The prevalence of inorganic mercury in human cells increases during aging but decreases in the very old | Scientific Reports – Nature.com
By daniellenierenberg
Garagnani, P. et al. Whole-genome sequencing analysis of semi-supercentenarians. Elife 10, e57849 (2021).
PubMed PubMed Central Article Google Scholar
Sorrentino, J. A., Sanoff, H. K. & Sharpless, N. E. Defining the toxicology of aging. Trends Mol. Med. 20, 375384 (2014).
CAS PubMed PubMed Central Article Google Scholar
Stohs, S. J. & Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18, 321336 (1995).
CAS PubMed Article PubMed Central Google Scholar
Crespo-Lopez, M. E. et al. Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacol. Res. 60, 212220 (2009).
CAS PubMed Article Google Scholar
Pollard, K. M., Cauvi, D. M., Toomey, C. B., Hultman, P. & Kono, D. H. Mercury-induced inflammation and autoimmunity. Biochim. Biophys. Acta Gen. Subj. 1863, 129299 (2019).
CAS PubMed PubMed Central Article Google Scholar
Kennedy, B. K. et al. Geroscience: Linking aging to chronic disease. Cell 159, 709713 (2014).
CAS PubMed PubMed Central Article Google Scholar
Franceschi, C. et al. The continuum of aging and age-related diseases: Common mechanisms but different rates. Front. Med. (Lausanne) 5, 61 (2018).
Article Google Scholar
Streets, D. G. et al. All-time releases of mercury to the atmosphere from human activities. Environ. Sci. Technol. 45, 1048510491 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
Clarkson, T. W. & Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609662 (2006).
CAS PubMed Article Google Scholar
Charleston, J. S. et al. Increases in the number of reactive glia in the visual cortex of Macaca fascicularis following subclinical long-term methyl mercury exposure. Toxicol. Appl. Pharmacol. 129, 196206 (1994).
CAS PubMed Article PubMed Central Google Scholar
Vahter, M. et al. Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol. Appl. Pharmacol. 124, 221229 (1994).
CAS PubMed Article PubMed Central Google Scholar
Vahter, M. E. et al. Demethylation of methyl mercury in different brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol. Appl. Pharmacol. 134, 273284 (1995).
CAS PubMed Article PubMed Central Google Scholar
Teixeira, F. B. et al. Exposure to inorganic mercury causes oxidative stress, cell death, and functional deficits in the motor cortex. Front. Mol. Neurosci. 11, 125 (2018).
PubMed PubMed Central Article CAS Google Scholar
Danscher, G. & Moller-Madsen, B. Silver amplification of mercury sulfide and selenide: A histochemical method for light and electron microscopic localization of mercury in tissue. J. Histochem. Cytochem. 33, 219228 (1985).
CAS PubMed Article PubMed Central Google Scholar
Pamphlett, R., Bishop, D. P., Kum Jew, S. & Doble, P. A. Age-related accumulation of toxic metals in the human locus ceruleus. PLoSOne 13, e0203627 (2018).
PubMed PubMed Central Article CAS Google Scholar
Pamphlett, R., Kum Jew, S., Doble, P. A. & Bishop, D. P. Elemental analysis of aging human pituitary glands implicates mercury as a contributor to the somatopause. Front. Endocrinol. (Lausanne) 10, 419 (2019).
Article Google Scholar
Pamphlett, R., Doble, P. A. & Bishop, D. P. Mercury in the human thyroid gland: Potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism. PLoSOne 16, e0246748 (2021).
CAS PubMed PubMed Central Article Google Scholar
Pamphlett, R., Doble, P. A. & Bishop, D. P. The prevalence of inorganic mercury in human kidneys suggests a role for toxic metals in essential hypertension. Toxics 9, 67 (2021).
PubMed PubMed Central Article Google Scholar
Pamphlett, R., Kum Jew, S., Doble, P. A. & Bishop, D. P. Mercury in the human adrenal medulla could contribute to increased plasma noradrenaline in aging. Sci. Rep. 11, 2961 (2021).
ADS CAS PubMed PubMed Central Article Google Scholar
Pamphlett, R. & Png, F. Y. Shrinkage of motor axons following systemic exposure to inorganic mercury. J. Neuropathol. Exp. Neurol. 57, 360366 (1998).
CAS PubMed Article Google Scholar
Pamphlett, R., Colebatch, A. J., Doble, P. A. & Bishop, D. P. Mercury in pancreatic cells of people with and without pancreatic cancer. Int. J. Environ. Res. Public Health 17, 8990 (2020).
CAS PubMed Central Article PubMed Google Scholar
Chang, A. Y., Skirbekk, V. F., Tyrovolas, S., Kassebaum, N. J. & Dieleman, J. L. Measuring population ageing: An analysis of the Global Burden of Disease Study 2017. Lancet Public Health 4, e159e167 (2019).
PubMed PubMed Central Article Google Scholar
Benarroch, E. E. Locus coeruleus. Cell Tissue Res. 373, 221232 (2018).
PubMed Article Google Scholar
Pamphlett, R. et al. Concentrations of toxic metals and essential trace elements vary among individual neurons in the human locus ceruleus. PLoSOne 15, e0233300 (2020).
CAS PubMed PubMed Central Article Google Scholar
Rudman, D. et al. Effects of human growth hormone in men over 60 years old. N. Engl. J. Med. 323, 16 (1990).
CAS PubMed Article Google Scholar
Seravalle, G. & Grassi, G. Sympathetic nervous system, hypertension, obesity and metabolic syndrome. High Blood Press. Cardiovasc. Prev. 23, 175179 (2016).
CAS PubMed Article Google Scholar
Barbi, E., Lagona, F., Marsili, M., Vaupel, J. W. & Wachter, K. W. The plateau of human mortality: Demography of longevity pioneers. Science 360, 14591461 (2018).
ADS MathSciNet CAS PubMed PubMed Central MATH Article Google Scholar
Gampe, J. Mortality of Supercentenarians: Estimates from the Updated IDL. In Exceptional Lifespans (eds Maier, H., Jeune, B., & Vaupel, J. W.) Ch. 3, 2935 (Springer, 2021).
Holland, D., Desikan, R. S., Dale, A. M. & McEvoy, L. K. Rates of decline in Alzheimer disease decrease with age. PLoSOne 7, e42325 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
Hirsch, L., Jette, N., Frolkis, A., Steeves, T. & Pringsheim, T. The incidence of Parkinsons disease: A systematic review and meta-analysis. Neuroepidemiology 46, 292300 (2016).
PubMed Article PubMed Central Google Scholar
Logroscino, G. et al. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 81, 385390 (2010).
PubMed Article PubMed Central Google Scholar
Monnet-Tschudi, F., Zurich, M. G., Boschat, C., Corbaz, A. & Honegger, P. Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev. Environ. Health 21, 105117 (2006).
CAS PubMed Article PubMed Central Google Scholar
Smith, D. W. Cancer mortality at very old ages. Cancer 77, 13671372 (1996).
CAS PubMed Article PubMed Central Google Scholar
Harding, C., Pompei, F., Lee, E. E. & Wilson, R. Cancer suppression at old age. Cancer Res. 68, 44654478 (2008).
CAS PubMed Article PubMed Central Google Scholar
International Agency for Research on Cancer. Mercury and mercury compounds. IARC Monogr. Eval. Carcinog. Risks Hum. 58, 239345 (1993).
Google Scholar
Nersesyan, A. et al. Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium. Mutat. Res. 770, 119139 (2016).
CAS Article Google Scholar
Noureldine, S. I. & Tufano, R. P. Association of Hashimotos thyroiditis and thyroid cancer. Curr. Opin. Oncol. 27, 2125 (2015).
PubMed Article PubMed Central Google Scholar
Kim, C. S. et al. Association of hypertension and blood pressure with kidney cancer risk: A nationwide population-based cohort study. Hypertension 75, 14391446 (2020).
CAS PubMed Article PubMed Central Google Scholar
Danscher, G. Light and electron microscopic localization of silver in biological tissue. Histochemistry 71, 177186 (1981).
CAS PubMed Article PubMed Central Google Scholar
Pamphlett, R. & Kum Jew, S. Age-related uptake of heavy metals in human spinal interneurons. PLoSOne 11, e0162260 (2016).
PubMed PubMed Central Article CAS Google Scholar
Pamphlett, R. & Kum Jew, S. Inorganic mercury in human astrocytes, oligodendrocytes, corticomotoneurons and the locus ceruleus: Implications for multiple sclerosis, neurodegenerative disorders and gliomas. Biometals 31, 807819 (2018).
CAS PubMed PubMed Central Article Google Scholar
Pamphlett, R. et al. The distribution of toxic metals in the human retina and optic nerve head: Implications for age-related macular degeneration. PLoSOne 15, e0241054 (2020).
CAS PubMed PubMed Central Article Google Scholar
Pamphlett, R., Kum Jew, S. & Cherepanoff, S. Mercury in the retina and optic nerve following prenatal exposure to mercury vapor. PLoSOne 14, e0220859 (2019).
CAS PubMed PubMed Central Article Google Scholar
Pamphlett, R., Satgunaseelan, L., Kum Jew, S., Doble, P. A. & Bishop, D. P. Elemental bioimaging shows mercury and other toxic metals in normal breast tissue and in breast cancers. PLoSOne 15, e0228226 (2020).
CAS PubMed PubMed Central Article Google Scholar
Pamphlett, R. & Kum Jew, S. Mercury is taken up selectively by cells involved in joint, bone, and connective tissue disorders. Front. Med. (Lausanne) 6, 168 (2019).
Article Google Scholar
Danscher, G., Horsted-Bindslev, P. & Rungby, J. Traces of mercury in organs from primates with amalgam fillings. Exp. Mol. Pathol. 52, 291299 (1990).
CAS PubMed Article PubMed Central Google Scholar
Warfvinge, K. & Bruun, A. Mercury distribution in the squirrel monkey retina after in Utero exposure to mercury vapor. Environ. Res. 83, 102109 (2000).
CAS PubMed Article PubMed Central Google Scholar
Parkin Kullmann, J. A. & Pamphlett, R. A comparison of mercury exposure from seafood consumption and dental amalgam fillings in people with and without amyotrophic lateral sclerosis (ALS): An international online case-control study. Int. J. Environ. Res. Public Health 15, 2874 (2018).
CAS PubMed Central Article Google Scholar
The rest is here:
The prevalence of inorganic mercury in human cells increases during aging but decreases in the very old | Scientific Reports - Nature.com
Regenerative Medicine Market Size Worth $57.08 Billion By 2027: Grand View Research, Inc. – PRNewswire
By daniellenierenberg
SAN FRANCISCO, Aug. 12, 2021 /PRNewswire/ --The global regenerative medicine marketsize is expectedto reach USD 57.08 billion by 2027, growing at a CAGR of 11.27% over the forecast period, according to a new report by Grand View Research, Inc. Recent advancements in biological therapies have resulted in a gradual shift in preference toward personalized medicinal strategies over the conventional treatment approach. This has resulted in rising R&D activities in the regenerative medicine arena for the development of novel regenerative therapies.
Key Insights & Findings:
Read 273 page research report, "Regenerative Medicine Market Size, Share & Trends Analysis Report By Product (Cell-based Immunotherapies, Gene Therapies), By Therapeutic Category (Cardiovascular, Oncology), And Segment Forecasts, 2021 - 2027", by Grand View Research
Furthermore,advancements in cell biology, genomics research, and gene-editing technology are anticipated to fuel the growth of the industry. Stem cell-based regenerative therapies are in clinical trials, which may help restore damaged specialized cells in many serious and fatal diseases, such as cancer, Alzheimer's, neurodegenerative diseases, and spinal cord injuries. For instance, various research institutes have adopted Human Embryonic Stem Cells (hESCs) to develop a treatment for Age-related Macular Degeneration (AMD).
Constant advancements in molecular medicines have led to the development of gene-based therapy, which utilizes targeted delivery of DNA as a medicine to fight against various disorders. Gene therapy developments are high in oncology due to the rising prevalence and genetically driven pathophysiology of cancer. The steady commercial success of gene therapies is expected to accelerate the growth of the global market over the forecast period.
Grand View Research has segmented the global regenerative medicine market on the basis of product, therapeutic category, and region:
List of Key Players of Regenerative Medicine Market
Check out more studies related to Global Biotechnology Industry, conducted by Grand View Research:
Gain access to Grand View Compass, our BI enabled intuitive market research database of 10,000+ reports
About Grand View Research
Grand View Research, U.S.-based market research and consulting company, provides syndicated as well as customized research reports and consulting services. Registered in California and headquartered in San Francisco, the company comprises over 425 analysts and consultants, adding more than 1200 market research reports to its vast database each year. These reports offer in-depth analysis on 46 industries across 25 major countries worldwide. With the help of an interactive market intelligence platform, Grand View Research helps Fortune 500 companies and renowned academic institutes understand the global and regional business environment and gauge the opportunities that lie ahead.
Contact:Sherry JamesCorporate Sales Specialist, USAGrand View Research, Inc.Phone: 1-415-349-0058Toll Free: 1-888-202-9519Email: [emailprotected]Web: https://www.grandviewresearch.comFollow Us: LinkedIn| Twitter
SOURCE Grand View Research, Inc.
Efficacy of adipose tissue-derived stem cells in locomotion recovery after spinal cord injury: a systematic review and meta-analysis on animal studies…
By daniellenierenberg
This article was originally published here
Syst Rev. 2021 Jul 31;10(1):213. doi: 10.1186/s13643-021-01771-w.
ABSTRACT
BACKGROUND: Considerable disparities exist on the use of adipose tissue-derived stem cells (ADSCs) for treatment of spinal cord injury (SCI). Hence, the current systematic review aimed to investigate the efficacy of ADSCs in locomotion recovery following SCI in animal models.
METHODS: A search was conducted in electronic databases of MEDLINE, Embase, Scopus, and Web of Science until the end of July 2019. Reference and citation tracking and searching Google and Google Scholar search engines were performed to achieve more studies. Animal studies conducted on rats having SCI which were treated with ADSCs were included in the study. Exclusion criteria were lacking a non-treated control group, not evaluating locomotion, non-rat studies, not reporting the number of transplanted cells, not reporting isolation and preparation methods of stem cells, review articles, combination therapy, use of genetically modified ADSCs, use of induced pluripotent ADSCs, and human trials. Risk of bias was assessed using Hasannejad et al.s proposed method for quality control of SCI-animal studies. Data were analyzed in STATA 14.0 software, and based on a random effect model, pooled standardized mean difference with a 95% confidence interval was presented.
RESULTS: Of 588 non-duplicated papers, data from 18 articles were included. Overall risk of bias was high risk in 8 studies, some concern in 9 studies and low risk in 1 study. Current evidence demonstrated that ADSCs transplantation could improve locomotion following SCI (standardized mean difference = 1.71; 95%CI 1.29-2.13; p < 0.0001). A considerable heterogeneity was observed between the studies (I2 = 72.0%; p < 0.0001). Subgroup analysis and meta-regression revealed that most of the factors like injury model, the severity of SCI, treatment phase, injury location, and number of transplanted cells did not have a significant effect on the efficacy of ADSCs in improving locomotion following SCI (pfor odds ratios > 0.05).
CONCLUSION: We conclude that any number of ADSCs by any prescription routes can improve locomotion recovery in an SCI animal model, at any phase of SCI, with any severity. Given the remarkable bias about blinding, clinical translation of the present results is tough, because in addition to the complexity of the nervous system and the involvement of far more complex motor circuits in the human, blinding compliance and motor outcome assessment tests in animal studies and clinical trials are significantly different.
PMID:34330329 | DOI:10.1186/s13643-021-01771-w
Read this article:
Efficacy of adipose tissue-derived stem cells in locomotion recovery after spinal cord injury: a systematic review and meta-analysis on animal studies...
Stemming the tide of stem-cell treatment scams – Houston Chronicle
By daniellenierenberg
Q: Im considering having my own stem cells injected into me to improve physical and mental problems that I am having post-COVID-19 infection. What do you think?
James D., Huntington, N.Y.
A: Theres been a lot of talk about using what are called autologous stem cells (your own) to fight off COVID-19 long-haul symptoms, as well as to treat everything from torn ligaments to Alzheimers disease. None is approved by the Food and Drug Administration. The only stem-cell-based products that are FDA-approved come from blood-forming stem cells (hematopoietic progenitor cells) derived from cord blood and theyre for treating disorders involving production of blood (the hematopoietic system). A list is at fda.gov; search for Approved Cellular and Gene Therapy Products.
In fact, stem cell/regenerative medicine treatment scams are so prevalent that this spring the FDA finally told manufacturers and marketers that they had to comply with regulations on human cell and tissue products. Unfortunately, a June report from Pew Trust found compliance by the companies and enforcement from the FDA to be anemic.
What the report did find was that more than 700 clinics in the U.S. offer unapproved stem-cell and regenerative medicine interventions for conditions such as Alzheimers, muscular dystrophy, autism, spinal cord injuries and, most recently, COVID-19. They also found post-injection infection happens frequently and is likely because of sloppily manufactured products and failure to properly screen for diseases such as HIV and hepatitis B and C.
If youre considering stem-cell treatment, the FDA urges you to ask the clinic for the following info before getting it even if the stem cells are your own:
Proof the FDA has reviewed and approved the treatment. Have your primary care doc confirm the information.
If the clinic is claiming it has an FDA-issued Investigational New Drug application number, ask for it and ask to review the FDA communication acknowledging the IND.
Stem-cell treatment has great potential, but when used for unapproved therapies outside a clinical trial, its risky (and expensive). To search for a trial, go to clinicaltrials.gov.
Q: My doctor says my high blood pressure puts me at increased risk for dementia. I think hes just trying to get me on one more med. Is there really a connection?
Lacie R., Sacramento, Calif.
A: Dementia means that you have cognition problems that cause trouble with memory, thought and everyday tasks. That could result from mini- or regular strokes, and we know that high blood pressure increases your stroke risk. In fact, one Harvard study found that high blood pressure increases a mans risk of stroke by 220 percent; another found that each 10 mmHg rise in systolic pressure (the top number) boosts your risk of ischemic stroke by 28 percent and of hemorrhagic stroke by 38 percent.
Even if your high blood pressure doesnt trigger a stroke, it can lead to impaired cognition and dementia. The 2018 SPRINT-MIND trial found that intensive control of high blood pressure (getting the top number below 120) lowered the risk of mild cognitive impairment by 19 percent compared with standard blood pressure control. Now, a new study in the journal Hypertension indicates that certain antihypertensive medications ACE inhibitors and ARBs (and angiotensin II receptor blockers) can cross the blood-brain barrier and lower dementia risk. Tracking almost 13,000 people for three years, the researchers found that folks taking those meds showed less memory loss than folks taking other sorts of antihypertensive medications.
You dont indicate how high your blood pressure is, but if it is only slightly elevated you may be able to bring it down through changing your diet, losing weight if you need to and exercising for 30 to 60 minutes five days a week. If it is above 125 (top number) or above 85 (bottom number), a combo of those self-care techniques and medication may be the safest choice. But either way, bringing your blood pressure to around 115/75 will protect your brain, as well as your heart, kidneys and eyes.
Contact Drs. Oz and Roizen at sharecare.com.
See the rest here:
Stemming the tide of stem-cell treatment scams - Houston Chronicle
IU School of Medicine researchers discover new potential for functional recovery after spinal cord injury – Spinal News International
By daniellenierenberg
Wei Wu and Xiao-Ming Xu (Credit: IU School of Medicine)
Researchers at Indiana University School of Medicine (Indianapolis, USA) have announced the successful reprogramming of a glial cell type in the central nervous system into new neurons in order to promote recovery after spinal cord injuryrevealing an untapped potential to leverage the cell for regenerative medicine.
This is the first time that scientists have reported modifying a NG2 gliaa type of supporting cell in the central nervous systeminto functional neurons after spinal cord injury, saidWei Wu, research associate in neurological surgery at IU School of Medicine and co-first author of the paper, which was published in the Cell Stem Cell journal.
Wu andXiao-Ming Xu, the Mari Hulman George professor of Neuroscience Research at IU School of Medicine, worked on the study with a team of scientists from the University of Texas Southwestern Medical Center.
Spinal cord injuries affect hundreds of thousands of people in the United States, with thousands more diagnosed each year. Neurons in the spinal cord dont regenerate after injury, which typically causes a person to experience permanent physical and neurological ailments.
Unfortunately, effective treatments for significant recovery remain to be developed, Xu said. We hope that this new discovery will be translated to a clinically relevant repair strategy that benefits those who suffer from a spinal cord injury.
When the spinal cord is injured, glial cells, of which there are three typesastrocyte, ependymal and NG2respond to form glial scar tissue.
Wu added: Only NG2 glial cells were found to exhibit neurogenic potential in the spinal cord following injury in adult mice, but they failed to generate mature neurons. Interestingly, by elevating the critical transcription factor SOX2, the glia-to-neuron conversion is successfully achieved and accompanied with a reduced glial scar formation and increased functional recovery following spinal cord injury.
The researchers reprogrammed the NG2 cells from the mouse model using elevated levels of SOX2a transcription factor found inside the cell thats essential for neurogenesisto neurons. This conversion has two purposes, Xu said: to generate neurons to replace those lost due to a spinal cord injury and reduce the size of the glial scars in the lesion area of the damaged tissue.
This discovery, serves as an important target in the future for potential therapeutic treatments of spinal cord injury, adds Wu, who goes on to note that such a collaboration will be continued between the two laboratories to address neuronal remodelling and functional recovery after successful conversion of glial cells into functional neurons in future.
Here is the original post:
IU School of Medicine researchers discover new potential for functional recovery after spinal cord injury - Spinal News International
Introducing the 3D bioprinted neural tissues with the potential to ‘cure’ human paralysis – 3D Printing Industry
By daniellenierenberg
Researchers at the Chinese Academy of Sciences and University of Science and Technology of China have devised a novel bioprinting-based method of curing previously untreatable spinal cord injuries.
Using a custom bio-ink, the Chinese team have managed to 3D bioprint neural stem cell-loaded tissues capable of carrying instructions via impulses from the brain, much like those seen in living organisms. Once implanted into disabled rats, the scaffolds have shown the ability to restore movement in paralyzed limbs, and the scientists now believe their approach could find human applications in future.
There is no known effective cure for spinal cord injury, Zhijun Zhang, a nanobiomedical engineer at the Chinese Academy of Sciences told the Scientist. The 3D bioprinting strategy weve developed, may represent a general and versatile strategy for rapid and precise engineering of the central nervous system (CNS), and other neuronal tissues for regenerative medicine.
The SCI injury conundrum
A Spinal Cord Injury or SCI is a blanket term used to describe any damage caused to the bundle of cells and nerves that send signals to and from the brain along the human spinal cord. While the damage itself can be caused either by direct injury, or from bruising to the surrounding vertebrae, the result is often the same: a partial or complete loss of sensory and locomotor function below the affected area.
While theres no current known cure for SCI, a number of promising cell-based therapies are now being developed, with the regeneration of functional neurons seen as central to their future success. In effect, such approaches involve re-establishing links between neurons throughout the injured area in order to restore nerve functionality, but repairing damaged cells continues to be problematic.
Where neural stem cells have previously been implanted into SCI sites, theyve also shown poor viability and uncontrolled differentiation, leading to low therapeutic efficacy. More recent efforts have seen scientists bioprint cell-loaded scaffolds, capable of creating a suitable microenvironment in which neurons can flourish, yet this has raised further issues around printability and initiating cellular interaction.
To get around these problems, the Chinese researchers have now developed a novel bio-ink that gels together at body temperature to prevent neurons from differentiating into cells that dont produce electrical impulses, and can be 3D bioprinted into scaffolds that not only mimic the white matter appearance of the spine, but encourage cell-to-cell interactions.
A paralysis cure in-action
To begin with, Zhang and his team formulated their bio-ink from natural chitosan sugars, as well as a mixture of hyaluronic acids and matrigel, before combining them with rat neural stem cells. The scientists then used a BioScaffolder 3D bioprinter to deposit the resulting concoction into cell-laden scaffolds, which were later stored in culture plates for further testing.
Prior to their implantation, the teams different samples were incubated for three, five and seven days respectively, during which they proliferated and formed connections. Interestingly though, the researchers found that the higher the concentration of hyaluronic acid, the lower levels of interaction they observed, showing that their bio-ink can be tweaked to achieve desired tissue characteristics.
When injected into paraplegic lab rats, the scaffolds exhibited a cell viability of 95% while promoting neuron regeneration to the point that they enabled the rats to regain control over their hind legs. Over a 12-week observation period, the treated animals also showed a revived ability to move their hips, knees and ankles without support, and kick pressure sensors with markedly enhanced muscle strength.
As a result, the scientists have concluded that their approach offers a versatile and powerful platform for building precisely-controlled complex neural tissues with potential human applications, although they concede that more precise regulation of cell differentiation will be needed to achieve this, in addition to further testing on more clinically-relevant injury models.
Overall, this study clearly demonstrated for the first time the feasibility of the 3D bioprinted neural stem cell-laden scaffolds for SCI repair in-vivo, concluded the team in their paper, which, we expect, may move toward clinical applications in the neural tissue engineering, such as SCI and other regenerative medicine fields in the near future.
3D bioprinting in CNS treatments
Thanks to constant advances in flexible electronics and 3D bioprinting technologies, its now becoming increasingly possible to produce neural implants, with the potential to treat complex CNS injuries. Last year, a project started at TU Dresden led to the creation of 3D printed neural implants, capable of linking the human brain to computers as a means of treating neurological conditions such as paralysis.
In a similar study, engineering firm Renishaw has worked with pharmaceuticals expert Herantis Pharma to assess the performance of its 3D printed neuroinfuse drug delivery device. Designed to deliver intermittent infusions into the parenchyma, an organs functional tissue, the platform could be used as a future treatment for Parkinsons disease.
With regards to treating spinal injuries specifically, researchers at the University of California San Diego have also managed to repair spinal cord injuries in rats. By implanting 3D printed two-millimeter-wide grafts into test subjects, the team have been able to facilitate neural stem cell growth, restore nerve connections and ultimately help recover limb functionality in rodent test subjects.
The researchers findings are detailed in their paper titled 3D bioprinted neural tissue constructs for spinal cord injury repair. The study was co-authored by Xiaoyun Liu, Mingming Hao, Zhongjin Chen, Ting Zhang, Jie Huang, Jianwu Dai and Zhijun Zhang.
The nominations for the 2021 3D Printing Industry Awards are now open. Who do you think should make the shortlists for this years show? Have your say now.
To stay up to date with the latest 3D printing news, dont forget to subscribe to the 3D Printing Industry newsletter or follow us on Twitter or liking our page on Facebook.
For a deeper-dive into additive manufacturing, you can now subscribe to our Youtube channel, featuring discussion, de-briefs and shots of 3D printing in-action.
Are you looking for a job in the additive manufacturing industry? Visit 3D Printing Jobs for a selection of roles in the industry.
Featured image shows the researchers 3D bioprinted scaffolds after 7 and 21 days culturing. Images via the Biomaterials journal.
Read the original post:
Introducing the 3D bioprinted neural tissues with the potential to 'cure' human paralysis - 3D Printing Industry
Mesenchymal Stem Cells Market Witnesses Upward Trend with High Prevalence of Parkinson’s Disease The Manomet Current – The Manomet Current
By daniellenierenberg
In the last few years, many researchers have discovered that mesenchymal stem cells (MSCs) hold the key to treating many serious diseases such as diabetes, Parkinsons disease, and multiple sclerosis. According to the study, Prevalence of Parkinsons disease (PD) across North America, published in July 2018 in the journal Nature, the number of people suffering from PD is expected to reach 930,000 in 2020 and 1,238,000 in 2030. Thus, high prevalence of such diseases is also expected to aid in growth of the mesenchymal stem cells market.
Click Here To Get Sample Copy @ https://www.coherentmarketinsights.com/insight/request-sample/720
While no one yet knows exactly how the cells work, scientists are excited about the potential benefits of using MSCs as treatment modalities. In particular, the discovery that stem cells can differentiate into other cell types has implications for the field of regenerative medicine. The potential of MSCs to provide treatments for age-related diseases is exciting. Thus, increasing geriatric population is also expected to aid in growth of the mesenchymal stem cells market.
While stem cells from adults hold the most promise for use in treating human illnesses, the discovery that adult stem cells can be directed to treat specific diseases has provided doctors with a new approach to the treatment of patients with life-threatening diseases, which in turn is expected to aid in growth of the mesenchymal stem cells market. Mesenchymal stem cells are found in the bone marrow in rich supply. Because the cells are continually being used to make blood, tissue, and organs, they are not only rich in blood, they are also rich in antigens. This allows adult stem cells to directly apply their healing properties to a host of diseases.
Adult MSCs have the potential to replace diseased or otherwise damaged adult stem cells in a variety of tissues throughout the body, including muscle, bones, and organs. Various researches have revealed exciting potential in using these cells to treat a range of debilitating diseases. For example, since MSCs can be directed to the myeloid tissues of the bone marrow, they can help to repair and regenerate tissue and organs that are injured or became infected. These studies are currently underway and have the potential to provide a major breakthrough in the treatment of many serious diseases, boosting growth of the mesenchymal stem cells market.
MSCs are also being tested to directly apply to a patients spinal cord to promote regrowth of bones and other skeletal tissues. This is done through the introduction of specialized cells into the spinal cord. Since the specialized cells that are made in the laboratory from MSCs can be directed to a number of myeloid tissues, they can provide a direct means of repairing and regenerating spinal cord injury, spinal stenosis, cervical spondylosis, spinal arthritis, etc. The long term effects of mesenchymal stem cells transplantation on the spinal cord are not yet known but the studies so far are very promising and the technology could very soon be available for clinical trials.
Buy This Research Study Report With Flat US $1000 Off @ https://www.coherentmarketinsights.com/promo/buynow/720
Major Key Players Are: Pluristem Therapeutics, LonzaThermo, Fisher, ATCC, Bio-Techne, MilliporeSigma, Genlantis, Celprogen, Cell Applications, PromoCell GmbH, Cyagen Biosciences, Human Longevity Inc., Axol Bioscience, Cytori Therapeutics, Eutilex Co.Ltd., ID Pharma Co. Ltd., BrainStrom Cell Therapeutics, Cytori Therapeutics Inc., Neovii Biotech, Angel Biotechnology, California Stem Cell Inc., Stemcelltechnologies Inc., and Celgene Corporation Inc.
About Coherent Market Insights
Coherent Market Insights is a prominent market research and consulting firm offering action-ready syndicated research reports, custom market analysis, consulting services, and competitive analysis through various recommendations related to emerging market trends, technologies, and potential absolute dollar opportunity.
Check Here Latest Insights: https://www.coherentmarketinsights.com/latest-insights
Follow this link:
Mesenchymal Stem Cells Market Witnesses Upward Trend with High Prevalence of Parkinson's Disease The Manomet Current - The Manomet Current
HER2-Specific CAR T Cells Induce Early Efficacy Without Dose-Limiting Toxicities in Pediatric CNS Tumors – OncLive
By daniellenierenberg
The clinical evidence included high concentrations of C-X-C motif chemokine ligand 10 (CXCL10) and C-C motif chemokine ligand 2 (CCL2) in the cerebrospinal fluid (CSF) and serum samples.
This interim report supports the feasibility of generating HER2-specific CAR T cells for repeated dosing regimens and suggests that their repeated intra-CNS delivery might be well tolerated and activate a localized immune response in pediatric and young adult patients, Nicholas Alexander Vitanza, MD, an assistant professor at the Ben Towne Center for Childhood Cancer Research, and a staff member of the Cancer and Blood Disorders Center, Brain Tumor Program, Apheresis, at Seattle Childrens, and coauthors, wrote in the study publication.
Although the integration of CAR T-cell therapy has provided a novel therapeutic modality to manage multiple hematologic malignancies, the utility of CAR T cells is not fully understood for pediatric patients with CNS tumors.
HER2 offers a valid target for CAR T-cell therapy in CNS tumors because it is widely expressed on a significant proportion of biologically diverse CNS tumors such as ependymoma, glioblastoma, and medulloblastoma, as well as CNS cancer stem cells. Moreover, HER2 is not expressed on normal CNS tissue.
Monoclonal antibodies, such as trastuzumab (Herceptin), are beneficial for patients with some HER2-expressing cancers but have limited activity in CNS tumors that require a therapy that crosses the blood-brain barrier. CNS tumors also harbor less HER2 expression compared with malignancies like breast cancer.
As such, directly administering HER2-directed therapy to the tumor site could be a lucrative strategy for patients with CNS tumors.
Preclinical data demonstrated that spacer length was correlated with improved activity of HER2-specific CAR T cells. Based on this, the single-institution BrainChild-01 trial used a medium-length spacer HER2CAR to evaluate repeated locoregional delivery of HER2-specific CAR T cells for pediatric patients with recurrent or refractory CNS tumors.
Following CAR T-cell manufacturing, patients were treated in the outpatient setting for up to 6 courses. Course 1 consisted of 3 weeks of a 1 x 107 dose of CAR T cells (DL1), followed by clinical evaluation in week 4. Course 2 consisted of 1 week of DL1 treatment, 2 weeks of a 2.5 x 107 dose of CAR T cells (DL2), followed by clinical and radiographic evaluation in week 4. Courses 3 through 6 retained the same dosing schedule at the highest tolerated dosing levels, which included 2 additional tiers: 5 x 107 [DL3] and 10 x 107 [DL4].
The BrainChild-01 HER2CAR T-cell product was manufactured under a process designed to yield balanced numbers of CD4+ and CD8+ lentivirally transduced T cells exhibiting limited terminal differentiation with enrichment for the CAR+ population of cells mid-culture, Vitanza and coauthors wrote.
The initial 3 patients were required to be from 15 to 26 years old. This age group is more capable of self-reporting neurologic changes compared with a younger patient population, so they were specifically used for the initial evaluation.
The first eligible 3 patients underwent apheresis and had CAR T-cell products that were in-line with release criteria. As such, the patients were assigned to the appropriate treatment arms: repeated locoregional CNS infusion into the CNS tumor or tumor cavity (arm A; n = 1) vs repeated locoregional CNS infusion into the ventricular system (arm B; n = 2).
All patients had undergone at least 3 prior tumor-directed surgical procedures, at least 1 prior irradiation, and at least 1 prior chemotherapy regimen. Additionally, all patients had presumed pediatric biology of their tumors.
A 19-year-old female patient enrolled on arm A was diagnosed with WHO grade III localized anaplastic astrocytoma. She had 1.95 x 109 total nucleated cells manufactured and 1.87 x 109 EGFRt+ CAR T cells manufactured. She received 6 doses of treatment.
Both patients enrolled on arm B were males with WHO grade III metastatic ependymoma. The first, a 16-year-old, had 3.2 x 109 total nucleated cells manufactured, 2.97 x 109 EGFRt+ CAR T cells manufactured, and received 9 doses of treatment. The second patient, aged 26, had 2.06 x 109 total nucleated cells manufactured, 1.87 x 109 EGFRt+ CAR T cells manufactured, and received 9 doses of treatment. The latter patients product in arm B had initial failure of viability screening, but with 2 additional manufacturing attempts, enough CAR T cells were generated to complete a minimum of 2 treatment courses.
The study was designed to primarily assess feasibility, safety, and tolerability, with assessment of CAR T-cell distribution and disease response as secondary objectives.
Patients experienced post-treatment symptoms. One patient who underwent imaging experienced radiographic evidence of treatment-mediated localized CNS immune activation.
Additional results showed that the most common adverse effects (AEs) observed in all patients were headache, pain at metastatic sites of spinal cord disease, and transient worsening of a baseline neurologic deficit. Additionally, the 2 patients on arm B experienced fever within 24 hours following infusion. These AEs were deemed possibly, probably, or definitely related to CAR T-cell therapy.
Systemic C-reactive protein elevation was also noted in all patients and overlapped with the timing of headaches and/or pain.
Regarding CSF cytokines and radiographic imaging, CAR T cells were not detected in any patient at any time point following infusion in CSF via flow cytometry or in peripheral blood via quantitative polymerase chain reaction. NonCAR T cell populations of CD4+ and CD8+ T cells were detected in CSF after infusion.
Cytokines, including CXCL10, CCL2, granulocyte colonystimulating factor, granulocyte-macrophage colony-stimulating factor, IFN2, IL-10, IL12-p70, IL-15, IL1, IL-6, IL-7, and tumor necrosis factor, were detected in the CSF following infusion. One patient also had elevated VEGF.
Additional studies are planned to evaluate the relationship between target antigen density and clinical toxicity and response.
With these findings, the trial is planned to enroll the broader age cohort of patients aged 1 to 26 years. Notably, the trial will include patients with diffuse midline glioma.
Two additional studies are also planned. BrainChild-02 (NCT03638167) will deliver EGFR-specific CAR T cells to pediatric patients with recurrent or refractory EGFR-positive CNS tumors. BrainChild-03 (NCT04185038) will deliver B7-H3specific CAR T cells to pediatric patients with recurrent or refractory CNS tumors or diffuse intrinsic pontine glioma.
Gleaning the results of all 3 BrainChild studies, the investigators plan to use a multiplexed strategy to overcome tumor heterogeneity, which remains a challenge for drug development in this patient population, and antigen escape.
Ultimately, the experience of the initial three patients treated on BrainChild-01 suggests that repeated locoregional HER2-specific CAR T-cell dosing might be feasible and that correlative CSF markers might be valuable in assessing on-target CAR T-cell activity in the CNS, concluded Vitanza and coauthors.
Read the original here:
HER2-Specific CAR T Cells Induce Early Efficacy Without Dose-Limiting Toxicities in Pediatric CNS Tumors - OncLive
Sleeper cells, cells of origin and hematopoietic stem cells – Brain Tumour Research
By daniellenierenberg
Firstly, two news items on glioblastoma that will be of particular interest to scientists at our Research Centre at Queen Mary, University of London. This brain tumour type is the most aggressive and most common primary high-grade tumour diagnosed in adults.
We begin with some fascinating research into a new stage of the stem cell life cycle could be the key to unlocking new methods of brain cancer treatment. Following brain stem cell analysis, through single-cell RNA sequencing, data mapped out a circular pattern that has been identified as all of the different phases of the cell cycle. A new cell cycle classifier tool then took a closer, high-resolution look at what's happening within the growth cycles of stem cells and identified genes that can be used to track progress through this cell cycle. When the research team analysed cell data for Gliomas, they found the tumour cells were often either in the Neural G0 or G1 growth state and that as the tumours became more aggressive, fewer and fewer cells remained in the resting Neural G0 state. They correlated this data with the prognosis for patients with Glioblastoma and found those with higher Neural G0 levels in tumour cells had less aggressive tumours. So, if more cells could be pushed into this quiescent, or sleepy, state tumours would become less aggressive. Current cancer drug treatments focus on killing cancer cells. However, when the cancer cells are killed, they release cell debris into the surrounding area of the tumour, which can cause the remaining cells to become more resistant to drugs. If, instead of killing cells, we put them to sleep could that potentially be a better way forward?
For the first time, scientists have discovered stem cells of the hematopoietic system in glioblastomas. These hematopoietic stem cells promote division of the cancer cells and at the same time suppress the immune response against the tumour so Glioblastomas. In tissue samples of 217 Glioblastomas, 86 WHO grade II and III Astrocytomas, and 17 samples from healthy brain tissue, researchers used computer-assisted transcription analysis to draw up profiles of the cellular composition. The tissue samples were taken directly from the post-surgery, resection margins - where remaining tumour cells and immune cells meet. The team were able to distinguish between signals from 43 cell types, including 26 different types of immune cells. To their great surprise, the researchers discovered hematopoietic stem and precursor cells in all the malignant tumour samples, while this cell type was not found in healthy tissue samples. An even more surprising observation was that these blood stem cells seem to have fatal characteristics: They suppress the immune system and at the same time stimulate tumour growth. When the researchers cultured the tumour-associated blood stem cells in the same petri dish as Glioblastoma cells, cancer cell division increased. At the same time, the cells produced large amounts of the PD-L1 molecule, known as an "immune brake", on their surface.
On diagnosis of an Ependymoma an adult is often treated with surgery followed by radiation. When a tumour comes back, there had been no standard treatment options. Recently, thats changed, thanks to results from the first prospective clinical trial for adults with Ependymoma, which showed the benefits of a combination regimen including a targeted drug and chemotherapy.
Also of relevance to our Research Centre at QMUL, a study may have identified the cell of origin of Medulloblastoma. Using organoids to simulate tumour tissue in 3D an approach also used by researchers at QMUL - this organoid model has enabled researchers to identify the type of cell that can develop into Medulloblastoma. These cells express Notch1/S100b, and play a key role in onset, progression and prognosis.
Research has been looking at how Medulloblastoma travels to other sites within the central nervous system and has shown that an enzyme called GABA transaminase, abbreviated as ABAT, aids metastases in surviving the hostile environment around the brain and spinal cord and in resisting treatment. These findings may provide clues to new strategies for targeting lethal Medulloblastoma metastases.
You can register to join an online lecture on the molecular analysis of paediatric Medulloblastoma and vulnerabilities, the development of models that recapitulate the patients diseases and how models allow to identify new therapies using a pre-clinical pipeline. It is on July 13th.
From the 12 15 of August you can watch The Masters Live World Course in Brain and Spine Tumour Surgery this event wont be streamed or saved on social media and registration is free.
Still focussing on neuro surgery this link takes you to a Neurosurgeon's guide to Cognitive Dysfunction in Adult Glioma
Grounds for optimism to end with as a prominent clinician/scientist believes Glioblastoma outcomes could change for the better soon. Frederick F. Lang Jr, MD, chair of neurosurgery at The University of Texas MD Anderson Cancer Centre, and a co-leader of the institutions Glioblastoma Moon Shot programme says I am optimistic that we are going to see changes in the survival as we start to [better] understand the groups of people we're treating, and as we separate out the tumours more precisely and classify them better. Then, as we understand the biology of [the disease] better and better, we're going to see changes in the near future terms of survival. The University of Texas MD Anderson Cancer Centre is pursuing several novel approaches, including viro-immunotherapy and genetically engineered natural killer cells to treat patients with GBM, while also conducting tumour analysis to better comprehend the disease.
Whether to find out more about the Glioblastoma tumour microenvironment work or research into Medulloblastoma carried out at our Queen Mary University of London (QMUL) centre, the techniques at the forefront of tumour neurosurgery being employed by Consultant Neurosurgeon Kevin ONeill at our Imperial College, London Centre or the work into Meningioma and Acoustic Neuroma ( Thursday was Acoustic Neuroma Awareness Day) that Professor Oliver Hanemann focuses on at our University of Plymouth Centre, it is always worth checking our Research News pages and for an overview of our research strategy check out Brain Tumour Research our research strategy.
Finally, a request for you all to support our #StopTheDevastation campaign click through, find out more, get involved and say #NoMore to brain tumours.
Related reading:
If you found this story interesting or helpful,sign up to our weekly e-newsand keep up to date with all the latest from Brain Tumour Research.
Go here to see the original:
Sleeper cells, cells of origin and hematopoietic stem cells - Brain Tumour Research
How Cycling Changed Me | Timesia Hart Cycles to Inspire Others – Bicycling
By daniellenierenberg
Name: Timesia HartAge: 58Hometown: Port Arthur, TexasTime Cycling: 10 yearsOccupation: Disabled Veteran and CEO/Founder of Living to Win FoundationReason for cycling: After surviving neuromyelitis optica (an autoimmune disease and central nervous system disorder that affects eye nerves and the spinal cord) and completing grueling physical, occupational, and speech therapy, I realized I would have to live with disabilities and had a decision to make. I could sit around feeling sorry for myself, or take the life God gave me and positively make an impact on society. Thankfully, cycling was what challenged me and helped me to help others by defying the odds.
Before my neuromyelitis optica (NMO) diagnosis, I prided myself for being physically fit. I could run, walk, hikeI did what I wanted to do, albeit with some pain from back injuries while in the Army. I cooked well, ate well, and used food as the fuel for my well maintained body. But my NMO came out of nowhere. I literally went to bed and the next day felt weakness in my lower extremities, and by the end of the day I had been transported to a huge neurological center because I was paralyzed from my shoulders to my toes.
In 2009, I was misdiagnosed with multiple sclerosis (MS), and the treatment wreaked havoc on my body. My body was toxic by the time the right diagnosis of NMO was discoveredthe neurologist began every known treatment, but nothing worked for me. Doctors said the sooner I accepted that Id be in a remote controlled wheel chair, the better off Id be, and that I should spend whatever time I had left with familythat was the best they could offer me. Never did I accept that, and its very much why Im alive and well today.
As a last resort, I was accepted into a clinical trial at Northwestern Memorial Hospital for a hematopoietic clinical trial stem cell transplant (HCST), in which they used my bone marrow to replace the bad cells causing the NMO neurological attacks with new cells. I received the transplant in 2013, and I was fortunate to regain some mobility.
No matter what youre looking to improve in your riding life, find it with Bicycling All Access!
After going through extensive physical, occupational, and speech therapy, I said I wasnt strong enough to go to the gym on my own, but my therapist recommended I start cycling. I started on a stationary bike in 2014, and by 2015 I was still barely able to stay on the bike. Therapy was difficult in the beginning, and I wasnt able to do much. But my attitude made a big difference, along with my determination.
This content is imported from Instagram. You may be able to find the same content in another format, or you may be able to find more information, at their web site.
As my body began responding, therapy became much easier. I gradually gained enough strength and confidence to start to ride safely outside. I also went through the Livestrong programa 12-week exercise plan to get survivors back on their feettwice, and then mentored two cycles afterward. Now I can sit on a bike, balance, and ride up to 25 miles. I enjoy riding even more now, and it is my new form of physical fitness. I ran track in college and ran while in the military, but Ill unlikely run again. So riding is the next best thing for me.
In 2017, I recorded some music and released an EP called Endure, and with the revenue generated from it, I started the Living to Win foundation, where we support NMO patients and their families. We motivate them to fight and survive. I started an annual bike race, and we will have our 4th annual Biking to Win event in August where we bike 20 miles around Bentonville, Arkansas, where I now live. It is a family event, and parents ride with children and decorate their bikes. We put on a biking parade, and all the proceeds go towards supporting others with this debilitating disease. My goal is to have a state to state Biking to Win event.
To date, my longest ride has been 25 miles. I dont race, mountain bike, or any of the crazy stuff, but my average of 80+ miles a week is pretty impressive. The community I live in in Northwest Arkansas has many trails, and my favorite ride is from Bella Vista to Springdale by way of the Greenway.
Riding is so freeing to me. Im not supposed to be able to walk, let alone ride. I pray that by riding, othersno matter what their issues arewill be inspired to keep pushing and do something. I always say I dont have a disability, but rather the ability to do things differently.
This content is created and maintained by a third party, and imported onto this page to help users provide their email addresses. You may be able to find more information about this and similar content at piano.io
Original post:
How Cycling Changed Me | Timesia Hart Cycles to Inspire Others - Bicycling
This Startup is Changing the Way Spinal Cord Injury Is Treated Around the World – Entrepreneur
By daniellenierenberg
Hear from the CEO of NurExone Biologic Ltd, Israel's promising new start-up which aims to utilize innovative Exosome-based technology and smart delivery platforms in order to revolutionize the way spinal cord injury (SCI) is treated around the world
Stay informed and join our daily newsletter now!
June22, 20215 min read
Opinions expressed by Entrepreneur contributors are their own.
On Wall Street and prominent global stock exchanges, the emergence of innovative start-up companies has become an Israeli phenomenon. Today, the innovation nation gains unprecedented international recognition as well as investment for a country the size of the (US) state of New Jersey. Based in the northern city of Haifa, one of the newest Israeli startups building upon the countrys profound reputation is NurExone Biologic Ltd. The company, founded just last year, aims to change the way spinal cord injury (SCI) is treated around the world by utilizing exosomes as smart delivery platforms.
Over the past few decades, stem cells have become a significant interest for the scientific community as well as popular culture, and the preliminary results have been incredible. Now, stem cell research and therapy development are at an all-time high with accompanying experimental trials to apply decades of analysis into real-life medicinal practice. In regard to treating SCI, traumatic and non-traumatic, Stem Cells were tested on patients, which some of the patients have benefitted from the use of the stem cells, but due to various challenges, the treatment was not approved yet. However, NurExone promising exosome-based research proof of concept results, shown on animal, has to offer new treatment to SCI patients as well as same potential in traumatic brain injury.
NurExone is led by CEO Dr. Lior Shaltiel, who maintains an impressive background in biotech entrepreneurship, in addition to biomedical engineering, pharmacology and the advancement of smart delivery systems all of which are vital components to the companys mission. The formula behind NurExones solution is a two-prong strategy to concentrate exosome technology as the main fuel and practically treating SCI patients via a smart delivery platform. This combination, which is planned to medically transferred into the body through the nose, has a natural effect in targeting neuron damage. According to Shaltiel, while many companies are using stem cells which release exosomes naturally and attempt to regenerate neurons through local injections, our loaded exosomes have the potential to be transferred into the body nasally which is a considerable game-changer for the industry.
Furthermore, NurExone is equipped with an experienced Board of Directors, including from some of Israels leading pharmaceutical and biotech brands listed on international stock exchanges such as Executive Chairman Ron Mayron of Teva (NYSE: TEVA) and Founder & Director Yoram Drucker of Pluristem (NASDAQ: PSTI) and Brainstorm (BCLI). These substantial decision-makers in the medical technology as well as the Israeli innovation scene is indispensable and attests to the potential of the offer of the company from global operational management to strategic marketing to attracting major investors.
From its inception, NurExones extensive research and ability to conduct experimental testing comes from the companys collaboration with top professors from two of Israels elite universities Technion (noted as Israels MIT) and Tel Aviv University. As part of the companys Co-founders and Scientific Advisory Board, NurExone has partnered with Professor Daniel Offen, Head of Tel Aviv Universitys Neurology Lab, and Professor Shulamit Levenberg, the former Dean of Technions Biomedical Engineering Department and Director of the Technion Center for 3D Bioprinting. The board also features Professor Nashson Knoller, MD, Head of the Neurosurgery Department at Sheba Hospital.
This month, NurExone also implemented notable moves to prepare the company for the subsequent stage developing a promising product for the clinical phase. The company has received important approvals, which allow them to further their developing SCI treatments around the world. This significant advancement in the Israeli start-ups early focus on next stage financial efforts will play a principal role in persuading interested parties and serious investors to the table to help the company progress to become listed on international stock exchanges.
According to Shaltiel, while it usually will take several years for companies during the research and development (R&D) phase to secure investment, we are progressing with our funding model due to the exponential potential of our product. At the moment, NurExones plans to move towards entering the Toronto Stock Venture Exchange (TSXV), a Mecca-like market for penny stocks and new companies attempting to build an investor following for more global exchanges in the future.
In the world of start-up and innovation companies, a companys infrastructure, vision, and basis for research development is crucial to the success and longevity of the business. For NurExone, the companys successful Board of Directors, ambitious and experienced CEO Dr. Lior Shaltiel, together with the Scientific Advisory Board should not merely satisfy these prerequisites but galvanize the biotech community. While the company, after only a few months, has provided an important genesis for potential investors as well as medical professionals to learn from it also shows the teams efficiency and maturity. In order for NurExone to change how SCI is treated around the world, its next pragmatic step will be to analyze and optimize the product to take another step towards making its goal to treat SCI closer to becoming a reality.
See the original post:
This Startup is Changing the Way Spinal Cord Injury Is Treated Around the World - Entrepreneur
The growing global "infodemic" around stem cell therapies – Axios
By daniellenierenberg
An industry centered around unproven stem cell therapies is flourishing due to misinformation.
Why it matters: Stem cells offer a tantalizing potential to address a large number of diseases, like Parkinson's, ALS, cancers and bodily injuries. But only a small number of therapies have been found safe and effective through clinical trials, while misinformation continues to proliferate.
The latest: The Pew Charitable Trusts issued a brief in early June that describes a rising number of reported adverse events.
Background: Clinics with unregulated stem cell products or therapies began emerging in the early 2000s all over the world, "taking advantage of the media hype around stem cells and patients hope and desperation," says Mohamed Abou-el-Enein, executive director of the Joint USC/CHLA Cell Therapy Program at USC's Keck School of Medicine.
Regulatory agencies like the FDA need to crack down on these misinformation campaigns, several experts say.
What they're saying: Turner says in that period the FDA contacted about 400 businesses to warn of noncompliance and issued several warning letters, but adds that was "probably of very little consequence. ... A one-year period could be justified, but three years is basically like a security guard walking away from the post, and you can guess what's going to happen."
The big picture: This is a global threat as well, Master and Abou-el-Enein say. In a recent perspective in the journal Stem Cell Reports, they argue for the WHO to establish an expert advisory committee to explore global standards.
What's next: Researchers are still hopeful stem cell therapies can be effective but emphasize the need for more research into how stem cells work and how they can be manipulated for therapies.
Read this article:
The growing global "infodemic" around stem cell therapies - Axios
Global Nerve Repair and Regeneration Devices Market to Reach $11. 8 Billion by 2026 – GlobeNewswire
By daniellenierenberg
New York, June 23, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Nerve Repair and Regeneration Devices Industry" - https://www.reportlinker.com/p05957490/?utm_source=GNW The rapid rise in the incidence of nerve injuries worldwide, increasing prevalence of various neurological disorders, especially in the expanding elderly population, and development of advanced technology-based nerve repair and regeneration products are fueling growth in the global market. The constant increase in incidence of nerve injuries is leading to high demand for nerve repair and regeneration products. The growing incidence of chronic nervous system disorders such as Parkinson`s and Alzheimer`s disease is also driving demand for nerve repair and regeneration procedures and devices. There is also increased funding for clinical trials aimed at development of effective and safe therapies for treatment of various neurological disorders. Initiatives such as stem cells in umbilical blood infusion for cerebral palsy; and the use of Polyethylene glycol (PEG) drug for promoting axonal fusion technique for repairing peripheral nerve injuries are favoring market growth.
- Amid the COVID-19 crisis, the global market for Nerve Repair and Regeneration Devices estimated at US$6.6 Billion in the year 2020, is projected to reach a revised size of US$11.8 Billion by 2026, growing at a CAGR of 10% over the analysis period. Neurostimulation & Neuromodulation Devices, one of the segments analyzed in the report, is projected to grow at a 9.7% CAGR to reach US$10.9 Billion by the end of the analysis period. After a thorough analysis of the business implications of the pandemic and its induced economic crisis, growth in the Biomaterials segment is readjusted to a revised 11.7% CAGR for the next 7-year period. This segment currently accounts for a 13.8% share of the global Nerve Repair and Regeneration Devices market. The neurostimulation and neuromodulation devices segment growth will be fueled by rising incidence of peripheral nerve injuries, development of technologically advanced products and favorable reimbursement scenario. Within the segment, internal neurostimulation and neuromodulation devices category is being driven due to the devices` ability to lower occurrence of post-surgical complications and reducing duration of hospitalization. Biomaterials segment is expected to witness high growth, driven by broadening application range, increased availability of government funding for innovations, and development of advanced products.
The U.S. Market is Estimated at $2.2 Billion in 2021, While China is Forecast to Reach $1.8 Billion by 2026
- The Nerve Repair and Regeneration Devices market in the U.S. is estimated at US$2.2 Billion in the year 2021. The country currently accounts for a 30.45% share in the global market. China, the world`s second largest economy, is forecast to reach an estimated market size of US$1.8 Billion in the year 2026 trailing a CAGR of 13% through the analysis period. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at 7.7% and 8.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.2% CAGR while Rest of European market (as defined in the study) will reach US$2 Billion by the end of the analysis period. Increasing incidence of neurological diseases and expanding geriatric population, increasing spending on healthcare sector, positive reimbursement framework and presence of several leading industry players are fueling growth in the North America region. Asia-Pacific is poised to grow at a robust pace, driven by sizeable patient pool, favorable healthcare initiatives and high unmet healthcare needs. The Asia-Pacific market is expected to gain from notable surge in aging population, increasing awareness regarding neurological disorders, and rising incidence of cancer and osteoporosis. Select Competitors (Total 61 Featured)
Read the full report: https://www.reportlinker.com/p05957490/?utm_source=GNW
CONTENTS
I. METHODOLOGY
II. EXECUTIVE SUMMARY
1. MARKET OVERVIEW Impact of Covid-19 and a Looming Global Recession 2020 Marked as a Year of Disruption & Transformation EXHIBIT 1: World Economic Growth Projections (Real GDP, Annual % Change) for 2019 to 2022 Global Nerve Repair & Regeneration Market Buckles under COVID- 19 Strain Covid-19 Patients in Prone Position Suffering Nerve Damage Bodes Well for Market Growth Nerve Repair and Regeneration Market Set for a Robust Growth Neurostimulation & Neuromodulation Devices Hold Commanding Slot in Nerve Repair & Regeneration Market Biomaterials to Exhibit Rapid Growth Nerve Repair and Regeneration Market by Application US and Europe Dominate the Market Asia-Pacific and other Emerging Regions Display Impressive Growth Potential Recent Market Activity
2. FOCUS ON SELECT PLAYERS
3. MARKET TRENDS & DRIVERS High Incidence of Neurological Disorders: A Key Market Driver EXHIBIT 2: Annual Incidence of Adult-Onset Neurologic Disorders in the US Effects of COVID-19 on the Nervous System Sheds Focus on Neuromodulation Applications Increasing Cases of Peripheral Nerve Injuries Drive the Nerve Repair and Regeneration Market Growing Number of Vehicular Accidents Drive the Peripheral Nerve injuries Repair Market Rising Geriatric Population and Subsequent Growth in Prevalence of Neurological Disorders EXHIBIT 3: Global Population Statistics for the 65+ Age Group in Million by Geographic Region for the Years 2019, 2025, 2035 and 2050 Growing Incidence of Neurodegenerative Diseases Propels the Market for Deep Brain Stimulation Devices EXHIBIT 4: Global Alzheimers Prevalence by Age Group EXHIBIT 5: Diagnosed Prevalence Cases of Parkinson?s Disease Across Select Countries EXHIBIT 6: Global DBS Market by Leading Player (2020E): Market Share Breakdown of Revenues for Medtronic, Boston Scientific, and Abbott Select Available Deep Brain Stimulation Devices Available in the Market Intensified Research Activity Across Various Neural Disciplines Induces Additional Optimism Stem Cell Therapy: A Promising Avenue for Nerve Repair and Regeneration Increasing Cases of Epilepsy Drives the Demand for Vagus Nerve Stimulation Devices EXHIBIT 7: Epilepsy Incidence by Type (2019): Percentage Share Breakdown for Idiopathic and Symptomatic Epilepsy EXHIBIT 8: Symptomatic Epilepsy Incidence by Type (2019): Percentage Share Breakdown of Congenital, Degenerative, Infective, Neoplastic, Trauma, and Vascular Epilepsy Spinal Cord Injuries Propel the Demand for Spinal Cord Stimulation Devices Recent Developments in Spinal Cord Injury Treatment Biomaterials (Nerve Conduits and Nerve Wraps) to Witness Rapid Growth New Biomaterials Pave the Way for Innovative Neurodegeneration Therapies Role of Nerve Conduits in the Treatment of Peripheral Nerve Injury Innovative Nerve Conduits from Stryker TENS (Transcutaneous electrical nerve stimulation devices) Market Witnesses Rapid Growth Non-Invasiveness of TMS (Transcranial Magnetic Stimulation) Propelling the adoption of TMS devices Nerve Grafts for Bridging Larger Nerve Gaps Role of Nerve Grafting in Treatment of Peripheral Nerve Injuries FDA-approved Nerve Tubes for Peripheral Nerve Repair
4. GLOBAL MARKET PERSPECTIVE Table 1: World Current & Future Analysis for Nerve Repair and Regeneration Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 2: World Historic Review for Nerve Repair and Regeneration Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 3: World 15-Year Perspective for Nerve Repair and Regeneration Devices by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets for Years 2012, 2020 & 2027
Table 4: World Current & Future Analysis for Neurostimulation & Neuromodulation Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 5: World Historic Review for Neurostimulation & Neuromodulation Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 6: World 15-Year Perspective for Neurostimulation & Neuromodulation Devices by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027
Table 7: World Current & Future Analysis for Biomaterials by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 8: World Historic Review for Biomaterials by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 9: World 15-Year Perspective for Biomaterials by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027
Table 10: World Current & Future Analysis for Neurostimulation & Neuromodulation Surgeries by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 11: World Historic Review for Neurostimulation & Neuromodulation Surgeries by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 12: World 15-Year Perspective for Neurostimulation & Neuromodulation Surgeries by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027
Table 13: World Current & Future Analysis for Neurorrhaphy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 14: World Historic Review for Neurorrhaphy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 15: World 15-Year Perspective for Neurorrhaphy by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027
Table 16: World Current & Future Analysis for Nerve Grafting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 17: World Historic Review for Nerve Grafting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 18: World 15-Year Perspective for Nerve Grafting by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027
Table 19: World Current & Future Analysis for Stem Cell Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 20: World Historic Review for Stem Cell Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 21: World 15-Year Perspective for Stem Cell Therapy by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027
Table 22: World Current & Future Analysis for Hospitals & Clinics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 23: World Historic Review for Hospitals & Clinics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 24: World 15-Year Perspective for Hospitals & Clinics by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027
Table 25: World Current & Future Analysis for Ambulatory Surgery Centers by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 26: World Historic Review for Ambulatory Surgery Centers by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 27: World 15-Year Perspective for Ambulatory Surgery Centers by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027
III. MARKET ANALYSIS
UNITED STATES Table 28: USA Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 29: USA Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 30: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027
Table 31: USA Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 32: USA Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 33: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027
Table 34: USA Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 35: USA Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 36: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027
CANADA Table 37: Canada Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 38: Canada Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 39: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027
Table 40: Canada Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 41: Canada Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 42: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027
Table 43: Canada Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 44: Canada Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 45: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027
JAPAN Table 46: Japan Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 47: Japan Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 48: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027
Table 49: Japan Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 50: Japan Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 51: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027
Table 52: Japan Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 53: Japan Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 54: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027
CHINA Table 55: China Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 56: China Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 57: China 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027
Table 58: China Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 59: China Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 60: China 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027
Table 61: China Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 62: China Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 63: China 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027
EUROPE Table 64: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by Geographic Region - France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR
Table 65: Europe Historic Review for Nerve Repair and Regeneration Devices by Geographic Region - France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 66: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets for Years 2012, 2020 & 2027
Table 67: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 68: Europe Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 69: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027
Table 70: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 71: Europe Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 72: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027
Table 73: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 74: Europe Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 75: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027
FRANCE Table 76: France Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 77: France Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 78: France 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027
Table 79: France Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 80: France Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 81: France 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027
Table 82: France Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 83: France Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 84: France 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027
GERMANY Table 85: Germany Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Table 86: Germany Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR
Table 87: Germany 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027
Table 88: Germany Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR
Here is the original post:
Global Nerve Repair and Regeneration Devices Market to Reach $11. 8 Billion by 2026 - GlobeNewswire
How STEM Can Be More Inclusive of Scientists with Disabilities – The Scientist
By daniellenierenberg
Justin Yerbury | University of Wollongong
According to a 2019 National Science Foundation report, only 10 percent of employed scientists and engineers self-identify as having at least one disability, despite that fact that almost 20 percent of all undergraduates self-report the same, with disabled undergraduates enrolling in STEM programs at roughly the same rate as those without. These statistics are likely an underestimate of the true number of scientists living with disabilities, as a culture of stigmatization and ableismdiscrimination that favors people with typical physical and mental abilitiesin academia makes the choice over whether to disclose a disability a difficult one, according to a commentary published May 18 in Trends in Neuroscience.
Justin Yerbury, a molecular biologist at the University of Wollongong in Australia who coauthored the report with his wife, Wollongong psychology researcher Rachael Yerbury, studies motor neuron diseases, including a rare form that he himself was diagnosed with in 2016. Yerbury has amyotrophic lateral sclerosis, otherwise known as Lou Gehrigs disease, which causes nerve cells in the brain and spinal cord to break down, leading to a loss of muscle control. In the piece, the Yerburys write that disabled scientists may feel misunderstood, undervalued, defined by their disability, or worsedismissed as not being able to contribute or compete in academia, leading them to keep their differences a secret, or in some cases, to avoid STEM entirely.
Justin Yerbury answered questions by email about what prompted him to write the piece and how academia can be more inclusive of scientists with disabilities.
Justin Yerbury:I had just been through the process of assisting the National Health and Medical Research Council (Australias primary medical research funding body) with an update to their Relative to Opportunity policy to be more inclusive of people with a permanent disability and I wondered why this lack of disability access hadnt been pointed out before. While this rattled around in my brain for a while I saw something on Twitter that made me wonder if people with a disability were not actually revealing their disability in grant applications, job applications and promotion applications. I posed the question to the disabled in academia community on Twitter and the responses inspired me to explore this further.
JY: While we cant say for certain why people with a disability are under represented in academia, we do know that a proportion of people do not disclose their disability resulting in an underestimation of academics with a disability. In addition, the ablest culture in academia that judge academic success by a high standard of outputs excludes those that dont fit the mold must also contribute to the relative under representation of disability in academia.
JY: There are other groups that are also underrepresented that would also benefit from a more inclusive academic community. I think that if opinions were to change tomorrow we would still need time for opportunities to arise and for people with a disability to find their place. With years or decades of ableism I dont think that there is an immediate fix but what it would do is hopefully set the standard for current students so that they dont have to fight for access.
If anything positive has come from the COVID-19 pandemic, it has shown us that the way things have been done in the past can change and that different ways of doing things are not only possible but are more inclusive. That can only be a good thing.
JY: The University of Wollongong has provided accessible tech for me in terms of computers and software that helps me communicate and continue to work. In addition, access to my office has been improved with automatic sliding doors and parking under my building. In addition, the University has provided administrative support to help with certain aspects of academia.
JY: The medical model explanation of disability implies that there is something wrong with people that have a disability and that they are not a complete person. That is, people with a disability have deficits. The deficit approach presumes that a disability is a disadvantage and a liability, meaning that we can never be viewed as an equal to our peers.
Rather than seeing differences as a liability we must see diversity and the lived experience it brings as an asset.
JY: Put simply, equality means that everyone is given the same opportunities. While equity is the ability to recognise that each individual has a distinct set of circumstances which is then utilized to reasonably adjust opportunities to achieve an equal outcome.
What this looks like in STEM is policies that apply to everyone, for example funding criteria, that in some instances disadvantage those with a disability. For example, the National Health and Medical Research Council of Australia didnt provide an opportunity for me to explain my permanent disability in my grant application meaning my outputs were directly compared to able bodied researchers without taking my disability into account.
JY:If anything positive has come from the COVID-19 pandemic, it has shown us that the way things have been done in the past can change and that different ways of doing things are not only possible but are more inclusive. That can only be a good thing.
Read the original here:
How STEM Can Be More Inclusive of Scientists with Disabilities - The Scientist
Accumulating Evidence Suggests E-Cigarettes Are Likely As Harmful To The Brain As Regular Smoking – Forbes
By daniellenierenberg
Comparing the effects of e-cigarettes and regular smoking on the brain.
An ever accumulating volume of scientific and preclinical data shows new evidence of ways that e-cigarettes are dangerous. Understandably, most of the focus has been on the effects on the lungs, cardiovascular disease, and addiction. But recently, a growing body of scientific studies are starting to show the serious potential negative effects e-cigarette use may have on the brain.
Electronic-cigerettes (e-cigarettes), and more broadly electric vaporizers, have a history that goes back almost 100 years. The modern commercial version of the e-cigarette is usually attributed to the Chinese pharmacist Hon Lik, although numerous patents and related technologies developed by others were prevalent throughout the 1980s and 90s.
The immediate urgency in attempting to understand the health effects of e-cigarettes stems from their increasing rate of use, most concerning among young people. The challenge though is that they are simply too new, and not enough time has passed to understand and really appreciate their potential long term clinical effects due to sustained or chronic use.
Among high school students, the use of tobacco products had been on the decline until 1998, attributed to aggressive anti-smoking campaigns through the 90s. But this changed that year, with an increase in tobacco use due exclusively to the use of e-cigarettes. By 2014 e-cigarettes overtook all other tobacco products among this population. Even more concerning is the rate at which their use is increasing. According to the Centers for Disease Control and Prevention (CDC) e-cigarette use among high schoolers increased 77.8% in 2018 over 2017, with similar trends observed internationally.
And while it is possible to find e-cigarette pods and inserts that do not have nicotine, the vast majority do. Whats worse, the trend has been to increase the concentration of nicotine delivered by these products. In the case of the popular Juul brand, the average concentration of nicotine considerably exceeds the concentration in regular cigarettes.
To be fair, one potential positive use of these devices might be in helping long time smokers reduce the use of regular cigarettes. The CDC has stated that that while e-cigarettes are not safe for people that dont use tobacco, they are dohave potential to benefit adult smokers. By triturating the chemical composition and rate of nicotine delivery, it may offer a new tool to assist these individuals. Getting a long time smoker to reduce their dependency on combustible cigarettes is a meaningful thing.
And a National Academies report concluded, ecigarettes are not without risk, but compared to combustible tobacco cigarettes they contain fewer toxicants and are likely to be far less harmful than combustible tobacco cigarettes. The Federal Drug Administration (FDA) has stated that nicotine is what addicts and keeps people using tobacco products, but it is not what makes tobacco use so deadly. Yet, at the same time, even within the FDA and CDC, they state that they continue to investigate the distressing incidents of severe respiratory illness associated with use of vaping products. However, this does not necessarily imply that nicotine is responsible, but rather, that other additives and the delivery technologies themselves may be contributing to such clinical effects.
When it comes to the brain, the potential dangerous effects e-cigarettes may have on the brain and their long term consequences stem from the well established effects nicotine in general has on the brain and brain development, the degree and concentration of nicotine e-cigarettes are capable of delivering, and the chemistry associated with how these devices deliver it. The microvascuature of the brain - the collection of specialized blood vessels that feed the brain and spinal cord and regulate their chemical environment - as well as the cells that make up the brain itself (neurons and other cells), are all vulnerable to damage.
The microvascuature of the brain and spinal cord consists of a vast collection of capillaries that provide brain cells with oxygen and nutrients. It also shuttles away cellular waste products. The brains microvascuature is unique compared to the rest of the body. The endothelial cells that make up these tiny blood vessels form a regulated barrier between the blood on one side (the lumen side of the blood vessels) and the chemical environment the brain and spinal cord float in on the other side. This barrier is called the blood brain barrier.
The normal compliment of molecules and immune cells capable of moving between the blood and the cellular spaces in the other tissues of the body cannot freely do so with the brain and spinal cord - which collectively form the central nervous system. The unique chemical environment of the central nervous system formed by the blood brain barrier is the cerebral spinal fluid.
There is a strong correlation between long term smoking, cognitive decline in the later decades of life, and disruption of the blood brain barrier and microvasculature of the brain. In fact, cognitive decline and microvascular dysfunction are essentially universal consequences of long term smoking for everyone. The exact pathophysiological mechanisms involved are still not completely clear though, warranting continued research. But a recently published paper suggests how the negative physiological effects nicotine has on brain cells when delivered via e-cigarettes mirrors the effects observed with combustible cigarettes.
The endothelial cells that make up the microvasculature are particularly vulnerable. This means that the normal regulatory mechanisms responsible for maintaining the unique chemical environment of the cerebral spinal fluid via the blood brain barrier may slowly break down, contributing to cognitive decline.
And in at least one mouse model study, the authors suggest that e-cigarettes may also have short term disruptive effects on cognitive and memory functions. So there may be more immediate and acute concerns with e-cigarette use, in particular in younger populations where the brain is still developing.
In another study, scientists found that e-cigarettes produce a stress response in neural stem cells, which are populations of cells that eventually become neurons and other important cell types in the brain. Again, potential effects on the still developing brain of adolescents is of immediate concern.
On a positive note, a clinically significant exception to the above effects is the use of nicotine to potentially treat Parkinsons disease. Nicotine and chemically related drugs have been shown to be effective in protecting the parts of the brain that are affected and degenerate in Parkinsons, as well as in treating the symptoms of the disease. Its use has also been indicated in reducing the significant side effects of other Parkinsons drugs.
At the moment there are more questions than answers when it comes to understanding the physiological and cellular effects e-cigarettes - and in particular high concentration nicotine delivery via these devices - has on the brain. The inclusion of additional additives may further exacerbate microvasculature and cellular damage to the brain. These risks should of course be balanced against e-cigarettes ability to help people quit combustible tobacco products, which for that population is judged to be significantly more dangerous than e-cigarettes. The long term epidemiological and public health consequences of e-cigarettes - both good and bad - will not be fully appreciated for years to come. But the data at the moment seems to suggest potential significant pathophysiological effects on brain function.
Read the original:
Accumulating Evidence Suggests E-Cigarettes Are Likely As Harmful To The Brain As Regular Smoking - Forbes
Lymph nodes: Purpose, location, and disease warning signs – Medical News Today
By daniellenierenberg
Lymph nodes are small, bean-shaped glands that play a crucial role in the immune system. They filter lymphatic fluid, which helps rid the body of germs and remove waste products.
The body contains hundreds of lymph nodes. They form clusters around the body and are particularly prominent in areas such as the neck, armpit and groin and behind the ears.
The bodys cells and tissues dispose of waste products in lymphatic fluid, which lymph nodes then filter. During this process, they catch bacteria and viruses that could harm the rest of the body.
Lymph nodes are an essential part of the bodys immune system. Due to their function, they come into contact with toxins, which can cause them to swell. Although swollen lymph nodes are common, they may occasionally indicate lymph node cancer, or lymphoma.
Keep on reading to learn more about lymph nodes and their function within the immune system.
Lymph nodes are part of the lymphatic system, which is a complex network of nodes and vessels.
In certain areas of the body, such as the neck, armpit, and groin, lymph nodes sit close to the skin. This means a person may feel them swell when an infection develops.
Lymph nodes are also present in the stomach and between the lungs. However, there are no lymph nodes in the brain or spinal cord.
The name of a lymph node depends on its location in the body.
Lymph nodes form clusters throughout the body. Their main function is to filter out potentially harmful substances.
All tissues and cells in the body excrete lymphatic fluid, or lymph, in order to eliminate waste products. The lymph then travels through vessels in the lymphatic system and passes through lymph nodes for filtering.
Lymph nodes contain lymphocytes. These are a type of white blood cells that help destroy pathogens, such as bacteria, viruses, and fungi. When lymph nodes detect a pathogen in the lymph, they produce more lymphocytes, which causes them to swell.
Upon encountering bacteria or damaged cells, lymph nodes destroy them and turn them into a waste product.
When the lymph reenters the bloodstream, waste products travel to the kidneys and liver. The body then excretes waste products in the urine and feces.
Learn more about how the lymphatic system works here.
Swollen lymph nodes do not always indicate cancer. Below, we list some of many conditions that can cause lymph node swelling.
Lymphadenitis occurs when bacteria, viruses, or fungi in the lymph infect lymph nodes. When this happens, lymph nodes swell and are painful to the touch.
If multiple clusters of nodes become infected, a person may feel pain and swelling in both their neck and groin.
The most common type of lymphadenitis is localized lymphadenitis. This means the condition only affects a few nodes. If the infection occurs in several node clusters, a doctor will likely diagnose generalized lymphadenitis.
The condition usually results from an infection elsewhere in the body.
Symptoms of lymphadenitis include:
Lymphadenitis treatments include:
The type of treatment necessary will depend on a variety of factors, such as the severity of the disease and a persons underlying conditions and allergies. A doctor will help a person choose the most suitable treatment based on these factors.
Learn more about swollen lymph nodes in the neck here.
Swollen lymph nodes in the neck may be due to a viral or bacterial throat infection, such as strep throat.
Viral throat infections, such as colds, can present with swollen lymph nodes, a runny nose, and pinkeye.
These infections usually resolve on their own. However, a person can take over-the-counter pain relievers to alleviate pain they may experience when swallowing.
Strep throat is a bacterial infection that develops in the throat and tonsils due to group A streptococcus. People may contract strep throat if they come into contact with droplets containing the strep bacteria.
A person with strep throat may experience swollen lymph nodes on the neck, a sore throat, a fever, and red spots on the roof of the mouth.
Doctors treat strep throat with antibiotics.
Impetigo is an infection that develops due to group A streptococcus and may cause lymph nodes in the armpits and groin to swell.
A person can contract impetigo when the bacteria enter the body through a break in the skin. This can happen through sharing a towel, razor, or yoga mat.
Symptoms of impetigo include:
If a person has impetigo, they should seek medical attention to address their symptoms and prevent the condition from spreading to others.
Treatment will usually involve antibiotics.
Ringworm, or jock itch, is a fungal infection that can affect many areas of the body. If the fungus develops in the groin, a person may experience lymph node swelling in that area.
Typically, ringworm starts as a fungal lesion. The fungus often transmits when people share towels or razors.
Ringworm thrives in moist environments, and therefore a person should take care to dry thoroughly after a wash and try not to stay in damp clothes.
Common ringworm symptoms include:
A doctor will prescribe an antifungal treatment to address ringworm.
The best way to prevent ringworm is to wear breathable fabrics, avoid sharing towels and razors, and dry thoroughly after bathing.
Learn more about swollen lymph nodes in the groin here.
Lymphoma is a type of cancer that affects the lymphatic system. The two main types of lymphoma are Hodgkin lymphoma and non-Hodgkin lymphoma.
Hodgkin lymphoma occurs when cancer cells spread from one cluster of lymph nodes to another. By contrast, in non-Hodgkin lymphoma, there is no order in how cancer cells spread throughout the lymphatic system.
Typical symptoms of lymphoma include:
These are also common symptoms of viral infections, which can make lymphoma hard to diagnose. However, in people with lymphoma, symptoms tend to persist for longer periods of time.
It is of note that these symptoms do not clearly indicate cancer. If a person experiences any of these, they should contact a doctor to identify the cause of their symptoms.
Treatment options for lymphoma include:
A person should contact a healthcare professional if they are experiencing persistent swelling of lymph nodes.
Swelling usually indicates an infection, and therefore a person should not immediately worry about lymphoma.
After reaching a diagnosis, a doctor will recommend the appropriate course of treatment.
Lymph nodes are a part of the lymphatic system. They filter lymph, which contains pathogens and damaged cells, and send the dead cells to the kidneys and liver.
Lymph node swelling usually results from an infection. In rare cases, however, it may be due to lymphoma.
If a person is concerned about swelling and other symptoms they have, they should contact a doctor.
Read more:
Lymph nodes: Purpose, location, and disease warning signs - Medical News Today
bluebird bio’s CALD gene therapy Skysona gains positive opinion from CHMP – PMLiVE
By daniellenierenberg
bluebird bios cerebral adrenoleukodystrophy (CALD) gene therapy Skysona has moved closer towards EU approval after gaining a positive opinion from the European Medicines Agencys Committee for Medicinal Products for Human Use (CHMP).
The CHMP has recommended marketing authorisation for Skysona (elivaldogene autotemcel, Lenti-D) for the early treatment of CALD in patients under 18 years old with an ABCD1 genetic mutations, and who do not have a matched sibling haematopoietic stem cell (HSC) donor.
bluebird bio's Skysona is a potential one-time gene therapy designed to add functional copies of the ABCD1 gene into a patients hematopoietic stem cells.
Once this functional gene is added to a CALD patients stem cells, the patient's body can produce the adrenoleukodystrophy protein (ALDP), which is believed to allow for the breakdown of very-long-chain fatty acids that build up to toxic levels in the brain.
CALD is a progressive and fatal neurodegenerative disease that overwhelmingly affects males. It involves the breakdown of myelin the protective sheath of nerve cells in the brain that is responsible for muscle control and thinking.
The condition is caused by mutations in the ABCD1 gene that affect the production of ALDP which eventually causes damage to the adrenal cortex and white matter of the brain and spinal cord.
Currently, the only treatment for the disease is a stem cell transplant, although this carries a significant risk from the high-dose chemotherapy used to prepare patients for the procedure.
Other complications include graft-versus-host (GvHD) disease, which occurs when the transplanted cells recognise the recipients cells as foreign and attack them.
In the phase 2/3 Starbeam study evaluating Skysona, 90% of CALD patients met the month 24 major functional disability- (MFD) free survival endpoint as of the last data cutoff date.
MFDs are the six severe disabilities commonly attributed to CALD, which have the most severe effect on a patients ability to function independently.
In addition, 26 out of 28 evaluable patients maintained a neurologic function score (NFS) less than or equal to one until month 24, with 24 of those patients having no change in their NFS.
The CHMPs positive opinion is now due to be reviewed by the European Commission, with a final decision for Skysona expected in mid-2021.
Read the rest here:
bluebird bio's CALD gene therapy Skysona gains positive opinion from CHMP - PMLiVE
Dunfermline mum "overwhelmed" by fundraiser aiming to fund vital treatment in Russia – Dunfermline Press
By daniellenierenberg
NEARLY 10,000 has been raised in less than a week to help pay for a Dunfermline mum to have life-changing treatment in Russia.
Lynda Hogg was first diagnosed with Primary Progressive Multiple Sclerosis (PPMS) seven years ago and since then, she has seen her health deteriorate.
She has been forced to give up her job as a theatre nurse at Queen Margaret Hospital and faces a daily battle with pain from a condition for which there is no cure and no treatment on the NHS.
Lynda, 58, and her family are now pinning their hopes on travelling to Russia for Hematopoietic Stem Cell Transplantation which, it is hoped, will stop the progression of her MS.
Within a week of being set up, a GoFundMe page has already raised nearly a quarter of the required 45,000, something which Lynda said she was overwhelmed and humbled by.
It was my son who said how do you feel in 10 years time if you are wheelchair-bound knowing you had this opportunity and didnt take it? she explained.
We have considered selling the house if we have to.
Daughter Popsi is hopeful that the GoFundMe page will mean such a drastic step is not necessary.
Before the GoFundMe, these were all considerations, she said. Shall we sell the house, will my dad have to give up his job and become a carer?
After we found out about this treatment years ago, I dont think we ever really considered it a possibility. It has been quite tough. I have three brothers. Speaking on behalf of the younger ones, I want them to remember them as I remember her, full of life.
This treatment is kind of a possibility that it would not get any worse. It is a pipe dream. We never thought it could happen. The support and kindness of others has been so touching.
Multiple Sclerosis (MS) is a disabling disease of the brain and spinal cord which results in muscle and nerve damage, ongoing pain and fatigue.
Since her diagnosis, Lynda, who is married to Murray and has four children, Adam, 29, Popsi, 23, Mitchell, 18, and Charlie, 15, has seen her health go downhill with her mobility decreasing.
She has been shocked at the lack of available medication.
Basically, I get co-codamol, she said. Progressive Primary MS is the worst form of it. There is no treatment and there is really little in the way of emotional support. It is not a fault of the NHS. There is nothing and there needs to be something.
PPMS is 15 per cent of people diagnosed. It is horrible to think there is nothing out there for them.
Trials for the treatment which Lynda hopes to have in Russia have taken place in the UK but, to date, are not available on the NHS for patients like herself.
They give you medication to increase the quality of stem cells. They are harvested and then you are given chemo then the stem cells are reintroduced to you. They can stop MS in its tracks. It will stop the progression. It wont give you functions back.
Even just to stop it progressing; I can cope with the disabilities I have but I dont know if I can cope with them moving forward and getting worse.
Popsi and her siblings are planning to hold further fundraisers when coronavirus restrictions allow while also raising awareness of MS.
We have had to watch our mum struggle with the disease and battle with pain every day, she added. We feel that its time to give back to our mum, and everything that she has done for us over the years.
Anyone wanting to help can do so by visiting https://gofund.me/61401f6e.
Rise of Animal Cloning in 2021: Benefits, Risks, and Why It Matters – Nature World News
By daniellenierenberg
Animal cloning has come a long way from Dolly the sheep, but all through that time the ethical and scientific repercussions only continue to pile up.
One thing is getting clearer though: The cloning process has improved by leaps and bounds (though not yet on the levels shown in science-fiction). This has resulted in headways in a number of cloning-related endeavors, from the revival of endangered (and even extinct) species to replicating dead pets.
Still, both critics and proponents are still a bit out of touch with regards to how current cloning tech is being used to address these issues.
There is some truth to the hype that bringing back the woolly mammoth via cloning could be in the not-so-distant future.
On the other hand, many critics question the wisdom of bringing back prehistoric animals to habitats that have long changed from their disappearance. Still, this ignores the possibility of restoring more recently extinct species and how cloning could counteract such drastic environmental changes from their loss.
Another popular argument against cloning is the idea that its novelty and high costs could be redirected to more natural methods of conservation. But while that may be true for a majority of endangered species, it may not be so for those that have been officially declared extinct in the wild.
Cloning could be an important tool in ensuring the genetic diversity that allows populations in captivity to grow (and make reintroduction more feasible).
The idea of cloning animals that retain a set of desirable traits has raised considerable alarm (especially among more conservative groups). However, there are benefits to the practice that cannot be ignored.
Replicating the sharp noses of bomb sniffer (or even disease sniffer) dogs could make a difference in times of need. Likewise, cloning cattle with more consistent yields of milk and meat could have applications for more efficient livestock farming.
Also read: Trained Bees Can Identify COVID-19 Infection Through Sense of Smell Within Seconds!
Now, despite the advances, today's cloning technology is still decades away from producing perfect, one-for-one genetic copies of an original animal. Differences (even large ones) can still be found. There is also the fact that environment, behavior and upbringing could still drastically alter the genetic makeup of a cloned animal (as the study of epigenetics will gradually reveal).
Throwing a bit of caution to the wind will also be important if the increase of cloned designer animals could lead to other adverse effects on the global environment (especially in the feeding of quality livestock). The same applies to the use of clones to restore and reintroduce critically endangered species.
Overall, the bounds of the technology's research has expanded considerably (and so has the conversation). But at the same time, it is important to have a strong sense of moderation regarding its application. It has the potential of causing problems and incurring needless costs, but these should not discourage future research on cloning's potential.
Also read: Snakes Can Store Sperm for up to 5 Years Before Getting Pregnant
2021 NatureWorldNews.com All rights reserved. Do not reproduce without permission.
Read this article:
Rise of Animal Cloning in 2021: Benefits, Risks, and Why It Matters - Nature World News
ThermoGenesis : The History of Cell and Gene Therapy – marketscreener.com
By daniellenierenberg
Cell and gene therapies are overlapping fields of research and treatments. While both aim to treat and potentially cure diseases, they have slightly differing approaches and have different historical backgrounds. Due to growing interest surrounding this field, the general public still has much to learn and understand about each of these potentially life-saving therapies.
Below, we provide a general overview and brief historical context for each type of therapy.
Cell therapyis the process of replacing damaged or dysfunctional cells with new, healthy ones by transferring live cells into a patient. These can be autologous (also known as self-to-self, using cells from the patient receiving the treatment) or allogeneic (using cells from a donor for the treatment). While this field of treatment has recently begun to expand, some forms of cell therapy like the cancer-treating hematopoietic stem cell transplantation(HSCT) have been in practice for decades.
While many people have heard of bone marrow transplants, few realize that this procedure is a stem cell therapy. While stem cells can be derived from many sources, such as umbilical cord blood and mobilized peripheral blood, bone marrow derived stem cell therapy is the most commonly used today and has been for more than 50 years.
The first transfusion of human bone marrow was given to a patient with aplastic anemia in 1939. After World War II researchers diligently worked to restore bone marrow function in aplasia patients caused by exposure to radiation produced by the atomic bomb. After a decade of work they were able to show, in a mouse model, that aplasia could be overcome by bone marrow treatment.
The first allogeneic HSCT, which led the way to current protocols, was pioneered by E. Donnall Thomas and his team at the Fred Hutchinson Cancer Research Center and reported in the New England Journal of Medicine in 1957. In this study six patients were treated with radiation and chemotherapy and then received intravenous infusion of bone marrow rich stem cells from a normal donor to reestablish the damaged or defective cells. Since then the field has evolved and expanded worldwide. While almost half of HSCT are allogeneic, the majority of HSCT are autologous, the patient's own stem cells are used for treatment, which carries less risk to the patient.
In 1988, scientists discovered that they could derive stem cells from human embryos and grow the cells in a laboratory. These newly derived stem cells, referred to as embryonic stem cells (hESCs), were found to be pluripotent, meaning they can give rise to virtually any other type of cell in the body. This versatility allows hESCs cells to potentially regenerate or repair diseased tissue and organs. Two decades after they were discovered, treatments based on hESCs have been slow in coming because of controversy over their source and concerns that they could turn into tumours once implanted. Only recently, testing has begun as a treatment for two major diseases: heart failure and type 1 diabetes.
In 2006, researchers made a groundbreaking discovery by identifying conditions that would allow some cells to be 'reprogrammed' genetically. This new type of stem cell became known as induced pluripotent stem cells (iPSCs). Since this discovery, the field has expanded tremendously in the past two decades. Stem cell therapies have expanded in use and have been used to treat diseases such as type 1 diabetes, Parkinson's and even spinal cord injuries.
There has also been a growing focus on using other immune cells to treat cancer. Therapies such as CAR T-cellare dependent upon a patient's T-cells, which play a critical role in managing the immune response and killing cells affected by harmful pathogens. These cells are then reengineered to target and kill certain cancerous cells. Several CAR T-cell therapies have been FDA approved, with the first approval being given in 2017 for Yescarta and Kymriah, to be used for the treatment of B-cell leukemia in children and young adults.
Gene therapyis a process that modifies the expression of a gene or alters the biological process of living cells for therapeutic use. This process can take the form of replacing a disease-causing gene with a new, healthy one, inactivating the mutated gene, or introducing a new gene to help the patient's body fight a disease.
While the use of gene therapy to treat humans is fairly new, the science behind it has been used in science for decades. Farmers and geneticists have collaborated for years on crop improvement using cross pollination, genetic engineering and microinjection techniques to create stronger, more resilient crops.
The first human patient to be treated with gene therapy was a four-year old girlsuffering from severe combined immunodeficiencyin 1990. She received treatment for a congenital disease called adenosine deaminase (ADA). Since then, gene therapies have been used to treat diseases such as cancer, cystic fibrosis and hemophilia.In 2017, the FDA gave its first approval of a gene therapy called Luxturna, which is used to treat patients with established genetic vision loss that may result in blindness. Gene therapies are still being studied and developed, with over 1,000 clinical trialscurrently underway.
ThermoGenesis Holdings Inc., is a pioneer and market leader in the development and commercialization of automated cell processing technologies for the cell and gene therapy fields. We market a full suite of solutions for automated clinical biobanking, point-of-care applications and large-scale cell processing and manufacturing with a special emphasis on the emerging CAR-T immunotherapy market. We are committed to making the world a healthier place by creating innovative solutions for those in need.
For more information on the CAR-TXpress multi-system platform, please contact our Sales team.
Disclaimer
Thermogenesis Holdings Inc. published this content on 13 April 2021 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 13 April 2021 07:10:03 UTC.
See more here:
ThermoGenesis : The History of Cell and Gene Therapy - marketscreener.com