cord stem cells to treat Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrigs Disease. The company obtained FDA approval to conduct a Phase I trial (safety and tolerability study) and began enrolling patients in January 2010. Twelve participants have received lumbar transplants, and in March 2012, the second participant received an injection in the cervial region. Details about this trial are listed on the ClinicalTrials.gov website.
Osiris Therapeutics (Columbia, Maryland) is conducting three different Phase 2 clinical trials with a product from adult mesenchymal cells (called Prochymal). The three trials are for:
See the article here:
Stem Cells and Diseases [Stem Cell Information]