Taking the fate of stem cells in hand: RUB researchers generate immature nerve cells
By LizaAVILA
28.06.2012 - (idw) Ruhr-Universitt Bochum
RUB biologists have deliberately transformed stem cells from the spinal cord of mice into immature nerve cells. This was achieved by changing the cellular environment, known as the extracellular matrix, using the substance sodium chlorate. Via sugar side chains, the extracellular matrix determines which cell type a stem cell can generate. Influencing precursor cells pharmacologically so that they transform into a particular type of cell can help in cell replacement therapies in future says Prof. Dr. Stefan Wiese, head of the Molecular Cell Biology work group. Matrix modified Taking the fate of stem cells in hand RUB researchers generate immature nerve cells
RUB biologists have deliberately transformed stem cells from the spinal cord of mice into immature nerve cells. This was achieved by changing the cellular environment, known as the extracellular matrix, using the substance sodium chlorate. Via sugar side chains, the extracellular matrix determines which cell type a stem cell can generate. Influencing precursor cells pharmacologically so that they transform into a particular type of cell can help in cell replacement therapies in future says Prof. Dr. Stefan Wiese, head of the Molecular Cell Biology work group. Therapies, for example, for Parkinsons, multiple sclerosis or amyotrophic lateral sclerosis could then become more efficient. The team describes its findings in Neural Development.
Sulphate determines the fate of stem cells
Sodium chlorate acts on metabolism enzymes in the cell which attach sulphate groups to proteins. If these sulphates are not installed, the cell continues to form proteins for the extracellular matrix, but with modified sugar side chains. These chains in turn send out signals that define the fate of the stem cells. Stem cells can not only develop into nerve cells, but also form astrocytes or oligodendrocytes, which are, for instance, responsible for the mineral balance of the nerve cells or which form their insulation layer. What happens to the stem cells if the sulphate pattern is changed by sodium chlorate was examined by Dr. Michael Karus and his colleagues.
The RUB-laboratories of Prof. Dr. Stefan Wiese, Prof. Dr. Andreas Faissner and Prof. Dr. Irmgard Dietzel-Meyer collaborated for the study. Using antibodies, the researchers showed that cells which they had treated with sodium chlorate developed into nerve cells. They also analysed the flow of sodium ions into the cells. The result: treated cells showed a lower sodium current than mature nerve cells. Sodium chlorate thus favours the development of stem cells into nerve cells, but, at the same time, also inhibits the maturation - a positive side effect, as Wiese explains: If sodium chlorate stops the nerve cells in an early developmental phase, this could enable them to integrate into the nervous system following a transplant better than mature nerve cells would do.
Bibliographic record
M. Karus, S. Samtleben, C. Busse, T. Tsai, I.D. Dietzel, A. Faissner, S. Wiese (2012): Normal sulphation levels regulate spinal cord neural precursor cell proliferation and differentiation, Neural Development, doi:10.1186/1749-8104-7-20
Further information
Prof. Dr. Stefan Wiese, Molecular Cell Biology Work Group, Faculty of Biology and Biotechnology at the Ruhr-Universitt, 44780 Bochum, Germany, Tel. +49/234/32-22041 stefan.wiese@rub.de
Read the original post:
Taking the fate of stem cells in hand: RUB researchers generate immature nerve cells
North Brunswick doctor appears on MTV show
By NEVAGiles23
Local orthopedic physician treated patient who was featured on True Life
BY JENNIFER AMATO
Staff Writer
Dr. Edward Magaziner NORTH BRUNSWICK A young woman named Tamara was suffering from chronic pelvic pain that was affecting her everyday life.
She had undergone two surgeries on her hips, since doctors determined the pain was the result of friction within her hip joints, or impingement that would cause the throbbing pain .
Having even more pain after her second surgery, she visited Dr. Edward Magaziner, medical director of The Center for Spine, Sports, Pain Management and Orthopedic Regenerative Medicine in North Brunswick, to undergo a process called prolotherapy.
Tamara was first filmed for MTVs True Life in 2010 and was featured in the Then and Now follow-up, which debuted on May 17.
In his practice, Magaziner treats spinal, joint, muscle and nerve pain and headaches. Pain management treatments include acupuncture, Botox injections, epidural injections, mesotherapy, trigger-point injections, therapeutic laser and spinal cord simulation. He also performs minimally invasive spinal surgery using endoscopic laserassisted devices.
The more state-of-the-art treatments are bio-regenerative, such as prolotherapy and platelet-rich protein (PRP), said Magaziner. They are effective, he said, because increased blood flow to an injured part of the body is a natural form of healing; concentrating the healing properties of the blood, such as stem cells and growth factors, at the direct site of an injury will enhance healing effects.
The body heals itself naturally when its injured. When there is an injury, theres a biological and chemical signal that is produced at the cellular level where the injury is, to attract platelets and growth factors and stem cells to the area. With a combination of these factors, the body has the ability to heal the injury, said Magaziner, a diplomate of the American Academy of Pain Management.
Read the original post:
North Brunswick doctor appears on MTV show
First Patients Dosed in Ib Phase of Neuralstem's NSI-189 Trial in Major Depressive Disorder
By JoanneRUSSELL25
ROCKVILLE, Md., June 25, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that the first patients were dosed in Phase Ib of its ongoing trial to test the safety of NSI-189 in the treatment of major depressive disorder (MDD). NSI-189, the lead compound in Neuralstem's small molecule platform, is a proprietary new chemical entity that stimulates new neuron growth in the hippocampus, a region of the brain believed to be implicated in MDD as well as other diseases and conditions, such as chronic traumatic encephalopathy (CTE), Alzheimer's disease, anxiety, and post-traumatic stress disorder (PTSD). This is the first time the drug will be tested in patients with MDD, as Phase Ia was in healthy volunteers.
(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO)
"We are pleased to begin testing the safety of NSI-189 in depression patients," said Karl Johe, PhD, Neuralstem's Board of Directors and Chief Scientific Officer. "We believe it could help patients who suffer from depression via a new mechanism that does not seek to modulate brain chemistry, but rather stimulates new neuron growth in the hippocampus and increases hippocampal volume, thereby potentially addressing the problem at the source."
About NSI-189 Neuralstem's technology enables the creation of neural stem cell lines from many areas of the human CNS, including the hippocampus. The hippocampus is a part of the brain involved in memory and the generation of new neurons. It is also implicated in several major neurological and psychiatric diseases. From its hippocampal neural stem cell lines, Neuralstem has created virtually unlimited amounts of mature human neurons and glia in laboratory dishes. These can be used to mimic the natural brain environment in order to test drug effects.
Neuralstem has been engaged in a drug discovery program with these human hippocampal stem cell lines since 2000. In 2009, Neuralstem was granted U.S. patents on four first-in-class chemical entities that boost the generation of new neurons. NSI-189, the first of these to be in a clinical trial, significantly stimulates the generation of new hippocampal neurons (neurogenesis) in vitro and in animal models.
NSI-189 is the lead compound in Neuralstem's neurogenic small molecule drug platform, which the company plans to develop into orally administered drugs for MDD and other psychiatric and cognitive disorders as diverse as CTE, Alzheimer's disease, anxiety, and PTSD.
NSI-189 has been shown to stimulate neurogenesis of human hippocampus-derived neural stem cells in-vitro and in vivo. In healthy normal adult mice, NSI-189 stimulated neurogenesis in the hippocampus and significantly increased its volume, apparently by increasing its synaptic network after 28 days of daily oral administration. In mouse models of depression, NSI-189 significantly improved behavioral responses associated with depression. In humans, NSI-189 may reverse the human hippocampal atrophy seen in MDD and other disorders and reverse their symptoms. This program has received significant support from both the Defense Advanced Research Projects Agency (DARPA) and the National Institutes of Health (NIH).
About the Trial The NSI-189/MDD trial is a randomized, double-blind, placebo-controlled, multiple-dose escalating trial evaluating the safety, tolerability, pharmacokinetics and pharmacodynamic effect of NSI-189 in the treatment of MDD. Phase Ia tested escalating doses of single administration of NSI-189 in healthy patients. Phase Ib is testing the safety of escalating doses of NSI-189 for 28 daily administrations in 24 depressed patients. The Phase Ib portion of the trial is expected to take approximately six months to complete.
About Neuralstem Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem is in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.
In addition to ALS, the company is also targeting major central nervous system conditions with its cell therapy platform, including spinal cord injury, ischemic spastic paraplegia and chronic stroke. The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in chronic spinal cord injury.
Visit link:
First Patients Dosed in Ib Phase of Neuralstem's NSI-189 Trial in Major Depressive Disorder
VIDEO: Stem cell research facility to open at Rensselaer Polytechnic Institute
By NEVAGiles23
More Photos
Click thumbnails to enlarge
Some of the automated sampling equipment in the Rensselaer Stem Cell Research Center in Troy. Some of the automated sampling equipment in the Rensselaer Stem Cell Research Center in Troy. (Mike McMahon / The Record)
By Danielle Sanzone dsanzone@troyrecord.com Twitter.com/DanielleSanzone
State Department of Health Commissioner Nirav Shah, left, and Rensselaer Polytechnic Institute President Dr. Shirley Ann Jackson, right, announce the opening of the Rensselaer Center for Stem Cell Research during a forum at the colleges Troy campus Friday. (Mike McMahon / The Record)
TROY During a Rensselaer Polytechnic Institute forum on Friday, dozens were able to see their first baby picture: a single cell that eventually multiplied, in part due to stem cells, into an organism with trillions of cells.
That, to me, is the most amazing thing in the study of biology, said Glenn Monastersky, director of the Rensselaer Center for Stem Cell Research.
Excerpt from:
VIDEO: Stem cell research facility to open at Rensselaer Polytechnic Institute
StemCells, Inc. Initiates Phase I/II Clinical Trial in Dry Age-Related Macular Degeneration
By daniellenierenberg
NEWARK, Calif., June 21, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (STEM) today announced initiation of a Phase I/II clinical trial of the Company's proprietary HuCNS-SC(R) product candidate (purified human neural stem cells) in dry age-related macular degeneration (AMD) referred to as Geographic Atrophy. There are no approved treatments for dry AMD.
The trial is being conducted at the Retina Foundation of the Southwest's (RFSW) Anderson Vision Research Center in Dallas, Texas, one of the leading independent vision research centers in the United States. David G. Birch, Ph.D., Chief Scientific and Executive Officer of the RFSW and Director of the Rose-Silverthorne Retinal Degenerations Laboratory, is the principal investigator of the study.
"Dry AMD is the most common form of macular degeneration, and has a very debilitating effect on quality of life," said Dr. Birch. "Transplanting neural stem cells to protect photoreceptors in patients diagnosed with AMD is an innovative, but logical, approach, well supported by the Company's recently published preclinical data. We are very excited to be conducting this trial at RFSW."
A summary of the Company's preclinical data was featured in the February 2012 issue of the international peer-reviewed European Journal of Neuroscience (available online at http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2011.07970.x/abstract). The data demonstrated that HuCNS-SC cells protect host photoreceptors and preserve vision in the Royal College of Surgeons (RCS) rat, a well-established animal model of retinal disease which has been used extensively to evaluate potential cell therapies. Transplantation of HuCNS-SC cells significantly protects photoreceptors from degeneration. Moreover, the number of cone photoreceptors, which are responsible for central vision, remained constant over an extended period, consistent with the sustained visual acuity and light sensitivity observed in the study. In humans, degeneration of the cone photoreceptors accounts for the unique pattern of vision loss in dry AMD.
"Unlike others in the field, our clinical strategy is to preserve visual function before it is lost," said Stephen Huhn, MD, FACS, FAAP, Vice President and Head of the CNS Program at StemCells, Inc. "Our published preclinical data provides a strong rationale for this approach in dry AMD and we hope to replicate these results in this clinical trial. We are very pleased to be working with Dr. Birch and the Retina Foundation of the Southwest, who have the expertise and referral base to undertake this important study. We anticipate that we will be able to accrue the requisite number of patients for this trial in relatively short order."
About Age-Related Macular Degeneration
Age-related macular degeneration refers to a loss of photoreceptors (rods and cones) from the macula, the central part of the retina. AMD is a degenerative retinal disease that typically strikes adults in their 50s or early 60s, and progresses painlessly, gradually destroying central vision. According to the RFSW website, there are approximately 1.75 million Americans age 40 years and older with some form of age-related macular degeneration, and the disease continues to be the number one cause of irreversible vision loss among senior citizens in the US with more than seven million at risk of developing AMD.
About the Trial
The Phase I/II trial will evaluate the safety and preliminary efficacy of HuCNS-SC cells as a treatment for dry AMD. The trial will be an open-label, dose-escalation study, and is expected to enroll a total of 16 patients. The HuCNS-SC cells will be administered by a single injection into the space beneath the retina in the most affected eye. Patients' vision will be evaluated using both conventional and advanced state-of-the-art methods of ophthalmological assessment. Evaluations will be performed at predetermined intervals over a one-year period to assess safety and signs of visual benefit. Patients will then be followed for an additional four years in a separate observational study. Patients interested in participating in the clinical trial should contact the site at (214) 363 3911.
About HuCNS-SC Cells
Visit link:
StemCells, Inc. Initiates Phase I/II Clinical Trial in Dry Age-Related Macular Degeneration
Neuralstem Pioneering Efforts In ALS – Analyst Blog
By daniellenierenberg
By Jason Napodano, CFA
Neuralstem, Inc. (NYSE MKT: CUR ) has developed a technology that allows large-scale expansion of human neural stem cells ("hNSC") from all areas of the developing human brain and spinal cord. The company owns of has exclusive license to 25 patients and 29 patent applications pending worldwide in the field of regenerative medicine and cell therapy. Management is currently focusing the company's efforts on replacing damaged, malfunctioning, or dead neural cells with fully functional ones that may be useful in treating many central nervous system diseases and neurodegenerative disorders.
Neuralstem's lead development program is for Amyotrophic Lateral Sclerosis ("ALS"), also known as Lou Gehrig 's disease, named after the famous New York Yankee first baseman who was diagnosed with the disease in 1939, and passed in 1941 at the age of only 37.
ALS Background
ALS is a rapidly progressive neurodegenerative disease characterized by weakness, muscle atrophy and twitching, spasticity, dysarthria (difficulty speaking), dysphagia (difficulty swallowing), and respiratory compromise. The disease is almost always fatal, typically due to respiratory compromise or pneumonia, in two to four years. Initial symptoms of ALS include weakness and/or stiffness followed by muscle atrophy in the arms and legs. This is followed by slurred speech or difficulty swallowing, and loss of tongue mobility. Approximately a third of ALS patients also experience pseudobulbar affect (uncontrollable emotions). As the disease progresses, worsening dysphagia and respiratory failure leads to death. A small percentage of patients may also experience cognitive affects such as frontotemporal dementia and anxiety.
The vast majority (~95%) of cases are idiopathic, although there is a known hereditary factor that leads to familial ALS associated with a defect on the 21st chromosome that accounts for approximately 1.5% of all cases. There are also suspected environmental causative factors, including exposure to a dietary neurotoxin called BMAA and cyanobacteria, and use of pesticides. However, in all cases, the defining factor of ALS is rapid and progressive death of upper and lower motor neurons in the motor cortex of the brain, brain stem, and spinal cord. Prior to their destruction, motor neurons develop proteinaceous inclusions in their cell bodies and axons. This may be partly due to defects in protein degradation.
Treatment for ALS is limited, and as of today only riluzole, marketed by Sanofi-Aventis as Rilutek, has been found to improve survival to a modest extent (several months). Riluzole preferentially blocks TTX-sensitive sodium channels, which are associated with damaged neurons. This reduces influx of calcium ions and indirectly prevents stimulation of glutamate receptors. Together with direct glutamate receptor blockade, the effect of the neurotransmitter glutamate on motor neurons is greatly reduced. Riluzole does not reverse the damage already done to motor neurons, and people taking it must be monitored for liver damaged (about 10% incidence).
The remaining treatments for ALS are designed to relieve symptoms and improve quality of life. This supportive care includes a multidisciplinary approach that may include medications to reduce fatigue, control spasticity, reduce excess saliva and phlegm, limit sleep disturbances, reduce depression, and limit constipation. As noted above, median survival is two to four years. In the U.S., approximately 30,000 persons are currently living with ALS.
Neuralstem's Approach For ALS
Neuralstem is seeking to treat the symptoms of ALS via transplantation of its hNSCs directly into the gray matter of the patient's spinal cord. In ALS, motor neurons die, leading to paralysis. In preclinical animal work, Neuralstem cells both made synaptic contact with the host motor neurons and expressed neurotrophic growth factors, which are protective of cells.
Go here to see the original:
Neuralstem Pioneering Efforts In ALS - Analyst Blog
CUR – Neuralstem Pioneering Efforts In ALS
By raymumme
As of now, management is planning to conduct the pivotal program on its own, mostly likely seeking funding through grants with the ALS Association and U.S. National Institutes of Health. However, management is also in discussion with potential pharmaceutical partners on the pivotal program. ALS is a highly attractive area for Big Pharma. Depending on the strength of the phase 1 / 2 data, Neuralstem may be able to strike a commercialization partnership in 2014 to help defer the costs of the planned pivotal trial. We expect that any deal with a larger pharmaceutical company would include a substantial upfront payment that Neuralstem would then use to fund expansion of the development platform into new indications, such as spinal cord injury (IND filed) or stroke.
Market Opportunity
In February 2011, the U.S. FDA granted Neuralstem an Orphan Drug designation for its human spinal cord stem cells (HSSC) for the treatment of ALS. As noted above, there are approximately 30,000 patients in the U.S. living with ALS. We estimate that approximately half of these patients are characterized with an FVC > 60% and may be eligible for treatment with Neuralstems hNSCs. Given the Orphan Drug designation, the limited patient population, and the lack of any meaningful treatment options, we think Neuralstem or its commercialization partner could price this therapy at upwards of $100,000. Therefore, the peak market opportunity for Neuralstem is $1.5 billion.
That being said, drug development in ALS has been a graveyard for pharmaceutical companies. One would assume, based on numerous past clinical failures, that Neuralstems chances in ALS are slim. Small molecules including gabapentin, topiramate, celecoxib, tamoxifen, indinavir, minocycline, and xaliproden, many of which are approved for other indications and have posted annual sales over a billion dollars, have all failed human clinical programs for ALS. Even Vitamin E and Creatine have been tested, to little avail, in ALS. Failed mechanisms of action included calcium channel blockers, glutamate regulators, neuroprotectants, immunosuppressants, GABA receptors, anti-inflammatory agents, and antioxidants.
However, there is one thing in common we see in all of the above failures. They are one molecule targeting one mechanism of action or one pathway. ALS is a high complex and largely uncharacterized disease. Neuralstems approach uses human spinal stem cells that, once injected, can provide multiple mechanisms of action on multiple pathways to affect the disease. Plus, Neuralstems approach is highly targeted, with the cells injected directly into the lumbar or cervical spine. Following grafting, the hypothesis is that the cells rebuild circuitry with the patient motor neurons and protect existing neurons from further degradation. Its clearly a unique approach, and one we believe has a better chance of success than many of the previous failed theories enacted over the past decade.
See the rest here:
CUR - Neuralstem Pioneering Efforts In ALS
Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial
By daniellenierenberg
ROCKVILLE, Md., June 19, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that the first patient to receive stem cell transplantation in both regions of the spinal cord has been treated in the ongoing Phase I trial of its spinal cord neural stem cells in amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). This is also the 16th patient to be treated in the trial altogether and the first patient returning to the trial for a second treatment. In this treatment, the patient received five injections in the cervical (upper back) region of the spinal cord, in addition to the ten he received previously in the lumbar (lower back) region of the spine, for a total of 15 injections. This is the highest number of injections in the trial so far. Patient 16 is also the first patient in the world to receive stem cell transplants in both the lumbar and cervical regions of the spinal cord in an FDA-approved trial. Two additional previously-treated patients are expected to return to the trial this summer in this cohort, provided they continue to meet the inclusion requirements. The trial is taking place at Emory University Hospital in Atlanta, Georgia.
(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )
"Transplanting the first of the returning patients represents a major milestone in the trial," said Dr. Karl Johe, PhD, Neuralstem's Chairman and Chief Scientific Officer. "The ability to safely administer multiple dosings to these patients is a key enabling step in administering the maximum safe dose. Not only are we dosing patients for a second time in this cohort, we are now dosing in both the lumbar and cervical regions of the spinal cord for the first time, where the stem cell therapy could support both walking and breathing."
About the Trial
The Phase I trial to assess the safety of Neuralstem's spinal cord neural stem cells and intraspinal transplantation method in ALS patients has been underway since January 2010. The trial is designed to enroll up to 18 patients. The first 12 patients were each transplanted in the lumbar (lower back) region of the spine, beginning with non-ambulatory and advancing to ambulatory cohorts.
The trial then advanced to transplantation in the cervical (upper back) region of the spine. The first cohort of three was treated in the cervical region only. The current cohort of three will receive injections in both the cervical and lumbar regions of the spinal cord. In an amendment to the trial design, The Food and Drug Administration (FDA) approved the return of previously-treated patients to this cohort. The first of these returning patients was just treated. The entire 18-patient trial concludes six months after the final surgery.
About Neuralstem
Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem is in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.
In addition to ALS, the company is also targeting major central nervous system conditions with its cell therapy platform, including spinal cord injury, ischemic spastic paraplegia and chronic stroke. The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in chronic spinal cord injury.
Neuralstem also has the ability to generate stable human neural stem cell lines suitable for the systematic screening of large chemical libraries. Through this proprietary screening technology, Neuralstem has discovered and patented compounds that may stimulate the brain's capacity to generate new neurons, possibly reversing the pathologies of some central nervous system conditions. The company has received approval from the FDA to conduct a Phase Ib safety trial evaluating NSI-189, its first neurogenic small molecule compound, for the treatment of major depressive disorder (MDD). Additional indications could include CTE (chronic traumatic encephalopathy), Alzheimer's disease, anxiety, and memory disorders.
Go here to read the rest:
Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial
Neuralstem Pioneering Efforts In ALS
By raymumme
By Jason Napodano, CFA
Neuralstem, Inc. (NYSE MKT:CUR) has developed a technology that allows large-scale expansion of human neural stem cells ("hNSC") from all areas of the developing human brain and spinal cord. The company owns of has exclusive license to 25 patients and 29 patent applications pending worldwide in the field of regenerative medicine and cell therapy. Management is currently focusing the company's efforts on replacing damaged, malfunctioning, or dead neural cells with fully functional ones that may be useful in treating many central nervous system diseases and neurodegenerative disorders.
Neuralstems lead development program is for Amyotrophic Lateral Sclerosis ("ALS"), also known as Lou Gehrigs disease, named after the famous New York Yankee first baseman who was diagnosed with the disease in 1939, and passed in 1941 at the age of only 37.
ALS Background
ALS is a rapidly progressive neurodegenerative disease characterized by weakness, muscle atrophy and twitching, spasticity, dysarthria (difficulty speaking), dysphagia (difficulty swallowing), and respiratory compromise. The disease is almost always fatal, typically due to respiratory compromise or pneumonia, in two to four years. Initial symptoms of ALS include weakness and/or stiffness followed by muscle atrophy in the arms and legs. This is followed by slurred speech or difficulty swallowing, and loss of tongue mobility. Approximately a third of ALS patients also experience pseudobulbar affect (uncontrollable emotions). As the disease progresses, worsening dysphagia and respiratory failure leads to death. A small percentage of patients may also experience cognitive affects such as frontotemporal dementia and anxiety.
The vast majority (~95%) of cases are idiopathic, although there is a known hereditary factor that leads to familial ALS associated with a defect on the 21st chromosome that accounts for approximately 1.5% of all cases. There are also suspected environmental causative factors, including exposure to a dietary neurotoxin called BMAA and cyanobacteria, and use of pesticides. However, in all cases, the defining factor of ALS is rapid and progressive death of upper and lower motor neurons in the motor cortex of the brain, brain stem, and spinal cord. Prior to their destruction, motor neurons develop proteinaceous inclusions in their cell bodies and axons. This may be partly due to defects in protein degradation.
Treatment for ALS is limited, and as of today only riluzole, marketed by Sanofi-Aventis as Rilutek, has been found to improve survival to a modest extent (several months). Riluzole preferentially blocks TTX-sensitive sodium channels, which are associated with damaged neurons. This reduces influx of calcium ions and indirectly prevents stimulation of glutamate receptors. Together with direct glutamate receptor blockade, the effect of the neurotransmitter glutamate on motor neurons is greatly reduced. Riluzole does not reverse the damage already done to motor neurons, and people taking it must be monitored for liver damaged (about 10% incidence).
The remaining treatments for ALS are designed to relieve symptoms and improve quality of life. This supportive care includes a multidisciplinary approach that may include medications to reduce fatigue, control spasticity, reduce excess saliva and phlegm, limit sleep disturbances, reduce depression, and limit constipation. As noted above, median survival is two to four years. In the U.S., approximately 30,000 persons are currently living with ALS.
Neuralstems Approach For ALS
Neuralstem is seeking to treat the symptoms of ALS via transplantation of its hNSCs directly into the gray matter of the patients spinal cord. In ALS, motor neurons die, leading to paralysis. In preclinical animal work, Neuralstem cells both made synaptic contact with the host motor neurons and expressed neurotrophic growth factors, which are protective of cells.
Here is the original post:
Neuralstem Pioneering Efforts In ALS
State Awards $9.8 Million For Stem Cell Projects
By JoanneRUSSELL25
Gov. Dannel P. Malloy Monday announced $9.8 million in grants to 19 stem cell research projects in the state. The Connecticut Stem Cell Research Advisory Committee had selected the recipients at its grant review meeting last Tuesday in Farmington.
"Connecticut's continued support of stem cell research has allowed for exciting and innovative research to take place right here in our state," Malloy said in a statement. "The research projects funded by these grants allow scientists to do revolutionary work that puts Connecticut at the forefront of bioscience industry."
Of the 19 grants, 13 grants totaling $7.25 million were awarded to Yale scientists, five went to University of Connecticut researchers, and one went to a collaboration between Wesleyan and UConn scientists.
The largest grant, $1.8 million, was awarded to D. Eugene Redmond of Yale. Redmond has focused on cellular repair in the nervous system and how it relates to Parkinson's disease.
UConn's Stormy Chamberlain, an assistant professor of genetics and developmental biology at the UConn Health Center, received a $450,000 grant to develop new therapies for Prader-Willi syndrome and Angelman Syndrome, both rare genetic disorders. Children born with Prader-Willi Syndrome have difficulty feeding and develop poor muscle tone, and starting about age 2, they develop an insatiable appetite that lasts for their lifetime. People with Angelman Syndrome suffer speech difficulties, seizures, problems with motor control and balance, and serious intellectual disabilities
Although Chamberlain generally focuses on Angelman Syndrome, the three-year project also will include Prader-Willi because the causes of the two disorders are similar. Angelman Syndrome is caused by the deletion of genes on a certain chromosome on the mother's side, while Prader-Willi Syndrome is caused by the deletion of genes in same chromosome on the father's side.
Chamberlain estimates that she's one of 30 researchers in the U.S. who studies Angelman Syndrome.
"The state funding really helps rare diseases because the foundations that typically fund their research are limited," she said, adding that support often is limited to fundraisers organized by families of those with the conditions.
A stem cell education outreach program, run by Laura Grabel, a professor of biology at Wesleyan, and Ren-He Xu, a professor of genetics at UConn, received $500,000. Grabel said the program, which has been in operation since 2006, holds workshops and retreats for stem cell researchers and educates the general public by sending speakers to schools and various organizations. The program also has representatives speak to high school science teachers about incorporating stem cell science in their curricula.
Although the program was started partly because of the controversy over the use of stem cells, Grabel said "we've seen very little pushback it's been very positive."
Go here to see the original:
State Awards $9.8 Million For Stem Cell Projects
Twelve Yale faculty receive grants for work with embryonic stem cells
By NEVAGiles23
Twelve stem cell researchers from Yale received $6.75 million from the Connecticut Stem Cell Fund, according to figures supplied by the states Department of Health.
The amount was the largest ever awarded to Yale since the state legislature in 2005 designated $100 million over 10 years to promote stem cell research in Connecticut. Connecticut was the third state to pass legislation authorizing use of funds to study human embryonic stem cells.
Stem cell researchers at Yale very much appreciate Connecticuts vision and determination in supporting this research despite the challenging economy, said Haifan Lin, director of the Yale Stem Cell Center. In return, our work along with research conducted at the University of Connecticut and Wesleyan has made our state a leader in stem cell research and already positively impacted the state economy.
Yale scientists who received major grants and their research goals are:
Eugene Redmond $1.8 million for treatment of Parkinsons disease using neurons derived from stem cells.
Valerie Horsley $750,0000 for generation of skin cells.
Jeffrey Kocsis $750,000 for use of embryonic cells to remyelinate spinal cord tissue.
Yibing Qyang $750,000 for generation of tissue-engineered blood vessels.
Natalia Ivanova $750,000 for the study of how embryonic stem cells control cell fate.
In-Hyun Park $750,000 for regeneration of neurons.
Excerpt from:
Twelve Yale faculty receive grants for work with embryonic stem cells
Neuralstem Updates ALS Stem Cell Trial Progress; Emory University Institutional Review Board Approves Amendment
By Dr. Matthew Watson
ROCKVILLE, Md., June 5, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that the Emory University Institutional Review Board (IRB) approved the amendment to the ongoing Phase I trial evaluating Neuralstem's spinal cord stem cells in the treatment of amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). The amendment permits the return of three previously-treated patients to the trial to receive additional injections of cells. This modification to the protocol was approved earlier by the Food and Drug Administration (FDA). Implementation was contingent upon IRB approval, which has now been secured.
(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )
"Bringing patients back for a second set of injections should they meet the inclusion requirements at the time of surgery, or giving new patients both lumbar and cervical injections, is a major step forward toward testing the maximum safe dosing of our cell therapy," said Richard Garr, Neuralstem President & CEO. "We have been encouraged by the results of the trial to date, and are eager to commence treating patients with this increased dosage."
About the Study
The ongoing Phase I study is designed to assess the safety of Neuralstem's spinal cord stem cells (HSSC's) and transplantation technique in up to 18 patients with ALS.
The first twelve patients were all transplanted in the lumbar (lower back) region of the spine. Of these, the initial six (Cohort A) were all non-ambulatory with permanent paralysis. The first patient was treated on January 20, 2010. Successive surgeries have followed at the rate of one every one-to-two months. The first three patients (Cohort A1) were each treated with five unilateral HSSC injections in L2-L4 lumbar segments, while the next three patients (Cohort A2) received ten bilateral injections (five on each side) in the same region. The next six patients (Cohort B and C) were all ambulatory. Of these, the first three (Cohort B) received five unilateral injections in the L2-L4 region. The last three patients (Cohort C) in this study group received ten bilateral injections in the same region.
The trial was then approved to progress to cervical transplantations, with two cohorts of three patients (Cohort D and Cohort E). Cohort D has received five injections in the cervical region of the spinal cord. Cohort E will receive a total of fifteen injections, five in the cervical region and ten in the lumbar region.
About Neuralstem
Read more from the original source:
Neuralstem Updates ALS Stem Cell Trial Progress; Emory University Institutional Review Board Approves Amendment
Robot Therapy Helps Paralysed Rats to Walk Again
By raymumme
Scientists at the Swiss Federal Institute of Technology have brought back full movement of the rats paralyzed by spinal cord injuries in a study that might sooner or later be used in people with similar injuries.
Gregoire Courtine and his team at Ecole Polytechnique Federale de Lausanne saw rats with severe paralysis walking and running again after a couple of weeks following a combination of electrical and chemical stimulation of the spinal cord together with robotic support.
"Our rats are not only voluntarily initiating a walking gait, but they are soon sprinting, climbing up stairs and avoiding obstacles," said Courtine, whose results from the five-year study will be published in the journal Science on Friday.
Courtine is quick to point out that it remains unclear if a similar technique could help people with spinal cord damage but he adds the technique does hint at new ways of treating paralysis. Other scientists agree.
"This is ground-breaking research and offers great hope for the future of restoring function to spinal injured patients," said Elizabeth Bradbury, a Medical Research Council senior fellow at King's College London.
Follow us
But Bradbury notes that very few human spinal cord injuries are the result of a direct cut through the cord, which is what the rats had. Human injuries are most often the result of bruising or compression and it is unclear if the technique could be translated across to this type of injury.
It is also unclear if this kind of electro-chemical "kick-start" could help a spinal cord that has been damaged for a long time, with complications like scar tissue, holes and where a large number of nerve cells and fibres have died or degenerated.
Nevertheless, Courtine's work does demonstrate a way of encouraging and increasing the innate ability of the spinal cord to repair itself, a quality known as neuroplasticity.
Other attempts to repair spinal cords have focused on stem cell therapy, although Geron, the world's leading embryonic stem cell company, last year closed its pioneering work in the field.
Continued here:
Robot Therapy Helps Paralysed Rats to Walk Again
'Hope' for the paralysed?
By Dr. Matthew Watson
1 June 2012 Last updated at 12:19 ET
Seven years ago I stood on a bridge over the M40 doing a "piece to camera" for a report about spinal repair. The aim was to come up with a metaphor for how researchers at University College London were trying to overcome spinal cord paralysis.
It went something like this: "Imagine your spinal cord as a motorway, the cars travelling up and down are the nerve fibres carrying messages from your brain to all parts of the body. If this gets damaged the cars can't travel. The messages are blocked, the patient is paralysed.
"Normally there is no way of repairing a severed spinal cord. But the team at UCL took nasal stem cells, and implanted them into the area of damage. These formed a bridge, along which the nerve fibres re-grew and re-connected."
This is the World-Cup of neurorehabilitation. Our rats have become athletes when just weeks before they were completely paralysed.
The research at the Spinal Repair Unit at UCL involved rats, not humans. In my TV report we showed rats unable to climb a metal ladder after one of their front paws had been paralysed to mimic a spinal cord injury. But after an injection of stem cells, the rats were able to move nearly as well as uninjured animals.
The hope then - and now - is that such animal experiments will translate into similar breakthroughs with patients. Seven years on and the team at UCL led by Professor Geoff Raisman are still working on translating this into a proven therapy for patients. He told me "This is difficult and complex work and we want to ensure we get things right."
So it was with a sense of caution that I approached some Swiss research in the latest edition of the journal Science in which paralysed rats were able to walk again after a combination of electrical-chemical stimulation and rehabilitation training.
The research prompted some newspaper reports talking of "new hope" for paralysed patients. The lead researcher, Professor Gregoire Courtine enthused: "This is the World-Cup of neurorehabilitation. Our rats have become athletes when just weeks before they were completely paralysed."
My colleague James Gallagher has reported on the research and you can read his copy here.
Visit link:
'Hope' for the paralysed?
Paralyzed rats walk again
By LizaAVILA
LONDON Scientists in Switzerland have restored full movement to rats paralyzed by spinal cord injuries in a study that spurs hope that the techniques may hold promise for someday treating people with similar injuries.
Gregoire Courtine and his team at Ecole Polytechnique Federale de Lausanne saw rats with severe paralysis walking and running again after a couple of weeks following a combination of electrical and chemical stimulation of the spinal cord together with robotic support.
"Our rats are not only voluntarily initiating a walking gait, but they are soon sprinting, climbing up stairs and avoiding obstacles," said Courtine, whose results from the five-year study will be published in the journal Science on Friday.
Courtine is quick to point out that it remains unclear if a similar technique could help people with spinal cord damage but he adds the technique does hint at new ways of treating paralysis.
Other scientists agree.
"This is ground-breaking research and offers great hope for the future of restoring function to spinal injured patients," said Elizabeth Bradbury, a Medical Research Council senior fellow at King's College London.
But Bradbury notes that very few human spinal cord injuries are the result of a direct cut through the cord, which is what the rats had. Human injuries are most often the result of bruising or compression and it is unclear if the technique could be translated across to this type of injury.
It is also unclear if this kind of electro-chemical "kick-start" could help a spinal cord that has been damaged for a long time, with complications like scar tissue, holes and where a large number of nerve cells and fibres have died or degenerated.
Nevertheless, Courtine's work does demonstrate a way of encouraging and increasing the innate ability of the spinal cord to repair itself, a quality known as neuroplasticity.
Other attempts to repair spinal cords have focused on stem cell therapy, although Geron, the world's leading embryonic stem cell company, last year closed its pioneering work in the field.
Original post:
Paralyzed rats walk again
Paralyzed rats walk again in Swiss study
By Dr. Matthew Watson
LONDON Scientists in Switzerland have restored full movement to rats paralyzed by spinal cord injuries in a study that spurs hope that the techniques may hold promise for someday treating people with similar injuries.
Gregoire Courtine and his team at Ecole Polytechnique Federale de Lausanne saw rats with severe paralysis walking and running again after a couple of weeks following a combination of electrical and chemical stimulation of the spinal cord together with robotic support.
"Our rats are not only voluntarily initiating a walking gait, but they are soon sprinting, climbing up stairs and avoiding obstacles," said Courtine, whose results from the five-year study will be published in the journal Science on Friday.
Courtine is quick to point out that it remains unclear if a similar technique could help people with spinal cord damage but he adds the technique does hint at new ways of treating paralysis.
Other scientists agree.
"This is ground-breaking research and offers great hope for the future of restoring function to spinal injured patients," said Elizabeth Bradbury, a Medical Research Council senior fellow at King's College London.
But Bradbury notes that very few human spinal cord injuries are the result of a direct cut through the cord, which is what the rats had. Human injuries are most often the result of bruising or compression and it is unclear if the technique could be translated across to this type of injury.
It is also unclear if this kind of electro-chemical "kick-start" could help a spinal cord that has been damaged for a long time, with complications like scar tissue, holes and where a large number of nerve cells and fibres have died or degenerated.
Nevertheless, Courtine's work does demonstrate a way of encouraging and increasing the innate ability of the spinal cord to repair itself, a quality known as neuroplasticity.
Other attempts to repair spinal cords have focused on stem cell therapy, although Geron, the world's leading embryonic stem cell company, last year closed its pioneering work in the field.
View post:
Paralyzed rats walk again in Swiss study
Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(R)
By Dr. Matthew Watson
ARLINGTON HEIGHTS, Ill., May 29, 2012 (GLOBE NEWSWIRE) -- Adipose stem cells (ACSs)--stem cells derived from fat--are a promising source of cells for use in plastic surgery and regenerative medicine, according to a special review in the June issue of Plastic and Reconstructive Surgery(R), the official medical journal of the American Society of Plastic Surgeons (ASPS).
But much more research is needed to establish the safety and effectiveness of any type of ASC therapy in human patients, according to the article by ASPS Member Surgeon Rod Rohrich, MD of University of Texas Southwestern Medical Center, Dallas, and colleagues. Dr. Rohrich is Editor-in-Chief of Plastic and Reconstructive Surgery.
Adipose Stem Cells--Exciting Possibilities, but Proceed with Caution
The authors present an up-to-date review of research on the science and clinical uses of ASCs. Relatively easily derived from human fat, ASCs are "multipotent" cells that can be induced to develop into other kinds of cells--not only fat cells, but also bone, cartilage and muscle cells.
Adipose stem cells promote the development of new blood vessels (angiogenesis) and seem to represent an "immune privileged" set of cells that blocks inflammation. "Clinicians and patients alike have high expectations that ASCs may well be the answer to curing many recalcitrant diseases or to reconstruct anatomical defects," according to Dr. Rohrich and co-authors.
However, even as the number of studies using ASCs increases, there is continued concern about their "true clinical potential." The reviewers write, "For example, there are questions related to isolation and purification of ASCs, their effect on tumor growth, and the enforcement of FDA regulations."
Dr. Rohrich and co-authors performed an in-depth review to identify all known clinical trials of ASCs. So far, most studies have been performed in Europe and Korea; reflecting stringent FDA regulations, only three ASC studies have been performed in the United States to date.
Many Different Uses, But Little Experience So Far
Most ASC clinical trials to date have been performed in plastic surgery--a field with "unique privileged access to adipose tissues." Plastic surgeon-researchers have used ASCs for several types of soft tissue augmentation, such as breast augmentation (including after implant removal) and regeneration of fat in patients with abnormal fat loss (lipodystrophy). Studies exploring the use of ASCs to promote healing of difficult wounds have been reported as well. They have also been used as a method of soft tissue engineering or tissue regeneration, with inconclusive results.
In other specialties, ASCs have been studied for use in treating certain blood and immunologic disorders, heart and vascular problems, and fistulas. Some studies have explored the use of ASCs for generating new bone for use in reconstructive surgery. A few studies have reported promising preliminary results in the treatment of diabetes, multiple sclerosis, and spinal cord injury. No serious adverse events related to ASCs were reported in either group of studies.
Go here to read the rest:
Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(R)
SD scientists get $18 million in stem cell funds
By daniellenierenberg
San Diego scientists will receive about $18.1 million in the latest round of funding from the California Institute of Regenerative Medicine (CIRM), the agency that's distributing $3 billion in stem cell research money made available through Proposition 71.
Since funding began, San Diego County researchers have been awarded at least $258 million, making the region one of the largest stem cell research clusters in the country.
Extended U-T science coverage on Facebook
Here's a sample of the latest grants:
Mark Tuszynski, UC San Diego, $4.7 million for research on novel stem cell therapies to treat spinal cord injuries.
Peter Schutlz, The Scripps Research Institute, $4.3 million for research to treat multiple sclerosis.
Juan Carlos Izpisua Belmonte, Salk Institute, $2.3 million for research that would help repair damaged blood vessels.
Yang Xu, UC San Diego, $1.8 million for research that would help treat heart failure.
Eric Adler, UC San Diego, $1.7 million for research to help treat Danon disease, which causes major abnormalities in heart and skeletal muscles.
David Schubert, Salk Institute, $1.7 million for research aimed at treating Alzheimer's disease
See the article here:
SD scientists get $18 million in stem cell funds
5 scientists receive stem-cell research grants
By daniellenierenberg
Five scientists from the University of California, San Diego and its School of Medicine have been awarded almost $12 million in new grants from the California Institute for Regenerative Medicine (CIRM) to conduct stem cell-based research into regenerating spinal cord injuries, repairing gene mutations that cause amyotrophic lateral sclerosis and finding new drugs to treat heart failure and Alzheimer's disease.
The awards mark the third round of funding in CIRM's Early Translational Awards program, which supports projects that are in the initial stages of identifying drugs or cell types that could become disease therapies. More than $69 million in awards were announced yesterday, including funding for first-ever collaboratively funded research projects with China and the federal government of Australia.
"With these new awards, the agency now has 52 projects in 33 diseases at varying stages of working toward clinical trials," said Jonathan Thomas, JD, PhD and CIRM governing board chair. "Californians should take pride in being at the center of this worldwide research leading toward new cures. These projects represent the best of California stem cell science and the best international experts who, together, will bring new therapies for patients."
The five new UC San Diego awards are:
CIRM was established in November 2004 with the passage of Proposition 71, the California Stem Cell Research and Cures Act. The statewide ballot measure provided $3 billion in funding for stem cell research at California universities and research institutions and called for the establishment of an entity to make grants and provide loans for stem cell research, research facilities, and other vital research opportunities.
The May 24 grants bring UC San Diego's total to more than $112 million in CIRM funding since the first awards in 2006.
Read more from the original source:
5 scientists receive stem-cell research grants
Stem Cells Curb Chronic Pain in Mice
By NEVAGiles23
May 23, 2012 12:00pm
Replacing dead or dysfunctional nerve cells with new, healthy ones derived from stem cells eases chronic pain in mice, a new study found.
Researchers from the University of California, San Francisco coaxed mouse embryonic stem cells into becoming mature nerve cells that could bridge gaps in the circuitry that triggers neuropathic pain.
One of the major causes of neuropathic pain is the loss of inhibitory control at the level of the spinal cord because of nerve loss or dysfunction, said study author Allan Basbaum, chairman of UCSFs department of anatomy. The idea was to replace or repopulate the spinal cord cells that provide that inhibition.
The same stem cells, destined to become inhibitory neurons that dampen the signals that cause pain, were previously shown to improve symptoms in a mouse model of epilepsy, Basbaum said. The question was whether we could take the exact same cells and put them in the spinal cord.
Before injecting the cells into the spinal cords of mice with neuropathic pain, the researchers labeled them with a fluorescent tracer to track the connections they made.
We were able to show how these cells integrate beautifully, Basbaum said, describingthe waythe transplanted cells looked and behaved like the mouses own.
Not only did the cells set up shop in the spinal cord, sending and receiving signals through a complex network of neurons, they also eased the neuropathic pain.
In four weeks, the animals condition completely disappeared, Basbaum said, adding that transplanted control cells that lacked the inhibitory properties of the stem-cell-derived neurons failed to ease the pain.
The clinical significance is that we think were actually modifying the disease, not just treating the symptoms, Basbaum said, adding that drugs currently used to ease neuropathic pain fail to treat the underlying problem. Instead of taking a drug to suppress the pain, were trying to normalize the circuit that was damaged by the disease or the injury. The cells repopulate, they integrate, and basically they treat the disease.
See the original post:
Stem Cells Curb Chronic Pain in Mice