Cell Replacement Therapy For Parkinsons Disease And The …
By LizaAVILA
The following was written withProf. Gerold Riempp, a professor of information systems who was diagnosed with Parkinsons disease 16 years ago at age 36. He is co-founder of a charitable organization in Germany that supports the development of therapies that aim to cure PD.
The idea behind cell replacement therapy(CRT) for PD is pretty simple: lack of mobility in PD is the result of the dysfunction and death of a specific kind of cell in the midbrain. While there are a few other things that go wrong in PD, the progressive loss of motor skills is the biggest problem most diagnosed face. Since we are reasonably sure that this lack of mobility results from the impairment and death of dopamine producing cells in an area of the midbrain called the substantia nigra,why not try to replace those cells?
A group of iPS cells grown from human skin tissue at Osaka University
Replacing those cells is one of three core problems that each person diagnosed with PD needs to address. They are:
1. Keeping remaining cells healthyOnce diagnosed, most people have already lost production of 50-80% of dopamine in their midbrain. The problem then is to stop further disease progression by figuring out how to get rid of everything that might be harming the remaining 20-50% of cells while giving their body everything it needs to keep those cells alive and active.
2. Clearing clogged cellsOf those 50-80% of non-dopamine producing cells, a portion are still alive, they are just not doing their job, producing dopamine. This impairment is a result of a range of interrelated factors that harm the cells and eventually lead to their death. Most researchers believe the problem can be boiled down to the clumping of a misfolded protein called alpha-synuclein. Many different methods are being tried in labs around the world to clear these clumps and stop more from accumulating. But this might only be part of the story since a wide variety of other factors also lead to cell death.
3. Replacing dead cellsThen we come to what to do about all of those dead cells. A couple of different options are being considered to get the brain tostimulate the production of new neurons orreplace the function of dead ones. However, the most promising therapy being developed is stem cell therapy, now commonly referred to as cell replacement therapy. It works by placing new dopamine producing neurons into the part of the brain where the dead neurons used to release dopamine.
If a patient manages to address problems one and two they might have no need for CRT. The reason for this is that he or she can likely rescue a considerable portion of the damaged but still living cells and thereby bring dopamine production back to a level that allows for normal movement. CRT will generally be for people who have had PD for a longer time and whose remaining healthy cells plus the rescued ones together are not capable of providing enough dopamine.
The late 80s and 90s saw a number of CRT trials for Parkinsons disease with mixed results. But we nowhave a much better understanding of what kind of cells to use, how to culture and store those cells, how to implant them, and who this therapy would be best for.
We also now have iPS cells (induced pluripotent stem cells). Discovered in 2006, these are cells that have been chemically reprogrammed, usually from adult skin tissue, back into pluripotent stem cells. (Pluripotent means they are capable of becoming almost any cell in the body). Using these cells for transplantation has two major advantages. One, it eliminates the need for potentially harmful immuno-suppressors. Two, it has none of the ethical issues that come with using fetal stem cells. But iPS cells are much more expensive and technically difficult to produce.
Despite all the progress made, cell replacement therapy is still very controversial and fraught with all sorts of technical issues. Luckily, CRT for PD is one of the only fields of medical science where the top labs around the world are cooperating with each other. An international consortium of labs has come together under a name that sounds like it was ripped out of a Marvel comic, the GForce-PD. Each lab in the GForce-PD aims to bring CRT for PD to clinical trial within the next few years.
Infographic made by PhD neuroscientist Kayleen Schreiber at kayleenschreiber.com
The GForce-PD
New York City Run by Dr. Lorenz Studer out of the Rockefeller research labs in New York City. Dr. Studer pioneered many of the reprogramming techniques being used around the world to convert pluripotent stem cells into dopamine producing neurons. His lab wasrecently announced to be part of a huge funding initiative from Bayer Pharmaceuticals to help speed up development of CRT. Studers lab is aiming to start transplantation of embryonic stem cells in human trials in early 2018.
Kyoto, Japan Dr. Jun Takahashis lab in Kyoto is working on producing several iPS lines for the Japanese population. One advantage they have is the relative homogeneity of Japanese people allows them to use a dozen or so iPS lines for almost everyone in the country. The lab recently made headlines with results from monkey trials that showed human iPS cells graft safely, with no signs of malignant growth, two years after transplantation.
Cambridge, England Dr. Roger Barkers lab has been working on cell replacement therapy for Parkinsons disease for a number of years through the Transeuro project. His lab is pushing forward with more embryonic stem cell transplantations expected to begin in 2020. They also work very closely with the team in Sweden.
Lund, Sweden The lab in Lund has been working on CRT for PD since the 80s and has been part of a number of human trials. The lab is now run by Dr. Malin Parmar whose team has also pioneered many of the techniques used in direct programming that will one day allow researchers to skip the stem cell phase all together and produce dopamine cells directly in the brain.
San Diego, California The team is moving rapidly towards iPS cell transplantation under Dr. Jeanne Loring at the Scripps research center. They are the only lab that uses patients own cells for transplantation. Another unique feature of this lab is that it has been a community funded initiative under theSummit For Stem Cellsfoundation.
(Dr. Roger Barker talking about CRT for PD)
Though there is a lot of excitement building around cell replacement therapy, we need to proceed carefully. The field has potential for setbacks from some of the less rigorous trials being conducted in places like Australia and China where regulatory standards are more lax. Researchers in these areas are already going ahead with trials that do not meet the standards set by the GForce-PD. These have the potential to put a black-eye on all cell replacement therapies.
Also, producing pure batches of dopamine neurons is still a highly technical process that only a few labs in the world are capable of doing safely and effectively. Thankfully a few other labs around the world are joining the efforts of the GForce-PD, such as Dr. Tilo Kunaths lab in Edinburgh, which is working on techniques to better differentiate and characterize the cell lines used for transplantation.
(The pictures above show human embryonic stem cells being differentiated into dopamine cells at days 2, 4 and 7. Courtesy of Dr. Tilo Kunaths lab at the University of Edinburgh)
The Future of Cell Replacement Therapy
These therapies being developed for Parkinsons disease will, in essence, be version 1.0 of CRT. Clinical trials are set to begin next year and the therapy is expected to be widely available to people diagnosed with Parkinsons disease within the next 5-10 years.
Version 2.0 will be CRISPR-modified, disease resistant grafts, with genetic switches to modulate dopamine production and graft size.
Version 3.0 will make use of an emerging field called in vivo direct programming where viruses are inserted into the brain and transform other existing cells into dopamine producing cells.
(Edit: Credit to Dr. Tilo Kunath for correcting versions 2.0 and 3.0)
Dopamine neurons grown from iPS cells at 40 times magnification, from the Gladstone Institute
CRT for PD is one of the most exciting areas of research on the planet. It is a powerful demonstration of the progress we as a species have made in our attempt to gain mastery over the forces of biology.It has the potential to improve the lives of the millions living with PD, and the millions yet to be diagnosed. Once the transplanted cells have connected with their surroundings and start delivering dopamine to the right places, it should allow patients to gradually reduce their medication. Being able to move normally and not deal with the side effects of all the drugs and other therapies is what PD patients around the world are dreaming of.
Click here for more information on the future of cell replacement therapy for Parkinsons disease and the work of the GForce-PD.
And if you want to be part of bringing CRT to the clinic you can do so by supporting organizations like Summit For Stem Cells.
Like Loading...
Related
Originally posted here:
Cell Replacement Therapy For Parkinsons Disease And The ...
- Exclusive: Cell therapy startup Shinobi adds Borges as science chief, Katz as top medical officer - Endpoints News - December 18th, 2024
- Sumitomo Chemical and Sumitomo Pharma to Establish Regenerative Medicine and Cell Therapy Joint Venture - - December 18th, 2024
- Shinobi Strengthens Leadership to Propel Scalable Immune-Evasive Cell Therapies to the Clinic - The Eastern Progress Online - December 18th, 2024
- BrightPath Bio and Cellistic Announces Process Development and Manufacturing Collaboration for Phase 1 Clinical Trial of iPSC-derived BCMA CAR-iNKT... - December 18th, 2024
- Induced Pluripotent Stem Cells: Problems and Advantages when Applying ... - December 9th, 2024
- How Minaris is Tackling the Scalability Challenge in Cell and Gene Therapy: A Conversation with CEO, Dr. Hiroto Bando - geneonline - November 29th, 2024
- Toward Personalized Cell Therapies by Using Stem Cells 2013: BioMed Research International - Wiley Online Library - November 15th, 2024
- Cell therapy for heart disease and therapeutic cloning: will embryos re-enter the stem cell race? - Genethique - November 15th, 2024
- Cutting-edge stem cell therapy proves safe, but will it ever be ... - AAAS - November 6th, 2024
- Induced pluripotent stem cell - Wikipedia - October 21st, 2024
- What are iPS cells? | For the Public | CiRA | Center for iPS Cell ... - October 21st, 2024
- Nobel Winner Shinya Yamanaka: Cell Therapy Is Very Promising For Cancer, Parkinsons, More - Forbes - October 13th, 2024
- iPSCs Manufacturing for Cell-Based Therapies: A Market Analysis of Cell Types, Therapeutic Applications, Ma... - WhaTech - August 4th, 2024
- Abu Dhabi Stem Cells Center partners with Japan-based Kyoto University and Rege Nephro - ZAWYA - January 14th, 2024
- Eterna Therapeutics Enters Into Option and License Agreement with Lineage Cell Therapeutics to Develop Hypoimmune Pluripotent Cell Lines for Multiple... - March 1st, 2023
- What is an Intrusion Prevention System? Definition ... - Fortinet - January 27th, 2023
- What is an IPS Monitor? Monitor Panel Types Explained ... - January 27th, 2023
- IPS panel - Wikipedia - January 27th, 2023
- Cell and gene therapy products: what is an ATMP? - The Niche - January 3rd, 2023
- Cell Therapy - an overview | ScienceDirect Topics - November 22nd, 2022
- Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022 - November 6th, 2022
- Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update - November 6th, 2022
- NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting - November 6th, 2022
- Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core... - November 6th, 2022
- CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver... - November 6th, 2022
- Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference - November 6th, 2022
- Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection - November 6th, 2022
- PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors - November 6th, 2022
- ORYZON to Give Updates on Corporate Progress in November - November 6th, 2022
- Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022 - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver... - November 6th, 2022
- First U.S. patient receives autologous stem cell therapy to treat dry ... - October 29th, 2022
- BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - Yahoo Finance - October 13th, 2022
- iPS-Cell Based Cell Therapies for Genetic Skin Disease - October 5th, 2022
- Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy - Marketscreener.com - October 5th, 2022
- MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress - Yahoo... - October 5th, 2022
- Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe - Digital Journal - September 27th, 2022
- Implanting a Patient's Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD - Everyday Health - September 19th, 2022
- Current status of umbilical cord blood storage and provision to private biobanks by institutions handling childbirth in Japan - BMC Medical Ethics -... - September 19th, 2022
- Global Induced Pluripotent Stem Cells Market (2022 to 2027) - Growth, Trends, Covid-19 Impact and Forecasts - ResearchAndMarkets.com - Business Wire - September 11th, 2022
- Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials... - September 11th, 2022
- Improving the differentiation potential of pluripotent stem cells by optimizing culture conditions | Scientific Reports - Nature.com - August 26th, 2022
- New research digs into the genetic drivers of heart failure, with an eye to precision treatments - STAT - August 10th, 2022
- Creative Biolabs Leads the Forefront of iPSC Technology - Digital Journal - August 10th, 2022
- The zinc link: Unraveling the mechanism of methionine-mediated pluripotency regulation - EurekAlert - July 25th, 2022
- Live Cell Metabolic Analysis Paving the Way for Metabolic Research and Cell & Gene Therapy, Upcoming Webinar Hosted by Xtalks - Benzinga - July 16th, 2022
- PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press - July 8th, 2022
- Gene & Cell Therapy FAQs | ASGCT - American Society of Gene & Cell ... - June 30th, 2022
- The benefits and risks of stem cell technology - PMC - June 30th, 2022
- The Future of Parkinson Disease Therapies and the Challenges With Stem Cell Therapies - Neurology Live - June 20th, 2022
- Umoja Biopharma and TreeFrog Therapeutics Announce Collaboration to Address Current Challenges Facing Ex Vivo Allogeneic Therapies in Immuno-Oncology... - June 11th, 2022
- Newsletter April 2022 - Progress in Cline's cell lab and in the stem cell therapy field - Marketscreener.com - April 29th, 2022
- Healios K K : Joint Research with the Division of Regenerative Medicine, the Institute of Medical Science for Developing a Mass Production Method of... - April 3rd, 2022
- A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy - March 22nd, 2022
- The Pipeline for of iPSC-Derived Cell Therapeutics in 2022 ... - March 22nd, 2022
- Cell Therapy Processing Market CAGR of 27.80% Share, Scope, Stake, Trends, Industry Size, Sales & Revenue, Growth, Opportunities and Demand with... - January 3rd, 2022
- Stem cell therapy for diabetes - PubMed Central (PMC) - November 22nd, 2021
- Stem cells: Therapy, controversy, and research - October 5th, 2021
- How much does stem cell therapy cost in 2021? - The Niche - October 5th, 2021
- "Stem cell-based therapeutics poised to become mainstream option - BSA bureau - October 5th, 2021
- Exclusive Report on Stem Cell Therapy in Cancer Market | Analysis and Opportunity Assessment from 2021-2028 |Aelan Cell Technologies, Baylx, Benitec... - August 6th, 2021
- Asia-Pacific Cell Therapy Market 2021-2028 - Opportunities in the Approval of Kymriah and Yescarta - PRNewswire - August 6th, 2021
- Base Editing as Therapy for Common Inherited Lung and Liver Disease Shows Promise - Clinical OMICs News - July 22nd, 2021
- MoHAP, EHS reveal immunotherapy for cancer, viral infections at Arab Health 2021 - WAM EN - June 25th, 2021
- Kiromic Announces Expansion of In-House Cell therapy cGMP Manufacturing Facility and the Appointment of Industry Veteran Ignacio Nez as Chief... - June 8th, 2021
- Cryopreservation Media helps in Development of a Cell Therapy for Parkinson's Disease - Microbioz India - June 8th, 2021
- Accelerated Biosciences' Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and... - May 15th, 2021
- Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting - PRNewswire - May 15th, 2021
- St. Jude's $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases - The Cancer Letter - May 15th, 2021
- Synthego Launches Eclipse Platform to Accelerate Research and Development of Next-generation Medicines - The Scientist - April 19th, 2021
- The Google Play video app will leave Roku, Vizio, LG and Samsung's TV platforms - Yahoo Canada Finance - April 19th, 2021
- New Controversy for Stem Cell Therapy That Repairs Spinal Cords - The Great Courses Daily News - March 8th, 2021
- Brentuximab Vedotin Plus Chemotherapy Works as a Primary Option for Hodgkin Lymphoma - Targeted Oncology - March 8th, 2021
- Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine - Science Advances - January 14th, 2021
- A Potential Therapy for One of the Leading Causes of Heart Disease - PRNewswire - December 10th, 2020
- Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach - BioSpace - December 9th, 2020
- Induced Pluripotent Stem Cell (iPS Cell) Applications in 2020 - November 28th, 2020
- Induced Pluripotent Stem Cell - an overview ... - November 28th, 2020
- The Stem Cell-Derived Cells market to Scale new heights in the next decade - Khabar South Asia - November 28th, 2020