Page 9«..891011..2030..»

Prop. 14: In the COVID age, can California still afford its stem cell research program? – CALmatters

By daniellenierenberg

In summary

Proposition 14 asks voters to spend nearly $8 billion to continue the stem cell research program at a time when the coronavirus pandemic has decimated the state budget.

For the second time in 16 years, California voters will decide the fate of the states multi-billion dollar stem cell research program that established the state as a worldwide leader.

How the times have changed.

In November, as the pandemic drags on, Proposition 14 asks voters to spend nearly $8 billion to continue the program during a period when the research environment has significantly evolved and coronavirus has battered the states budget.

The bond measure would approve $5.5 billion in bonds to keep the states stem cell research agency running and grants flowing to California universities and companies.

At least $1.5 billion would be earmarked for brain and central nervous system diseases like Alzheimers and Parkinsons. The overall cost of the bonds and their interest totals about $7.8 billion, according to the state legislative analyst. The state would pay about $260 million annually for 30 years, or about 1 percent of Californias annual budget.

Proposition 14 is essentially a repeat with a bigger price tag and a few tweaks of Proposition 71, which California voters approved in 2004 after then-President George W. Bush prohibited, on religious grounds, all federal funding of any stem cell research using human embryos.

The bond measure would approve $5.5 billion in bonds to keep the states stem cell research agency running and grants flowing to California universities and companies.

That groundbreaking measure authorized $3 billion in state bonds to create the states stem cell research agency, the California Institute for Regenerative Medicine, and fund grants for research into treatments for Alzheimers disease, cancer, spinal cord injuries and other diseases.

The institute has nearly used up its original funding, so Prop. 71s author, real estate investor and attorney Robert N. Klein II, led a new effort to get Prop. 14 on the November ballot.

This time, embryonic stem cell research is in a much different place, with federal funding no longer blocked and more funding from the biotech industry.

Voters will want to consider what Californias previous investment in stem cell research has accomplished. Its a nuanced track record.

While many scientific experts agree that Prop 71 was a bold social innovation that successfully bolstered emerging stem cell research, some critics argue that the institutes grantmaking was plagued by conflicts of interest and did not live up to the promises of miracle cures that Prop. 71s supporters made years ago. Although the agency is funded with state money, its overseen by its own board and not by the California governor or lawmakers.

The agency had done a very good job of setting priorities for stem cell research, including research using human embryos, and doling out $300 million annually to build up California as a regenerative medicine powerhouse, according to a 2013 evaluation by the National Academies of Science, Engineering and Medicine.

But the report also found that because the institutes board is made up of scientists from universities and biotech firms likely to apply for grants, board members had almost unavoidable conflicts of interest.

Because human stem cells can develop into many types of cells, including blood, brain, nerve and muscle cells, scientists have long looked to them for potential treatments for currently incurable diseases and injuries. Researchers use two types of stem cells: embryonic stem cells, derived from unused human embryos created through in vitro fertilization, and adult stem cells, which are harder to work with but in some cases can be coaxed in a lab into behaving more like embryonic stem cells.

From the start, stem cell research has been ethically charged and politically controversial because human embryos are destroyed in some types of studies. Federal restrictions on the research have waxed and waned, depending on which political party holds power. While former President Bush restricted federal money for embryonic stem cell research, former President Obama removed those restrictions.

The Trump administration has restricted government research involving fetal tissue but not embryonic stem cells. However, anti-abortion lawmakers have called on the President to once again end federal funding for embryonic stem cell research.

California-funded research has led to one stem cell treatment for a form of Severe Combined Immunodeficiency known as the bubble baby disease. Children with the rare disease dont make enough of a key enzyme needed for a normal immune system. Without treatment, they can die from the disease if not kept in a protective environment. The U.S. Food and Drug Administration is now reviewing the treatment but has not yet approved it for widespread use.

Although many of the agencys early grants were for basic science, the institute also has supported 64 clinical trials of treatments for many types of cancer, sickle cell disease, spinal cord injuries, diabetes, kidney disease and amyotrophic lateral sclerosis, commonlyknown as Lou Gehrigs disease.

A June 2020 analysis by University of Southern California health policy researchers estimated that taxpayers initial $3 billion investment in the research institute helped create more than 50,000 jobs and generated $10 billion for the states economy.

Gov. Gavin Newsom has endorsed Proposition 14, and other supporters include the Regents of the University of California, the California Democratic Party, the Juvenile Diabetes Research Foundation, patient advocacy groups like the March of Dimes, and some local politicians and chambers of commerce.

Supporters have raised more than $8.5 million, including about $2 million from billionaire Dagmar Dolby, to pass the measure, according to California Secretary of State campaign finance reports.

The passage of Proposition 71 helped save my life, Sandra Dillon, a blood cancer patient, wrote in a San Diego Union-Tribune commentary supporting Proposition 14. She wrote that she had benefited from a drug developed with Institute-funded research that has been designated by the FDA as a breakthrough therapy.

It is unimaginable to think that Californians would vote to discontinue this amazing effort I dont know where I would be or what condition I would be in if it wasnt for the investment Californians made nearly two decades ago.

I think the agencys done good work, but this was never planned to be funded forever with debt.

Lawrence Goldstein, a UC San Diego professor of cellular and molecular medicine and stem cell researcher, said the grants were instrumental in furthering his research on treatments for Alzheimers disease and that Prop. 14 will help create new jobs. The agency has funded a great deal of very important stem cell medical research thats already produced terrific results and has the prospect of saving many more lives in the decade to come, he said.

Opponents include one member of the institutes board and a nonprofit that advocates for privacy in genetic research. They contend that the proposition seeks too much money and does not sufficiently address the conflicts of interest that cropped up after Prop. 71 was passed. They also note that private funding, including venture capital, for stem cell research has grown in recent years. Opponents had raised only $250 by late September, from a single contribution by the California Pro Life Council.

The editorial boards of some of Californias biggest newspapers also have opposed the measure, including the Los Angeles Times, the Orange County Register, the San Francisco Chronicle and the San Jose Mercury News/East Bay Times. The Fresno Bee, Modesto Bee, and San Luis Obispo Tribune newspaper editorial boards support Prop 14.

Jeff Sheehy, the only institute board member not to support Proposition 14, told CalMatters that the research environment has changed since voters initially approved state funding for stem cell research in 2004 and that California should prioritize other needs like education, health care, and housing.

I think the agencys done good work, but this was never planned to be funded forever with debt, Sheehy said. At this point the state cant afford it; were looking at a huge deficit.

Read the rest here:
Prop. 14: In the COVID age, can California still afford its stem cell research program? - CALmatters

To Read More: Prop. 14: In the COVID age, can California still afford its stem cell research program? – CALmatters
categoriaSpinal Cord Stem Cells commentoComments Off on Prop. 14: In the COVID age, can California still afford its stem cell research program? – CALmatters | dataOctober 16th, 2020
Read All

Animal Stem Cell Therapy Market – Great Growth Opportunities for the Market in the Coming Year | TMR Research Study – BioSpace

By daniellenierenberg

Advances in the stem cell therapy sector have been phenomenal over the years. Its assistance in curing humans of various diseases and disorders has generated expansive advancements. These advancements are not just limited to humans. Stem cell therapy has also acquired a prominent place in the veterinary sector.

The influence of animal stem cell therapy for the treatment of various animals for diverse diseases and disorders is growing rapidly. Therefore, this factor may help the global animal stem cell therapy market to generate exponential growth across the forecast period of 2019-2029. Stem cells help in the replacement of neurons affected by stroke, Parkinsons disease, spinal cord injury, Alzheimers disease, and others.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=6816

This animal stem cell therapy market report has extensive information on various aspects associated with bringing growth. Important factors such as emerging trends, mergers and acquisitions, and the regional scenario of the animal stem cell therapy market have been analyzed and included in the report. The stakeholders can derive a treasure of information from this report. This report also includes a scrutinized take on the COVID-19 impact on the animal stem cell therapy market.

Animal Stem Cell Therapy Market: Competitive Prospects

The competitive landscape of the animal stem cell therapy market can be described as mildly fragmented. With a considerable chunk of players, the animal stem cell therapy market is surrounded by substantial competition. Research and development activities form an important part of the growth landscape because they help gain novel insights.

Activities such as mergers, acquisitions, joint ventures, collaborations, and partnerships form the foundation of the growth of the animal stem cell therapy market. These activities help manufacturers to gain influence and eventually help in increasing the growth rate of the animal stem cell therapy market. Prominent participants in the animal stem cell therapy market are Magellan Stem Cells, Medivet Biologics LLC, Kintaro Cells Power, U.S. Stem Cell, Inc., Celavet Inc., VETSTEM BIOPHARMA, and VetCell Therapeutics.

Buy this Premium Report @ https://www.tmrresearch.com/checkout?rep_id=6816&ltype=S

Animal Stem Cell Therapy Market: Key Trends

Infections are scaling up among animals at a rapid rate. The alarming increase is proving fatal for many animals. Therefore, to avoid such incidences and treat existing diseases and disorders, animal stem cell therapy is being applied seamlessly. Hence, this aspect may bring great growth opportunities for the animal stem cell therapy market.

Developments have been observed across the animal stem cell therapy market for long. Autologous adipose-derived mesenchymal stem cells are gaining traction for successfully resolving a range of issues in animals. These stem cells help in treating ligament and tendon injuries to a certain extent. The strengthening influence of this stem cell type in companion animals is also proving to be a prominent growth prospect for the animal stem cell therapy market.

Recent research has also found that stem cell-derived CC exosomes showed improved recovery from myocardial infarction (MI) among pigs. Such developments assure promising growth for the animal stem cell therapy market.

Animal Stem Cell Therapy Market: Regional Analysis

The animal stem cell therapy market is spread across North America, Latin America, the Middle East and Africa, Europe, and Asia Pacific. The animal stem cell therapy market may derive significant growth from North America. The escalating awareness regarding animal stem cell therapy may attract profound growth. Strengthening research and development activities in the region regarding animal stem cell therapy is further expanding the growth prospects.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=6816

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

Read more:
Animal Stem Cell Therapy Market - Great Growth Opportunities for the Market in the Coming Year | TMR Research Study - BioSpace

To Read More: Animal Stem Cell Therapy Market – Great Growth Opportunities for the Market in the Coming Year | TMR Research Study – BioSpace
categoriaSpinal Cord Stem Cells commentoComments Off on Animal Stem Cell Therapy Market – Great Growth Opportunities for the Market in the Coming Year | TMR Research Study – BioSpace | dataOctober 6th, 2020
Read All

UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries – UC Davis

By daniellenierenberg

Engineers at the University of California, Davis, will lead a consortium of universities, biomedical startups and nonprofit organizations to develop interventions for spinal cord injuries that can be applied within days of injury to improve long-term outcomes.

Karen Moxon, professor of biomedical engineering at UC Davis, will lead the five-year, $36 million contract as part of the Defense Advanced Research Project Agency, or DARPA, Bridging the Gap Plus Program. A primary goal is to develop technologies to stabilize a patients hemodynamic response, which includes blood flow and blood pressure, within days of injury.

Because large swings in blood pressure are common following spinal cord injuries, stabilizing hemodynamics within days of injury will improve functional recovery. The team will take advantage of stabilized hemodynamics to optimize delivery of neural stem cells using personalized 3D printed scaffolds within two weeks of injury to regenerate lost connections within the injured spinal cord.

Spinal cord injury is a complex condition that causes partial or complete loss of function below the location of injury, Moxon said. We will develop systems for real-time biomarker monitoring and intervention to stabilize and rebuild neural communications pathways between the brain and spinal cord. As a result of our efforts, clinicians will be able to collect previously unavailable diagnostic information for automated or clinician-directed interventions. Our goal is to translate these technologies to humans within the five-year award period.

The international team includes 12 institutions: UC Davis, UC San Diego, UC San Francisco, the University of British Columbia, the University of Calgary and the cole Polytechnique Fdrale de Lausanne (EPFL, Switzerland); biotech startups Pathonix Innovation Inc. of Vancouver, GTX Medical (Lausanne, Switzerland), and Teliatry (Richardson, Texas); nonprofit institutions the Wyss Center for Bio and Neuroengineering (Geneva, Switzerland) and Battelle Memorial Institute (Columbus, Ohio); and a regulatory consultant firm, NetValue BioConsulting Inc., Toronto.

Moxon and her team at UC Davis including Zhaodan Kong, associate professor in the Department of Mechanical and Aerospace Engineering, and Professor Kiarash Shahlaie and Assistant Professor Julius Ebinu, neurosurgeons in the UC Davis School of Medicine will take the lead on assessing the impact of these interventions on the brain to maximize the restoration of both motor and sensory functions. This part of the project will be conducted at the California National Primate Research Center.

We are extremely pleased that the California National Primate Research Center will host the nonhuman primate research arm of this extraordinary effort to restore function following spinal cord injury, said center director John Morrison, professor of neurology at UC Davis.

Part of the effort will also aim to improve functional recovery, using neural stem cell and bioengineering scaffold technology developed by professors Mark Tuszynski, Paul Lu, Ephron Rosenzweig and Jacob Koffler, all faculty in the Department of Neurosciences at UCSD. Their stem cell and scaffold technology will be combined with neural electrical stimulation technology (neuromodulation) developed by Gregoire Courtine at EPFL. The team hopes to successfully combine this cell and engineering technology to promote nerve regeneration that bridges the injury site.

Moxons lab at UC Davis, in collaboration with a teamat the Wyss Center for Bio and Neuroengineering led by Tracy Laabs, will develop cortical stimulation protocols to enhance sensory feedback to the brain and aid in motor control. The team will take advantage of Wysss ABILITYsystem that wirelessly records signals from individual neurons in the brain and will further develop it to include closed-loop cortical stimulation, which employs a sensor to record signals, for improved motor function.

The multi-institution team will focus on advancing three main technologies:

Together, these technologies will integrate into a system-of-systems that monitors the information from sensors and stimulators to allow clinicians to monitor patients progress. At the same time, the team will be able to identify the optimal time to transplant the neural stem cells and 3D scaffold in this critical time period after injury.

It is exciting to lead this talented team of international scientists and to be in a position to effect real change for people who sustain a spinal cord injury, Moxon said. Its this type of team science between academia and industry that makes clinical breakthroughs possible in short time periods.

Development of the proposal for the award was facilitated by the UC Davis Office of Researchs Interdisciplinary Research Support team and Gabriela Lee, project manager. This project is part of a larger effort at UC Davis led by Moxon, Professor Sanjay Joshi in the Department of Mechanical and Aerospace Engineering, and Professor Carolynn Patten in the School of Medicine and College of Biological Sciences to develop a neuroengineering program that aims to restore, augment and extend human capacity to benefit society.

Read the original here:
UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries - UC Davis

To Read More: UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries – UC Davis
categoriaSpinal Cord Stem Cells commentoComments Off on UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries – UC Davis | dataOctober 2nd, 2020
Read All

What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) – KQED

By daniellenierenberg

Olivia Allen-Price [00:01:55] OK, so what exactly does this bond fund?

Danielle Venton [00:01:59] This would fund $5.5 billion in stem cell research and treatments in California. Some of the diseases that stem cell research is seeking to cure or treat include cancer, Alzheimer's disease, diabetes, spinal cord injuries, blindness, and even COVID-19. I spoke recently with a guy named Jake Javier. He supports this bond initiative because he knows firsthand how life changing stem cell research can be.

Jake Javier [00:02:25] I am in my last year at Cal Poly.

Danielle Venton [00:02:28] So, Jake grew up locally in Danville and was just graduating high school when he suffered a life altering injury.

Jake Javier [00:02:35] On the last day of high school, I drove in to a pool and hit my head on the bottom and broke my neck and was immediately paralyzed.

Danielle Venton [00:02:47] He says his injury was complete, with very little hope of recovery. But a doctor at Stanford reached out to Jake and his family and said, you can be part of this clinical trial where we, with a one time surgery, will inject stem cells into the damaged area and you may possibly see some benefits.

Danielle Venton [00:03:07] Now, Jake is still injured.

Jake Javier [00:03:09] I'm a quadriplegic. I use a wheelchair.

Danielle Venton [00:03:11] But he says after the surgery, he noticed more movement in his arms, in his hands.

Jake Javier [00:03:17] So, I mean, with my injury, I'm at a level where I would normally not have any function at all in my hands and very, very little function like in my triceps and things like that. Muscles that are really important for functionality and, you know, being able to get through day to day activities that could help me push myself around more, help me transfer in and out of my chair independently. And then also, I notice, you know, I got some some finger movement. It doesn't seem like much, but even that little movement has helped me so much with picking things up and things like that. So it was really, I was really blessed to see that happen.

Danielle Venton [00:03:51] So he doesn't know how much of his recovery is due to the stem cells. How much is natural, or how much is due to physical therapy. But today he's able to live independently, to go to college and he wants to pursue a career in medicine. And he is a big believer in stem cell research, regenerative medicine, and is really hoping that California voters will support this proposition.

Olivia Allen-Price [00:04:20] Now, what exactly are stem cells and how do they work, I guess?

Danielle Venton [00:04:25] Yeah, stem cells are types of cells that can be turned into any type of specialized cell. Scientists have known about them since the eighteen hundreds, but it wasn't until the late 90s that researchers developed a method to derive them from human embryos and grow them in a laboratory. And then people really began to get excited about their potential for medicine. Now these cells came from unused embryos created for in vitro fertilization, and they were donated with informed consent. But many anti-abortion groups felt that using the cells were tantamount to taking a human life. So in 2001, then President George W. Bush banned federal funding for any research using newly created stem cell lines.

Olivia Allen-Price [00:05:09] OK. And how does that get us now to bonds in California?

Danielle Venton [00:05:13] Well, Californians wanted to circumvent these federal restrictions, and in 2004 voted for a bond that gave the state $3 billion to create a research agency called the California Institute of Regenerative Medicine, or CIRM. There was a lot of public support for it. And it just felt like these wonderful cures could be right around the corner. Celebrities like Michael J. Fox appeared in TV commercials.

Michael J. Fox TV commercial [00:05:36] My most important role lately is as an advocate for patients, and for finding new cures for diseases. That's why I'm asking you to vote yes on Proposition 71, Stem Cell Research Initiative.

Danielle Venton [00:05:48] And the money for that research, that $3 billion, has now run out. And to continue their work, the stem cell advocacy group, Americans for Cures, is asking voters for more money.

Olivia Allen-Price [00:06:00] So we're basically voting on whether we want to refill the stem cell research piggy bank here.

Danielle Venton [00:06:05] Yeah, exactly. Some question if the state can afford this at this time when budgets are going to be so tight. Others have been disappointed by the slow pace of cures coming out of the field. Now, there are people who credit this research, such as Jake, with improving or restoring their health or the health of their loved ones. Or maybe they hope that one day it will, and they would balk at the idea that this is not worthy research. They point to achievements that the agency has funded. That includes effectively a cure for bubble baby disease. This is when someone is born without a functioning immune system. That mutation can now be corrected with genetically modified stem cells. And recently, just within the last year or so, the FDA approved two new treatments for blood cancer, developed with CIRM support. These achievements are what the agency points to when they're criticized for not having accomplished more. And they say the process of scientific discovery is long and unpredictable.

Olivia Allen-Price [00:07:04] Now, wasn't that Bush-era ban on stem cell research that you were talking about earlier wasn't that overturned?

Danielle Venton [00:07:11] Yes, that was overturned by President Obama. However, there are current members of Congress who are lobbying President Trump to ban the research again. And if that happens, then California would be the only major player in stemcell research once again in the United States.

Olivia Allen-Price [00:07:30] All right, so who is supporting Prop 14?

Danielle Venton [00:07:32] Governor Gavin Newsom, for one. Many patient advocacy organizations and medical and research institutions, including the California Board of Regents. These people don't want to see the pace of this research slow. They want it to accelerate. The political action committee supporting this proposition is reporting more than six million dollars in contributions.

Olivia Allen-Price [00:07:53] All right. And what about the opposition? Who's against it?

Danielle Venton [00:07:55] Well, so far, there's no organized, funded opposition. There have been several newspaper editorials coming out against it, including locally, the Mercury News and the Santa Rosa Press Democrat. They basically say state bonds aren't the way to fund research and the situation isn't like it was in 2004 and that the institute should now seek other sources of funding and move forward as a nonprofit.

Olivia Allen-Price [00:08:19] All right, Danielle. Well, thanks, as always for your help.

Danielle Venton [00:08:21] My pleasure. Thanks.

Olivia Allen-Price [00:08:28] In a nutshell, a vote yes on Proposition 14 says you think Californians should give $5.5 billion to the state's stem cell research institute. That money will be raised by selling bonds, which the state would pay back, with interest, out ofthe general fund over the next 30 years. A vote no means you think we shouldn't spend public money on this research.

Olivia Allen-Price [00:08:54] That's it on Proposition 14. We'll be back tomorrow with an episode on Prop 15. And oh, it is a doozy. Commercial property tax! A partial rollback of one of California's most controversial propositions! It's going to be fire. In the meantime, you can find more of KQED election coverage at KQED.org/elections. Two reminders on the way out: October 19th is the last day to register to vote and mail in ballots must be postmarked on or before November 3rd.

Olivia Allen-Price [00:09:28] Bay Curious is made in San Francisco at member supported KQED. I'm Olivia Allen-Price. See you tomorrow.

See the original post here:
What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) - KQED

To Read More: What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) – KQED
categoriaSpinal Cord Stem Cells commentoComments Off on What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) – KQED | dataOctober 2nd, 2020
Read All

SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy – MIT News

By daniellenierenberg

Researchers from Critical Analytics for Manufacturing Personalized-Medicine (CAMP), an interdisciplinary research group at Singapore-MIT Alliance for Research and Technology (SMART), MITs research enterprise in Singapore, have been awarded Intra-CREATE grants from the National Research Foundation (NRF) Singapore to help support research on retinal biometrics for glaucoma progression and neural cell implantation therapy for spinal cord injuries. The grants are part of the NRFs initiative to bring together researchers from Campus for Research Excellence And Technological Enterprise (CREATE) partner institutions, in order to achieve greater impact from collaborative research efforts.

SMART CAMP was formed in 2019 to focus on ways to produce living cells as medicine delivered to humans to treat a range of illnesses and medical conditions, including tissue degenerative diseases, cancer, and autoimmune disorders.

Singapores well-established biopharmaceutical ecosystem brings with it a thriving research ecosystem that is supported by skilled talents and strong manufacturing capabilities. We are excited to collaborate with our partners in Singapore, bringing together an interdisciplinary group of experts from MIT and Singapore, for new research areas at SMART. In addition to our existing research on our three flagship projects, we hope to develop breakthroughs in manufacturing other cell therapy platforms that will enable better medical treatments and outcomes for society, says Krystyn Van Vliet, co-lead principal investigator at SMART CAMP, professor of materials science and engineering, and associate provost at MIT.

Understanding glaucoma progression for better-targeted treatments

Hosted by SMART CAMP, the first research project, Retinal Analytics via Machine learning aiding Physics (RAMP), brings together an interdisciplinary group of ophthalmologists, data scientists, and optical scientists from SMART, Singapore Eye Research Institute (SERI), Agency for Science, Technology and Research (A*STAR), Duke-NUS Medical School, MIT, and National University of Singapore (NUS). The team will seek to establish first principles-founded and statistically confident models of glaucoma progression in patients. Through retinal biomechanics, the models will enable rapid and reliable forecast of the rate and trajectory of glaucoma progression, leading to better-targeted treatments.

Glaucoma, an eye condition often caused by stress-induced damage over time at the optic nerve head, accounts for 5.1 million of the estimated 38 million blind in the world and 40 percent of blindness in Singapore. Currently, health practitioners face challenges forecasting glaucoma progression and its treatment strategies due to the lack of research and technology that accurately establish the relationship between its properties, such as the elasticity of the retina and optic nerve heads, blood flow, intraocular pressure and, ultimately, damage to the optic nerve head.

The research is co-led by George Barbastathis, principal investigator at SMART CAMP and professor of mechanical engineering at MIT, and Aung Tin, executive director at SERI and professor at the Department of Ophthalmology at NUS. The team includes CAMP principal investigators Nicholas Fang, also a professor of mechanical engineering at MIT; Lisa Tucker-Kellogg, assistant professor with the Cancer and Stem Biology program at Duke-NUS; and Hanry Yu, professor of physiology with the Yong Loo Lin School of Medicine, NUS and CAMPs co-lead principal investigator.

We look forward to leveraging the ideas fostered in SMART CAMP to build data analytics and optical imaging capabilities for this pressing medical challenge of glaucoma prediction, says Barbastathis.

Cell transplantation to treat irreparable spinal cord injury

Engineering Scaffold-Mediated Neural Cell Therapy for Spinal Cord Injury Treatment (ScaNCellS), the second research project, gathers an interdisciplinary group of engineers, cell biologists, and clinician scientists from SMART, Nanyang Technological University (NTU), NUS, IMCB A*STAR, A*STAR, French National Centre for Scientific Research (CNRS), the University of Cambridge, and MIT. The team will seek to design a combined scaffold and neural cell implantation therapy for spinal cord injury treatment that is safe, efficacious, and reproducible, paving the way forward for similar neural cell therapies for other neurological disorders. The project, an intersection of engineering and health, will achieve its goals through an enhanced biological understanding of the regeneration process of nerve tissue and optimized engineering methods to prepare cells and biomaterials for treatment.

Spinal cord injury (SCI), affecting between 250,000 and 500,000 people yearly, is expected to incur higher societal costs as compared to other common conditions such as dementia, multiple sclerosis, and cerebral palsy. SCI can lead to temporary or permanent changes in spinal cord function, including numbness or paralysis. Currently, even with the best possible treatment, the injury generally results in some incurable impairment.

The research is co-led by Chew Sing Yian, principal investigator at SMART CAMP and associate professor of the School of Chemical and Biomedical Engineering and Lee Kong Chian School of Medicine at NTU, and Laurent David, professor at University of Lyon (France) and leader of the Polymers for Life Sciences group at CNRS Polymer Engineering Laboratory. The team includes CAMP principal investigators Ai Ye from Singapore University of Technology and Design; Jongyoon Han and Zhao Xuanhe, both professors at MIT; as well as Shi-Yan Ng and Jonathan Loh from Institute of Molecular and Cell Biology, A*STAR.

Chew says, Our earlier SMART and NTU scientific collaborations on progenitor cells in the central nervous system are now being extended to cell therapy translation. This helps us address SCI in a new way, and connect to the methods of quality analysis for cells developed in SMART CAMP.

Cell therapy, one of the fastest-growing areas of research, will provide patients with access to more options that will prevent and treat illnesses, some of which are currently incurable. Glaucoma and spinal cord injuries affect many. Our research will seek to plug current gaps and deliver valuable impact to cell therapy research and medical treatments for both conditions. With a good foundation to work on, we will be able to pave the way for future exciting research for further breakthroughs that will benefit the health-care industry and society, says Hanry Yu, co-lead principal investigator at SMART CAMP, professor of physiology with the Yong Loo Lin School of Medicine, NUS, and group leader of the Institute of Bioengineering and Nanotechnology at A*STAR.

The grants for both projects will commence on Oct. 1, with RAMP expected to run until Sept. 30, 2022, and ScaNCellS expected to run until Sept. 30, 2023.

SMART was. established by the MIT in partnership with the NRF in 2007. SMART is the first entity in the CREATE developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Centre and five interdisciplinary research groups (IRGs): Antimicrobial Resistance, CAMP, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

CAMP is a SMART IRG launched in June 2019. It focuses on better ways to produce living cells as medicine, or cellular therapies, to provide more patients access to promising and approved therapies. The investigators at CAMP address two key bottlenecks facing the production of a range of potential cell therapies: critical quality attributes (CQA) and process analytic technologies (PAT). Leveraging deep collaborations within Singapore and MIT in the United States, CAMP invents and demonstrates CQA/PAT capabilities from stem to immune cells. Its work addresses ailments ranging from cancer to tissue degeneration, targeting adherent and suspended cells, with and without genetic engineering.

CAMP is the R&D core of a comprehensive national effort on cell therapy manufacturing in Singapore.

View post:
SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy - MIT News

To Read More: SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy – MIT News
categoriaSpinal Cord Stem Cells commentoComments Off on SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy – MIT News | dataOctober 2nd, 2020
Read All

The global market for Nerve Repair and Regeneration is projected to reach US$12.7 billion by 2025 – GlobeNewswire

By daniellenierenberg

New York, Sept. 29, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Nerve Repair and Regeneration Devices Industry" - https://www.reportlinker.com/p05957490/?utm_source=GNW Nerves constitute the most significant cable systems in the human body, performing the crucial job of carrying messages and information to brain and also to other parts of body. Whenever such critical nerves are injured, problems arise in muscles leading to sensation loss. Major types of nerve injuries include Neuropraxia, the physiologic blocking of nerve; Axonotmesis, the anatomic disruption of axon with slight disruption of connective tissue; and Neurotmesis, the anatomic disruption of connective tissue and nerve fibers.These injuries could result in trauma or more serious neurodegenerative diseases such as Parkinson`s disease, Alzheimer`s disease, multiple system atrophy, multiple sclerosis, and amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig`s disease).Alzheimer`s, Parkinson`s, Amyotrophic Lateral Sclerosis and multiple sclerosis are diseases that cause injury to the complex, delicate structures of the nervous system.Till date spinal cord injury and peripheral nerve damage are often permanent and incapacitating.

Innovative strategies are required for a shift in the paradigm and advanced treatment of these neurological injuries.But the question as to whether adult neurogenesis isrealstill remains unanswered with several contentious research studies still underway with no definitive answer to this century-long debate. Regrowth or repair of nervous tissues and cells involves generation of new neurons, glia, axons, myelin, or synapses.Gene Therapy is attracting immense research investments for its promise in promoting nerve regeneration and intraneural revascularization is being studied for its role in peripheral nerve regeneration.Newer studies are however dampening hopes by stating that adults produce no new cells in the hippocampus. Nevertheless, hopes of regeneration arecreating lucrative commercial opportunities as the pressure builds for newer and more effective treatment for neurological diseases.As the world awaits for a paradigm-shift in the treatment of neurological injury, neurostimulation and neuromodulation devices and biomaterials remains a massive multibilliondollar market worldwide. Neurostimulation and neuromodulation devices are currently available solutions to treat a variety of nerve injuries including peripheral nerve injuries. Neurostimulation and neuromodulation methods involve use of specially designed devices to transmit electrical impulses for controlling activity of the central nervous system and the brain.Internal neurostimulation and neuromodulation devices are growing in popularity for their significantly lower risk for post-surgical complications and shorter hospital stays. These include deep brain stimulation (DBS)for Parkinson`s, epilepsy and depression; spinal cord stimulation (SCS) for pain management and spasticity; gastric electrical stimulation (GES) for obesity and gastroparesis; vagus nerve stimulation (VNS) for depression and epilepsy; and sacral nerve stimulation (SNS) for constipation and urinary incontinence disorders.External neurostimulation devices, on the other hand, comprise transcutaneous vagus nerve stimulation (TVNS) for autism, depression, anxiety and age related disorders; transcutaneous electrical nerve stimulation (TENS)for chronic neuropathic pain and fibromyalgia disorders; transcranial magnetic stimulation (TMS)for depression and ADHD; and respiratory electrical stimulation (RES) for improving the respiratory function after spinal cord injury.

Read the full report: https://www.reportlinker.com/p05957490/?utm_source=GNW

I. INTRODUCTION, METHODOLOGY & REPORT SCOPE

II. EXECUTIVE SUMMARY

1. GLOBAL MARKET OVERVIEW Nerve Repair and Regeneration Market Set for a Rapid Growth Neurostimulation and Neuromodulation Devices: Largest Product Segment Biomaterials to Exhibit Rapid Growth Nerve Repair and Regeneration Market by Application US and Europe Dominate the Market, Asia-Pacific to Register the Fastest Growth

2. FOCUS ON SELECT PLAYERS Abbott Laboratories, Inc. (USA) AxoGen, Inc. (USA) Boston Scientific Corporation (USA) Integra LifeSciences Corporation (USA) LivaNova, PLC (UK) Medtronic plc (USA) NeuroPace, Inc. (USA) Nevro Corporation.(USA) Orthomed S.A.S. (France) Polyganics B.V. (The Netherlands) Stryker Corporation (U.S.) Synapse Biomedical Inc. (U.S.)

3. MARKET TRENDS & DRIVERS High Incidence of Brain Disorders and Nerve Injuries: Primary Market Driver Annual Incidence of Adult-Onset Neurologic Disorders in the US Symptomatic Epilepsy Incidence by Type (2019): Percentage Share Breakdown of Congenital, Degenerative, Infective, Neoplastic, Trauma, and Vascular Epilepsy Global Alzheimers Prevalence by Age Group Diagnosed Prevalence Cases of Parkinson?s Disease Across Select Countries Classification of Nerve Injuries Recent Developments in Spinal Cord Injury Treatment Rising Geriatric Population and Subsequent Growth in Prevalence Of Neurological Disorders Global Population Statistics for the 65+ Age Group in Million by Geographic Region for the Years 2019, 2025, 2035 and 2050 Intensified Research Activity Across Various Neural Disciplines Induces Additional Optimism Stem Cell Therapy: A Promising Avenue for Nerve Repair and Regeneration New Biomaterials Pave the Way for Innovative Neurodegeneration Therapies Role of Nerve Conduits in the Treatment of Peripheral Nerve Injury Innovative Nerve Conduits from Stryker Technological Advancements and Product Innovations - A Key Growth Driver Neurostimulation Allows Paralyzed People to Regain Leg Movement Neurostimulator to Treat Neurological Conditions Micro-Implantable Solution for Neurostimulation Parasym? Device for Neurostimulation Boston Scientific?s Spinal Cord Stimulation Improves Quality of Life Intellis? Platform Presents Smallest Implantable Neurostimulator Innovation in Deep Brain Stimulation for Parkinson?s Disease Innovations in Spinal Cord Stimulation for Pain Smart Neuromodulation: The Combination of AI and Neuromodulation Technologies New Dynamic Lead Interface Design for Neurostimulator Devices Wireless SCS Neuromodulation Therapy: An Alternative to Traditional SCS System Select Recent Approvals of Neuro-stimulation and Neuromodulation Devices Select Launches in Spinal Cord Stimulation (SCS) Market Select Launches in Deep Brain Stimulation (DBS) Market Select Neurostimulation Devices in Clinical Trials Select Neuromodulation Devices in Clinical Trials

4. GLOBAL MARKET PERSPECTIVE Table 1: World Current & Future Analysis for Nerve Repair and Regeneration Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 2: World Historic Review for Nerve Repair and Regeneration Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 3: World 15-Year Perspective for Nerve Repair and Regeneration Devices by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets for Years 2012, 2020 & 2027

Table 4: World Current & Future Analysis for Neurostimulation & Neuromodulation Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 5: World Historic Review for Neurostimulation & Neuromodulation Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 6: World 15-Year Perspective for Neurostimulation & Neuromodulation Devices by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 7: World Current & Future Analysis for Biomaterials by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 8: World Historic Review for Biomaterials by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 9: World 15-Year Perspective for Biomaterials by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 10: World Current & Future Analysis for Neurostimulation & Neuromodulation Surgeries by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 11: World Historic Review for Neurostimulation & Neuromodulation Surgeries by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 12: World 15-Year Perspective for Neurostimulation & Neuromodulation Surgeries by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 13: World Current & Future Analysis for Neurorrhaphy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 14: World Historic Review for Neurorrhaphy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 15: World 15-Year Perspective for Neurorrhaphy by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 16: World Current & Future Analysis for Nerve Grafting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 17: World Historic Review for Nerve Grafting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 18: World 15-Year Perspective for Nerve Grafting by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 19: World Current & Future Analysis for Stem Cell Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 20: World Historic Review for Stem Cell Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 21: World 15-Year Perspective for Stem Cell Therapy by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 22: World Current & Future Analysis for Hospitals & Clinics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 23: World Historic Review for Hospitals & Clinics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 24: World 15-Year Perspective for Hospitals & Clinics by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 25: World Current & Future Analysis for Ambulatory Surgery Centers by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 26: World Historic Review for Ambulatory Surgery Centers by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 27: World 15-Year Perspective for Ambulatory Surgery Centers by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

III. MARKET ANALYSIS

GEOGRAPHIC MARKET ANALYSIS

UNITED STATES Table 28: USA Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 29: USA Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 30: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 31: USA Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 32: USA Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 33: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 34: USA Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 35: USA Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 36: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

CANADA Table 37: Canada Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 38: Canada Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 39: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 40: Canada Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 41: Canada Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 42: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 43: Canada Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 44: Canada Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 45: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

JAPAN Table 46: Japan Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 47: Japan Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 48: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 49: Japan Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 50: Japan Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 51: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 52: Japan Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 53: Japan Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 54: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

CHINA Table 55: China Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 56: China Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 57: China 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 58: China Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 59: China Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 60: China 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 61: China Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 62: China Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 63: China 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

EUROPE Table 64: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by Geographic Region - France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2020 through 2027

Table 65: Europe Historic Review for Nerve Repair and Regeneration Devices by Geographic Region - France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 66: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets for Years 2012, 2020 & 2027

Table 67: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 68: Europe Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 69: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 70: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 71: Europe Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 72: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 73: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 74: Europe Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 75: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

FRANCE Table 76: France Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 77: France Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 78: France 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 79: France Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 80: France Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 81: France 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 82: France Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 83: France Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 84: France 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

GERMANY Table 85: Germany Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 86: Germany Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 87: Germany 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 88: Germany Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Billion for the Years 2020 through 2027

Table 89: Germany Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Billion for Years 2012 through 2019

Table 90: Germany 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

View original post here:
The global market for Nerve Repair and Regeneration is projected to reach US$12.7 billion by 2025 - GlobeNewswire

To Read More: The global market for Nerve Repair and Regeneration is projected to reach US$12.7 billion by 2025 – GlobeNewswire
categoriaSpinal Cord Stem Cells commentoComments Off on The global market for Nerve Repair and Regeneration is projected to reach US$12.7 billion by 2025 – GlobeNewswire | dataSeptember 29th, 2020
Read All

MS treatment a step closer after drug shown to repair nerve coating – The Guardian

By daniellenierenberg

Doctors believe they are closer to a treatment for multiple sclerosis after discovering a drug that repairs the coatings around nerves that are damaged by the disease.

A clinical trial of the cancer drug bexarotene showed that it repaired the protective myelin sheaths that MS destroys. The loss of myelin causes a range of neurological problems including balance, vision and muscle disorders, and ultimately, disability.

While bexarotene cannot be used as a treatment, because the side-effects are too serious, doctors behind the trial said the results showed remyelination was possible in humans, suggesting other drugs or drug combinations will halt MS.

Its disappointing that this is not the drug well use, but its exciting that repair is achievable and it gives us great hope for another trial we hope to start this year, said Prof Alasdair Coles, who led the research at the University of Cambridge.

MS arises when the immune system mistakenly attacks the fatty myelin coating that wraps around nerves in the brain and spinal cord. Without the lipid-rich substance, signals travel more slowly along nerves, are disrupted, or fail to get through at all. About 100,000 people in the UK live with the condition.

Funded by the MS Society, bexarotene was assessed in a phase 2a trial that used brain scans to monitor changes to damaged neurons in patients with relapsing MS. This is an early stage of the condition that precedes secondary progressive disease, where neurons die off and cause permanent disability.

The drug had some serious side-effects, from thyroid disease to raised levels of fats in the blood, which can lead to dangerous inflammation of the pancreas. But brain scans revealed that neurons had regrown their myelin sheaths, a finding confirmed by tests that showed signals sent from the retina to the visual cortex at the back of the brain had quickened. That can only be achieved through remyelination, said Coles.

Details of the work were presented on Friday at MSVirtual2020, a joint meeting of the European Committee for Treatment and Research in Multiple Sclerosis and its Americas counterpart.

While bexarotene will not go into phase 3 trials for MS, the finding that the nervous system can be stimulated to resheath damaged neurons has given scientists fresh hopes for another trial they hope to launch later this year. That trial will monitor the effects of the diabetes drug metformin along with clemastine, an antihistamine, a combination that Prof Robin Franklin at the Wellcome-MRC Cambridge Stem Cell Institute showed last year could drive remyelination in animals.

Metformin seems to work by rejuvenating stem cells in the central nervous system, which then go on to become myelin-producing cells called oligodendrocytes. These churn out fresh myelin to replace that destroyed by MS. The researchers hope the drug combination will at least slow the progression of the disease, but there is a chance it will prevent further damage to neurons completely.

The results of this trial give us confidence that medicines that promote myelin regeneration will have a real impact on the treatment of MS, and we look forward to the outcome of future trials with increased optimism, said Franklin.

Dr Emma Gray, at the MS Society, said: Finding treatments to stop MS progression is our number one priority, and to do that we need ways to protect nerves from damage and repair lost myelin. This new research is a major milestone in our plan to stop MS and were incredibly excited about the potential its shown for future studies.

Continue reading here:
MS treatment a step closer after drug shown to repair nerve coating - The Guardian

To Read More: MS treatment a step closer after drug shown to repair nerve coating – The Guardian
categoriaSpinal Cord Stem Cells commentoComments Off on MS treatment a step closer after drug shown to repair nerve coating – The Guardian | dataSeptember 26th, 2020
Read All

What treatments can prolong the life of someone with Alzheimer’s? – Pledge Times

By daniellenierenberg

Answers Tatyana Donskikh, head of the clinical diagnostic department, including a day hospital, neurologist of the Federal Center for Medical Sciences of the Federal Medical and Biological Agency of Russia:

Despite all the efforts of modern medicine, no remedy has yet been found that can cure dementia. But it is possible to slow down the development of the disease! And these chances must be used.

Modern treatment is carried out mainly in two directions:

1. Drug therapy.

2. Optimal care that supports mental initiative and a sense of security.

The drugs available to people with dementia today can be divided into three groups:

This group includes a drug used to treat dementia of all severity. Since the binding sites of glutamate are present only in the brain and spinal cord, the agent is well tolerated and has practically no contraindications for administration. This is very important for elderly patients who often have many concomitant diseases.

This group of drugs includes a number of drugs. They prevent the breakdown of acetylcholine already formed in the brain. They are prescribed for mild to moderate severity of the disease. Since acetylcholine is often found outside the brain, acetylcholinesterase inhibitors can cause a number of side effects.

Treatment is carried out for a long time, first as monotherapy, then in combination.

Non-drug approaches to treatment are important, in particular, psychological support for patients and their relatives, neuropsychological training, music therapy, phototherapy, art therapy, aromatherapy and other methods of additional sensory stimulation, therapeutic gymnastics, etc.

Since the prevalence of Alzheimers disease is expected to grow rapidly in the world and the existing therapeutic approaches are rather modest, the search for new forms of action and methods of treatment continues constantly. There are many of these directions. These include, for example, the development of new neuroprotective drugs, neuroreparation technologies using stem cells. Particular hopes were pinned on immunological approaches associated with the use of amyloid vaccines and immunoglobulins in attempts to remove -amyloid from the brain. Unfortunately, clinical trials of amyloid vaccines have shown an unacceptably high risk of developing encephalitis or leukoencephalopathy.

The maximum benefit from any effective remedy is possible only when applied at an early, pre-demented stage of the pathological process. Therefore, it is so important to develop approaches to the earliest possible diagnosis of Alzheimers disease.

There are contraindications, you need to consult a doctor

Read more from the original source:
What treatments can prolong the life of someone with Alzheimer's? - Pledge Times

To Read More: What treatments can prolong the life of someone with Alzheimer’s? – Pledge Times
categoriaSpinal Cord Stem Cells commentoComments Off on What treatments can prolong the life of someone with Alzheimer’s? – Pledge Times | dataSeptember 26th, 2020
Read All

Species-specific pace of development is associated with differences in protein stability – Science Magazine

By daniellenierenberg

Setting the tempo for development

Many animals display similarities in their organization (body axis, organ systems, and so on). However, they can display vastly different life spans and thus must accommodate different developmental time scales. Two studies now compare human and mouse development (see the Perspective by Iwata and Vanderhaeghen). Matsuda et al. studied the mechanism by which the human segmentation clock displays an oscillation period of 5 to 6 hours, whereas the mouse period is 2 to 3 hours. They found that biochemical reactions, including protein degradation and delays in gene expression processes, were slower in human cells compared with their mouse counterparts. Rayon et al. looked at the developmental tempo of mouse and human embryonic stem cells as they differentiate to motor neurons in vitro. Neither the sensitivity of cells to signals nor the sequence of gene-regulatory elements could explain the differing pace of differentiation. Instead, a twofold increase in protein stability and cell cycle duration in human cells compared with mouse cells was correlated with the twofold slower rate of human differentiation. These studies show that global biochemical rates play a major role in setting the pace of development.

Science, this issue p. 1450, p. eaba7667; see also p. 1431

What determines the pace of embryonic development? Although the molecular and cellular mechanisms of many developmental processes are evolutionarily conserved, the pace at which these operate varies considerably between species. The tempo of embryonic development controls the rate of individual differentiation processes and determines the overall duration of development. Despite its importance, however, the mechanisms that control developmental tempo remain elusive.

Comparing highly conserved and well-characterized developmental processes in different species permits a search for mechanisms that explain differences in tempo. The specification of neuronal subtype identity in the vertebrate spinal cord is a prominent example, lasting less than a day in zebrafish, 3 to 4 days in mouse, and around 2 weeks in human. The development of the spinal cord involves a well-defined gene regulatory program comprising a series of stereotypic changes in gene expression, regulated by extrinsic signaling as cells differentiate from neural progenitors to postmitotic neurons. The regulatory program and resulting neuronal cell types are highly similar in different vertebrates, despite the difference in tempo between species. We therefore set out to characterize the pace of differentiation of one specific neuronal subtypemotor neuronsin human and mouse and to identify molecular differences that explain differences in pace. To this end, we took advantage of the in vitro recapitulation of in vivo developmental programs using the directed differentiation of human and mouse embryonic stem cells.

We found that all stages of the developmental progression from neural progenitor to motor neuron were proportionally prolonged in human compared with mouse, resulting in human motor neuron differentiation taking about 2.5 times longer than mouse. Differences in tempo were not due to differences in the sensitivity of cells to signals, nor could they be attributed to differences in the sequence of the key genes or their regulatory elements. Instead, the data revealed that changes in protein stability correlated with developmental tempo, such that slower temporal progression in human corresponded to increased protein stability. An in silico model indicated that increased protein stability could account for the slower tempo of development in human compared with mouse.

The results suggest that differences in protein turnover play a role in interspecies differences in the pace of motor neuron differentiation. The identification of a molecular mechanism that can explain differences in the pace of embryonic development between species focuses attention on the role of protein stability in tempo control. This suggests a parsimonious explanation for the substantial variation in the tempo of development between species and indicates how the overall dynamics of developmental processes can be influenced by kinetic properties of gene regulation. What determines species-specific rates of protein turnover remains to be determined, but the availability of in vitro systems that mimic in vivo developmental tempo opens up the possibility of exploring this issue.

Different animal species develop at different tempos, and equivalent developmental stages can be matched between mouse and human at different developmental time points. Neural progenitors in the spinal cord progress through the same succession of gene expression to generate motor neurons in mouse and human, and this serves as a model to study tempo differences. The in vitro directed differentiation of mouse embryonic stem cells to motor neurons advances at greater than twice the speed of human embryonic stem cell differentiation. The equivalent progression of development at different rates is shown for the transcription factors PAX6 (green), OLIG2 (red), and NKX2.2 (blue). E, embryonic day; W, embryonic week; CS, Carnegie stage. Scale bars are 50 m.

Although many molecular mechanisms controlling developmental processes are evolutionarily conserved, the speed at which the embryo develops can vary substantially between species. For example, the same genetic program, comprising sequential changes in transcriptional states, governs the differentiation of motor neurons in mouse and human, but the tempo at which it operates differs between species. Using in vitro directed differentiation of embryonic stem cells to motor neurons, we show that the program runs more than twice as fast in mouse as in human. This is not due to differences in signaling, nor the genomic sequence of genes or their regulatory elements. Instead, there is an approximately two-fold increase in protein stability and cell cycle duration in human cells compared with mouse cells. This can account for the slower pace of human development and suggests that differences in protein turnover play a role in interspecies differences in developmental tempo.

Go here to see the original:
Species-specific pace of development is associated with differences in protein stability - Science Magazine

To Read More: Species-specific pace of development is associated with differences in protein stability – Science Magazine
categoriaSpinal Cord Stem Cells commentoComments Off on Species-specific pace of development is associated with differences in protein stability – Science Magazine | dataSeptember 18th, 2020
Read All

AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent Stem Cell Lines for…

By daniellenierenberg

Sept. 9, 2020 12:00 UTC

ALAMEDA, Calif. & CARLSBAD, Calif.--(BUSINESS WIRE)-- AgeX Therapeutics, Inc.(AgeX: NYSE American: AGE), a company focused on developing and commercializing innovative therapeutics for human aging, and Lineage Cell Therapeutics, Inc.. (Lineage: NYSE American and TASE: LCTX), a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs, and ES Cell International Pte Ltd. (ESI), a subsidiary of Lineage, today announced the broadening of their collaborative relationship with regard to ESI stem cell lines. ESI cell lines are current Good Manufacturing Practice (cGMP)-compatible, registered with the National Institutes of Health (NIH), and widely studied as a potential source for the industrial-scale manufacture of any cell type in the human body. Neither party made or received any cash payments in connection with this arrangement.

Both Lineage and AgeX are pioneering important aspects of regenerative medicine. Working together, we have amended our agreement regarding ESI cell lines derived under cGMP to be optimal for the business needs of each company, stated Brian M. Culley, Lineages CEO. In particular, Lineage has acquired exclusivity for the use of ESI cell lines in spinal cord injury and certain oncology indications. On the other hand, AgeX has gained greater flexibility and independence to support its efforts toward licensing certain technologies and cell lines to third parties. With this step complete, we next intend to explore additional opportunities to collaborate with AgeX on promising tissue regenerating projects.

The ESI cell lines are recognized for being the first clinical-grade human pluripotent stem cell lines created under cGMP as described in the publication Cell Stem Cell (2007;1:490-4). It may become possible to generate potentially limitless quantities of all the cell types of the human body from these master cell banks with a wide array of potential therapeutic applications. These cell lines are listed on the NIH Stem Cell Registry and are among the best characterized and documented stem cell lines available globally. Importantly, ESI cells are among only a few pluripotent stem cell lines from which a derived cell therapy product candidate has been granted FDA investigational new drug (IND) clearance to commence human studies.

Key to the creation of shareholder value is the placement of these important assets in the hands of collaborators to advance the development of a vast number of regenerative therapies, said Michael West, Ph.D., AgeXs CEO. Our collaborative relationship with Lineage led to this streamlined process that may facilitate the commercialization of these applications to the benefit of shareholders of each company. Since the beginning of the year, AgeX has entered into new research and commercial arrangements utilizing an array of its technology platforms, such as UniverCyteTM for the engineering of universally transplantable cells, PureStem for the manufacture and derivation of cells, and an ESI cell line as source material for deriving cellular therapeutics.

About AgeX Therapeutics, Inc

AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing and commercializing innovative therapeutics for human aging. Its PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeXs revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. AGEX-iTR1547 is an iTR-based formulation in preclinical development. HyStem is AgeXs delivery technology to stably engraft PureStem cell therapies in the body. AgeXs core product pipeline is intended to extend human healthspan. AgeX is seeking opportunities to establish licensing and collaboration arrangements around its broad IP estate and proprietary technology platforms and therapy product candidates. For more information, please visit http://www.agexinc.com or connect with the company on Twitter, LinkedIn, Facebook, and YouTube.

About Lineage Cell Therapeutics, Inc.

Lineage Cell Therapeutics is a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs. Lineages programs are based on its robust proprietary cell-based therapy platform and associated in-house development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed to either replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineages clinical programs are in markets with billion dollar opportunities and include three allogeneic (off-the-shelf) product candidates: (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase 1/2a development for the treatment of dry age-related macular degeneration, a leading cause of blindness in the developed world; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase 1/2a development for the treatment of acute spinal cord injuries; and (iii) VAC, an allogeneic dendritic cell therapy platform for immuno-oncology and infectious disease, currently in clinical development for the treatment of non-small cell lung cancer and in preclinical development for additional cancers and as a vaccine against infectious diseases, including SARS-CoV-2, the virus which causes COVID-19. For more information, please visit http://www.lineagecell.com or follow the Company on Twitter @LineageCell.

About ESI

ES Cell International Pte Ltd (ESI). Established in 2000, ESI, a wholly owned subsidiary of Lineage Cell Therapeutics, Inc., developed ESI hESC lines in compliance with the principles of current Good Manufacturing Practices and has made them available to various biopharmaceutical companies, universities and other research institutions, including AgeX. These ESI cell lines are extensively characterized and most of the lines have documented and publicly available genomic sequences.

Forward-Looking Statements for AgeX

Certain statements contained in this release are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as will, believes, plans, anticipates, expects, estimates should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Without limitation, such risks include those associated with the use of human pluripotent stem cell lines in the research, development, and use of therapies for the treatment of human diseases, disorders, and injuries, and risks associated with commercializing the pluripotent stem cell lines. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its respective subsidiaries, particularly those mentioned in the cautionary statements found in more detail in the Risk Factors section of its most recent Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Subsequent events and developments may cause these forward-looking statements to change. Undue reliance should not be placed on forward-looking statements, which speak only as of the date on which they were made. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.

Forward-Looking Statements for Lineage

Lineage cautions you that all statements, other than statements of historical facts, contained in this press release, are forward-looking statements. Forward-looking statements, in some cases, can be identified by terms such as believe, may, will, estimate, continue, anticipate, design, intend, expect, could, plan, potential, predict, seek, should, would, contemplate, project, target, tend to, or the negative version of these words and similar expressions. Such statements include, but are not limited to, statements relating to the potential commercialization of ESI cell lines. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Lineages actual results, performance or achievements to be materially different from future results, performance or achievements expressed or implied by the forward-looking statements in this press release, including risks and uncertainties inherent in Lineages business and other risks in Lineages filings with the Securities and Exchange Commission (the SEC). Lineages forward-looking statements are based upon its current expectations and involve assumptions that may never materialize or may prove to be incorrect. All forward-looking statements are expressly qualified in their entirety by these cautionary statements. Further information regarding these and other risks is included under the heading Risk Factors in Lineages periodic reports with the SEC, including Lineages Annual Report on Form 10-K filed with the SEC on March 12, 2020 and its other reports, which are available from the SECs website. You are cautioned not to place undue reliance on forward-looking statements, which speak only as of the date on which they were made. Lineage undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made, except as required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200909005398/en/

Original post:
AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent Stem Cell Lines for...

To Read More: AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent Stem Cell Lines for…
categoriaSpinal Cord Stem Cells commentoComments Off on AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent Stem Cell Lines for… | dataSeptember 9th, 2020
Read All

Lineage Cell Therapeutics : AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent…

By daniellenierenberg

AgeX Therapeutics, Inc. (AgeX: NYSE American: AGE), a company focused on developing and commercializing innovative therapeutics for human aging, and Lineage Cell Therapeutics, Inc. (Lineage: NYSE American and TASE: LCTX), a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs, and ES Cell International Pte Ltd. (ESI), a subsidiary of Lineage, today announced the broadening of their collaborative relationship with regard to ESI stem cell lines. ESI cell lines are current Good Manufacturing Practice (cGMP)-compatible, registered with the National Institutes of Health (NIH), and widely studied as a potential source for the industrial-scale manufacture of any cell type in the human body. Neither party made or received any cash payments in connection with this arrangement.

Both Lineage and AgeX are pioneering important aspects of regenerative medicine. Working together, we have amended our agreement regarding ESI cell lines derived under cGMP to be optimal for the business needs of each company, stated Brian M. Culley, Lineages CEO. In particular, Lineage has acquired exclusivity for the use of ESI cell lines in spinal cord injury and certain oncology indications. On the other hand, AgeX has gained greater flexibility and independence to support its efforts toward licensing certain technologies and cell lines to third parties. With this step complete, we next intend to explore additional opportunities to collaborate with AgeX on promising tissue regenerating projects.

The ESI cell lines are recognized for being the first clinical-grade human pluripotent stem cell lines created under cGMP as described in the publication Cell Stem Cell (2007;1:490-4). It may become possible to generate potentially limitless quantities of all the cell types of the human body from these master cell banks with a wide array of potential therapeutic applications. These cell lines are listed on the NIH Stem Cell Registry and are among the best characterized and documented stem cell lines available globally. Importantly, ESI cells are among only a few pluripotent stem cell lines from which a derived cell therapy product candidate has been granted FDA investigational new drug (IND) clearance to commence human studies.

Key to the creation of shareholder value is the placement of these important assets in the hands of collaborators to advance the development of a vast number of regenerative therapies, said Michael West, Ph.D., AgeXs CEO. Our collaborative relationship with Lineage led to this streamlined process that may facilitate the commercialization of these applications to the benefit of shareholders of each company. Since the beginning of the year, AgeX has entered into new research and commercial arrangements utilizing an array of its technology platforms, such as UniverCyteTM for the engineering of universally transplantable cells, PureStem for the manufacture and derivation of cells, and an ESI cell line as source material for deriving cellular therapeutics.

About AgeX Therapeutics, Inc

AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing and commercializing innovative therapeutics for human aging. Its PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeXs revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. AGEX-iTR1547 is an iTR-based formulation in preclinical development. HyStem is AgeXs delivery technology to stably engraft PureStem cell therapies in the body. AgeXs core product pipeline is intended to extend human healthspan. AgeX is seeking opportunities to establish licensing and collaboration arrangements around its broad IP estate and proprietary technology platforms and therapy product candidates. For more information, please visit http://www.agexinc.com or connect with the company on Twitter, LinkedIn, Facebook, and YouTube.

About Lineage Cell Therapeutics, Inc.

Lineage Cell Therapeutics is a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs. Lineages programs are based on its robust proprietary cell-based therapy platform and associated in-house development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed to either replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineages clinical programs are in markets with billion dollar opportunities and include three allogeneic (off-the-shelf) product candidates: (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase 1/2a development for the treatment of dry age-related macular degeneration, a leading cause of blindness in the developed world; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase 1/2a development for the treatment of acute spinal cord injuries; and (iii) VAC, an allogeneic dendritic cell therapy platform for immuno-oncology and infectious disease, currently in clinical development for the treatment of non-small cell lung cancer and in preclinical development for additional cancers and as a vaccine against infectious diseases, including SARS-CoV-2, the virus which causes COVID-19. For more information, please visit http://www.lineagecell.com or follow the Company on Twitter @LineageCell.

About ESI

ES Cell International Pte Ltd (ESI). Established in 2000, ESI, a wholly owned subsidiary of Lineage Cell Therapeutics, Inc., developed ESI hESC lines in compliance with the principles of current Good Manufacturing Practices and has made them available to various biopharmaceutical companies, universities and other research institutions, including AgeX. These ESI cell lines are extensively characterized and most of the lines have documented and publicly available genomic sequences.

Forward-Looking Statements for AgeX

Certain statements contained in this release are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as will, believes, plans, anticipates, expects, estimates should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Without limitation, such risks include those associated with the use of human pluripotent stem cell lines in the research, development, and use of therapies for the treatment of human diseases, disorders, and injuries, and risks associated with commercializing the pluripotent stem cell lines. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its respective subsidiaries, particularly those mentioned in the cautionary statements found in more detail in the Risk Factors section of its most recent Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Subsequent events and developments may cause these forward-looking statements to change. Undue reliance should not be placed on forward-looking statements, which speak only as of the date on which they were made. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.

Forward-Looking Statements for Lineage

Lineage cautions you that all statements, other than statements of historical facts, contained in this press release, are forward-looking statements. Forward-looking statements, in some cases, can be identified by terms such as believe, may, will, estimate, continue, anticipate, design, intend, expect, could, plan, potential, predict, seek, should, would, contemplate, project, target, tend to, or the negative version of these words and similar expressions. Such statements include, but are not limited to, statements relating to the potential commercialization of ESI cell lines. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Lineages actual results, performance or achievements to be materially different from future results, performance or achievements expressed or implied by the forward-looking statements in this press release, including risks and uncertainties inherent in Lineages business and other risks in Lineages filings with the Securities and Exchange Commission (the SEC). Lineages forward-looking statements are based upon its current expectations and involve assumptions that may never materialize or may prove to be incorrect. All forward-looking statements are expressly qualified in their entirety by these cautionary statements. Further information regarding these and other risks is included under the heading Risk Factors in Lineages periodic reports with the SEC, including Lineages Annual Report on Form 10-K filed with the SEC on March 12, 2020 and its other reports, which are available from the SECs website. You are cautioned not to place undue reliance on forward-looking statements, which speak only as of the date on which they were made. Lineage undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made, except as required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200909005398/en/

View original post here:
Lineage Cell Therapeutics : AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent...

To Read More: Lineage Cell Therapeutics : AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent…
categoriaSpinal Cord Stem Cells commentoComments Off on Lineage Cell Therapeutics : AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent… | dataSeptember 9th, 2020
Read All

Global Cord Blood Banking Market 2020 with Analysis of 44 Industry Players – PRNewswire

By daniellenierenberg

DUBLIN, Sept. 2, 2020 /PRNewswire/ -- The "Global Cord Blood Banking Industry Report 2020" report has been added to ResearchAndMarkets.com's offering.

This report presents the number of cord blood units stored in inventory by the largest cord blood banks worldwide and the number of cord blood units (CBUs) released by registries across the world for hematopoietic stem cell (HSC) transplantation. Although cord blood is now used to treat more than 80 different diseases, this number could substantially expand if applications related to regenerative medicine start receiving approvals in major healthcare markets worldwide.

From the early 1900s through the mid-2000s, the global cord blood banking industry expanded rapidly, with companies opening for business in all major markets worldwide. From 2005 to 2010, the market reached saturation and stabilized.

Then, from 2010 to 2020, the market began to aggressively consolidate. This has created both serious threats and unique opportunities within the industry.

Serious threats to the industry include low rates of utilization for stored cord blood, expensive cord blood transplantation procedures, difficulty educating obstetricians about cellular therapies, and an increasing trend toward industry consolidation. There are also emerging opportunities for the industry, such as accelerated regulatory pathways for cell therapies in leading healthcare markets worldwide and expanding applications for cell-based therapies. In particular, MSCs from cord tissue (and other sources) are showing intriguing promise in the treatment and management of COVID-19.

Cord Blood Industry Trends

Within recent years, new themes have been impacting the industry, including the pairing of stem cell storage services with genetic and genomic testing services, as well as reproductive health services. Cord blood banks are diversifying into new types of stem cell storage, including umbilical cord tissue storage, placental blood and tissue, amniotic fluid and tissue, and dental pulp. Cord blood banks are also investigating means of becoming integrated therapeutic companies. With hundreds of companies offering cord blood banking services worldwide, maturation of the market means that each company is fighting harder for market share.

Growing numbers of investors are also entering the marketplace, with M&A activity accelerating in the U.S. and abroad. Holding companies are emerging as a global theme, allowing for increased operational efficiency and economy of scale. Cryoholdco has established itself as the market leader within Latin America. Created in 2015, Cryoholdco is a holding company that will control nearly 270,000 stem cell units by the end of 2020. It now owns a half dozen cord blood banks, as well as a dental stem cell storage company.

Globally, networks of cord blood banks have become commonplace, with Sanpower Group establishing its dominance in Asia. Although Sanpower has been quiet about its operations, it holds 4 licenses out of only 7 issued provincial-level cord blood bank licenses in China. It has reserved over 900,000 cord blood samples in China, and its reserves amount to over 1.2 million units when Cordlife' reserves within Southeast Asian countries are included. This positions Sanpower Group and it's subsidiary Nanjing Cenbest as the world's largest cord blood banking operator not only in China and Southeast Asia but in the world.

The number of cord blood banks in Europe has dropped by more than one-third over the past ten years, from approximately 150 to under 100. The industry leaders in this market segment include FamiCord Group, who has executed a dozen M&A transactions, and Vita34, who has executed approximately a half dozen. Stemlab, the largest cord blood bank in Portugal, also executed three acquisition deals prior to being acquired by FamiCord. FamiCord is now the leading stem cell bank in Europe and one of the largest worldwide.

Cord Blood Expansion Technologies

Because cord blood utilization is largely limited to use in pediatric patients, growing investment is flowing into ex vivo cord blood expansion technologies. If successful, this technology could greatly expand the market potential for cord blood, encouraging its use within new markets, such as regenerative medicine, aging, and augmented immunity.

Key strategies being explored for this purpose include:

Currently, Gamida Cell, Nohla Therapeutics, Excellthera, and Magenta Therapeutics have ex vivo cord blood expansion products proceeding through clinical trials. Growing numbers of investors have also entered the cord blood banking marketplace, led by groups such as GI Partners, ABS Capital Partners & HLM Management, KKR & Company, Bay City Capital, GTCR, LLC, and Excalibur.

Cord Blood Banking by Region

Within the United States, most of the market share is controlled by three major players: Cord Blood Registry (CBR), Cryo-Cell, and ViaCord. CBR has been traded twice, once in 2015 to AMAG Pharmaceuticals for $700 million and again in 2018 to GI Partners for $530 million. CBR also bought Natera's Evercord Cord Blood Banking business in September 2019. In total, CBR controls over 900,000 cord blood and tissue samples, making it one of the largest cord blood banks worldwide.

In China, the government controls the industry by authorizing only one cord blood bank to operate within each province, and official government support, authorization, and permits are required. Importantly, the Chinese government announced in late 2019 that it will be issuing new licenses for the first time, expanding from the current 7 licensed regions for cord blood banking to up to 19 regions, including Beijing.

In Italy and France, it is illegal to privately store one's cord blood, which has fully eliminated the potential for a private market to exist within the region. In Ecuador, the government created the first public cord blood bank and instituted laws such that private cord blood banks cannot approach women about private cord blood banking options during the first six months of pregnancy. This created a crisis for private banks, forcing most out of business.

Recently, India's Central Drugs Standard Control Organization (CDSCO) restricted commercial banking of stem cells from most biological materials, including cord tissue, placenta, and dental pulp stem cells - leaving only umbilical cord blood banking as permitted and licensed within the country.

While market factors vary by geography, it is crucial to have a global understanding of the industry, because research advances, clinical trial findings, and technology advances do not know international boundaries. The cord blood market is global in nature and understanding dynamics within your region is not sufficient for making strategic, informed, and profitable decisions.

Overall, the report provides the reader with the following details and answers the following questions:

1. Number of cord blood units cryopreserved in public and private cord blood banks globally2. Number of hematopoietic stem cell transplants (HSCTs) globally using cord blood cells3. Utilization of cord blood cells in clinical trials for developing regenerative medicines4. The decline of the utilization of cord blood cells in HSC transplantations since 20055. Emerging technologies to influence the financial sustainability of public cord blood banks6. The future scope for companion products from cord blood7. The changing landscape of cord blood cell banking market8. Extension of services by cord blood banks9. Types of cord blood banks10. The economic model of public cord blood banks11. Cost analysis for public cord blood banks12. The economic model of private cord blood banks13. Cost analysis for private cord blood banks14. Profit margins for private cord blood banks15. Pricing for processing and storage in private banks16. Rate per cord blood unit in the U.S. and Europe17. Indications for the use of cord blood-derived HSCs for transplantations18. Diseases targeted by cord blood-derived MSCs in regenerative medicine19. Cord blood processing technologies20. Number of clinical trials, number of published scientific papers and NIH funding for cord blood research21. Transplantation data from different cord blood registries

Key questions answered in this report are:

1. What are the strategies being considered for improving the financial stability of public cord blood banks?2. What are the companion products proposed to be developed from cord blood?3. How much is being spent on processing and storing a unit of cord blood?4. How much does a unit of cryopreserved cord blood unit fetch on release?5. Why do most public cord blood banks incur a loss?6. What is the net profit margin for a private cord blood bank?7. What are the prices for processing and storage of cord blood in private cord blood banks?8. What are the rates per cord blood units in the U.S. and Europe?9. What are the revenues from cord blood sales for major cord blood banks?10. Which are the different accreditation systems for cord blood banks?11. What are the comparative merits of the various cord blood processing technologies?12. What is to be done to increase the rate of utilization of cord blood cells in transplantations?13. Which TNC counts are preferred for transplantation?14. What is the number of registered clinical trials using cord blood and cord tissue?15. How many clinical trials are involved in studying the expansion of cord blood cells in the laboratory?16. How many matching and mismatching transplantations using cord blood units are performed on an annual basis?17. What is the share of cord blood cells used for transplantation from 2000 to 2020?18. What is the likelihood of finding a matching allogeneic cord blood unit by ethnicity?19. Which are the top ten countries for donating cord blood?20. What are the diseases targeted by cord blood-derived MSCs within clinical trials?

Key Topics Covered

1. REPORT OVERVIEW1.1 Statement of the Report1.2 Executive Summary1.3 Introduction1.3.1 Cord Blood: An Alternative Source for HPSCs1.3.2 Utilization of Cord Blood Cells in Clinical Trials1.3.3 The Struggle of Cord Blood Banks1.3.4 Emerging Technologies to Influence Financial Sustainability of Banks1.3.4.1 Other Opportunities to Improve Financial Stability1.3.4.2 Scope for Companion Products1.3.5 Changing Landscape of Cord Blood Cell Banking Market1.3.6 Extension of Services by Cord Blood Banks

2. CORD BLOOD & CORD BLOOD BANKING: AN OVERVIEW2.1 Cord Blood Banking (Stem Cell Banking)2.1.1 Public Cord Blood Banks2.1.1.1 Economic Model of Public Cord Blood Banks2.1.1.2 Cost Analysis for Public Banks2.1.1.3 Relationship between Costs and Release Rates2.1.2 Private Cord Blood Banks2.1.2.1 Cost Analysis for Private Cord Blood Banks2.1.2.2 Economic Model of Private Banks2.1.3 Hybrid Cord Blood Banks2.2 Globally Known Cord Blood Banks2.2.1 Comparing Cord Blood Banks2.2.2 Cord Blood Banks in the U.S.2.2.3 Proportion of Public, Private and Hybrid Banks2.3 Percent Share of Parents of Newborns Storing Cord Blood by Country/Region2.4 Pricing for Processing and Storage in Commercial Banks2.4.1 Rate per Cord Blood Unit in the U.S. and Europe2.5 Cord Blood Revenues for Major Cord Blood Banks

3. CORD BLOOD BANK ACCREDITATIONS3.1 American Association of Blood Banks (AABB)3.2 Foundation for the Accreditation of Cellular Therapy (FACT)3.3 FDA Registration3.4 FDA Biologics License Application (BLA) License3.5 Investigational New Drug (IND) for Cord Blood3.6 Human Tissue Authority (HTA)3.7 Therapeutic Goods Act (TGA) in Australia3.8 International NetCord Foundation3.9 AABB Accredited Cord Blood Facilities3.10 FACT Accreditation for Cord Blood Banks

4. APPLICATIONS OF CORD BLOOD CELLS4.1 Hematopoietic Stem Cell Transplantations with Cord Blood Cells4.2 Cord Cells in Regenerative Medicine

5. CORD BLOOD PROCESSING TECHNOLOGIES5.1 The Process of Separation5.1.1 PrepaCyte-CB5.1.2 Advantages of PrepaCyte-CB5.1.3 Treatment Outcomes with PrepaCyte-CB5.1.4 Hetastarch (HES)5.1.5 AutoXpress (AXP)5.1.6 SEPAX5.1.7 Plasma Depletion Method (MaxCell Process)5.1.8 Density Gradient Method5.2 Comparative Merits of Different Processing Methods5.2.1 Early Stage HSC Recovery by Technologies5.2.2 Mid Stage HSC (CD34+/CD133+) Recovery from Cord Blood5.2.3 Late Stage Recovery of HSCs from Cord Blood5.3 HSC (CD45+) Recovery5.4 Days to Neutrophil Engraftment by Technology5.5 Anticoagulants used in Cord Blood Processing5.5.1 Type of Anticoagulant and Cell Recovery Volume5.5.2 Percent Cell Recovery by Sample Size5.5.3 TNC Viability by Time Taken for Transport and Type of Anticoagulant5.6 Cryopreservation of Cord Blood Cells5.7 Bioprocessing of Umbilical Cord Tissue (UCT)5.8 A Proposal to Improve the Utilization Rate of Banked Cord Blood

6. CORD BLOOD CLINICAL TRIALS, SCIENTIFIC PUBLICATIONS & NIH FUNDING6.1 Cord Blood Cells for Research6.2 Cord Blood Cells for Clinical Trials6.2.1 Number of Clinical Trials involving Cord Blood Cells6.2.2 Number of Clinical Trials using Cord Blood Cells by Geography6.2.3 Number of Clinical Trials by Study Type6.2.4 Number of Clinical Trials by Study Phase6.2.5 Number of Clinical Trials by Funder Type6.2.6 Clinical Trials Addressing Indications in Children6.2.7 Select Three Clinical Trials Involving Children6.2.7.1 Sensorineural Hearing Loss (NCT02038972)6.2.7.2 Autism Spectrum (NCT02847182)6.2.7.3 Cerebral Palsy (NCT01147653)6.2.8 Clinical Trials for Neurological Diseases using Cord Blood and Cord Tissue6.2.9 UCB for Diabetes6.2.10 UCB in Cardiovascular Clinical Trials6.2.11 Cord Blood Cells for Auto-Immune Diseases in Clinical Trials6.2.12 Cord Tissue Cells for Orthopedic Disorders in Clinical Trials6.2.13 Cord Blood Cells for Other Indications in Clinical Trials6.3 Major Diseases Addressed by Cord Blood Cells in Clinical Trials6.4 Clinical Trials using Cord Tissue-Derived MSCs6.5 Ongoing Clinical Trials using Cord Tissue6.5.1 Cord Tissue-Based Clinical Trials by Geography6.5.2 Cord Tissue-Based Clinical Trials by Phase6.5.3 Cord Tissue-Based Clinical Trials by Sponsor Types6.5.4 Companies Sponsoring in Trials using Cord Tissue-Derived MSCs6.6 Wharton's Jelly-Derived MSCs in Clinical Trials6.6.1 Wharton's Jelly-Based Clinical Trials by Phase6.6.2 Companies Sponsoring Wharton's Jelly-Based Clinical Trials6.7 Clinical Trials Involving Cord Blood Expansion Studies6.7.1 Safe and Feasible Expansion Protocols6.7.2 List of Clinical Trials involved in the Expansion of Cord Blood HSCs6.7.3 Expansion Technologies6.8 Scientific Publications on Cord Blood6.9 Scientific Publications on Cord Tissue6.10 Scientific Publications on Wharton's Jelly-Derived MSCs6.11 Published Scientific Papers on Cord Blood Cell Expansion6.12 NIH Funding for Cord Blood Research

7. PARENT'S AWARENESS AND ATTITUDE TOWARDS CORD BLOOD BANKING7.1 Undecided Expectant Parents7.2 The Familiar Cord Blood Banks Known by the Expectant Parents7.3 Factors Influencing the Choice of a Cord Blood Bank

8. CORD BLOOD: AS A TRANSPLANTATION MEDICINE8.1 Comparisons of Cord Blood to other Allograft Sources8.1.1 Major Indications for HCTs in the U.S.8.1.2 Trend in Allogeneic HCT in the U.S. by Recipient Age8.1.3 Trends in Autologous HCT in the U.S. by Recipient Age8.2 HCTs by Cell Source in Adult Patients8.2.1 Transplants by Cell Source in Pediatric Patients8.3 Allogeneic HCTs by Cell Source8.3.1 Unrelated Donor Allogeneic HCTs in Patients &lessThan;18 Years8.4 Likelihood of Finding an Unrelated Cord Blood Unit by Ethnicity8.4.1 Likelihood of Finding an Unrelated Cord Blood Unit for Patients &lessThan;20 Years8.5 Odds of using a Baby's Cord Blood8.6 Cord Blood Utilization Trends8.7 Number of Cord Blood Donors Worldwide8.7.1 Number of CBUs Stored Worldwide8.7.2 Cord Blood Donors by Geography8.7.2.1 Cord Blood Units Stored in Different Geographies8.7.2.2 Number of Donors by HLA Typing8.7.3 Searches Made by Transplant Patients for Donors/CBUs8.7.4 Types of CBU Shipments (Single/Double/Multi)8.7.5 TNC Count of CBUs Shipped for Children and Adult Patients8.7.6 Shipment of Multiple CBUs8.7.7 Percent Supply of CBUs for National and International Patients8.7.8 Decreasing Number of CBU Utilization8.8 Top Ten Countries in Cord Blood Donation8.8.1 HLA Typed CBUs by Continent8.8.2 Percentage TNC of Banked CBUs8.8.3 Total Number of CBUs, HLA-Typed Units by Country8.9 Cord Blood Export/Import by the E.U. Member States8.9.1 Number of Donors and CBUs in Europe8.9.2 Number of Exports/Imports of CBUs in E.U.8.10 Global Exchange of Cord Blood Units

9. CORD BLOOD CELLS AS THERAPEUTIC CELL PRODUCTS IN CELL THERAPY9.1 MSCs from Cord Blood and Cord Tissue9.1.1 Potential Neurological Applications of Cord Blood-Derived Cells9.1.2 Cord Tissue-Derived MSCs for Therapeutic use9.1.2.1 Indications Targeted by UCT-MSCs in Clinical Trials9.2 Current Consumption of Cord Blood Units by Clinical Trials9.3 Select Cord Blood Stem Cell Treatments in Clinical Trials9.3.1 Acquired Hearing Loss (NCT02038972)9.3.2 Autism (NCT02847182)9.3.3 Cerebral Palsy (NCT03087110)9.3.4 Hypoplastic Left Heart Syndrome (NCT01856049)9.3.5 Type 1 Diabetes (NCT00989547)9.3.6 Psoriasis (NCT03765957)9.3.7 Parkinson's Disease (NCT03550183)9.3.8 Signs of Aging (NCT04174898)9.3.9 Stroke (NCT02433509)9.3.10 Traumatic Brain Injury (NCT01451528)

10. MARKET ANALYSIS10.1 Public vs. Private Cord Blood Banking Market10.2 Cord Blood Banking Market by Indication

11. PROFILES OF SELECT CORD BLOOD BANKS11.1 AllCells11.1.1 Whole Blood11.1.2 Leukopak11.1.3 Mobilized Leukopak11.1.4 Bone Marrow11.1.5 Cord Blood11.2 AlphaCord LLC11.2.1 NextGen Collection System11.3 Americord Registry, Inc.11.3.1 Cord Blood 2.011.3.2 Cord Tissue11.3.3 Placental Tissue 2.011.4 Be The Match11.4.1 Hub of Transplant Network11.4.2 Partners of Be The Match11.4.3 Allogeneic Cell Sources in Be The Match Registry11.4.4 Likelihood of a Matched Donor on Be The Match by Ethnic Background11.5 Biocell Center Corporation11.5.1 Chorionic villi after Delivery11.5.2 Amniotic Fluid and Chorionic Villi during Pregnancy11.6 BioEden Group, Inc.11.6.1 Differences between Tooth Cells and Umbilical Cord Cells11.7 Biovault Family11.7.1 Personalized Cord Blood Processing11.8 Cell Care11.9 Cells4Life Group, LLP11.9.1 Cells4Life's pricing11.9.2 TotiCyte Technology11.9.3 Cord Blood Releases11.10 Cell-Save11.11 Center for International Blood and Marrow Transplant Research (CIBMTR)11.11.1 Global Collaboration11.11.2 Scientific Working Committees11.11.3 Medicare Clinical Trials and Studies11.11.4 Cellular Therapy11.12 Crio-Cell International, Inc.11.12.1 Advanced Collection Kit11.12.2 Prepacyte-CB11.12.3 Crio-Cell International's Pricing11.12.4 Revenue for Crio-Cell International11.13 Cord Blood Center Group11.13.1 Cord Blood Units Released11.14 Cordlife Group, Ltd.11.14.1 Cordlife's Cord Blood Release Track Record11.15 Core23 Biobank11.16 Cord Blood Registry (CBR)11.17 CordVida11.18 Crioestaminal11.18.1 Cord Blood Transplantation in Portugal11.19 Cryo-Cell International, Inc.11.19.1 Processing Method11.19.2 Financial Results of the Company11.20 CryoHoldco11.21 Cryoviva Biotech Pvt. Ltd11.22 European Society for Blood and Bone Marrow Transplantation (EBMT)11.22.1 EBMT Transplant Activity11.23 FamiCord Group11.24 GeneCell International11.25 Global Cord Blood Corporation11.25.1 The Company's Business11.26 HealthBaby Hong Kong11.26.1 BioArchive System Service Plan11.26.2 MVE Liquid Nitrogen System11.27 HEMAFUND11.28 Insception Lifebank11.29 LifebankUSA11.29.1 Placental Banking11.30 LifeCell International Pvt. Ltd.11.31 MiracleCord, Inc.11.32 Maze Cord Blood Laboratories11.33 New England Cord Blood Bank, Inc.11.34 New York Cord Blood Center (NYBC)11.34.1 Products11.34.2 Laboratory Services11.35 PacifiCord11.35.1 FDA-Approved Sterile Collection Bags11.35.2 AXP Processing System11.35.3 BioArchive System11.36 ReeLabs Pvt. Ltd.11.37 Smart Cells International, Ltd.11.38 Stem Cell Cryobank11.39 StemCyte, Inc.11.39.1 StemCyte Sponsored Clinical Trials11.39.1.1 Spinal Cord Injury Phase II11.39.1.2 Other Trials11.40 Transcell Biolife11.40.1 ScellCare11.40.2 ToothScell11.41 ViaCord11.42 Vita 34 AG11.43 World Marrow Donor Association (WMDA)11.43.1 Search & Match Service11.44 Worldwide Network for Blood & Marrow Transplantation (WBMT)

For more information about this report visit https://www.researchandmarkets.com/r/7bm9lx

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Continued here:
Global Cord Blood Banking Market 2020 with Analysis of 44 Industry Players - PRNewswire

To Read More: Global Cord Blood Banking Market 2020 with Analysis of 44 Industry Players – PRNewswire
categoriaSpinal Cord Stem Cells commentoComments Off on Global Cord Blood Banking Market 2020 with Analysis of 44 Industry Players – PRNewswire | dataSeptember 3rd, 2020
Read All

Royal Biologics Announces the Acquisition of FIBRINET – PRNewswire

By daniellenierenberg

HACKENSACK, N.J., Sept. 1, 2020 /PRNewswire/ --Royal Biologics, an ortho-biologics company specializing in the research and advancement of autologous and live cellular solutions, today announced the completed acquisition of FIBRINET, from Vertical Spine LLC. The acquisition comes as part of Royal Biologics' strategic initiative to add novel technologies to its growing portfolio of autologous and live cellular solutions to support orthopedic and spinal fusion.

The FIBRINET system utilizes a patient's own autologous blood to create a platelet-rich fibrin matrix/membrane (PRFM). During this process, a patient's autologous platelets are harvested first through centrifugation and then combined with a proprietary solution to solidify into a fibrin clot/membrane. PRFM can be used to help augment spinal fusions and provide surgeons a new and novel biologic option. FIBRINET is the first commercialized system that utilizes a non-thrombin solution to create a reproducible platelet-rich fibrin matrix. The use of its proprietary solution to solidify a fibrin membrane provides the unique advantage of creating a biologic reservoir of growth factors and stem cells that can be held and used at the point of care for spinal fusion.

"We are extremely excited to add FIBRINET to our growing portfolio of autologous and live cellular therapies," says Salvatore Leo, Royal Biologics Chief Executive Officer. "FIBRINET'S technology now allows surgeons to harvest a patient's autologous cells and create a unique platelet-rich fibrin membrane-scaffold to be used at the point of care in most spinal fusion procedures. When added to our current product portfolio of autologous and live cellular therapies, we feel that providing each patient an opportunity to harvest their own unique cells for treatment is a superior option in many surgical settings."

FIBRINET has shown promising results and has been adopted into major orthopedic institutions in the United States. Hospitals such as Hospital for Special Surgery, Mount Sinai, NY Presbyterian and Connecticut's Orthopaedic Institute have all adopted FIBRINET into their spine services portfolio of approved products for use.

In a recent European Spine Journalstudy, at a one-year follow-up, FIBRINET demonstrated over a 92.4% radiographic fusion, and there was a significant improvement recorded in VAS scores for both back and leg pain. Compared to baseline figures, the number of patients using opioid analgesics at 12 months decreased by 38%. While the majority (31/50) of patients that participated in the study were retired, 68% of the employed patients were able to return to work.1

"FIBRINET presents itself as a low-cost option to obtain premium, high-quality viable cells from the patient for each fusion procedure," comments Dr. James Yue, Co-Chief and Orthopedic Spine Surgeon at Midstate Medical Center. "During this pandemic, a time when patients are having difficulty receiving operations in major hospital systems, the transition of procedures to ambulatory surgery centers has become even more desired and essential. FIBRINET's low-cost bundle provides surgeons the ability to offer a live viable cell product, point of care in a streamlined and safe environment for spinal fusion."

As part of a national re-launch plan for FIBRINET, Royal Biologics has just launched a new 3D animated moviethat demonstrates the unique features and benefits of FIBRINET's technology. "We wanted to show surgeons, distributors and our peers a new and creative take on Autologous & Live Cellular therapy," comments Leo. "With the recent pandemic and industry environment, we felt it was necessary to help create a unique viewing experience of the FIBRINET system."

FIBRINET comes after two other recent product launches from Royal Biologics in Q1 of 2020. Magnus, a live viable cellular allograft, and Cryo-Cord, a live cellular umbilical cord, were launched in the first quarter of 2020. Both products focus on providing live cellular therapies without the use of traditional toxic cyro-protectants. Both products are new, novel approaches to preserving live cells in a cryo-protected format.

Royal Biologic's FIBRINET is available for U.S. national distribution. Please contact [emailprotected] for more information.

1"Singlecenter, consecutive series study of the use of a novel plateletrich fibrin matrix (PRFM) and betatricalcium phosphate in posterolateral lumbar fusion," European Spine Journal https://doi.org/10.1007/s00586-018-5832-5, July 16, 2018.

SOURCE Royal Biologics

Home

See the rest here:
Royal Biologics Announces the Acquisition of FIBRINET - PRNewswire

To Read More: Royal Biologics Announces the Acquisition of FIBRINET – PRNewswire
categoriaSpinal Cord Stem Cells commentoComments Off on Royal Biologics Announces the Acquisition of FIBRINET – PRNewswire | dataSeptember 1st, 2020
Read All

BrainStorm to present data linking MR measures to functional improvement in progressive multiple sclerosis – DOTmed HealthCare Business News

By daniellenierenberg

NEW YORK, Aug. 25, 2020 /PRNewswire/ -- BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, announced today the acceptance of a clinical abstract documenting an association between magnetic resonance imaging (MRI) measures and functional improvement in patients with progressive multiple sclerosis (MS). The data, to be presented as a poster on September 11-13 at the forthcoming MSVirtual2020 meeting the eighth joint meeting of the Americas Committee for Treatment and Research in Multiple Sclerosis (ACTRIMS) and the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) will inform analysis of clinical outcomes in the Company's ongoing Phase 2 trial of NurOwn (MSC-NTF cells) in patients with progressive MS.

"Although disability improvement is an important measure of function in individuals with progressive MS, the MRI features that correlate with disability improvement had not previously been explored," noted Tanuja Chitnis, M.D., FAAN, Professor of Neurology at Harvard Medical School, Senior Neurologist at Brigham and Women's Hospital, and Director of the Comprehensive Longitudinal Investigations in MS at the Brigham (CLIMB Study). "In this analysis, we have demonstrated a correlation between specific brain and spinal cord MRI measures and observed functional improvements in progressive MS patients. We are grateful to the joint ACTRIMS/ECTRIMS abstract committee for allowing us to present these data, which we hope will facilitate analysis of clinical trial outcomes that specifically evaluate functional improvements in progressive MS."

Dr. Chitnis and colleagues evaluated MRI features of 48 participants in the SysteMS substudy of the CLIMB study, a nested cohort selected to match the inclusion criteria of the Phase 2 NurOwn trial in progressive MS (NCT03799718). The participants underwent brain and lesion volumetric analysis, as well as mean upper cervical cord (MUCCA) analysis, 12-24 months following baseline 3 Tesla MRI. These analyses generated 34 MRI data measures performed by ICOMETRIX, which the investigators compared in patients with improved function versus those with worsening or stable function, as measured by 9-hole peg test (9HPT) or timed-25-foot-walk (T25FW) scores, two well-established measures of function in progressive MS.

Ad StatisticsTimes Displayed: 126798Times Visited: 1477

Link:
BrainStorm to present data linking MR measures to functional improvement in progressive multiple sclerosis - DOTmed HealthCare Business News

To Read More: BrainStorm to present data linking MR measures to functional improvement in progressive multiple sclerosis – DOTmed HealthCare Business News
categoriaSpinal Cord Stem Cells commentoComments Off on BrainStorm to present data linking MR measures to functional improvement in progressive multiple sclerosis – DOTmed HealthCare Business News | dataAugust 26th, 2020
Read All

AST-OPC1 Stem Cell Therapy Offers Hope for Spinal Cord Injury

By daniellenierenberg

An investigational treatment called AST-OPC1 (oligodendrocyte progenitor cells) may give new hope to people with a recent spinal cord injury. Researchers are examining whether AST-OPCI injected directly into the spinal cord helps repair damage in people with cervical (neck) spinal cord injury.

Researchers are examining whether AST-OPCI injected directly into the spinal cord helps repair damage in people with cervical (neck) spinal cord injury. Photo Source: 123RF.com.Until now, there have been no new treatment options for the 17,000 new spinal cord injuries that happen each year, said primary investigator Richard G. Fessler, MD, PhD, Professor of Neurological Surgery at Rush University Medical Center, Chicago, Illinois. We may be on the verge of making a major breakthrough after decades of attempts.

AST-OPC1 is developed from stem cells and is believed to work by supporting the proper functioning of nerve cells. After a spinal cord injury, many nerve cells are severed and beyond repair; however, many nerve cells have the potential to work again but have lost their protective coating (known as myelin) that helps nerves transfer messages to the arms and legs.

What AST-OPC1 does is recoat those potentially functional cells and allows them to work more normally, Dr. Fessler told SpineUniverse.

Left: Normal myelin sheath Right: Damaged myelin sheath. Photo Source: 123RF.com.

Dr. Fessler and colleagues are part of a larger multicenter trial designed to assess the safety and effectiveness of three doses of AST-OPC1 (2-, 10-, or 20-million cells) injected into the injured area of the spinal cord between 14 and 30 days following a cervical spinal cord injury. These individuals have essentially lost all sensation and movement below their injury site with severe paralysis of the arms and legs.

Thus far, Dr. Fessler and colleagues have injected three patients at the first dose level and five patients at the intermediate dose level.

Our preliminary results show that we may, in fact, be getting some regeneration. Some of those who have lost use of their hands are starting to get function back. That is the first time in history that has ever been done, Dr. Fessler said. The improvements are seen within the 30 to 60 days, he noted.

I have been doing this kind of research for more than 20 years, and Ive never seen anything as encouraging as AST-OPC1, Dr. Fessler said. Just as a journey of a thousand miles is done one step at a time, repairing spinal cord injuries is being done one step at a time. And, now, we can say that weve taken that first step.

The injections are safe, as determined by an earlier study of AST-OPC1 that involved patients with thoracic (mid-back) spinal cord injury. Dr. Fessler said it important for the spinal cord injury to be recent in order for the therapy to work. In addition, the spinal cord needs to be in continuity and not severed. The injections are unlikely to be effective in people who have had spinal cord injuries for years, although future trials are needed to know for sure.

More here:
AST-OPC1 Stem Cell Therapy Offers Hope for Spinal Cord Injury

To Read More: AST-OPC1 Stem Cell Therapy Offers Hope for Spinal Cord Injury
categoriaSpinal Cord Stem Cells commentoComments Off on AST-OPC1 Stem Cell Therapy Offers Hope for Spinal Cord Injury | dataAugust 25th, 2020
Read All

Cell Transplantation for Spinal Cord Injury …

By daniellenierenberg

Spinal cord injury (SCI) is an intractable and worldwide difficult medical challenge with limited treatments. Neural stem/progenitor cell (NS/PC) transplantation derived from fetal tissues or embryonic stem cells (ESCs) has demonstrated therapeutic effects via replacement of lost neurons and severed axons and creation of permissive microenvironment to promote repair of spinal cord and axon regeneration but causes ethnical concerns and immunological rejections as well. Thus, the implementation of induced pluripotent stem cells (iPSCs), which can be generated from adult somatic cells and differentiated into NS/PCs, provides an effective alternation in the treatment of SCI. However, as researches further deepen, there is accumulating evidence that the use of iPSC-derived NS/PCs shows mounting concerns of safety, especially the tumorigenicity. This review discusses the tumorigenicity of iPSC-derived NS/PCs focusing on the two different routes of tumorigenicity (teratomas and true tumors) and underlying mechanisms behind them, as well as possible solutions to circumvent them.

Spinal cord injury is a devastating neurological condition, which results in the disruption of signals between the brain and body yielding severe physical, psychological, and social dysfunction [1, 2]. Patients who have suffered a SCI not only become increasingly dependent on others for daily life but are more likely to die prematurely and are at risk for social exclusion [1, 2]. What is worse is that, due to the complex pathophysiological processes, significant treatment for SCI has progressed slowly.

Originally, glucocorticoid drugs like methylprednisolone were regarded as the classic therapeutic treatment for SCI [3], as they had been found to stabilize the plasma membrane of damaged cells by inhibiting lipid peroxidation and hydrolysis [3]. However, their application gradually became controversial because they had serious side effects like mounting vulnerability to acute corticosteroid myopathy or serious infection [4, 5]. Other clinical approaches to SCI included early surgical interventions [6] and alternative pharmacological therapy (e.g., GM-1 [7] and thyrotropin-releasing hormone [8]). However, these methods either had their own side effects or demonstrated weakly therapeutic efficacy.

Recent progress in cell transplantation has opened up new opportunities to understand and treat SCI. Among the several types of candidate cells, NS/PC holds great therapeutic potential for SCI, as it can replace the lost neurons and glia as well as create a growth-promoting environment [9]. Nevertheless, the acquisition of NS/PCs can be a difficult task since they are usually located deep in the brain so their isolation is a highly invasive procedure. To bypass this problem, people have also used ESCs from which they can generate sufficient NS/PCs. Indeed, ESC-derived NS/PCs were initially reported to have optimistic effects on SCI [10, 11]. Unfortunately, the application of ESC-based strategy, accompanied by immune rejections and ethical concerns [12], was less likely to be transformed into clinical practice. Subsequently, the advent of iPSCs appears to signal the future of stem cell treatments for SCI. However, while the therapeutic effects of iPSCs on SCI have been discussed by many studies, the side effects are rarely mentioned and talked over exclusively, especially the tumorigenicity of iPSCs. In this paper, we briefly summarized the application of iPSCs, elucidated the tumorigenicity in detail, and described possible strategies to address it.

In 2006, Takahashi and Yamanaka showed that fibroblasts from mouse somatic cells could regain pluripotency after expressing four transcriptional factors [13], thus developing iPSCs. It stands to reason that iPSCs may have the greatest potential for regenerative medicine, because they have abilities to indefinitely self-renew and differentiate into most if not all cell types [13, 14]. Compared to ESCs, autologous iPSCs also circumvent the ethical issues associated with embryonic tissue harvesting and free patients of immunosuppression, which is critical since SCI patients are at high risk for infection [15].

Of late, an increasing number of research groups have applied iPSCs to SCI and achieved interesting results (Table 1). In 2010, Tsuji et al. managed to produce neurospheres from mouse iPSCs and showed that transplantation of these cells promoted functional improvement in mice with SCI [16]. As a proof of principle, they also used human iPSCs (hiPSCs) and demonstrated significant therapeutic effects like the better recovery of motor function, synapse formation between the grafts and hosts, and enhanced axonal regrowth [17]. Kobayashi et al. transplanted hiPSC-derived NS/PCs into a nonhuman primate following cervical SCI and revealed behavioral improvements consistent with rodent studies [18]. Lu et al. reported that not only can the derivatives of iPSCs extend axons over nearly the whole length of the rat CNS [19] but can also form extensive synaptic connections with the host. More recently, several studies have elucidated potential mechanisms underlying behavioral improvement from SCI following transplantation of iPSC derivatives [20, 21]. They speculated that iPSC derivatives exerted their effects on SCI by substitution of lost neural cells, promotion of axonal remyelination, and regrowth as well as tissue sparing through trophic support.

There are also some negative reports on iPSC approaches to SCI. Two reports revealed that despite the ability to differentiate into neural cells [19, 22], iPSC-derived NS/PCs did not show any substantial improvement in function. Besides, it takes a long time to generate and evaluate iPSCs [23], making it unrealistic for individualized iPSC-based therapy because the optimal time for stem cell transplantation is the subacute phase [24]. As a result, either iPSCs would have to be generated from donor tissue, missing out on the major factor that makes them attractive in the first place, or transplanted at more chronic phases of injury [25], which showed a poor result after transplantation into the chronic SCI model. More importantly, like ESCs, there are widely found issues with respect to safety of iPSCs, particularly the possible tumorigenicity [16, 21, 26].

Tumorigenicity of any stem cell transplants remains a major concern for clinical applications, and there is an urgent need for it to be addressed before translation of iPSC techniques into SCI treatment. From several reports [26, 27], tumorigenicity of iPSCs can be classified into two distinct types: teratoma and true tumors due to their different features and developmental processes, which we will discuss further below (Figure 1).

Teratoma is a relatively common potential risk in grafts of iPSCs especially when individual iPSC clones were preevaluated as unsafe [16, 17, 28]. While the mechanism is not fully understood, most reports share the idea that undifferentiated iPSCs lead to teratoma formation [26, 29]. Teratoma formation requires the ability to escape or silence the immune responses for the purpose of survival in the host. Tumor cells could take effective measures to avoid immune responses by alteration of MHC-I, mutations in Fas or Trail, and so forth [30]. These traits are well shared with undifferentiated iPSCs. Besides, like tumor cells, iPSCs possess a virtually unlimited proliferation potential, by which they are vulnerable to the formation of a cell mass. Therefore, we reasonably postulate that residual-undifferentiated cells contribute greatly to teratoma formation. Moreover, Miura et al. discovered that the presence or absence of c-Myc in iPSCs and drug selection for NANOG or Fbxo15 expression [28, 31], all of which are considered closely associated with tumorigenesis, showed no correlation with teratoma formation. Namely, the underlying mechanism of teratoma formation is different from that of tumor, as they do not correlate with these tumor makers.

It is still unclear why undifferentiated cells remain in iPSC grafts. However, iPSC derivatives of different origins do demonstrate different teratoma-forming propensity [16, 28]. For instance, iPSCs derived from tail-tip fibroblasts showed the highest propensity for teratoma formation while iPSCs from embryonic fibroblasts and gastric epithelial cells showed the lowest. Since iPSCs from different origins exhibited distinctive features, it is possible that epigenetic memory, the residual features of somatic tissues, plays a role in teratoma formation. And due to epigenetic memory, iPSCs from certain cell lines may be likely to redifferentiate back into their initial cell type [32, 33]. Therefore, we might as well hold the belief that if we created a certain type of microenvironment supporting certain iPSCs to differentiate into NS/PCs, those derived from any other cell lines except neural ones may not be able to well differentiate and have to maintain undifferentiated status under this unfavorable condition. Besides, the inefficient methods of purifying the contaminated undifferentiated cells also aggravate the situation.

Several studies have found that even if all undifferentiated cells are purged [26, 34], iPSC derivatives remain tumorigenic, as substantial tumors were present instead of teratomas. Such cases can be much worse because they are usually malignant and able to progress, invade, and metastasize. As such, understanding the mechanisms behind tumorigenesis is imperative.

The exact mechanism underlying iPSC tumorigenesis is still not clearly defined, but several factors are thought to contribute to it. Collectively, genomic and epigenomic instability correlates largely with tumorigenicity of iPSCs [35, 36]. Many factors can account for genomic instability. For instance, several oncogenes (like c-Myc and KLF4) or genes sometimes associated with tumorigenesis (like SOX2 and Oct-4) are used in the reprogramming process. Additionally, retroviral or lentiviral gene delivery systems are used in the reprogramming process and can be integrated into the genome-disrupting tumor suppressor genes and pathways. For example, the activation of transgenic Oct-4 and KLF4 has been found to induce tumor formation of NS/PCs via the Wnt/-catenin signaling pathway [34]. This pathway was found to be able to enhance stabilization of telomeres, a signature of tumorigenesis, by increasing TERT expression. Furthermore, the mature cells harvested for iPSC induction have themselves already undergone multiple rounds of division and might possess their own genetic instability before induction [37]. Also, the low-efficiency reprogramming process and incomplete suppression of transgenic factors result in some partially reprogramming cells, which take part in tumor forming.

On the other hand, epigenomic instability, especially DNA methylation, also plays a role in the formation of true tumors [26]. DNA methylation has been found to have strong association with tumorigenesis in cancer tissues [38]. For instance, if oncogenes possess hypomethylation in a cell sample, such cells may show a higher likelihood to form tumors and vice versa. Consistent with this idea, 253G1-hiPSCs as well as 253G1-iPSC-NS/PCs, which had DNA hypomethylation mainly in oncogenes and hypermethylation in tumor suppressor genes, were more likely to develop tumors when compared with 207B1-hiPSCs and NS/PCs, which did not. In addition, tumorigenicity can be enhanced as induced cells are passaged because the passage of iPSCs and iPSC-derived NS/PCs further alters the epigenetic profiles via DNA methylation.

As mentioned above, the formation of teratomas is largely attributed to undifferentiated cells. Based on this, some reports proposed various methods to address this problem including the following:(1)Increased number of passages to weaken epigenetic memory. Several studies observed the loss of epigenetic memory with increased passage number [33, 39]. iPSCs at late passage and ESCs became indistinguishable and acquired similar ability of differentiation. Therefore, the undifferentiated cell correspondingly reduced when iPSCs were capable enough of differentiation into other cells. While the underlying mechanism is not quite clear, two possible aspects may account for this phenomenon: (i) most of the iPSCs will gradually erase somatic marks as those cells passaged and/or (ii) those rare, fully reprogrammed cells become superior and then are picked up step by step [39].(2)Take advantage of epigenetic memory characteristics and use it to reprogram iPSCs away from a teratoma-inducing lineage. The propensity of iPSCs to differentiate bias into their starting cell lineage could be exploited to produce certain cell types. For example, to get more NS/PCs from iPSCs, we may ideally think of the utilization of neural cells. Some previous reports [40, 41] also confirmed that, in comparison with other cell lineages of origin, iPSCs from neural tissue are more likely and efficient to differentiate into NS/PCs. The more likely to differentiate into other cells, the less possibility of forming teratomas.(3)Improve the ability to purify iPSC-NS/PCs. It is essential to better gain bona fide iPSC-NS/PCs, as the potential for contamination with undifferentiated iPSCs presents a big chance of forming teratomas. Therefore, scientists have tried many ways to achieve the common goal including finding more specific cell surface makers and diminishing residual undifferentiated cells like inhibiting DNA topoisomerase II or stearoyl-coA desaturase [21, 42]. Accordingly, it does help but it still urgently needs to pan for desired unique makers or proper methods of depleting undifferentiated cells.(4)Transplant more mature cells instead of naive ones. It has been observed that teratomas formed from iPSC-derived NS/PCs were much smaller than those directly from iPSCs, indicating that predifferentiation of iPSCs can reduce certain aspects of tumorigenicity [43]. Consequently, grafting iPSCs directly in the treatment of SCI is not recommended.

Taken together, these ways to address undifferentiated cell contamination in iPSC-derived NS/PC transplants are, at least in part, currently effective, but it seems impossible for some of these methods to be translated into clinical application due to either the invasive operation or time-consumed culture to weaken epigenetic memory. And we had better transplanted relatively mature iPSC-derived NS/PCs instead of iPSC itself.

As for substantial tumors, we also have several effective steps to reduce the risk including the following:(1)Change the reprogramming methods into integration-free methods. Virally induced iPSCs with genomic integrations of transcriptional factors easily cause insertional mutagenesis and result in continual expression of residual factors in iPSCs [44]. Thus, instead of using integrative vectors like retrovirus or lentivirus, we need to pursue integration-free methods, not perturbing the genome. Episomal vector and Sender virus vector were once thought to be ideal nonintegrating methods, as the former works as extrachromosomal DNA in the nucleus while the latter is a method of transgene-free induction. But as the potential spontaneous integration by episomal vector and the involvement viral particles, both are limited to clinical applications. Subsequently, Woltjen et al. discovered that piggyBac transposons could be integrated into genomes of the host so the reprogramming factors that they carried were able to express continuously and stably [45]. Furthermore, the piggyBac transposons could be cut out of the genomes completely [45]. Afterwards, the advent of DNA-free and viral-free methods like recombinant proteins, messager RNA, and mature microRNA made iPSCs stride towards clinical use despite being technically challenging or inefficient. Of note, iPSCs of the first clinical trial were generated by the nonintegrative method of reprogramming with recombinant proteins [46].(2)Avoid using transgenic factors of oncogenesis. The Yamanaka factors are competent enough to induce tumorigenesis playing important roles in the development and maintenance of cancer. It appears quite necessary to reduce reprogramming factors in order to decrease the possibility of tumor formation and hasten the clinical use. Nakagawa et al. initiated a series of experiments to test whether fewer factors are capable enough of inducing the stem cell. It was found that exogenous c-Myc was not necessarily needed to generate iPSCs [31]. They then found that exogenous Oct-4 together with KLF4 or SOX2 could produce iPSCs from NSC. Furthermore, they discovered that transcriptional factor Oct-4 alone is sufficient to acquire iPSCs [41]. Although the low-reprogramming efficiency of them limits their applications, their attempt provides us with new ideas.(3)Reduce undesirable DNA methylation. Decreasing DNA methylation of tumor suppressor genes and increasing that of oncogenes can certainly reduce the rate of tumor formation from iPSCs. The application of knocking down the maintenance methyltransferase DNMT1 or the demethylating agent like 5-AZA can reduce residual methylation of resulting cells and convert them to authentic pluripotent cells [33]. Besides, Mikkelsen et al. found that demethylation appears passage dependent [47]. Some reports showed that DNA methylation could be gradually erased as the cells were passaged [33, 39]. Iida et al. [26], however, found that DNA methylation patterns became more unstable with cells passaged. Maybe, this can be accounted for the fact that the cell clones that they used were different indicating that the ability of passaging to gradually diminish methylation cannot be applicable to all clones.(4)Establish reliable ways to distinguish the safe and unsafe cell clones. By virtue of the teratoma-forming activity of the iPSC derivatives after their transplantation [28], we are capable of differentiating the safe iPSC clones from all cultured cell clones. Preevaluated safe clones can show significant therapeutic effects without tumor formation [1618], while preevaluated unsafe clones demonstrate high rates of tumor formation. Iida discovered that methylation states of CAT and PSMD5 genes can be applied to discriminate between safe and unsafe hiPSC-NS/PCs [26].

In brief, across the entire process of iPSC generation and NS/PC differentiation, there are steps that can be taken to reduce nonteratoma tumor formation. These strategies mentioned above just provide some possible way to circumvent the tumorigenicity, but I am afraid that there is still a long way from clinical applications.

Despite numerous therapeutic discoveries in the laboratory, to our knowledge, faithfully effective treatment for spinal cord injury remains unavailable. iPSC transplantation for SCI is currently an unrealistic strategy, but we have already recognized the huge potential of iPSCs for SCI because of their ability to self-renew and differentiate into various types of neural cells. In addition, iPSCs also avoid the ethical issues associated with some transplant sources and importantly can be performed in an autologous manner removing the need for immune suppression.

However, although the Takahashi group claimed that they were warranted to restart their clinical trials on iPSCs, safety concerns, especially tumorigenicity, still seriously limit considerations for clinical application, at least on SCI [48]. They once carried out the first clinical application of iPSCs in 2014, but were required to halt for some reasons. In this review, we focused on the two different routes of tumorigenicity and underlying mechanisms behind them. We also put forward some potential solutions to tumorigenesis. But in the current state, not enough is understood about underlying causes of tumor genesis from iPSC derivatives to completely elucidate the issue. More explorations and attempts need to be done in the future.

The authors declare that they have no competing interests.

Junhao Deng wrote the initial manuscript. Yiling Zhang, Yong Xie, and Licheng Zhang participated in drafting the manuscript. Peifu Tang revised the manuscript. All authors read and approved the final manuscript.

The authors thank Xie Wu and their laboratory members for their dedicated work. They are supported by the projects of the international cooperation and exchanges of the National Natural Science Foundation of China (81520108017).

View original post here:
Cell Transplantation for Spinal Cord Injury ...

To Read More: Cell Transplantation for Spinal Cord Injury …
categoriaSpinal Cord Stem Cells commentoComments Off on Cell Transplantation for Spinal Cord Injury … | dataAugust 25th, 2020
Read All

Stem Cells for Spinal Disorders – A Nonsurgical, Minimally …

By daniellenierenberg

The spinal column consists of 33 individual vertebrae with dozens of joints between them. Strong enough to withstand the rigors of daily wear and tear, but doing so decade after decade may be asking a lot. Deterioration can happen for a number of reasons - accidents, sports, hard labor, osteoarthritis, immune disorders, etc. Regardless of cause, sudden or gradual, the common denominator is usually severe pain.

There are 7 vertebrae in the cervical region which is your neck area, then 12 in the thoracic region which is your back, followed by 5 going down in the lumbar region or lower back, and another 5 in the sacral region and 4 in the coccygeal region which is technically your tail bone area. Any inflammation within these areas can potentially result in a domino-effect of radiating pain.

Any injury or disease involving the spine quickly affects mobility.Individuals unfortunate enough to be affected live in a world of perpetual hurt. The simple acts of sitting, walking, gripping, voiding, etc. can become cumbersome and daily reminders of injury.

The last ray of hope - surgery - has been shown to be ineffective in providing effective reprieve from symptoms in a significant proportion of patients.Whats more is that such invasive measures can prove to be a bigger setback than the pathology itself.

For the right patient, in the right context, minimally invasive stem cell therapies can change the course of many lives for the better.

What is Chronic Back and Neck pain?

Chronic back painis a broad term that pertains to inflammation, nerve impingement, degenerative disc damage and tissue breakdown in the spine. Such pain typically lasts 12 weeks or longer.

Neck pain is one of the most pervasive problems in the world today. Repetitive strain associated with most modern jobs is truly not kind to our necks. We spend a great deal of time viewing our screens at uncomfortable angles.Its no surprise that signs of osteoarthritis can be seen in 50% of the population of people over 50.

Spinal injuries of all types have the potential to make life a struggle for those living in its clutches. Depression is not uncommon as the stark reality of a completely altered quality of life sets in.

Relieving back and neck pain without surgery is now possible with new avenues in regenerative medicine - includingPlatelet-Rich Plasma (PRP), stem cell, and exosome therapies.

Advantages of these biological therapies over standard surgical options include their relative simplicity, the fact that they can be performed on an outpatient basis, are minimally invasive, can be done much faster, with fewer complications and a higher success rate in the right patient population. Biological therapies are ideal for patients between 20 and 70 years of age with mild to moderate disease burden.

Overview of Biological Therapies

Biological therapies (e.g. PRP, stem cell, exosome therapies) mark a new dawn in the field of healthcare.

The actual procedures involving such therapies are all pretty straightforward.With respect to PRP and stem cells, thecells are extracted from the patient, processed, and then administered back into the same patient at the intended target site. PRP is derived from peripheral blood, whereas stem cells can be obtained from bone marrow or one's own fat tissue.Stem cells may also be derived from a separate donor (e.g. umbilical cord).Exosomes are microscopic packets of instructions from one cell to another.In this instance, the exosomes are derived from donated stem cells and the message they're conveying is induction of tissue repair and regeneration at the target site.

Words of Caution

Important caveats include the following.When PRP science was in its infancy, providers would draw a patient's blood into a test tube similar to what you may be used to seeing at a commercial lab today.They would then isolate the PRP from that sample.It's important to note that regenerative medicine has progressed tremendously since those bygone days.A significant majority of clinics unfortunately continue to cling to the dated method of PRP processing despite much superior methods being available.

The main drivers for this inability to adapt has been that the newer methods are more skill intensive and costlier.To fully harness the benefits of PRP therapy, take the time research your provider and their methods.If blood collection tubes are used at any point in the procedure, it's a cheaper outdated method.If you're being offered "rock bottom prices," the quality of the procedure probably matches that price.

One of the biggest caveats regarding stem cells involves donated cells.Make sure the cells originate within the United States.Stateside labs are regulated by the Food and Drug Administration (FDA).As such, they have to abide by fairly strict standards of cleanliness and protocol.Clinics import cells from abroad easily and cheaply.However, you're truly rolling the dice when it comes to your health when you subject yourself to procedures at such clinics.

While on the topic of offshore stem cell therapy, prospective patients are often marketed a familiar line - "we can do special procedures at offshore sites that are disallowed by the FDA here in the states."Indeed clinics have garnered a supernatural aura about their methods through these marketing campaigns.As a consumer, you should understand that its generally a bad idea to trade world class health for third world health.More specifically, no credible data has been published to vouch for the effectiveness of these "too good to be legal" methods.

Such offshore arrangements protect the clinic in the event of gross negligence.The FDA is certainly stringent, but they also allow for legitimate avenues for pursuing investigational therapies.These clinics have opted to not pursue those processes as it's easier to find havens abroad where anything goes without repercussions.That's not to say success is impossible to get reasonable care at such sites, but if you lament a crosstown doctor's appointment, you might want to reconsider flying to a different country on short notice in the event of an unexpected post-procedural complication.

Finally, it needs to be stressed that Regenerative Medicine is a field of medicine.If a clinic chooses to perform just PRP therapy or commit to one form of stem cell therapy, it is not a Regenerative Medicine practice despite glossy marketing that suggests otherwise.One mode of therapy cannot possibly treat all ailments any more than one tool can fix all mechanical problems with one tool.It would behoove you as a patient to interview your provider and get a sense of their depth and breadth of understanding of this field of Medicine.

Make Neck and Spinal Pain Relief Happen

That's right...take a proactive role.Initial steps start before the injury even happens.Maintain a healthy weight by being mindful of a healthy diet.This may entail testing to ensure you're not mounting a low-grade inflammatory response to certain foods as well as checking to see if your calcium and vitamin levels are supportive of appropriate bone density.Exercise your neck and back.This will help with mobility, and musculoskeletal strength.Adopt practices in your daily activities that avoids injury rather than react to it once it happens.

If you do injure your neck or back, take an adequate amount of time off to recover fully.Don't cut corners as you risk significantly prolonging recovery - the opposite of the desired effect.

Finally, despite the pain being acute or chronic, learn to act early."Toughing it out" can be detrimental as over months and years, at the microscopic level, the injury can not only progress but lead to further damage that becomes unresponsive to conservative measures including to biological therapies.

Do your homework, research and meet with Regenerative Medicine specialists early.Share your goals and expectations with them and get a sense for what's realistic.Don't settle for cheap or lofty promises.Once the disease has advanced beyond the point of no return and surgery is the only option, repeat this process with more than one spine surgeon.Surgery is a major endeavor and being at your health optimum is paramount.Regenerative Medicine specialists can still offer vital help here - for example with a supportive post surgical injection to help shorten recovery time.

By Vasilly Eliopoulos and Khoshal Latifazai, Founders of Rocky Mountain Regenerative Medicine, is the only full-service integrative and regenerative medicine clinic of its kind in the nation specializing in Stem Cells for Spinal Disorders.

More:
Stem Cells for Spinal Disorders - A Nonsurgical, Minimally ...

To Read More: Stem Cells for Spinal Disorders – A Nonsurgical, Minimally …
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cells for Spinal Disorders – A Nonsurgical, Minimally … | dataAugust 25th, 2020
Read All

Knowing the Global Cell Therapy Market; MRFR Reveals Insights for 2017 2023 – The Daily Chronicle

By daniellenierenberg

Cell Therapy Market Highlights

Acknowledging the increasing traction that the market is garnering currently, Market Research Future (MRFR) in its recently published analysis asserts that the global cell therapy market is expected to witness significant accruals, growing at a 10.6% CAGR during the forecast period (2017-2023).

Cell therapy has evolved as a recent phase of the biotechnological revolution in the medical sector. The key aim of cell therapy is to target various diseases at the cellular level by restoring a specific cell population as carriers of therapeutic cargo. Besides, cell therapy is used in combination with gene therapy for the treatment of several diseases.

Potential applications of this therapy include treatment of urinary problems, cancers, autoimmune disease, neurological disorders, and infectious disease. In the future, cell therapy will also be used for rebuilding damaged cartilage in joints, repairing spinal cord injuries, and improving the immune system.

Globalcell therapy marketis proliferating rapidly. Factors predominantly driving the growth of the market include the rising prevalence of chronic diseases and disorders, increasing geriatric population, increasing government assistance, and replacement of animal testing models. Besides, technological advancements transpired in the field of biotechnology are escalating the market on the global platform.

Additional factors pushing up the growth of the market include the growing number of neurological disorders and the improvement in the regulatory framework. Other dominant driving forces behind the growth of the global cell therapy market are the regulation of tissue engineering and the exciting possibilities that this therapy is offering in the field of therapeutics.

Conversely, factors such as the challenges that occurred during research and development activities impede the growth of the market. Also, the high cost associated with the development and reconstruction of cells is hampering the market growth especially in the developing and under-developed countries.

Avail Free Sample Copy athttps://www.marketresearchfuture.com/sample_request/5066

Global Cell Therapy Market Segmentation

For enhanced understanding, the market has been segmented into six key dynamics:

By Type:Autologous and Allogeneic

By Technology:Somatic Cell Technology, Cell Immortalization Technology, Viral Vector Technology, Genome Editing Technology, Cell Plasticity Technology, and Three-Dimensional Technology among others.

By Source:Induced Pluripotent Stem Cells (iPSCs), Bone Marrow, Umbilical Cord Blood-Derived Cells, Adipose Tissue, and Neural Stem Cell among others.

By Application:Musculoskeletal, Cardiovascular, Gastrointestinal, Neurological, Oncology, Dermatology, Wounds & Injuries, and Ocular among others.

By End-users:Hospital & Clinics, Regenerative Medicine Centers, Diagnostic Centers, and Research Institutes among others.

By Regions:North America, Asia Pacific, Europe, and the Rest-of-the-World.

Major Players

Key players leading the global cell therapy market include GlaxoSmithKline plc, Novartis AG, MEDIPOST, PHARMICELL, Osiris,NuVasive, Inc.,Anterogen.Co., Ltd., JCR Pharmaceuticals Co., Ltd, CELLECTIS,Cynata,BioNTechIMFS, Cognate, EUFETS GmbH,Pluristem, Genzyme Corporation, Grupo Praxis, and Advanced Tissue among others.

Global Cell Therapy Market Regional Analysis

The North American region, heading with the successful advancements in therapies dominates the global cell therapy market with a significant share. The market is further expected to grow phenomenally, continuing its dominance from 2017 to 2023. Moreover, the growing number of patients suffering from chronic diseases such as cancer and cardiovascular disorders and well-defined per capita healthcare expenditure are acting as major tailwinds, driving the growth of the regional market.

The US, backed by its huge technological advancements, accounts for the major contributor to the cell therapy market in North America. Furthermore, an increasing number of care facilities offering cell therapies alongside the advanced devices contribute to the growth of the regional market. Also, factors such as the presence of the well-established players, availability of funding for the development of new therapeutics, and treatment positively impact the growth of the market.

The cell therapy market in the European region accounts for the second largest market, globally, expanding at a phenomenal CAGR. The resurging economy in Europe is undoubtedly playing a key role in fostering the growth of the regional market. Additionally, factors such as the availability of technologically advanced devices and the proliferation of quality healthcare along with the increasing healthcare cost contribute to the market growth in the region. Besides, the accessibility to the advanced technology and increasing government support for the R&D activities, propel the market growth in the region.

The Asia Pacific cell therapy market is rapidly emerging as a profitable market, globally. Factors such as the support provided by the government and private entities for research & development will drive the market in the region. Moreover, factors such as the vast advancements in biotechnology and cell reconstructive methods are fostering the growth in the regional market. Furthermore, the rapidly growing healthcare sector led by improving economic conditions positively impacts the regional market. Also, developing healthcare technology and the large unmet needs will foster the growth of the market in the region.

GlobalCell TherapyMarket Competitive Analysis

Highly competitive, the cell therapy market appears to be widely expanded and fragmented characterized by several small and large-scale players. To gain a competitive edge and to sustain their position in the market, these players incorporate various strategic initiatives such as partnership, acquisition, collaboration, expansion, and product launch.

The structure of the market is changing due to the acquisition of local players by multinational companies. Because of the increasing competition in the market, multinational companies are using the strategy of acquisition, which increases the profit of the company while significantly reducing the competition.

Industry, Innovation & Related News

March 12, 2019 -Cell Medica Ltd. (the UK), a leading global company engaging in the development, manufacture, and commercialization of cellular immunotherapy products for the treatment of cancer and viral infections announced the receiving of a grant of USD 8.7 MN from the Cancer Prevention and Research Institute of Texas (CPRIT the US) to accelerate off-the-shelf CAR-NKT cell therapy.

In addition to being available off-the-shelf, the new cell-based therapy CMD-502 uses donor-derived natural killer T-cells to fight cancer and is expected to have a better safety profile than current chimeric antigen receptor (CAR) T-cell therapies. The therapy is being developed and refined in collaboration with the Baylor College of Medicine (BCM Texas, the US).

Browse Complete Report with TOC athttps://www.marketresearchfuture.com/reports/cell-therapy-market-5066

About Market Research Future:

AtMarket Research Future (MRFR), we enable our customers to unravel the complexity of various industries through our Cooked Research Report (CRR), Half-Cooked Research Reports (HCRR), Raw Research Reports (3R), Continuous-Feed Research (CFR), and Market Research & Consulting Services.

MRFR team have supreme objective to provide the optimum quality market research and intelligence services to our clients. Our market research studies by Components, Application, Logistics and market players for global, regional, and country level market segments, enable our clients to see more, know more, and do more, which help to answer all their most important questions.

In order to stay updated with technology and work process of the industry, MRFR often plans & conducts meet with the industry experts and industrial visits for its research analyst members.

Contact:

Akash Anand

Market Research Future

+1 646 845 9312

Email:[emailprotected]

Read the rest here:
Knowing the Global Cell Therapy Market; MRFR Reveals Insights for 2017 2023 - The Daily Chronicle

To Read More: Knowing the Global Cell Therapy Market; MRFR Reveals Insights for 2017 2023 – The Daily Chronicle
categoriaSpinal Cord Stem Cells commentoComments Off on Knowing the Global Cell Therapy Market; MRFR Reveals Insights for 2017 2023 – The Daily Chronicle | dataAugust 25th, 2020
Read All

Liver Disease Stem Cell Therapy | NSI Stem Cell

By daniellenierenberg

Stem Cell Therapy for Liver Cirrhosis

Chronic Liver Disease is a major concern for the entire country as it ranks as the fifth largest killer in the world. When the liver sustains serious damage, it loses the ability to repair itself and begins to function less and less effectively until it reaches the point that it no longer works, which is a life-threatening condition. An effective liver failure therapy was pursued for decades before the discovery of stem cells offered the possibility of effective liver stem cell therapy. Until the advent of Advanced Liver Stem Cell Therapy, the only therapy option for liver disease was a full organ transplant. Our bone marrow-derived stem cell therapies for liver conditions are an innovative therapy practiced in the United States that is safe and effective.*

We want to see patients with liver disease have a better quality of life and even be able to reverse the damage done. Liver stem cell therapy is one of our latest and most exciting therapies, joining those available at our clinic like stem cell therapy for Neurological or Spinal Cord Conditions.

The liver is a multi-functional organ that plays a role in digestion, blood sugar control, blood clotting factors for healing, making amino acids, increasing red blood cell growth, fat and cholesterol transport, and the removal of waste, especially toxic exposures and the metabolization of medications into their active ingredients. Much research has been done on this vital organ, and we now understand how Liver Stem Cell Therapy can positively impact liver health and function.

A number of things can contribute to Liver Disease. Here are some of the most commonly seen diagnoses in our offices:

Cirrhosis is the medical term that is used to describe liver disease that permanently scars the liver, which results in reduced function, pain, waste build up, and ultimately death of the liver. Its potentially lethal consequences make effective cirrhosis of he liver therapy a matter of the utmost importance.

When this condition is present, normal liver cells are replaced by scar tissue that cannot maintain healthy liver function. Acute liver failure may be life-threatening. Stem Cell Therapy for Liver Cirrhosis is a form of liver cirrhosis therapy that addresses damage as well as helps to generate fresh, healthy tissue.

Not too long ago, a diagnosis of liver failure was a death sentence, as the condition was deemed irreversible. However, new advances in stem cell regeneration have made Liver Stem Cell Therapy, including Stem Cell Therapy for Liver Cirrhosis, a reality.

More than three-quarters of the liver is made up of hepatocyte liver cells, which are special in that their average lifespan is only 150 days. What this means is that the liver is constantly renewing and growing new cells to replace weak and dying cells. It is the only organ in the body that can easily replace damaged cells. But when too many cells are damaged or die off too soon, the liver cannot keep up and it begins to fail into Liver Disease. Helping the organ to grow new cells is one of the functions of NSIs Liver Stem Cell Therapy.

The liver is a regenerative organ. But it is limited in this ability and can only maintain the regenerative pace when there are enough energy, healthy cells, blood, oxygen, and proper nutrients available. Liver Disease can quickly get out of control and can progress to Cirrhosis and Liver Failure very rapidly. Liver Stem Cell Therapy is designed to help reverse this damage and speed the process of cell regeneration.

Although the liver can heal itself, there is a point of no return, and there are not enough signs to indicate there is a problem until it is too late. Prior to Liver Stem Cell Therapy, once the line was crossed between Chronic Liver Disease and the final stage of liver failure, there were few options. Transplantation was the only effective therapy option for liver failure.

But it, too, is not without its share of risks and drawbacks. Rejection of the donor organ, infections, and surgery complications are at the top of the list. It is estimated that for every donor organ, there are 30 patients on a waiting list, and many people die from end-stage Liver Disease waiting for a donor organ.

This is why there has been such a fervent interest in liver failure therapy using stem cells here at NSI Stem Cell Centers.

Going back to as far as the year 2000, researchers have been conducting studies that showed that hepatocyte cells could grow on non-liver cell sources. This means there do not have to be associated liver cells to stimulate the liver cells to continue multiplying. This phenomenon is called transdifferentiation and is integral to Liver Stem Cell Therapy. Our bone marrow-derived stem cell therapies for liver conditions are an innovative therapy practiced in the United States that is safe and effective.*

Today, stem cells that are taken from the patients own fatty deposits are the only stem cells that have successfully been used in addressing liver disease. The major advantage that comes from such stem cells is that they do indeed come from the patient, so rejection is not an issue and there is a much higher success rate and a much-improved growth of new liver cells seen for the patient.

The stem cells are harvested and then transplanted into the damaged liver, where they transdifferentiate into hepatocyte cells. The stem cells also become cells that help with blood and oxygen delivery and waste removal, so the liver can regenerate faster.

To learn more about how Liver Stem Cell Therapy can help you fight your liver disease, contact us today at NSI Stem Cell and set up an appointment at one of our Florida locations. Our phone number is (877) 278-3623, or use our Contact Page. Be sure to ask for our FREE brochure that explains all of our Stem Cell Therapies. We look forward to hearing from you.

Originally posted here:
Liver Disease Stem Cell Therapy | NSI Stem Cell

To Read More: Liver Disease Stem Cell Therapy | NSI Stem Cell
categoriaSpinal Cord Stem Cells commentoComments Off on Liver Disease Stem Cell Therapy | NSI Stem Cell | dataAugust 24th, 2020
Read All

Stem Cell Grafts Show Functionality in Spinal Cord Injuries

By daniellenierenberg

In mouse studies, the specialized grafts integrated with host networks and behaved much like neurons in a healthy, undamaged spinal cord.

Using stem cells to restore lost functions due to spinal cord injury (SCI) has long been an ambition of scientists and doctors. Nearly 18,000 people in the United States suffer SCIs each year, with another 294,000 persons living with an SCI, usually involving some degree of permanent paralysis or diminished physical function, such as bladder control or difficulty breathing.

In a new study, published August 5, 2020 in Cell Stem Cell , researchers at University of California San Diego School of Medicine report successfully implanting highly specialized grafts of neural stem cells directly into spinal cord injuries in mice, then documenting how the grafts grew and filled the injury sites, integrating with and mimicking the animals existing neuronal network.

Until this study, said the studys first author Steven Ceto, a postdoctoral fellow in the lab of Mark H. Tuszynski, MD, PhD, professor of neurosciences and director of the Translational Neuroscience Institute at UC San Diego School of Medicine, neural stem cell grafts being developed in the lab were sort of a black box.

Although previous research, including published workby Tuszynski and colleagues, had shown improved functioning in SCI animal models after neural stem cell grafts, scientists did not know exactly what was happening.

We knew that damaged host axons grew extensively into (injury sites), and that graft neurons in turn extended large numbers of axons into the spinal cord, but we had no idea what kind of activity was actually occurring inside the graft itself, said Ceto. We didnt know if host and graft axons were actually making functional connections, or if they just looked like they could be.

Ceto, Tuszynski and colleagues took advantage of recent technological advances that allow researchers to both stimulate and record the activity of genetically and anatomically defined neuron populations with light rather than electricity. This ensured they knew exactly which host and graft neurons were in play, without having to worry about electric currents spreading through tissue and giving potentially misleading results.

They discovered that even in the absence of a specific stimulus, graft neurons fired spontaneously in distinct clusters of neurons with highly correlated activity, much like in the neural networks of the normal spinal cord. When researchers stimulated regenerating axons coming from the animals brain, they found that some of the same spontaneously active clusters of graft neurons responded robustly, indicating that these networks receive functional synaptic connections from inputs that typically drive movement. Sensory stimuli, such as a light touch and pinch, also activated graft neurons.

We showed that we could turn on spinal cord neurons below the injury site by stimulating graft axons extending into these areas, said Ceto. Putting all these results together, it turns out that neural stem cell grafts have a remarkable ability to self-assemble into spinal cord-like neural networks that functionally integrate with the host nervous system. After years of speculation and inference, we showed directly that each of the building blocks of a neuronal relay across spinal cord injury are in fact functional.

Tuszynski said his team is now working on several avenues to enhance the functional connectivity of stem cell grafts, such as organizing the topology of grafts to mimic that of the normal spinal cord with scaffolds and using electrical stimulation to strengthen the synapses between host and graft neurons.

While the perfect combination of stem cells, stimulation, rehabilitation and other interventions may be years off, patients are living with spinal cord injury right now, Tuszynski said. Therefore, we are currently working with regulatory authorities to move our stem cell graft approach into clinical trials as soon as possible. If everything goes well, we could have a therapy within the decade.

Co-authors of the study are Kohel J. Sekiguchi and Axel Nimmerjahn, Salk Institute for Biological Studies and Yoshio Takashima, UC San Diego and Veterans Administration Medical Center, San Diego.

Funding for this research came, in part, from Wings for Life, the University of California Frontiers of Innovation Scholars Program, the Veterans Administration (Gordon Mansfield Spinal Cord Injury Collaborative Consortium, RR&D B7332R), the National Institutes of Health (grants NS104442 and NS108034), The Craig H. Neilsen Foundation, the Kakajima Foundation, the Bernard and Anne Spitzer Charitable Trust and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Source: Scott LaFee, UC San Diego School of Medicine

Posted on August 5th, 2020 in Uncategorized.

See the article here:
Stem Cell Grafts Show Functionality in Spinal Cord Injuries

To Read More: Stem Cell Grafts Show Functionality in Spinal Cord Injuries
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Grafts Show Functionality in Spinal Cord Injuries | dataAugust 12th, 2020
Read All

Page 9«..891011..2030..»


Copyright :: 2024