The Spinal Cord Trauma Treatment Market To Walk The Path Of Double Digit CAGR Of 3.7% – KYT24
By daniellenierenberg
Market Report Summary
For Full Information -> Click Here
Read Full Press Release Below
Spinal Cord Trauma Treatment Market: Global Industry Analysis 2012 2016 and Forecast 2017 2025is the recent report of Persistence Market Research that throws light on the overall market scenario during the period of eight years, i.e. 2017-2025. According to this report, Globalspinal cord trauma treatment marketis expected to witness significant growth during the forecast period.
This growth is expected to be primarily driven by increasing incidence of spinal cord trauma, and increasing government support to reduce the burden of spinal cord injuries. Additionally, development of nerve cells growth therapy is expected to boost the market in near future.
Get Sample Copy of Report @ https://www.persistencemarketresearch.com/samples/17353
Company Profiles
Get To Know Methodology of Report @ https://www.persistencemarketresearch.com/methodology/17353
The global market for spinal cord trauma treatment is is estimated to be valued at US$ 2,276.3 Mn in terms of value by the end of 2017. The global spinal cord trauma treatment market is expected to expand at a CAGR of 3.7% over the forecast period to reach a value of US$ 3,036.2 Mn by 2025end.
Global Spinal Cord Trauma Treatment Market: Trends
Global Spinal Cord Trauma Treatment Market: Forecast by End User
On the basis of end user, the global spinal cord trauma treatment market is segmented into hospitals and trauma centers. Hospitals segment dominated the global spinal cord trauma treatment market in revenue terms in 2016 and is projected to continue to do so throughout the forecast period.
Hospitals and trauma centers segments are expected to approximately similar attractive index. Hospitals segment accounted for 53.2% value share in 2017 and is projected to account for 52.5% share by 2025 end.
Access Full Report @ https://www.persistencemarketresearch.com/checkout/17353
Global Spinal Cord Trauma Treatment Market: Forecast by Injury Type
On the basis of injury type, the global spinal cord trauma treatment market is segmented into complete spinal cord injuries and partial spinal cord injuries.
Partial spinal cord trauma treatment segment is expected to show better growth than the completed spinal cord treatment segment due to higher growth in the incidence rate of partial spinal cord trauma than the complete spinal cord trauma. With US$ 1,870.3 Mn market value in 2025, this segment is likely to expand at CAGR 3.8% throughout the projected period.
Global Spinal Cord Trauma Treatment Market: Forecast by Treatment Type
On the basis of treatment type, the global spinal cord trauma treatment market is segmented into corticosteroid, surgery, and spinal traction segments.
Surgery segment dominated the global spinal cord trauma treatment market in revenue terms in 2016 and is projected to continue to do so throughout the forecast period. Surgery segment is the most attractive segment, with attractiveness index of 2.6 over the forecast period.
Global Spinal Cord Trauma Treatment Market: Forecast by Region
This market is segmented into five regions such as North America, Latin America, Europe, APAC and MEA. Asia-Pacific account for the largest market share in the global spinal cord trauma treatment market.
Large patient population due to the high rate of road accidents and crime is making the Asia Pacific region most attractive market for spinal cord trauma treatment. On the other hand, MEA and Latin America is expected to be the least attractive market for spinal cord trauma treatment, with attractiveness index of 0.3 and 0.5 respectively over the forecast period.
Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape
Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics and market research methodology to help businesses achieve optimal performance.
To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.
Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.
Contact us:
Ashish KoltePersistence Market ResearchAddress 305 Broadway, 7th FloorNew York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Website https://www.persistencemarketresearch.com
More here:
The Spinal Cord Trauma Treatment Market To Walk The Path Of Double Digit CAGR Of 3.7% - KYT24
The Spinal Cord Trauma Treatment Market To Witness A Substantial Demand Amidst Covid-19, To Reach US$ 3000 Mn – The Think Curiouser
By daniellenierenberg
Market Report Summary
For Full Information -> Click Here
Read Full Press Release Below
Spinal Cord Trauma Treatment Market: Global Industry Analysis 2012 2016 and Forecast 2017 2025is the recent report of Persistence Market Research that throws light on the overall market scenario during the period of eight years, i.e. 2017-2025. According to this report, Globalspinal cord trauma treatment marketis expected to witness significant growth during the forecast period.
This growth is expected to be primarily driven by increasing incidence of spinal cord trauma, and increasing government support to reduce the burden of spinal cord injuries. Additionally, development of nerve cells growth therapy is expected to boost the market in near future.
Get Sample Copy of Report @ https://www.persistencemarketresearch.com/samples/17353
Company Profiles
Get To Know Methodology of Report @ https://www.persistencemarketresearch.com/methodology/17353
The global market for spinal cord trauma treatment is is estimated to be valued at US$ 2,276.3 Mn in terms of value by the end of 2017. The global spinal cord trauma treatment market is expected to expand at a CAGR of 3.7% over the forecast period to reach a value of US$ 3,036.2 Mn by 2025end.
Global Spinal Cord Trauma Treatment Market: Trends
Global Spinal Cord Trauma Treatment Market: Forecast by End User
On the basis of end user, the global spinal cord trauma treatment market is segmented into hospitals and trauma centers. Hospitals segment dominated the global spinal cord trauma treatment market in revenue terms in 2016 and is projected to continue to do so throughout the forecast period.
Hospitals and trauma centers segments are expected to approximately similar attractive index. Hospitals segment accounted for 53.2% value share in 2017 and is projected to account for 52.5% share by 2025 end.
Access Full Report @ https://www.persistencemarketresearch.com/checkout/17353
Global Spinal Cord Trauma Treatment Market: Forecast by Injury Type
On the basis of injury type, the global spinal cord trauma treatment market is segmented into complete spinal cord injuries and partial spinal cord injuries.
Partial spinal cord trauma treatment segment is expected to show better growth than the completed spinal cord treatment segment due to higher growth in the incidence rate of partial spinal cord trauma than the complete spinal cord trauma. With US$ 1,870.3 Mn market value in 2025, this segment is likely to expand at CAGR 3.8% throughout the projected period.
Global Spinal Cord Trauma Treatment Market: Forecast by Treatment Type
On the basis of treatment type, the global spinal cord trauma treatment market is segmented into corticosteroid, surgery, and spinal traction segments.
Surgery segment dominated the global spinal cord trauma treatment market in revenue terms in 2016 and is projected to continue to do so throughout the forecast period. Surgery segment is the most attractive segment, with attractiveness index of 2.6 over the forecast period.
Global Spinal Cord Trauma Treatment Market: Forecast by Region
This market is segmented into five regions such as North America, Latin America, Europe, APAC and MEA. Asia-Pacific account for the largest market share in the global spinal cord trauma treatment market.
Large patient population due to the high rate of road accidents and crime is making the Asia Pacific region most attractive market for spinal cord trauma treatment. On the other hand, MEA and Latin America is expected to be the least attractive market for spinal cord trauma treatment, with attractiveness index of 0.3 and 0.5 respectively over the forecast period.
Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape
Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics and market research methodology to help businesses achieve optimal performance.
To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.
Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.
Contact us:
Ashish KoltePersistence Market ResearchAddress 305 Broadway, 7th FloorNew York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Website https://www.persistencemarketresearch.com
Here is the original post:
The Spinal Cord Trauma Treatment Market To Witness A Substantial Demand Amidst Covid-19, To Reach US$ 3000 Mn - The Think Curiouser
The story of mRNA: From a loose idea to a tool that may help curb Covid – STAT
By daniellenierenberg
ANDOVER, Mass. The liquid that many hope could help end the Covid-19 pandemic is stored in a nondescript metal tank in a manufacturing complex owned by Pfizer, one of the worlds biggest drug companies. There is nothing remarkable about the container, which could fit in a walk-in closet, except that its contents could end up in the worlds first authorized Covid-19 vaccine.
Pfizer, a 171-year-old Fortune 500 powerhouse, has made a billion-dollar bet on that dream. So has a brash, young rival just 23 miles away in Cambridge, Mass. Moderna, a 10-year-old biotech company with billions in market valuation but no approved products, is racing forward with a vaccine of its own. Its new sprawling drug-making facility nearby is hiring workers at a fast clip in the hopes of making history and a lot of money.
In many ways, the companies and their leaders couldnt be more different. Pfizer, working with a little-known German biotech called BioNTech, has taken pains for much of the year to manage expectations. Moderna has made nearly as much news for its stream of upbeat press releases, executives stock sales, and spectacular rounds of funding as for its science.
advertisement
Each is well-aware of the other in the race to be first.
But what the companies share may be bigger than their differences: Both are banking on a genetic technology that has long held huge promise but has so far run into biological roadblocks. It is called synthetic messenger RNA, an ingenious variation on the natural substance that directs protein production in cells throughout the body. Its prospects have swung billions of dollars on the stock market, made and imperiled scientific careers, and fueled hopes that it could be a breakthrough that allows society to return to normalcy after months living in fear.
advertisement
Both companies have been frequently name-checked by President Trump. Pfizer reported strong, but preliminary, data on Monday, and Moderna is expected to follow suit soon with a glimpse of its data. Both firms hope these preliminary results will allow an emergency deployment of their vaccines millions of doses likely targeted to frontline medical workers and others most at risk of Covid-19.
There are about a dozen experimental vaccines in late-stage clinical trials globally, but the ones being tested by Pfizer and Moderna are the only two that rely on messenger RNA.
For decades, scientists have dreamed about the seemingly endless possibilities of custom-made messenger RNA, or mRNA.
Researchers understood its role as a recipe book for the bodys trillions of cells, but their efforts to expand the menu have come in fits and starts. The concept: By making precise tweaks to synthetic mRNA and injecting people with it, any cell in the body could be transformed into an on-demand drug factory.
But turning scientific promise into medical reality has been more difficult than many assumed. Although relatively easy and quick to produce compared to traditional vaccine-making, no mRNA vaccine or drug has ever won approval.
Even now, as Moderna and Pfizer test their vaccines on roughly 74,000 volunteers in pivotal vaccine studies, many experts question whether the technology is ready for prime time.
I worry about innovation at the expense of practicality, Peter Hotez, dean of the National School of Tropical Medicine at Baylor College of Medicine and an authority on vaccines, said recently. The U.S. governments Operation Warp Speed program, which has underwritten the development of Modernas vaccine and pledged to buy Pfizers vaccine if it works, is weighted toward technology platforms that have never made it to licensure before.
Whether mRNA vaccines succeed or not, their path from a gleam in a scientists eye to the brink of government approval has been a tale of personal perseverance, eureka moments in the lab, soaring expectations and an unprecedented flow of cash into the biotech industry.
It is a story that began three decades ago, with a little-known scientist who refused to quit.
Before messenger RNA was a multibillion-dollar idea, it was a scientific backwater. And for the Hungarian-born scientist behind a key mRNA discovery, it was a career dead-end.
Katalin Karik spent the 1990s collecting rejections. Her work, attempting to harness the power of mRNA to fight disease, was too far-fetched for government grants, corporate funding, and even support from her own colleagues.
It all made sense on paper. In the natural world, the body relies on millions of tiny proteins to keep itself alive and healthy, and it uses mRNA to tell cells which proteins to make. If you could design your own mRNA, you could, in theory, hijack that process and create any protein you might desire antibodies to vaccinate against infection, enzymes to reverse a rare disease, or growth agents to mend damaged heart tissue.
In 1990, researchers at the University of Wisconsin managed to make it work in mice. Karik wanted to go further.
The problem, she knew, was that synthetic RNA was notoriously vulnerable to the bodys natural defenses, meaning it would likely be destroyed before reaching its target cells. And, worse, the resulting biological havoc might stir up an immune response that could make the therapy a health risk for some patients.
It was a real obstacle, and still may be, but Karik was convinced it was one she could work around. Few shared her confidence.
Every night I was working: grant, grant, grant, Karik remembered, referring to her efforts to obtain funding. And it came back always no, no, no.
By 1995, after six years on the faculty at the University of Pennsylvania, Karik got demoted. She had been on the path to full professorship, but with no money coming in to support her work on mRNA, her bosses saw no point in pressing on.
She was back to the lower rungs of the scientific academy.
Usually, at that point, people just say goodbye and leave because its so horrible, Karik said.
Theres no opportune time for demotion, but 1995 had already been uncommonly difficult. Karik had recently endured a cancer scare, and her husband was stuck in Hungary sorting out a visa issue. Now the work to which shed devoted countless hours was slipping through her fingers.
I thought of going somewhere else, or doing something else, Karik said. I also thought maybe Im not good enough, not smart enough. I tried to imagine: Everything is here, and I just have to do better experiments.
In time, those better experiments came together. After a decade of trial and error, Karik and her longtime collaborator at Penn Drew Weissman, an immunologist with a medical degree and Ph.D. from Boston University discovered a remedy for mRNAs Achilles heel.
The stumbling block, as Kariks many grant rejections pointed out, was that injecting synthetic mRNA typically led to that vexing immune response; the body sensed a chemical intruder, and went to war. The solution, Karik and Weissman discovered, was the biological equivalent of swapping out a tire.
Every strand of mRNA is made up of five molecular building blocks called nucleosides. But in its altered, synthetic form, one of those building blocks, like a misaligned wheel on a car, was throwing everything off by signaling the immune system. So Karikand Weissman simply subbed it out for a slightly tweaked version, creating a hybrid mRNA that could sneak its way into cells without alerting the bodys defenses.
That was a key discovery, said Norbert Pardi, an assistant professor of medicine at Penn and frequent collaborator. Karik and Weissman figured out that if you incorporate modified nucleosides into mRNA, you can kill two birds with one stone.
That discovery, described in a series of scientific papers starting in 2005, largely flew under the radar at first, said Weissman, but it offered absolution to the mRNA researchers who had kept the faith during the technologys lean years. And it was the starter pistol for the vaccine sprint to come.
And even though the studies by Karik and Weissman went unnoticed by some, they caught the attention of two key scientists one in the United States, another abroad who would later help found Moderna and Pfizers future partner, BioNTech.
Derrick Rossi, a native of Toronto who rooted for the Maple Leafs and sported a soul patch, was a 39-year-old postdoctoral fellow in stem cell biology at Stanford University in 2005 when he read the first paper. Not only did he recognize it as groundbreaking, he now says Karik and Weissman deserve the Nobel Prize in chemistry.
If anyone asks me whom to vote for some day down the line, I would put them front and center, he said. That fundamental discovery is going to go into medicines that help the world.
But Rossi didnt have vaccines on his mind when he set out to build on their findings in 2007 as a new assistant professor at Harvard Medical School running his own lab.
He wondered whether modified messenger RNA might hold the key to obtaining something else researchers desperately wanted: a new source of embryonic stem cells.
In a feat of biological alchemy, embryonic stem cells can turn into any type of cell in the body. That gives them the potential to treat a dizzying array of conditions, from Parkinsons disease to spinal cord injuries.
But using those cells for research had created an ethical firestorm because they are harvested from discarded embryos.
Rossi thought he might be able to sidestep the controversy. He would use modified messenger molecules to reprogram adult cells so that they acted like embryonic stem cells.
He asked a postdoctoral fellow in his lab to explore the idea. In 2009, after more than a year of work, the postdoc waved Rossi over to a microscope. Rossi peered through the lens and saw something extraordinary: a plate full of the very cells he had hoped to create.
Rossi excitedly informed his colleague Timothy Springer, another professor at Harvard Medical School and a biotech entrepreneur. Recognizing the commercial potential, Springer contacted Robert Langer, the prolific inventor and biomedical engineering professor at the Massachusetts Institute of Technology.
On a May afternoon in 2010, Rossi and Springer visited Langer at his laboratory in Cambridge. What happened at the two-hour meeting and in the days that followed has become the stuff of legend and an ego-bruising squabble.
Langer is a towering figure in biotechnology and an expert on drug-delivery technology. At least 400 drug and medical device companies have licensed his patents. His office walls display many of his 250 major awards, including the Charles Stark Draper Prize, considered the equivalent of the Nobel Prize for engineers.
As he listened to Rossi describe his use of modified mRNA, Langer recalled, he realized the young professor had discovered something far bigger than a novel way to create stem cells. Cloaking mRNA so it could slip into cells to produce proteins had a staggering number of applications, Langer thought, and might even save millions of lives.
I think you can do a lot better than that, Langer recalled telling Rossi, referring to stem cells. I think you could make new drugs, new vaccines everything.
Langer could barely contain his excitement when he got home to his wife.
This could be the most successful company in history, he remembered telling her, even though no company existed yet.
Three days later Rossi made another presentation, to the leaders of Flagship Ventures. Founded and run by Noubar Afeyan, a swaggering entrepreneur, the Cambridge venture capital firm has created dozens of biotech startups. Afeyan had the same enthusiastic reaction as Langer, saying in a 2015 article in Nature that Rossis innovation was intriguing instantaneously.
Within several months, Rossi, Langer, Afeyan, and another physician-researcher at Harvard formed the firm Moderna a new word combining modified and RNA.
Springer was the first investor to pledge money, Rossi said. In a 2012 Moderna news release, Afeyan said the firms promise rivals that of the earliest biotechnology companies over 30 years ago adding an entirely new drug category to the pharmaceutical arsenal.
But although Moderna has made each of the founders hundreds of millions of dollars even before the company had produced a single product Rossis account is marked by bitterness. In interviews with the Globe in October, he accused Langer and Afeyan of propagating a condescending myth that he didnt understand his discoverys full potential until they pointed it out to him.
Its total malarkey, said Rossi, who ended his affiliation with Moderna in 2014. Im embarrassed for them. Everybody in the know actually just shakes their heads.
Rossi said that the slide decks he used in his presentation to Flagship noted that his discovery could lead to new medicines. Thats the thing Noubar has used to turn Flagship into a big company, and he says it was totally his idea, Rossi said.
Afeyan, the chair of Moderna, recently credited Rossi with advancing the work of the Penn scientists. But, he said, that only spurred Afeyan and Langer to ask the question, Could you think of a code molecule that helps you make anything you want within the body?
Langer, for his part, told STAT and the Globe that Rossi made an important finding but had focused almost entirely on the stem cell thing.
Despite the squabbling that followed the birth of Moderna, other scientists also saw messenger RNA as potentially revolutionary.
In Mainz, Germany, situated on the left bank of the Rhine, another new company was being formed by a married team of researchers who would also see the vast potential for the technology, though vaccines for infectious diseases werent on top of their list then.
A native of Turkey, Ugur Sahin moved to Germany after his father got a job at a Ford factory in Cologne. His wife, zlem Treci had, as a child, followed her father, a surgeon, on his rounds at a Catholic hospital. She and Sahin are physicians who met in 1990 working at a hospital in Saarland.
The couple have long been interested in immunotherapy, which harnesses the immune system to fight cancer and has become one of the most exciting innovations in medicine in recent decades. In particular, they were tantalized by the possibility of creating personalized vaccines that teach the immune system to eliminate cancer cells.
Both see themselves as scientists first and foremost. But they are also formidable entrepreneurs. After they co-founded another biotech, the couple persuaded twin brothers who had invested in that firm, Thomas and Andreas Strungmann, to spin out a new company that would develop cancer vaccines that relied on mRNA.
That became BioNTech, another blended name, derived from Biopharmaceutical New Technologies. Its U.S. headquarters is in Cambridge. Sahin is the CEO, Treci the chief medical officer.
We are one of the leaders in messenger RNA, but we dont consider ourselves a messenger RNA company, said Sahin, also a professor at the Mainz University Medical Center. We consider ourselves an immunotherapy company.
Like Moderna, BioNTech licensed technology developed by the Pennsylvania scientist whose work was long ignored, Karik, and her collaborator, Weissman. In fact, in 2013, the company hired Karik as senior vice president to help oversee its mRNA work.
But in their early years, the two biotechs operated in very different ways.
In 2011, Moderna hired the CEO who would personify its brash approach to the business of biotech.
Stphane Bancel was a rising star in the life sciences, a chemical engineer with a Harvard MBA who was known as a businessman, not a scientist. At just 34, he became CEO of the French diagnostics firm BioMrieux in 2007 but was wooed away to Moderna four years later by Afeyan.
Moderna made a splash in 2012 with the announcement that it had raised $40 million from venture capitalists despite being years away from testing its science in humans. Four months later, the British pharmaceutical giant AstraZeneca agreed to pay Moderna a staggering $240 million for the rights to dozens of mRNA drugs that did not yet exist.
The biotech had no scientific publications to its name and hadnt shared a shred of data publicly. Yet it somehow convinced investors and multinational drug makers that its scientific findings and expertise were destined to change the world. Under Bancels leadership, Moderna would raise more than $1 billion in investments and partnership funds over the next five years.
Modernas promise and the more than $2 billion it raised before going public in 2018 hinged on creating a fleet of mRNA medicines that could be safely dosed over and over. But behind the scenes the companys scientists were running into a familiar problem. In animal studies, the ideal dose of their leading mRNA therapy was triggering dangerous immune reactions the kind for which Karik had improvised a major workaround under some conditions but a lower dose had proved too weak to show any benefits.
Moderna had to pivot. If repeated doses of mRNA were too toxic to test in human beings, the company would have to rely on something that takes only one or two injections to show an effect. Gradually, biotechs self-proclaimed disruptor became a vaccines company, putting its experimental drugs on the back burner and talking up the potential of a field long considered a loss-leader by the drug industry.
Meanwhile BioNTech has often acted like the anti-Moderna, garnering far less attention.
In part, that was by design, said Sahin. For the first five years, the firm operated in what Sahin called submarine mode, issuing no news releases, and focusing on scientific research, much of it originating in his university lab. Unlike Moderna, the firm has published its research from the start, including about 150 scientific papers in just the past eight years.
In 2013, the firm began disclosing its ambitions to transform the treatment of cancer and soon announced a series of eight partnerships with major drug makers. BioNTech has 13 compounds in clinical trials for a variety of illnesses but, like Moderna, has yet to get a product approved.
When BioNTech went public last October, it raised $150 million, and closed with a market value of $3.4 billion less than half of Modernas when it went public in 2018.
Despite his role as CEO, Sahin has largely maintained the air of an academic. He still uses his university email address and rides a 20-year-old mountain bicycle from his home to the office because he doesnt have a drivers license.
Then, late last year, the world changed.
Shortly before midnight, on Dec. 30, the International Society for Infectious Diseases, a Massachusetts-based nonprofit, posted an alarming report online. A number of people in Wuhan, a city of more than 11 million people in central China, had been diagnosed with unexplained pneumonia.
Chinese researchers soon identified 41 hospitalized patients with the disease. Most had visited the Wuhan South China Seafood Market. Vendors sold live wild animals, from bamboo rats to ostriches, in crowded stalls. That raised concerns that the virus might have leaped from an animal, possibly a bat, to humans.
After isolating the virus from patients, Chinese scientists on Jan. 10 posted online its genetic sequence. Because companies that work with messenger RNA dont need the virus itself to create a vaccine, just a computer that tells scientists what chemicals to put together and in what order, researchers at Moderna, BioNTech, and other companies got to work.
A pandemic loomed. The companies focus on vaccines could not have been more fortuitous.
Moderna and BioNTech each designed a tiny snip of genetic code that could be deployed into cells to stimulate a coronavirus immune response. The two vaccines differ in their chemical structures, how the substances are made, and how they deliver mRNA into cells. Both vaccines require two shots a few weeks apart.
The biotechs were competing against dozens of other groups that employed varying vaccine-making approaches, including the traditional, more time-consuming method of using an inactivated virus to produce an immune response.
Moderna was especially well-positioned for this moment.
Forty-two days after the genetic code was released, Modernas CEO Bancel opened an email on Feb. 24 on his cellphone and smiled, as he recalled to the Globe. Up popped a photograph of a box placed inside a refrigerated truck at the Norwood plant and bound for the National Institute of Allergy and Infectious Diseases in Bethesda, Md. The package held a few hundred vials, each containing the experimental vaccine.
Moderna was the first drug maker to deliver a potential vaccine for clinical trials. Soon, its vaccine became the first to undergo testing on humans, in a small early-stage trial. And on July 28, it became the first to start getting tested in a late-stage trial in a scene that reflected the firms receptiveness to press coverage.
The first volunteer to get a shot in Modernas late-stage trial was a television anchor at the CNN affiliate in Savannah, Ga., a move that raised eyebrows at rival vaccine makers.
Along with those achievements, Moderna has repeatedly stirred controversy.
On May 18, Moderna issued a press release trumpeting positive interim clinical data. The firm said its vaccine had generated neutralizing antibodies in the first eight volunteers in the early-phase study, a tiny sample.
But Moderna didnt provide any backup data, making it hard to assess how encouraging the results were. Nonetheless, Modernas share price rose 20% that day.
Some top Moderna executives also drew criticism for selling shares worth millions, including Bancel and the firms chief medical officer, Tal Zaks.
In addition, some critics have said the government has given Moderna a sweetheart deal by bankrolling the costs for developing the vaccine and pledging to buy at least 100 million doses, all for $2.48 billion.
That works out to roughly $25 a dose, which Moderna acknowledges includes a profit.
In contrast, the government has pledged more than $1 billion to Johnson & Johnson to manufacture and provide at least 100 million doses of its vaccine, which uses different technology than mRNA. But J&J, which collaborated with Beth Israel Deaconess Medical Centers Center for Virology and Vaccine Research and is also in a late-stage trial, has promised not to profit off sales of the vaccine during the pandemic.
Over in Germany, Sahin, the head of BioNTech, said a Lancet article in January about the outbreak in Wuhan, an international hub, galvanized him.
We understood that this would become a pandemic, he said.
The next day, he met with his leadership team.
I told them that we have to deal with a pandemic which is coming to Germany, Sahin recalled.
He also realized he needed a strong partner to manufacture the vaccine and thought of Pfizer. The two companies had worked together before to try to develop mRNA influenza vaccines. In March, he called Pfizers top vaccine expert, Kathrin Jansen.
Here is the original post:
The story of mRNA: From a loose idea to a tool that may help curb Covid - STAT
Worldwide Regenerative Medicine Industry to 2025 – Featuring Allergan, Amgen and Baxter International Among Others – PRNewswire
By daniellenierenberg
DUBLIN, Nov. 9, 2020 /PRNewswire/ -- The "Regenerative Medicine Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025" report has been added to ResearchAndMarkets.com's offering.
The global regenerative medicine market grew at a CAGR of around 16% during 2014-2019. Regenerative medicine refers to a branch of biomedical sciences aimed at restoring the structure and function of damaged tissues and organs. It involves the utilization of stem cells that are developed in laboratories and further implanted safely into the body for the regeneration of damaged bones, cartilage, blood vessels and organs. Cellular and acellular regenerative medicines are commonly used in various clinical therapeutic procedures, including cell, immunomodulation and tissue engineering therapies. They hold potential for the effective treatment of various chronic diseases, such as Alzheimer's, Parkinson's and cardiovascular disorders (CVDs), osteoporosis and spinal cord injuries.
The increasing prevalence of chronic medical ailments and genetic disorders across the globe is one of the key factors driving the growth of the market. Furthermore, the rising geriatric population, which is prone to various musculoskeletal, phonological, dermatological and cardiological disorders, is stimulating the market growth. In line with this, widespread adoption of organ transplantation is also contributing to the market growth. Regenerative medicine minimizes the risk of organ rejection by the body post-transplant and enhances the recovery speed of the patient.
Additionally, various technological advancements in cell-based therapies, such as the development of 3D bioprinting techniques and the adoption of artificial intelligence (AI) in the production of regenerative medicines, are acting as other growth-inducing factors. These advancements also aid in conducting efficient dermatological grafting procedures to treat chronic burns, bone defects and wounds on the skin. Other factors, including extensive research and development (R&D) activities in the field of medical sciences, along with improving healthcare infrastructure, are anticipated to drive the market further. Looking forward, the publisher expects the global regenerative medicine market to continue its strong growth during the next five years.
Competitive Landscape:
The report has also analysed the competitive landscape of the market with some of the key players being Allergan PLC (AbbVie Inc.), Amgen Inc., Baxter International Inc., BD (Becton, Dickinson and Company), Integra Lifesciences Holdings Corporation, Medtronic plc, Mimedx Group Inc., Novartis AG, Osiris Therapeutics Inc. (Smith & Nephew plc) and Thermo Fisher Scientific Inc.
Key Questions Answered in This Report:
Key Topics Covered:
1 Preface
2 Scope and Methodology 2.1 Objectives of the Study2.2 Stakeholders2.3 Data Sources2.3.1 Primary Sources2.3.2 Secondary Sources2.4 Market Estimation2.4.1 Bottom-Up Approach2.4.2 Top-Down Approach2.5 Forecasting Methodology
3 Executive Summary
4 Introduction4.1 Overview4.2 Key Industry Trends
5 Global Regenerative Medicine Market5.1 Market Overview5.2 Market Performance5.3 Impact of COVID-195.4 Market Forecast
6 Market Breakup by Type6.1 Stem Cell Therapy6.1.1 Market Trends6.1.2 Market Forecast6.2 Biomaterial6.2.1 Market Trends6.2.2 Market Forecast6.3 Tissue Engineering6.3.1 Market Trends6.3.2 Market Forecast6.4 Others6.4.1 Market Trends6.4.2 Market Forecast
7 Market Breakup by Application7.1 Bone Graft Substitutes7.1.1 Market Trends7.1.2 Market Forecast7.2 Osteoarticular Diseases7.2.1 Market Trends7.2.2 Market Forecast7.3 Dermatology7.3.1 Market Trends7.3.2 Market Forecast7.4 Cardiovascular7.4.1 Market Trends7.4.2 Market Forecast7.5 Central Nervous System7.5.1 Market Trends7.5.2 Market Forecast7.6 Others7.6.1 Market Trends7.6.2 Market Forecast
8 Market Breakup by End User8.1 Hospitals8.1.1 Market Trends8.1.2 Market Forecast8.2 Specialty Clinics8.2.1 Market Trends8.2.2 Market Forecast8.3 Others8.3.1 Market Trends8.3.2 Market Forecast
9 Market Breakup by Region9.1 North America9.1.1 United States9.1.1.1 Market Trends9.1.1.2 Market Forecast9.1.2 Canada9.1.2.1 Market Trends9.1.2.2 Market Forecast9.2 Asia Pacific9.2.1 China9.2.1.1 Market Trends9.2.1.2 Market Forecast9.2.2 Japan9.2.2.1 Market Trends9.2.2.2 Market Forecast9.2.3 India9.2.3.1 Market Trends9.2.3.2 Market Forecast9.2.4 South Korea9.2.4.1 Market Trends9.2.4.2 Market Forecast9.2.5 Australia9.2.5.1 Market Trends9.2.5.2 Market Forecast9.2.6 Indonesia9.2.6.1 Market Trends9.2.6.2 Market Forecast9.2.7 Others9.2.7.1 Market Trends9.2.7.2 Market Forecast9.3 Europe9.3.1 Germany9.3.1.1 Market Trends9.3.1.2 Market Forecast9.3.2 France9.3.2.1 Market Trends9.3.2.2 Market Forecast9.3.3 United Kingdom9.3.3.1 Market Trends9.3.3.2 Market Forecast9.3.4 Italy9.3.4.1 Market Trends9.3.4.2 Market Forecast9.3.5 Spain9.3.5.1 Market Trends9.3.5.2 Market Forecast9.3.6 Russia9.3.6.1 Market Trends9.3.6.2 Market Forecast9.3.7 Others9.3.7.1 Market Trends9.3.7.2 Market Forecast9.4 Latin America9.4.1 Brazil9.4.1.1 Market Trends9.4.1.2 Market Forecast9.4.2 Mexico9.4.2.1 Market Trends9.4.2.2 Market Forecast9.4.3 Others9.4.3.1 Market Trends9.4.3.2 Market Forecast9.5 Middle East and Africa9.5.1 Market Trends9.5.2 Market Breakup by Country9.5.3 Market Forecast
10 SWOT Analysis10.1 Overview10.2 Strengths10.3 Weaknesses10.4 Opportunities10.5 Threats
11 Value Chain Analysis
12 Porters Five Forces Analysis12.1 Overview12.2 Bargaining Power of Buyers12.3 Bargaining Power of Suppliers12.4 Degree of Competition12.5 Threat of New Entrants12.6 Threat of Substitutes
13 Price Analysis
14 Competitive Landscape14.1 Market Structure14.2 Key Players14.3 Profiles of Key Players14.3.1 Allergan PLC (AbbVie Inc.)14.3.1.1 Company Overview14.3.1.2 Product Portfolio 14.3.1.3 Financials 14.3.1.4 SWOT Analysis14.3.2 Amgen Inc.14.3.2.1 Company Overview14.3.2.2 Product Portfolio14.3.2.3 Financials 14.3.2.4 SWOT Analysis14.3.3 Baxter International Inc.14.3.3.1 Company Overview14.3.3.2 Product Portfolio 14.3.3.3 Financials 14.3.3.4 SWOT Analysis14.3.4 BD (Becton, Dickinson and Company)14.3.4.1 Company Overview14.3.4.2 Product Portfolio 14.3.4.3 Financials 14.3.4.4 SWOT Analysis14.3.5 Integra Lifesciences Holdings Corporation14.3.5.1 Company Overview14.3.5.2 Product Portfolio 14.3.5.3 Financials 14.3.5.4 SWOT Analysis14.3.6 Medtronic Plc14.3.6.1 Company Overview14.3.6.2 Product Portfolio 14.3.6.3 Financials14.3.6.4 SWOT Analysis14.3.7 Mimedx Group Inc.14.3.7.1 Company Overview14.3.7.2 Product Portfolio14.3.7.3 Financials 14.3.8 Novartis AG14.3.8.1 Company Overview14.3.8.2 Product Portfolio 14.3.8.3 Financials14.3.8.4 SWOT Analysis14.3.9 Osiris Therapeutics Inc. (Smith & Nephew plc)14.3.9.1 Company Overview14.3.9.2 Product Portfolio14.3.10 Thermo Fisher Scientific Inc.14.3.10.1 Company Overview14.3.10.2 Product Portfolio 14.3.10.3 Financials14.3.10.4 SWOT Analysis
For more information about this report visit https://www.researchandmarkets.com/r/gcpeaa
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Media Contact:
Research and Markets Laura Wood, Senior Manager [emailprotected]
For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900
U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716
SOURCE Research and Markets
http://www.researchandmarkets.com
Originally posted here:
Worldwide Regenerative Medicine Industry to 2025 - Featuring Allergan, Amgen and Baxter International Among Others - PRNewswire
Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview -…
By daniellenierenberg
This article was originally published here
Cell Mol Neurobiol. 2020 Nov 5. doi: 10.1007/s10571-020-00989-x. Online ahead of print.
ABSTRACT
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
PMID:33151415 | DOI:10.1007/s10571-020-00989-x
Regenerative Medicine Market 2020: Analysis, Top Companies, Size, Share, Demand and Opportunity To 2025 – Eurowire
By daniellenierenberg
According to IMARC Groups latest report, titled Regenerative Medicine Market: Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025,. Looking forward, IMARC Group expects the global regenerative medicine market to continue its strong growth during the next five years.
Regenerative medicine refers to a field of biomedical sciences involved in restoring the structure and function of damaged cells, organs, and tissues. It includes the study of stem cells that are developed in laboratories and then safely inserted into the human body to regenerate damaged bones, cartilage, blood vessels, and organs. Cellular and acellular regenerative medicines are widely adopted in various clinical therapeutic procedures, including cell therapies, immunomodulation, and tissue engineering. They have the potential to treat various chronic diseases, including Alzheimers, Parkinsons, cardiovascular disorders (CVDs), osteoporosis, spinal cord injuries, etc.
Request for a free sample copy of this report: https://www.imarcgroup.com/regenerative-medicine-market/requestsample
Market Trends
The rising prevalence of chronic diseases and genetic disorders is primarily driving the demand for regenerative medicine across the globe. Moreover, the growing geriatric population who are more prone to musculoskeletal, dermatological, and cardiological disorders is also augmenting the need for regenerative medicines. Furthermore, several technological advancements in cell-based therapies have led to the adoption of 3D bioprinting techniques and artificial intelligence (AI), thereby further propelling the market for regenerative medicine. Moreover, regenerative medicine decreases the risk of organ rejection by the body post-transplant and increases the patients recovery speed, thereby gaining traction in numerous organ transplantation procedures. The increasing investments in extensive R&D activities in the field of medical sciences are expected to drive the market for regenerative medicine.
Regenerative Medicine Market 2020-2025 Analysis and Segmentation:
Competitive Landscape:
The competitive landscape of the market has been studied in the report with the detailed profiles of the key players operating in the market.
Some of these key players include:
The report has segmented the market on the basis of type, application, end user and region.
Breakup by Type:
Breakup by Application:
Breakup by End User:
Ask Analyst for Instant Discount and Download Full Report with TOC & List of Figure: https://bit.ly/2RAf08Y
Breakup by Region:
About Us
IMARC Group is a leading market research company that offers management strategy and market research worldwide. We partner with clients in all sectors and regions to identify their highest-value opportunities, address their most critical challenges, and transform their businesses.
IMARCs information products include major market, scientific, economic and technological developments for business leaders in pharmaceutical, industrial, and high technology organizations. Market forecasts and industry analysis for biotechnology, advanced materials, pharmaceuticals, food and beverage, travel and tourism, nanotechnology and novel processing methods are at the top of the companys expertise.
Contact US:IMARC Group30 N Gould St, Ste RSheridan, WY 82801, USAWebsite: https://www.imarcgroup.com/Email: [emailprotected]USA: +1-631-791-1145Follow us on twitter: @imarcglobalLinkedin: https://www.linkedin.com/company/imarc-group
See original here:
Regenerative Medicine Market 2020: Analysis, Top Companies, Size, Share, Demand and Opportunity To 2025 - Eurowire
Deep conservation of the enhancer regulatory code in animals – Science Magazine
By daniellenierenberg
Enhancer function, from sponges to humans
Identifying the function of enhancers, DNA regions that help to regulate gene expression and evolve rapidly, has been difficult. This area of research has been hampered by the difficultly in identifying functional conservation. Wong et al. now show that despite low sequence conservation, enhancer function is strongly conserved through the animal kingdom (see the Perspective by Harmston). Transgenic expression of sponge enhancers in zebrafish and mice demonstrates that these sequences can drive cell typespecific gene expression across species. These results suggest an unexpectedly deep level of conservation of gene regulation across the animal kingdom maintained over the course of metazoan evolution.
Science, this issue p. eaax8137; see also p. 657
In animals, gene regulatory networks specify cell identity in space and time. Transcription of genes in these networks is modulated by a class of cis-regulatory elements called enhancers that contain short (~10 base pairs) DNA sequence motifs recognized by transcription factors (TFs). In contrast to TFs, whose histories have been largely traced to the origin of the animal kingdom or earlier, the origin and evolution of enhancers have been relatively difficult to discern.
Although not a single enhancer has been shown to be conserved across the animal kingdom, enhancers may be as ancient and conserved as the TFs with which they interact. This inability to identify conserved enhancers is apparently because they evolve faster than both the TFs they interact with and the genes they regulate.
Putative enhancers in the sponge Amphimedon queenslandica had previously been identified on the basis of combinatorial patterns of histone modifications. Here, we sought to determine whether sponges share functionally conserved enhancers with bilaterians.
We primarily focused on deeply conserved metazoan microsyntenic gene pairs. These pairs are thought to be conserved because the cis-regulatory elements that regulate the developmental expression of one gene (the target gene) are located in the other gene (the bystander gene). This proposed regulatory linkage may underlie the maintenance of these microsyntenic gene pairs across 700 million years of independent evolution.
We found that enhancers present in Amphimedon microsyntenic regions drive consistent patterns of cell typespecific gene expression in zebrafish and mouse embryos. Although these sponge enhancers do not share significant sequence identity with vertebrates, they are in microsyntenic regions that are orthologous with microsyntenic regions in other metazoans and have strong histone H3 Lys4 methylation (H3K4me1) enhancer signals.
Focusing on an Islet enhancer in the Islet-Scaper microsyntenic region, we found that the sponge 709base pair enhancer, independent of its orientation, drives green fluorescent protein (GFP) expression in zebrafish cells in the hindbrain neuroepithelial region, the roof plate around the midline, the pectoral fin, and the otic vesicle; the activity overlaps with endogenous Isl2a expression. Systematic removal of sequences from the Amphimedon Islet enhancer revealed that both the 5 and 3 regions of this enhancer are required for consistent cell typespecific activity in zebrafish.
We then used the number and frequency of TF binding motifs in the Amphimedon Islet enhancer to identify putative enhancers in human, mouse, and fly Islet-Scaper regions. The candidate orthologous enhancers from humans and mice drove gene expression patterns similar to those in sponges and endogenous Islet enhancers in zebrafish.
We also demonstrated that a number of putative Amphimedon enhancers, which are outside conserved microsyntenic regions, can also drive unique expression patterns: Enhancers of sponge housekeeping genes drive broader expression patterns in zebrafish.
These results suggest the existence of an ancient and conserved, yet flexible, genomic regulatory syntax that (i) can be interpreted by the available TFs present in cells constituting disparate developmental systems and cell types, and (ii) has been repeatedly co-opted into cell typespecific networks across the animal kingdom.
This common regulatory code maintains a repertoire of conserved TF binding motifs that stabilize and preserve enhancer functionality over evolution. Once established, these enhancers may be maintained as part of conserved gene regulatory network modules over evolution. Although robust, these enhancers can evolve through the expansion and integration of new TF binding motifs and the loss of others. We posit that the expansion of TFs and enhancers may underlie the evolution of complex body plans.
Enhancers located within conserved microsyntenic units in the sponge Amphimedon queenslandica are tested in a zebrafish transgenic reporter system. In zebrafish, the sponge Islet enhancer drives a GFP reporter expression pattern similar to that of human, mouse, and zebrafish enhancers identified within the Islet-Scaper microsyntenic region. This suggests the conservation of regulatory syntax specified by flexible organizations of motifs.
Interactions of transcription factors (TFs) with DNA regulatory sequences, known as enhancers, specify cell identity during animal development. Unlike TFs, the origin and evolution of enhancers has been difficult to trace. We drove zebrafish and mouse developmental transcription using enhancers from an evolutionarily distant marine sponge. Some of these sponge enhancers are located in highly conserved microsyntenic regions, including an Islet enhancer in the Islet-Scaper region. We found that Islet enhancers in humans and mice share a suite of TF binding motifs with sponges, and that they drive gene expression patterns similar to those of sponge and endogenous Islet enhancers in zebrafish. Our results suggest the existence of an ancient and conserved, yet flexible, genomic regulatory syntax that has been repeatedly co-opted into cell typespecific gene regulatory networks across the animal kingdom.
Read the original:
Deep conservation of the enhancer regulatory code in animals - Science Magazine
Global Regenerative Medicine Market (2020 to 2025) – Industry Trends, Share, Size, Growth, Opportunity and Forecast – ResearchAndMarkets.com -…
By daniellenierenberg
DUBLIN--(BUSINESS WIRE)--The "Regenerative Medicine Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025" report has been added to ResearchAndMarkets.com's offering.
The global regenerative medicine market grew at a CAGR of around 16% during 2014-2019. Looking forward, the publisher expects the global regenerative medicine market to continue its strong growth during the next five years.
Regenerative medicine refers to a branch of biomedical sciences aimed at restoring the structure and function of damaged tissues and organs. It involves the utilization of stem cells that are developed in laboratories and further implanted safely into the body for the regeneration of damaged bones, cartilage, blood vessels and organs. Cellular and acellular regenerative medicines are commonly used in various clinical therapeutic procedures, including cell, immunomodulation and tissue engineering therapies. They hold potential for the effective treatment of various chronic diseases, such as Alzheimer's, Parkinson's and cardiovascular disorders (CVDs), osteoporosis and spinal cord injuries.
The increasing prevalence of chronic medical ailments and genetic disorders across the globe is one of the key factors driving the growth of the market. Furthermore, the rising geriatric population, which is prone to various musculoskeletal, phonological, dermatological and cardiological disorders, is stimulating the market growth. In line with this, widespread adoption of organ transplantation is also contributing to the market growth. Regenerative medicine minimizes the risk of organ rejection by the body post-transplant and enhances the recovery speed of the patient.
Additionally, various technological advancements in cell-based therapies, such as the development of 3D bioprinting techniques and the adoption of artificial intelligence (AI) in the production of regenerative medicines, are acting as other growth-inducing factors. These advancements also aid in conducting efficient dermatological grafting procedures to treat chronic burns, bone defects and wounds on the skin. Other factors, including extensive research and development (R&D) activities in the field of medical sciences, along with improving healthcare infrastructure, are anticipated to drive the market further.
Companies Mentioned
Key Questions Answered in This Report:
Key Topics Covered:
1 Preface
2 Scope and Methodology
3 Executive Summary
4 Introduction
4.1 Overview
4.2 Key Industry Trends
5 Global Regenerative Medicine Market
5.1 Market Overview
5.2 Market Performance
5.3 Impact of COVID-19
5.4 Market Forecast
6 Market Breakup by Type
6.1 Stem Cell Therapy
6.1.1 Market Trends
6.1.2 Market Forecast
6.2 Biomaterial
6.2.1 Market Trends
6.2.2 Market Forecast
6.3 Tissue Engineering
6.3.1 Market Trends
6.3.2 Market Forecast
6.4 Others
6.4.1 Market Trends
6.4.2 Market Forecast
7 Market Breakup by Application
7.1 Bone Graft Substitutes
7.1.1 Market Trends
7.1.2 Market Forecast
7.2 Osteoarticular Diseases
7.2.1 Market Trends
7.2.2 Market Forecast
7.3 Dermatology
7.3.1 Market Trends
7.3.2 Market Forecast
7.4 Cardiovascular
7.4.1 Market Trends
7.4.2 Market Forecast
7.5 Central Nervous System
7.5.1 Market Trends
7.5.2 Market Forecast
7.6 Others
7.6.1 Market Trends
7.6.2 Market Forecast
8 Market Breakup by End User
8.1 Hospitals
8.1.1 Market Trends
8.1.2 Market Forecast
8.2 Specialty Clinics
8.2.1 Market Trends
8.2.2 Market Forecast
8.3 Others
8.3.1 Market Trends
8.3.2 Market Forecast
9 Market Breakup by Region
9.1 North America
9.2 Asia Pacific
9.3 Europe
9.4 Latin America
9.5 Middle East and Africa
10 SWOT Analysis
11 Value Chain Analysis
12 Porters Five Forces Analysis
13 Price Analysis
14 Competitive Landscape
14.1 Market Structure
14.2 Key Players
14.3 Profiles of Key Players
For more information about this report visit https://www.researchandmarkets.com/r/erd0e3
Go here to see the original:
Global Regenerative Medicine Market (2020 to 2025) - Industry Trends, Share, Size, Growth, Opportunity and Forecast - ResearchAndMarkets.com -...
California Prop. 14: What to know about the stem cell measure – Los Angeles Times
By daniellenierenberg
Proposition 14 would authorize the sale of $5.5 billion in general obligation bonds for the California Institute for Regenerative Medicine, known as CIRM, for stem cell studies and trials.
Here is a rundown of the ballot measure:
In 2004, voters approved a bond measure to pay for stem cell research.
Now, with the money from that bond running out, supporters of the states stem cell agency are asking taxpayers for a new infusion of cash.
With interest, the bond could cost the state $260 million per year, or $7.8 billion over the next 30 years, according to the nonpartisan Legislative Analysts Office.
Proponents of Proposition 14 say the measure will help find new treatments and cures for chronic diseases and conditions, including cancers, spinal cord injuries, Alzheimers, Parkinsons and heart disease. They say the previous bond advanced research and treatments for more than 75 diseases, including two cancer treatments for fatal blood disorders that were approved by the U.S. Food and Drug Administration.
Without new funding to keep the program going, supporters of Proposition 14 say, groundbreaking medical discoveries and lifesaving research will be slowed or stopped.
Opponents say that the state shouldnt take on new debt while facing a pandemic-induced deficit and that medical advances attributed to the previous stem cell bond have been overstated. In addition, opponents say CIRM has been hampered by conflicts of interest and too little oversight, neither of which are remedied by the ballot measure.
The campaign to pass the 2004 ballot measure told voters that the bond would save millions of lives and cut healthcare costs by billions. Critics say thats not been the case to date, although supporters of this years measure note that they never intended those results within 16 years. While there is not much organized opposition, some newspaper editorial boards, including those at the Los Angeles Times and San Francisco Chronicle, have opposed it.
With Prop. 14, California voters will be asked for more borrowing to keep stem cell research going
Explaining Prop. 14
Times columnist George Skelton assesses Prop. 14
The California stem cell programs $5.5-billion funding request might be its downfall
Californias stem cell program faces an existential moment and a chance for reform
When it comes to disease, stem cells are a game-changer, scientists say. This is why
Visit link:
California Prop. 14: What to know about the stem cell measure - Los Angeles Times
How pain changes your brain – News – The University of Sydney
By daniellenierenberg
Professor Paul Glare at the Pain Management Research Institute.
Opioids are good for acute pain. With chronic pain they only work short to medium term, he says. But after about six months, you become tolerant and have to take bigger doses. Then theres the growing risk of accidental overdose, even accidental death.
For many people though, opioids seem like the only way to numb the pain that constantly attacks them. But do they in fact, numb the pain?
Most people who come off the long term use of opioids realise that the drugs werent doing that much, says Glare. Theyd already stopped working, so the pain without them is often no worse. In fact, the drugs were just messing with their heads. Still its a huge psychological step to let the drugs go.
Gently spoken and with a great sense of compassion for the people he works to help, Glare started his career in palliative care which took him into the area of cancer pain, then pain more generally. Because its difficult to tell people battling chronic pain that there is no satisfactory pharmaceutical answer at this time, the PMRI has a large and active pain education unit.
The Unit offers a Masters of Medicine Pain Management that is also conferred as a Masters of Science for non-medical graduates. It also runs cognitive behavioural therapy classes teaching strategies for rising above the pain.
The classes are challenging, says Glare. But many people who learn the self-management techniques can reduce or even stop their opioid use. Its about them not being afraid of their pain anymore.
Its the nature of chronic pain that the injury its warning you about, sometimes very loudly, isnt actually there. This can be seen in a persons posture as they sit and walk in a way that protects that non-injury. By gently confronting the pain, the person can eventually reclaim their normal posture and walk more confidently. Through that, they feel stronger within themselves and more in control of their pain.
The PMRI is now looking at digital support resources for people dealing with pain, Were developing an SMS based text messaging service and a more sophisticated chat-bot tool, to help people get over the hump of opioid tapering, says Glare. Its new in the pain world.
See the original post here:
How pain changes your brain - News - The University of Sydney
The Neuroprosthetics market to stand in a good stead from 2015 to 2021 – KYT24
By daniellenierenberg
Central nervous system comprises brain and spinal cord, and is responsible for integration of sensory information. Brain is the largest and one of the most complex organs in the human body. It is made up of 100 billion nerves that communicate with 100 trillion synapses. It is responsible for the thought and movement produced by the body. Spinal cord is connected to a section of brain known as brain stem and runs through the spinal canal. The brain processes and interprets sensory information sent from the spinal cord. Brain and spinal cord serve as the primary processing centers for the entire nervous system, and control the working of the body. Neuroprosthetics improves or replaces the function of the central nervous system. Neuroprosthetics, also known as neural prosthetics, are devices implanted in the body that stimulate the function of an organ or organ system that has failed due to disease or injury. It is a brain-computer interface device used to detect and translate neural activity into command sequences for prostheses. Its primary aim is to restore functionality in patients suffering from loss of motor control such as spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, and stroke. The major types of neuroprosthetics include sensory implants, motor prosthetics, and cognitive prosthetics. Motor prosthetics support the autonomous system and assist in the regulation or stimulation of affected motor functions.
For more insights into the Market, request a sample of this report @https://www.persistencemarketresearch.com/samples/4160
Similarly, cognitive prosthetics restore the function of brain tissue loss in conditions such as paralysis, Parkinsons disease, traumatic brain injury, and speech deficit. Sensory implants pass information into the bodys sensory areas such as sight or hearing, and it is further classified as auditory (cochlear implant), visual, and spinal cord stimulator. Some key functions of neuroprosthetics include providing hearing, seeing, feeling abilities, pain relief, and restoring damaged brain cells. Cochlear implant is among the most popular neuroprosthetics. In addition, auditory brain stem implant is also a neuroprosthetic meant to improve hearing damage.
For Information On The Research Methodology request here @https://www.persistencemarketresearch.com/methodology/4160
North America dominates the global market for neuroprosthetics due to the rising incidence of neurological diseases and growth in geriatric population in the region. Asia is expected to display a high growth rate in the next five years in the global neuroprosthetics market, with China and India being the fastest growing markets in the Asia-Pacific region. Among the key driving forces for the neuroprosthetics market in developing countries are the large pool of patients, increasing awareness about the disease, improving healthcare infrastructure, and rising government funding in the region.
To receive extensive list of important regions, Request TOC here @https://www.persistencemarketresearch.com/toc/4160
Increasing prevalence of neurological diseases such as traumatic brain injury, stroke and Parkinsons disease, rise in geriatric population, increase in healthcare expenditure, growing awareness about healthcare, rapid progression of technology, and increasing number of initiatives by various governments and government associations are some key factors driving growth of the global neuroprosthetics market. However, factors such as high cost of devices, reimbursement issues, and adverse effects pose a major restraint to the growth of the global neuroprosthetics market.
Innovative self-charging neural implants that eliminate the need for high risk and costly surgery to replace the discharge battery and controlling machinery with thoughts would help to develop opportunities for the growth of the global neuroprosthetics market. The major companies operating in the global neuroprosthetics market are Boston Scientific Corporation, Cochlear Limited, Medtronic, Inc., Cyberonics, Inc., NDI Medical LLC, NeuroPace, Inc., Nervo Corp., Retina Implant AG, St. Jude Medical, and Sonova Group.
Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape
Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.
To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.
Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.
Contact us:
Naved BegPersistence Market ResearchAddress 305 Broadway, 7th Floor New York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com
Here is the original post:
The Neuroprosthetics market to stand in a good stead from 2015 to 2021 - KYT24
Neuroprosthetics Market: Increasing Prevalence of Diabetes in Neuroprosthetics investigated in the latest research – WhaTech
By daniellenierenberg
Global Neuroprosthetics Market by Type (Output (Cognitive, Motor Prosthetics), Input (Cochlear, Retinal Implant)), Techniques (Deep Brain, Vagus Nerve, Spinal Cord stimulation), Application (Epilepsy, Paralysis, Alzheimers Disease). The neuroprosthetics market is projected to reach USD 10.48 billion by 2022 from USD 5.84 billion in 2017, at a CAGR of 12.4%.
Neuroprostheses uses electrodes to interface with the central or peripheral nervous system to restore lost motor or sensory capabilities. These devices can receive neural signals from the external environment & brain, and convert the signals to restore functions such as loss of hearing and vision.
They have applications in cognitive disorders, ophthalmic disorders, motor disorders, and auditory disorders.
Theneuroprosthetics marketis projected to reach USD 10.48 billion by 2022 from USD 5.84 billion in 2017, at a CAGR of 12.4%.
People suffering from diabetes may develop several foot problems, which cause damage to blood vessels and nerves. Diabetes can also damage the blood vessels in the retina, which can cause vision impairments or blindness.
As a result, the increasing incidence of diabetes is expected to support the growth of the retinal/bionic eye implants market. The top five countries with the highest diabetic population in 2013 (age group of 2079 years) were China, India, the US, Brazil, and the Russian Federation.
Dysvascular disorder- and diabetes-related amputations are expected to drive the demand for artificial limb replacements in the near future. The prevalence of diabetes has significant regional variation.
Since its burden is higher in the Asia Pacific region, this factor is expected to have a more substantial effect on the market in countries in Southeast Asia and the Indian subcontinent.
Download PDF Brochure:www.marketsandmarkets.com/pdfdown=234147399
Novel therapies, such as stem cell therapy, are showcasing a significant potential for the effective treatment of various neurological disorders. Stem cell therapy is an emerging branch of medicine that has the potential to restore organ and tissue function in patients suffering from serious injuries or chronic diseases.
These therapies offer advantages such as higher recovery rates and faster recovery periods for patients. Moreover, stem cells also have significant potential in the treatment of motor neuron disease, Parkinsons disease, and Alzheimers disease.
Furthermore, medicinal, physical, occupational, and speech therapies are available for the treatment of several neurological disorders. For instance, currently, the preference for drug therapies is higher among Parkinsons patients due to the lower cost and convenience of the treatment.
The availability of these alternative treatment options is one of the significant factors limiting the demand for and adoption of neuroprosthetic devices and implants among the target patient population.
Neuroprosthetic procedures involve minimally invasive techniques as opposed to alternate surgical procedures for treating tremors primarily associated with Parkinsons, which are invasive treatments. For instance, in a pallidotomy, the surgeon destroys a tiny part of the globus pallidus by creating a scar to reduce brain activity.
Doctors do not prefer this procedure and encourage the use of deep brain stimulation; instead, as it does not destroy brain tissue and has fewer risks as compared to pallidotomy.
The use of DBS in newer applications/indications, such as Alzheimers, epilepsy, and depression, is currently in clinical trials. Similarly, the treatment of heart failure, sleep apnea, obesity, and tinnitus through VNS (Vagus Nerve Stimulation); fecal incontinence by SNS (Sacral Nerve Stimulation); and tinnitus, migraine, and stroke by TMS (Transcranial Magnetic Stimulation) are also under clinical trials.
TMS is currently used to treat depression, SNS for urine incontinence, and VNS for epilepsy.
Request for Sample Pages:www.marketsandmarkets.com/request=234147399
North America is expected to command the largest share of the market during the forecast period.
Based on region, the neuroprosthetics market is segmented into North America, Europe, Asia Pacific, and the Rest of the World (RoW). In 2017, North America is expected to command the largest share of the neuroprosthetics market.
The large share of this market can primarily be attributed to the high incidence of vision and hearing loss, rising prevalence of neurological disorders, and the strong presence of industry players in this region.
Key Market Players
Medtronic plc (Medtronic) (US), Cochlear Ltd. (Cochlear) (Australia), Abbott Laboratories (Abbott) (US), Boston Scientific (US), LivaNova, PLC (LivaNova) (UK), and Second Sight Medical Products, Inc.(Second Sight) (US).MED-EL (Austria), Retina Implant AG (Germany), Sonova (Switzerland), Neuropace (US), NDIE Medical, LLC (Canada) Nevro (US).
This email address is being protected from spambots. You need JavaScript enabled to view it.
Philadelphia Based Company Wants to Bring Back the Dead With Stem Cells – Gilmore Health News
By daniellenierenberg
Waking up the dead science fiction or a Halloween night horror movie? No, thats the goal of Bioquarks ReAnima project. The project aims to restore neuronal activity in brain dead people by combining several techniques: stem cell injection, nerve stimulation, and laser.
Stem Cells
Stem cells are increasingly becoming a serious treatment option for many nervous disorders: Alzheimers, Parkinsons, brain injuries, etc. So why not repair the brains of the dead to bring them back to life? This idea, worthy of a science fiction (or horror) film, is the crazy project of a company based in Philadelphia: Bioquark.
Read Also: Old Human Cells Successfully Rejuvenated Via Stem Cell Technology
This is not the first time that the company wants to participate in such an experiment. In 2016, the ReAnima study was launched in Bangalore, India, together with Himanshu Bansal, an orthopedic surgeon at Anupam Hospital. His plan was to combine several techniques to revive 20 brain dead people.
ReAnima consisted of injecting patients with mesenchymal stem cells and peptides that help regenerate brain cells; these peptides were to be supplied by Bioquark. In addition to these injections, transcranial laser stimulation and nerve stimulation were planned. This project was stopped by the Indian authorities in November last year, as revealed then by Science magazine.
But the company did not admit defeat. This time, according to the company, they are close to finding a new location for their clinical trials. Ira Pastor, CEO of Bioquark, told the Stat website that the company would announce the process in Latin America in the coming months.
Read Also: HGH Improves Memory In Stroke Victims Study Shows
If the experiment follows the same protocol as planned in India, it may involve 20 people. The clinical trial would again involve the injection of the patients stem cells, fat, blood Then a mixture of peptides would be injected into the spinal cord to stimulate the growth of new nerve cells. This compound, called BQ-A, was tested on animal models with head trauma. In addition, the nerves would be stimulated by nerve stimulation and 15 days of laser therapy to stimulate the neurons to make nerve connections. Researchers could then monitor the effects of this treatment using electroencephalograms.
But such a protocol raises many questions: How would a clinical trial be conducted on officially deceased people? If the person recovers some brain activity, in what state would he be? Will families be given false hope with a treatment that may take a long time?
Read Also: UC San Diego: Adult Brain Cells Revert to Younger State Following Injury, Study Shows
There is no indication that such a protocol will work. The company has not even tested the entire treatment on animal models! The mentioned treatments, such as injection of stem cells or transcranial stimulation, were tested in other situations, but not in cases of brain death. In an article published in 2016, neurologist Ariane Lewis and bioethicist Arthur Caplan stressed that the experiment had no scientific basis and that it gave families false and cruel hopes of a cure.
Experiment to raise the dead blocked in India
Response to a trial on reversal of Death by Neurologic Criteria
Links You May Like:
Is NAD+ The Anti Aging Substance Mankind Has Been Searching For?
Anti-Aging: HGH Can Reduce Biological Age by One Year and a Half Study Shows
Growth Factor Plus Review: Benefits, Ingredients, Side effects, Cost and Testimonials
Original post:
Philadelphia Based Company Wants to Bring Back the Dead With Stem Cells - Gilmore Health News
Outlook on the Regenerative Medicine Global Market to 2025 – Impact of COVID-19 on the Market – GlobeNewswire
By daniellenierenberg
Dublin, Oct. 30, 2020 (GLOBE NEWSWIRE) -- The "Regenerative Medicine Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025" report has been added to ResearchAndMarkets.com's offering.
The global regenerative medicine market grew at a CAGR of around 16% during 2014-2019. Regenerative medicine refers to a branch of biomedical sciences aimed at restoring the structure and function of damaged tissues and organs. It involves the utilization of stem cells that are developed in laboratories and further implanted safely into the body for the regeneration of damaged bones, cartilage, blood vessels and organs. Cellular and acellular regenerative medicines are commonly used in various clinical therapeutic procedures, including cell, immunomodulation and tissue engineering therapies. They hold potential for the effective treatment of various chronic diseases, such as Alzheimer's, Parkinson's and cardiovascular disorders (CVDs), osteoporosis and spinal cord injuries.
The increasing prevalence of chronic medical ailments and genetic disorders across the globe is one of the key factors driving the growth of the market. Furthermore, the rising geriatric population, which is prone to various musculoskeletal, phonological, dermatological and cardiological disorders, is stimulating the market growth. In line with this, widespread adoption of organ transplantation is also contributing to the market growth. Regenerative medicine minimizes the risk of organ rejection by the body post-transplant and enhances the recovery speed of the patient.
Additionally, various technological advancements in cell-based therapies, such as the development of 3D bioprinting techniques and the adoption of artificial intelligence (AI) in the production of regenerative medicines, are acting as other growth-inducing factors. These advancements also aid in conducting efficient dermatological grafting procedures to treat chronic burns, bone defects and wounds on the skin. Other factors, including extensive research and development (R&D) activities in the field of medical sciences, along with improving healthcare infrastructure, are anticipated to drive the market further. Looking forward, the publisher expects the global regenerative medicine market to continue its strong growth during the next five years.
Key Market Segmentation:
The publisher provides an analysis of the key trends in each sub-segment of the global regenerative medicine market report, along with forecasts for growth at the global, regional and country level from 2020-2025. Our report has categorized the market based on region, type, application and end user.
Breakup by Type:
Breakup by Application:
Breakup by End User:
Breakup by Region:
Competitive Landscape:
The report has also analysed the competitive landscape of the market with some of the key players being Allergan PLC (AbbVie Inc.), Amgen Inc., Baxter International Inc., BD (Becton, Dickinson and Company), Integra Lifesciences Holdings Corporation, Medtronic plc, Mimedx Group Inc., Novartis AG, Osiris Therapeutics Inc. (Smith & Nephew plc) and Thermo Fisher Scientific Inc.
Key Questions Answered in This Report:
Key Topics Covered:
1 Preface
2 Scope and Methodology 2.1 Objectives of the Study2.2 Stakeholders2.3 Data Sources2.3.1 Primary Sources2.3.2 Secondary Sources2.4 Market Estimation2.4.1 Bottom-Up Approach2.4.2 Top-Down Approach2.5 Forecasting Methodology
3 Executive Summary
4 Introduction4.1 Overview4.2 Key Industry Trends
5 Global Regenerative Medicine Market5.1 Market Overview5.2 Market Performance5.3 Impact of COVID-195.4 Market Forecast
6 Market Breakup by Type6.1 Stem Cell Therapy6.1.1 Market Trends6.1.2 Market Forecast6.2 Biomaterial6.2.1 Market Trends6.2.2 Market Forecast6.3 Tissue Engineering6.3.1 Market Trends6.3.2 Market Forecast6.4 Others6.4.1 Market Trends6.4.2 Market Forecast
7 Market Breakup by Application7.1 Bone Graft Substitutes7.1.1 Market Trends7.1.2 Market Forecast7.2 Osteoarticular Diseases7.2.1 Market Trends7.2.2 Market Forecast7.3 Dermatology7.3.1 Market Trends7.3.2 Market Forecast7.4 Cardiovascular7.4.1 Market Trends7.4.2 Market Forecast7.5 Central Nervous System7.5.1 Market Trends7.5.2 Market Forecast7.6 Others7.6.1 Market Trends7.6.2 Market Forecast
8 Market Breakup by End User8.1 Hospitals8.1.1 Market Trends8.1.2 Market Forecast8.2 Specialty Clinics8.2.1 Market Trends8.2.2 Market Forecast8.3 Others8.3.1 Market Trends8.3.2 Market Forecast
9 Market Breakup by Region9.1 North America9.1.1 United States9.1.1.1 Market Trends9.1.1.2 Market Forecast9.1.2 Canada9.1.2.1 Market Trends9.1.2.2 Market Forecast9.2 Asia Pacific9.2.1 China9.2.1.1 Market Trends9.2.1.2 Market Forecast9.2.2 Japan9.2.2.1 Market Trends9.2.2.2 Market Forecast9.2.3 India9.2.3.1 Market Trends9.2.3.2 Market Forecast9.2.4 South Korea9.2.4.1 Market Trends9.2.4.2 Market Forecast9.2.5 Australia9.2.5.1 Market Trends9.2.5.2 Market Forecast9.2.6 Indonesia9.2.6.1 Market Trends9.2.6.2 Market Forecast9.2.7 Others9.2.7.1 Market Trends9.2.7.2 Market Forecast9.3 Europe9.3.1 Germany9.3.1.1 Market Trends9.3.1.2 Market Forecast9.3.2 France9.3.2.1 Market Trends9.3.2.2 Market Forecast9.3.3 United Kingdom9.3.3.1 Market Trends9.3.3.2 Market Forecast9.3.4 Italy9.3.4.1 Market Trends9.3.4.2 Market Forecast9.3.5 Spain9.3.5.1 Market Trends9.3.5.2 Market Forecast9.3.6 Russia9.3.6.1 Market Trends9.3.6.2 Market Forecast9.3.7 Others9.3.7.1 Market Trends9.3.7.2 Market Forecast9.4 Latin America9.4.1 Brazil9.4.1.1 Market Trends9.4.1.2 Market Forecast9.4.2 Mexico9.4.2.1 Market Trends9.4.2.2 Market Forecast9.4.3 Others9.4.3.1 Market Trends9.4.3.2 Market Forecast9.5 Middle East and Africa9.5.1 Market Trends9.5.2 Market Breakup by Country9.5.3 Market Forecast
10 SWOT Analysis10.1 Overview10.2 Strengths10.3 Weaknesses10.4 Opportunities10.5 Threats
11 Value Chain Analysis
12 Porters Five Forces Analysis12.1 Overview12.2 Bargaining Power of Buyers12.3 Bargaining Power of Suppliers12.4 Degree of Competition12.5 Threat of New Entrants12.6 Threat of Substitutes
13 Price Analysis
14 Competitive Landscape14.1 Market Structure14.2 Key Players14.3 Profiles of Key Players14.3.1 Allergan PLC (AbbVie Inc.)14.3.1.1 Company Overview14.3.1.2 Product Portfolio 14.3.1.3 Financials 14.3.1.4 SWOT Analysis14.3.2 Amgen Inc.14.3.2.1 Company Overview14.3.2.2 Product Portfolio14.3.2.3 Financials 14.3.2.4 SWOT Analysis14.3.3 Baxter International Inc.14.3.3.1 Company Overview14.3.3.2 Product Portfolio 14.3.3.3 Financials 14.3.3.4 SWOT Analysis14.3.4 BD (Becton, Dickinson and Company)14.3.4.1 Company Overview14.3.4.2 Product Portfolio 14.3.4.3 Financials 14.3.4.4 SWOT Analysis14.3.5 Integra Lifesciences Holdings Corporation14.3.5.1 Company Overview14.3.5.2 Product Portfolio 14.3.5.3 Financials 14.3.5.4 SWOT Analysis14.3.6 Medtronic Plc14.3.6.1 Company Overview14.3.6.2 Product Portfolio 14.3.6.3 Financials14.3.6.4 SWOT Analysis14.3.7 Mimedx Group Inc.14.3.7.1 Company Overview14.3.7.2 Product Portfolio14.3.7.3 Financials 14.3.8 Novartis AG14.3.8.1 Company Overview14.3.8.2 Product Portfolio 14.3.8.3 Financials14.3.8.4 SWOT Analysis14.3.9 Osiris Therapeutics Inc. (Smith & Nephew plc)14.3.9.1 Company Overview14.3.9.2 Product Portfolio14.3.10 Thermo Fisher Scientific Inc.14.3.10.1 Company Overview14.3.10.2 Product Portfolio 14.3.10.3 Financials14.3.10.4 SWOT Analysis
For more information about this report visit https://www.researchandmarkets.com/r/ywnlq5
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Rising Adoption of Cell Therapy Processing Market by 2020-2027 with Major Giants: BioTime, Inc., Regeneus Ltd., Targazyme, Inc., Bone Therapeutics,…
By daniellenierenberg
The Cell Therapy Processing market was valued at $1,695 million in 2018, and is projected to reach $12,062 million by 2027, registering a CAGR of +27% from 2020 to 2027.
The Global Cell Therapy Processing Market provides a comprehensive outlook of the Global Market globally. This report gives a thorough examination of the market and, provides the market size and CAGR value for the forecast period 2020-2027, taking into account the past year as the base year.
Cell therapy processing refers to the administration of living cells in a patients body for treating a disease. For cell processing therapy, different types of cells can be utilized, including neural cells, skeletal muscle cells, embryonic stem cells, hematopoietic stem cells, and mesenchymal cells. Moreover, it is used for the treatment of cancers, repairmen of spinal cord injuries, infectious & urinary diseases, autoimmune diseases, improvement of a weakened immune system, rebuilding damaged cartilage in joints, and helping patients with neurological disorders.
Get up to 60% Discount on this report @: https://www.reportconsultant.com/ask_for_discount.php?id=76930
The Cell Therapy Processing Market Analysis Report includes Top Companies:
BioTime, Inc., Regeneus Ltd., Targazyme, Inc., Bone Therapeutics, NeuroGeneration, and Invitrx Therapeutics, Inc.
This report segments the Global Cell Therapy Processing Market on the basis of Types are:
On The basis Of Application, the Global Cell Therapy Processing Market is segmented into:
Regional Analysis For Cell Therapy Processing Market:
Try a sample Copy of this report now! @
https://www.reportconsultant.com/request_sample.php?id=76930
The research report provides in-depth analysis on:
In this study, the years considered estimating the market size of Cell Therapy Processing are as follows:
History Year: 2014-2018
Base Year: 2018
Estimated Year: 2019
Forecast Year 2020 to 2027
For the data information by region, company, type and application, 2020 is considered as the base year. Whenever data information was unavailable for the base year, the prior year has been considered.
Table of Content:-
Chapter 1 Global Cell Therapy Processing Market Overview
Chapter 2 Market Data Analysis
Chapter 3 Market Technical Data Analysis
Chapter 4 Market Government Policy and News
Chapter 5 Market Productions Supply Sales Demand Market Status and Forecast
Chapter 6 Global Market Manufacturing Process and Cost Structure
Chapter 7 Global Cell Therapy Processing Market Key Manufacturers
Chapter 8 Up and Down Stream Industry Analysis
Chapter 9 Marketing Strategy Market y Analysis
Chapter 10 Market Development Trend Analysis
Chapter 11 Global Global Cell Therapy Processing Market New Project Investment Feasibility Analysis
About us:
Report Consultant is a prime destination for your business aptitude and analytical solutions because we provide qualitative and quantitative sources of information that are proficient to give one-stop solutions. We skillfully syndicate qualitative and quantitative research in exact proportions to have the best report, which not only gives the most recent insights but also assists you to grow.
Contact us:
Rebecca Parker
(Report Consultant)
Contact No: +81-368444299
QurAlis Announces Appointment of New Chief Medical Officer and Formation of Clinical Advisory Board – BioSpace
By daniellenierenberg
Oct. 29, 2020 12:00 UTC
Rare disease and neurology expert Dr. Angela Genge to lead QurAlis clinical R&D for ALS and FTD
CAMBRIDGE, Mass.--(BUSINESS WIRE)-- QurAlis Corporation, a biotech company focused on developing precision medicines for amyotrophic lateral sclerosis (ALS) and other neurologic diseases, today announced the appointment of Angela Genge, MD, FRCP(C), eMBA to the position of Chief Medical Officer (CMO). Dr. Genge is the Executive Director of the Montreal Neurological Institutes Clinical Research Unit and the Director of Montreal Neurological Hospitals ALS Global Center of Excellence.
The company also announced the formation of its Clinical Advisory Board, which will work closely with Dr. Genge on QurAlis clinical research and development programs in ALS and frontotemporal dementia (FTD) as the company prepares to move its pipeline to the clinical stage.
As QurAlis grows and advances quickly toward the clinic, we are proud to welcome to the team Dr. Genge, a world-renowned expert in ALS clinical drug development, and announce the highly esteemed group of ALS experts who will be forming our Clinical Advisory Board, said Kasper Roet, PhD, Chief Executive Officer of QurAlis. Dr. Genge has been treating patients and studying and developing therapeutics and clinical trials for ALS and other rare neurologic diseases for more than 25 years, diligently serving these vulnerable patient populations. Along with our newly formed Clinical Advisory Board, having a CMO with this extensive expertise, understanding and experience is invaluable to our success. Dr. Genge and our Board members are tremendous assets for our team who will undoubtedly help us advance on the best path toward the clinic, and we look forward to working with them to conquer ALS.
Previously, Dr. Genge directed other clinics at the Montreal Neurological Hospital including the Neuromuscular Disease Clinic and the Neuropathic Pain Clinic. In 2014, she was a Distinguished Clinical Investigator in Novartis Global Neuroscience Clinical Development Unit, and she has served as an independent consultant for dozens of companies developing and launching neurological therapeutics. Dr. Genge has served in professorial positions at McGill University since 1994.
At this pivotal period in its journey, QurAlis is equipped with a strong, committed leadership team and promising precision medicine preclinical assets, and I look forward to joining the company as CMO, said Dr. Genge. This is an exciting opportunity to further strengthen my work in ALS and other neurological diseases, and I intend to continue innovating and expanding possibilities for the treatment of rare neurological diseases alongside the dedicated QurAlis team.
QurAlis new Clinical Advisory Board Members are:
Dr. Al-Chalabi is a Professor of Neurology and Complex Disease Genetics at the Maurice Wohl Clinical Neuroscience Institute, Head of the Department of Basic and Clinical Neuroscience, and Director of the Kings Motor Neuron Disease Care and Research Centre. Dr. Al-Chalabi trained in medicine in Leicester and London, and subsequently became a consultant neurologist at Kings College Hospital.
Dr. Andrews is an Associate Professor of Neurology in the Division of Neuromuscular Medicine at Columbia University, and serves as the Universitys Director of Neuromuscular Clinical Trials. She currently oversees neuromuscular clinical trials and cares for patients with neuromuscular disease, primarily with ALS. Dr. Andrews is the elected co-chair of the Northeastern ALS (NEALS) Consortium and is also elected to the National Board of Trustees of the ALS Association.
Dr. Cudkowicz is the Julianne Dorn Professor of Neurology at Harvard Medical School and Chief of Neurology and Director of the Sean M. Healey & AMG Center for ALS at Mass General Hospital. As co-founder and former co-chair of the Northeast ALS Consortium, she accelerated the development of ALS treatments for people with ALS, leading pioneering trials using antisense oligonucleotides, new therapeutic treatments and adaptive trial designs. Through the Healey Center at Mass General, she is leading the first platform trial for people with ALS.
Dr. Shaw serves as Director of the Sheffield Institute for Translational Neuroscience, the NIHR Biomedical Research Centre Translational Neuroscience for Chronic Neurological Disorders, and the Sheffield Care and Research Centre for Motor Neuron Disorders. She also serves as Consultant Neurologist at the Sheffield Teaching Hospitals NHS Foundation Trust. Since 1991, she has led a major multidisciplinary program of research investigating genetic, molecular and neurochemical factors underlying neurodegenerative disorders of the human motor system.
Dr. Van Damme is a Professor of Neurology and director of the Neuromuscular Reference Center at the University Hospital Leuven in Belgium. He directs a multidisciplinary team for ALS care and clinical research that is actively involved in ALS clinical trials, but is also working on the genetics of ALS, biomarkers of ALS, and disease mechanisms using different disease models, including patient-derived induced pluripotent stem cells.
Dr. van den Berg is a professor of neurology who holds a chair in experimental neurology of motor neuron diseases at the University Medical Center Utrecht in the Netherlands. He also is director of the centers Laboratory for Neuromuscular Disease, director of the Netherlands ALS Center, chairman of the Neuromuscular Centre the Netherlands, and chairman of the European Network to Cure ALS (ENCALS), a network of the European ALS Centres.
About ALS
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrigs disease, is a progressive neurodegenerative disease impacting nerve cells in the brain and spinal cord. ALS breaks down nerve cells, reducing muscle function and causing loss of muscle control. ALS can be traced to mutations in over 25 different genes and is often caused by a combination of multiple sub-forms of the condition. Its average life expectancy is three years, and there is currently no cure for the disease.
About QurAlis Corporation
QurAlis is bringing hope to the ALS community by developing breakthrough precision medicines for this devastating disease. Our stem cell technologies generate proprietary human neuronal models that enable us to more effectively discover and develop innovative therapies for genetically validated targets. We are advancing three antisense and small molecule programs addressing sub-forms of the disease that account for the majority of patients. Together with a world-class network of thought leaders, drug developers and patient advocates, our team is rising to the challenge of conquering ALS. http://www.quralis.com
View source version on businesswire.com: https://www.businesswire.com/news/home/20201029005203/en/
Tag: Animal Stem Cell Therapy Market – TMR Research Blog
By daniellenierenberg
The global animal stem cell therapy market is growing at rapid pace on the back of increased research and development activities in the healthcare sector. Stem cells are widely utilized for the replacement of neurons, which are damaged due to various health issues such as Parkinsons disease, stroke, Alzheimers disease, and spinal cord injury.
Get SampleCopy of this Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=6816
Stem cell therapy is gaining popularity on the back of increased technological advancements in worldwide healthcare sector. This technique is increasingly used for the treatment of numerous diseases and health disorders in animals as well. In recent years, there is remarkable increase in cases of different diseases in animals across the globe. This situation is resulted in growing utilization of animal stem cell therapy. As a result, the global animal stem cell therapy market is foreseen to gain prominent amount of money in the form of revenues in the forthcoming years.
Players Focus on Mergers and Acquisitions to Maintain Leading Market Position
The global animal stem cell therapy market experiences presence of many enterprises in it. As a result, the nature of this market is fairly fragmented. At the same time, the competitive landscape of the market for animal stem cell therapy is intense. Players operating in this market are using various organic as well as inorganic strategies to maintain their leading market position. One of the trending strategies used by vendors working in the global animal stem cell therapy market is mergers and acquisitions.
Check Table of Contents of this Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=6816
Several stakeholders in the animal stem cell therapy market are seen investing heavily in research and development activities. This move is helping them in achieving advancement in products quality. Apart from this, many companies are increasing engagement in collaborations, partnerships, joint ventures, and new product launches. All these activities are indicative of rapid expansion of the animal stem cell therapy market in the forthcoming years.
Follow this link:
Tag: Animal Stem Cell Therapy Market - TMR Research Blog
The Neuroprosthetics market to grow in the wake of incorporation of the latest technology – PRnews Leader
By daniellenierenberg
Central nervous system comprises brain and spinal cord, and is responsible for integration of sensory information. Brain is the largest and one of the most complex organs in the human body. It is made up of 100 billion nerves that communicate with 100 trillion synapses. It is responsible for the thought and movement produced by the body. Spinal cord is connected to a section of brain known as brain stem and runs through the spinal canal. The brain processes and interprets sensory information sent from the spinal cord. Brain and spinal cord serve as the primary processing centers for the entire nervous system, and control the working of the body. Neuroprosthetics improves or replaces the function of the central nervous system. Neuroprosthetics, also known as neural prosthetics, are devices implanted in the body that stimulate the function of an organ or organ system that has failed due to disease or injury. It is a brain-computer interface device used to detect and translate neural activity into command sequences for prostheses. Its primary aim is to restore functionality in patients suffering from loss of motor control such as spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, and stroke. The major types of neuroprosthetics include sensory implants, motor prosthetics, and cognitive prosthetics. Motor prosthetics support the autonomous system and assist in the regulation or stimulation of affected motor functions.
For more insights into the Market, request a sample of this report @https://www.persistencemarketresearch.com/samples/4160
Similarly, cognitive prosthetics restore the function of brain tissue loss in conditions such as paralysis, Parkinsons disease, traumatic brain injury, and speech deficit. Sensory implants pass information into the bodys sensory areas such as sight or hearing, and it is further classified as auditory (cochlear implant), visual, and spinal cord stimulator. Some key functions of neuroprosthetics include providing hearing, seeing, feeling abilities, pain relief, and restoring damaged brain cells. Cochlear implant is among the most popular neuroprosthetics. In addition, auditory brain stem implant is also a neuroprosthetic meant to improve hearing damage.
For Information On The Research Methodology request here @https://www.persistencemarketresearch.com/methodology/4160
North America dominates the global market for neuroprosthetics due to the rising incidence of neurological diseases and growth in geriatric population in the region. Asia is expected to display a high growth rate in the next five years in the global neuroprosthetics market, with China and India being the fastest growing markets in the Asia-Pacific region. Among the key driving forces for the neuroprosthetics market in developing countries are the large pool of patients, increasing awareness about the disease, improving healthcare infrastructure, and rising government funding in the region.
To receive extensive list of important regions, Request TOC here @https://www.persistencemarketresearch.com/toc/4160
Increasing prevalence of neurological diseases such as traumatic brain injury, stroke and Parkinsons disease, rise in geriatric population, increase in healthcare expenditure, growing awareness about healthcare, rapid progression of technology, and increasing number of initiatives by various governments and government associations are some key factors driving growth of the global neuroprosthetics market. However, factors such as high cost of devices, reimbursement issues, and adverse effects pose a major restraint to the growth of the global neuroprosthetics market.
Innovative self-charging neural implants that eliminate the need for high risk and costly surgery to replace the discharge battery and controlling machinery with thoughts would help to develop opportunities for the growth of the global neuroprosthetics market. The major companies operating in the global neuroprosthetics market are Boston Scientific Corporation, Cochlear Limited, Medtronic, Inc., Cyberonics, Inc., NDI Medical LLC, NeuroPace, Inc., Nervo Corp., Retina Implant AG, St. Jude Medical, and Sonova Group.
Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape
Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.
To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.
Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.
Contact us:
Naved BegPersistence Market ResearchAddress 305 Broadway, 7th Floor New York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com
Stem cell treatment after spinal cord injury: The next …
By daniellenierenberg
June 27, 2020
Following promising phase 1 testing, Mayo Clinic is launching phase 2 of a randomized clinical trial of stem cell treatment for patients with severe spinal cord injury. The clinical trial, known as CELLTOP, involves intrathecal injections of autologous adipose-derived stem cells.
"The field of spinal cord injury has seen advances in recent years, but nothing in the way of a significant paradigm shift. We currently rely on supportive care. Our hope is to alter the course of care for these patients in ways that improve their lives," says Mohamad Bydon, M.D., a neurosurgeon at Mayo Clinic in Rochester, Minnesota.
The first participant in the phase 1 trial was a superresponder who, after stem cell therapy, saw significant improvements in the function of his upper and lower extremities.
"Not every patient who receives stem cell treatment is going to be a superresponder. Among the 10 participants in our phase 1 study, we had some nonresponders and moderate responders," Dr. Bydon says. "One objective in our future studies is to delineate the optimal treatment protocols and understand why patients respond differently."
In CELLTOP phase 2, 40 patients will be randomized to receive stem cell treatment or best medical management. Patients randomized to the medical management arm will eventually cross over to the stem cell arm.
Study participants must be age 18 or older and have experienced traumatic spinal cord injury within the past year. The spinal cord injuries must be American Spinal Injury Association (ASIA) grade A or B.
The initial participant in CELLTOP phase 1 sustained a C3-4 ASIA grade A spinal cord injury. As described in the February 2020 issue of Mayo Clinic Proceedings, the neurological examination at the time of the injury revealed complete loss of motor and sensory function below the level of injury.
After undergoing urgent posterior cervical decompression and fusion, as well as physical and occupational therapy, the patient demonstrated improvement in motor and sensory function. But that progress plateaued six months after the injury.
Stem cells were injected nearly a year after his injury and several months after his improvement had plateaued. Clinical signs of efficacy in both motor and sensory function were observed at three, six, 12 and 18 months following the stem cell injection.
"Our patient also reported a strong improvement with his grip and pinch strength, as well as range of motion for shoulder flexion and abduction," Dr. Bydon says.
Spinal cord injury has a complex pathophysiology. After the primary injury, microenvironmental changes inhibit axonal regeneration. Stem cells can potentially provide trophic support to the injured spinal cord microenvironment by modulating the inflammatory response, increasing vascularization and suppressing cystic change.
"In the phase 2 study, we will begin to learn the characteristics of individuals who respond to the therapy in terms of their age, severity of injury and time since injury," says Anthony J. Windebank, M.D., a neurologist at Mayo's campus in Minnesota and director of the Regenerative Neurobiology Laboratory. "We will also use biomarker studies to learn about the characteristics of responders' cells. The next phase would be studying how we can modify everyone's cells to make them more like the cells of responders."
CELLTOP illustrates Mayo Clinic's commitment to regenerative medicine therapies for neurological care. "Our findings to date will be encouraging to patients with spinal cord injuries," Dr. Bydon says. "We are hopeful about the potential of stem cell therapy to become part of treatment algorithms that improve physical function for patients with these devastating injuries."
Bydon M, et al. CELLTOP clinical trial: First report from a phase I trial of autologous adipose tissue-derived mesenchymal stem cells in the treatment of paralysis due to traumatic spinal cord injury. Mayo Clinic Proceedings. 2020;95:406.
Regenerative Neurobiology Laboratory: Anthony J. Windebank. Mayo Clinic.
Read the rest here:
Stem cell treatment after spinal cord injury: The next ...
What We Know So Far about How COVID Affects the Nervous System – Scientific American
By daniellenierenberg
Many of the symptoms experienced by people infected with SARS-CoV-2 involve the nervous system. Patients complain of headaches, muscle and joint pain, fatigue and brain fog, or loss of taste and smellall of which can last from weeks to months after infection. In severe cases, COVID-19 can also lead to encephalitis or stroke. The virus has undeniable neurological effects. But the way it actually affects nerve cells still remains a bit of a mystery. Can immune system activation alone produce symptoms? Or does the novel coronavirus directly attack the nervous system?
Some studiesincluding a recent preprint paper examining mouse and human brain tissueshow evidence that SARS-CoV-2 can get into nerve cells and the brain. The question remains as to whether it does so routinely or only in the most severe cases. Once the immune system kicks into overdrive, the effects can be far-ranging, even leading immune cells to invade the brain, where they can wreak havoc.
Some neurological symptoms are far less serious yet seem, if anything, more perplexing. One symptomor set of symptomsthat illustrates this puzzle and has gained increasing attention is an imprecise diagnosis called brain fog. Even after their main symptoms have abated, it is not uncommon for COVID-19 patients to experience memory loss, confusion and other mental fuzziness. What underlies these experiences is still unclear, although they may also stem from the body-wide inflammation that can go along with COVID-19. Many people, however, develop fatigue and brain fog that lasts for months even after a mild case that does not spur the immune system to rage out of control.
Another widespread symptom called anosmia, or loss of smell, might also originate from changes that happen without nerves themselves getting infected. Olfactory neurons, the cells that transmit odors to the brain, lack the primary docking site, or receptor, for SARS-CoV-2, and they do not seem to get infected. Researchers are still investigating how loss of smell might result from an interaction between the virus and another receptor on the olfactory neurons or from its contact with nonnerve cells that line the nose.
Experts say the virus need not make it inside neurons to cause some of the mysterious neurological symptoms now emerging from the disease. Many pain-related effects could arise from an attack on sensory neurons, the nerves that extend from the spinal cord throughout the body to gather information from the external environment or internal bodily processes. Researchers are now making headway in understanding how SARS-CoV-2 could hijack pain-sensing neurons, called nociceptors, to produce some of COVID-19s hallmark symptoms.
Neuroscientist Theodore Price, who studies pain at the University of Texas at Dallas, took note of the symptoms reported in the early literature and cited by patients of his wife, a nurse practitioner who sees people with COVID remotely. Those symptoms include sore throat, headaches, body-wide muscle pain and severe cough. (The cough is triggered in part by sensory nerve cells in the lungs.)
Curiously, some patients report a loss of a particular sensation called chemethesis, which leaves them unable to detect hot chilies or cool peppermintsperceptions conveyed by nociceptors, not taste cells. While many of these effects are typical of viral infections, the prevalence and persistence of these pain-related symptomsand their presence in even mild cases of COVID-19suggest that sensory neurons might be affected beyond normal inflammatory responses to infection. That means the effects may be directly tied to the virus itself. Its just striking, Price says. The affected patients all have headaches, and some of them seem to have pain problems that sound like neuropathies, chronic pain that arises from nerve damage. That observation led him to investigate whether the novel coronavirus could infect nociceptors.
The main criteria scientists use to determine whether SARS-CoV-2 can infect cells throughout the body is the presence of angiotensin-converting enzyme 2 (ACE2), a protein embedded in the surface of cells. ACE2 acts as a receptor that sends signals into the cell to regulate blood pressure and is also an entry point for SARS-CoV-2. So Price went looking for it in human neurons in a study now published in the journal PAIN.
Nociceptorsand other sensory neuronslive in discreet clusters, found just outside the spinal cord, called dorsal root ganglia (DRG). Price and his team procured nerve cells donated after death or cancer surgeries. The researchers performed RNA sequencing, a technique to determine which proteins a cell is about to produce, and they used antibodies to target ACE2 itself. They found that a subset of DRG neurons did contain ACE2, providing the virus a portal into the cells.
Sensory neurons send out long tendrils called axons, whose endings sense specific stimuli in the body and then transmit them to the brain in the form of electrochemical signals. The particular DRG neurons that contained ACE2 also had the genetic instructions, the mRNA, for a sensory protein called MRGPRD. That protein marks the cells as a subset of neurons whose endings are concentrated at the bodys surfacesthe skin and inner organs, including the lungswhere they would be poised to pick up the virus.
Price says nerve infection could contribute to acute, as well as lasting, symptoms of COVID. The most likely scenario would be that the autonomic and sensory nerves are affected by the virus, he says. We know that if sensory neurons get infected with a virus, it can have long-term consequences, even if the virus does not stay in cells.
But, Price adds, it does not need to be that the neurons get infected. In another recent study, he compared genetic sequencing data from lung cells of COVID patients and healthy controls and looked for interactions with healthy human DRG neurons. Price says his team found a lot of immune-system-signaling molecules called cytokines from the infected patients that could interact with receptors on neurons. Its basically a bunch of stuff we know is involved in neuropathic pain. That observation suggests that nerves could be undergoing lasting damage from the immune molecules without being directly infected by the virus.
Anne Louise Oaklander, a neurologist at Massachusetts General Hospital, who wrote a commentary accompanying Prices paper in PAIN, says that the study was exceptionally good, in part because it used human cells. But, she adds, we dont have evidence that direct entry of the virus into [nerve] cells is the major mechanism of cellular [nerve] damage, though the new findings do not discount that possibility. It is absolutely possible that inflammatory conditions outside nerve cells could alter their activity or even cause permanent damage, Oaklander says. Another prospect is that viral particles interacting with neurons could lead to an autoimmune attack on nerves.
ACE2 is widely thought to be the novel coronaviruss primary entry point. But Rajesh Khanna, a neuroscientist and pain researcher at the University of Arizona, observes that ACE2 is not the only game in town for SARS-CoV-2 to come into cells. Another protein, called neuropilin-1 (NRP1), could be an alternate doorway for viral entry, he adds. NRP1 plays an important role in angiogenesis (the formation of new blood vessels) and in growing neurons long axons.
That idea came from studies in cells and in mice. It was found that NRP1 interacts with the viruss infamous spike protein, which it uses to gain entry into cells. We proved that it binds neuropilin and that the receptor has infectious potential, says virologist Giuseppe Balistreri of the University of Helsinki, who co-authored the mouse study, which was published in Sciencealong with a separate study in cells. It appears more likely that NRP1 acts as a co-factor with ACE2 than that the protein alone affords the virus entry to cells. What we know is that when we have the two receptors, we get more infection. Together, its much more powerful, Balistreri adds.
Those findings piqued the interest of Khanna, who was studying vascular endothelial growth factor (VEGF), a molecule with a long-recognized role in pain signaling that also binds to NRP1. He wondered whether the virus would affect pain signaling through NRP1, so he tested it in rats in a study that was also published in PAIN. We put VEGF in the animal [in the paw], and lo and behold, we saw robust pain over the course of 24 hours, Khanna says. Then came the really cool experiment: We put in VEGF and spike at the same time, and guess what? The pain is gone.
The study showed what happens to the neurons signaling when the virus tickles the NRP1 receptor, Balistreri says. The results are strong, demonstrating that neurons activity was altered by the touch of the spike of the virus through NRP1.
In an experiment in rats with a nerve injury to model chronic pain, administering the spike protein alone attenuated the animals pain behaviors. That finding hints that a spike-like drug that binds NRP1 might have potential as a new pain reliever. Such molecules are already in development for use in cancer.
In a more provocative and untested hypothesis, Khanna speculates that the spike protein might act at NRP1 to silence nociceptors in people, perhaps masking pain-related symptoms very early in an infection. The idea is that the protein could provide an anesthetic effect as SARS-CoV-2 begins to infect a person, which might allow the virus to spread more easily. I cannot exclude it, says Balistreri. Its not impossible. Viruses have an arsenal of tools to go unseen. This is the best thing they know: to silence our defenses.
It still remains to be determined whether a SARS-CoV-2 infection could produce analgesia in people. They used a high dose of a piece of the virus in a lab system and a rat, not a human, Balistreri says. The magnitude of the effects theyre seeing [may be due to] the large amount of viral protein they used. The question will be to see if the virus itself can [blunt pain] in people.
The experience of one patientRave Pretorius, a 49-year-old South African mansuggests that continuing this line of research is probably worthwhile. A motor accident in 2011 left Pretorius with several fractured vertebrae in his neck and extensive nerve damage. He says he lives with constant burning pain in his legs that wakes him up nightly at 3 or 4 A.M. It feels like somebody is continuously pouring hot water over my legs, Pretorius says. But that changed dramatically when he contracted COVID-19 in July at his job at a manufacturing company. I found it very strange: When I was sick with COVID, the pain was bearable. At some points, it felt like the pain was gone. I just couldnt believe it, he says. Pretorius was able to sleep through the night for the first time since his accident. I lived a better life when I was sick because the pain was gone, despite having fatigue and debilitating headaches, he says. Now that Pretorius has recovered from COVID, his neuropathic pain has returned.
For better or worse, COVID-19 seems to have effects on the nervous system. Whether they include infection of nerves is still unknown like so much about SARS-CoV-2. The bottom line is that while the virus apparently can, in principle, infect some neurons, it doesnt need to. It can cause plenty of havoc from the outside these cells.
Read more about the coronavirus outbreak from Scientific American here. And read coverage from our international network of magazines here.
See the rest here:
What We Know So Far about How COVID Affects the Nervous System - Scientific American