Cells or drugs? The race to regenerate the heart – Scientific American
By daniellenierenberg
Twenty years ago, cardiologist and stem-cell scientist Piero Anversa published an exciting paper. He was then a prominent researcher at New York Medical College in Valhalla, and his data in mice showed that injured hearts could regenerate with the help of stem cells taken from bone marrow1contrary to prevailing wisdom.
Myocardial infarction, commonly known as a heart attack, deprives cardiac muscle cells of oxygen, causing them to perish. The human heart responds by laying scar tissue over lost muscle. But these reconstituted areas dont pump blood as competently as before. In time, this can lead to heart failureparticularly if other heart attacks follow. The implications of Anversas work were clear: stem cells, through their growth and proliferation, had the potential to reverse the damage caused by heart attacks and thereby prevent heart failure.
But other researchers who attempted to replicate these mouse studies found themselves coming up short. Allegations of faked results eventually began to surface, and Anversa, who had since joined Harvard Medical School, and Brigham and Womens Hospital in Boston, Massachusetts, was forced to leave his posts in 2015. Two years later, Brigham and Womens Hospital paid the US government US$10 million to settle allegations that Anversa and his colleagues had used fraudulent data to apply for federal funding. And a 2018 investigation conducted by Harvard called for 31 of Anversas papers to be retracted.
This saga has dampened the enthusiasm that once surrounded research into stem-cell therapy, says Michael Schneider, a research cardiologist at Imperial College London. The controversy, overt scientific misconduct and evidence against Anversas claims has cast aspersions on the field more generally, he admits. Thats unfortunate, because many other stem-cell scientists are conducting legitimate research.
Meanwhile, another heart-healing strategy has emerged, drawing inspiration from species that, unlike humans, can regrow cardiac muscle after trauma. Researchers are seeking to learn more about the molecules produced by zebrafish (Danio rerio) hearts as they heal themselvesand are investigating whether injectable drugs containing the same substances could also yield reparative results.
The question is now whether it will be stem cells, small-molecule drugs or a combination of the two that achieve the goal of convincing the heart to heal instead of scar.
In the wake of the Anversa scandal, there has been an important evolution of thinking on the stem-cells front. A 2019 literature review pointed out that newer studies tend to show the most significant impact from stem-cell therapy comes from the substances the cells secrete, rather than their proliferation2. After many years of work, we find that when we deliver cells into the heart, the benefit of replaced damaged cells is only minor, says the reviews author Javaria Tehzeeb, an internal-medicine specialist at the Albany Medical Center in New York. The real work of regeneration happens, she explains, when the cells produce growth factors, which in turn affect heart repair by reducing inflammation and stimulating the development of new heart muscle.
That means stem-cell therapies share some similarities with the drug strategyessentially it comes down to molecules secreted by the stem cells versus molecules that are directly injected. But they also have important differences.
First, part of the stem-cell therapy benefits might still come from the cells proliferation, even if that bonus is relatively small. Second, theres little control over what substances the stem cells produce once theyre injected, whereas specific molecules can be administered at known doses. And finally, the logistics of scaling up and delivering these two therapies will be very different.
A study published in 2020 showcased the importance of stem-cell-produced molecules by looking at the structural integrity of proteins found in infarcted mouse hearts3. The scientists artificially induced heart attacks in eight adult mice. Four weeks later, they administered stem cells to half the rodents. After a further four weeks, their hearts were removed and washed with a series of buffer solutions and chemical reagents to extract the proteins, which were then analysed. We essentially did a massive scan of every single protein in the heart, says Andre Terzic, lead author of the study. The authors were able to identify almost 4,000 proteins, and showed that heart attacks distorted the structure of 450 of them. But with stem-cell therapy, that number fell to 283.
Proteins are the intimate components that make our hearts work properly, and when the heart is diseased, they become damaged, says Terzic, who is director of the Mayo Clinic Center for Regenerative Medicine in Rochester, Minnesota. The ability of these stem cells to secrete healing signals is probably a key element to what weve observed.
All cells and tissues are constantly telling each other what they need and whether theyre stressed through molecular signalling. When you lose a chunk of cells in a heart attack, you lose part of that conversation, explains Charles Murry, an experimental pathologist and director of the Institute for Stem Cell and Regenerative Medicine at the University of Washington in Seattle. Injected stem cells could be filling in the missing dialogue by secreting signalling and rescue molecules, he explains.
Although this sounds encouraging, there are still parts of the stem-cell-therapy approach that need to be finessed. In a 2018 study, Murry and colleagues transplanted approximately 750 million cardiomyocytes into macaque monkeys that had experienced major heart attacks4. One month after the intervention, the amount of blood pumped by their hearts had increased by 10.6% compared with just 2.5% in the control group. This advantage persisted three months later, but one out of the five stem-cell-treated monkeys suffered arrhythmias. The onset of arrhythmia wasnt previously observed in small-animal studies, but it is a known complication of heart attacks. Nevertheless, the researchers thought it could be a potential side effect of the stem-cell infusion. Obviously it isnt statistically significant, but common sense led us to classify this as a treatment complication, says Murry.
In addition to safety concerns, stem-cell therapies are also beset by questions of practicality. Think of a lab with all these cell culture flasks where you have to grow millions of cells just to create a single dose, says Terzic. Now imagine tens of thousands of patients. Its a formidable effort to be ready, especially if you want to intervene rapidly. You dont have the luxury of time to build up supplies.
Thats one reason why some people think the promise of cardiac rejuvenation lies elsewhere. Theres been an awful lot of time and money spent on stem-cell therapy, raising false hope in patientsand so far, the clinical outcomes have been largely disappointing, says Paul Riley, a cardiovascular scientist at the University of Oxford, UK. Riley is investigating whether inserting specific molecules into the heart might be more effective.
Human hearts cant regenerate on their own, but other animals do have such abilities. Zebrafish, for example, can regrow their hearts after as much as 20% is removed. Newborn mice can also regenerate heart tissue. Observing the molecular pathways in these animals might make similar results possible in humans.
Research has shown that following a myocardial infarction in zebrafish, the epicardiuma membrane surrounding the heart muscleproduces molecular signals that might kick-start muscle-cell regeneration5. The hope is that manipulating the human epicardium could elicit the same therapeutic results. There are probably approaches we can take to target the cells that exist in the heart with small molecules or drugs, that could invoke repair and regeneration, says Riley.
Back in 2011, Riley and colleagues showed that this is theoretically possible6. They pre-treated adult mice with a daily injection of a protein called thymosin 4 for one week before inducing an infarction, and found that these mice were able to produce new cardiac muscle. This offers a road map to a pre-emptive therapy. If an individual is at high risk of a heart attack, says Riley, then its conceivable they could be advised to take a priming or preventative therapeutic, which may counteract an event, but its not quite the holy grail of restoring lost tissue after a heart attack that were searching for. In other studies, Riley has since shown that other proteins besides thymosin 4 might also have a role in stimulating the epicardium to regenerate the heart7.
Its easier to see how the drug route offers clearer prospects for scaling upbut the science behind this approach is newer, and there havent been any clinical trials in humans yet. What goes in stem cells favour is the body of work behind them, says Tehzeeb.
It might be that stem-cell therapies achieve government approvals first, but then drugs overtake them once the science and research have had time to catch up. When we get to the end of the line with molecules, then maybe we can say stem cells are a thing of the past, Tehzeeb says. But until then, we should continue to pursue their potential.
Murry echoes that sentiment, arguing that findings from both camps could end up helping everyones research. We need an ecosystem with a competition of ideas, and as long as its all openly published then well figure it out, he says. Thats the better approach, rather than saying my idea is better than your idea.
This article is part ofNature Outlook: Heart health, an editorially independent supplement produced with the financial support of third parties.About this content.
Orlic, D.et al.Nature410, 701705 (2001).
Tehzeeb, J., Manzoor, A. & Ahmed, M. M.Cureus11, e5959 (2019).
Arrell, D. K., Rosenow, C. S., Yamada, S., Behfar, A. & Terzic, A.npj Regen. Med.5, 5 (2020).
Liu, Y.-W.et al.Nature Biotechnol.36, 597605 (2018).
Cao, J. & Poss, K. D.Nature Rev. Cardiol.15, 631647 (2018).
Smart, N.et al.Nature474, 640644 (2011).
McManus, S.et al.J. Mol. Cell. Cardiol.140, 3031 (2020).
Read more here:
Cells or drugs? The race to regenerate the heart - Scientific American
- Secretome Therapeutics Closes $20.4 Million Financing Round to Advance Cardiomyopathy and Heart Failure Therapies - Business Wire - November 29th, 2024
- Developing the Cell-Based Therapies of the Future - University of Miami - November 15th, 2024
- Advancing heart stem cell therapy - UHN Foundation - November 15th, 2024
- Heart defects affect 40,000 US babies every year but cutting edge AI and stem cell tech will save lives and even cure them in the womb - New York... - November 15th, 2024
- Science Is Finding Ways to Regenerate Your Heart - The Wall Street Journal - November 6th, 2024
- AIIMS Bathinda Makes Breakthrough in Stem Cell Therapy Research for Heart Ailments - Elets - October 21st, 2024
- USC launches collaboration with StemCardia to advance heart regeneration therapies - University of Southern California - October 13th, 2024
- The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish - Nature.com - September 3rd, 2024
- Opthea Announces Results of the A$55.9m (US$36.9m¹) Retail Entitlement Offer - July 16th, 2024
- Benitec Biopharma Reports Continued Durable Improvements in the Radiographic Assessments of Swallowing Efficiency and the Subject-Reported Outcome... - July 16th, 2024
- AstraZeneca Closes Acquisition of Amolyt Pharma - July 16th, 2024
- Addex Presents Positive Results from GABAB PAM Cough Program at the Thirteenth London International Cough Symposium (13th LICS) - July 16th, 2024
- Lexeo Therapeutics Announces Positive Interim Phase 1/2 Clinical Data of LX2006 for the Treatment of Friedreich Ataxia Cardiomyopathy - July 16th, 2024
- ANI Pharmaceuticals Announces the FDA Approval and Launch of L-Glutamine Oral Powder - July 16th, 2024
- MediWound Announces $25 Million Strategic Private Placement Financing - July 16th, 2024
- Atsena Therapeutics Appoints Joseph S. Zakrzewski as Board Chair - July 16th, 2024
- ASLAN Pharmaceuticals Announces Receipt of Nasdaq Delisting Determination; Has Determined Not to Appeal - July 16th, 2024
- Kraig Biocraft Laboratories Completes Phase One of its Spider Silk Production Facility Expansion - July 16th, 2024
- Pliant Therapeutics Announces Positive Long-Term Data from the INTEGRIS-PSC Phase 2a Trial Demonstrating Bexotegrast was Well Tolerated at 320 mg with... - July 16th, 2024
- Oncternal Announces Enrollment Completed and Dosing Initiated for Sixth Dose Cohort of Phase 1/2 Study of ONCT-534 for the Treatment of R/R Metastatic... - July 16th, 2024
- Rectify Pharmaceuticals Appoints Bharat Reddy as Chief Business Officer - July 16th, 2024
- Spectral AI Continues Support of Naked Short Selling Inquiry - July 16th, 2024
- Milestone Pharmaceuticals Refreshes Board of Directors - July 16th, 2024
- New Published Data Highlights Potential Cost-Savings of INPEFA® (sotagliflozin) for Heart Failure - July 16th, 2024
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 21st, 2023
- Cardiac stem cells: Current knowledge and future prospects - April 13th, 2023
- Stem cell therapies in cardiac diseases: Current status and future ... - April 13th, 2023
- Stem Cell and Regenerative Biology | Johns Hopkins Heart and Vascular ... - April 13th, 2023
- Center for Regenerative Biotherapeutics - Cardiac Regeneration - April 13th, 2023
- MAGENTA THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 25th, 2023
- CAREDX, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 1st, 2023
- A Possible Connection between Mild Allergic Airway Responses and Cardiovascular Risk Featured in Toxicological Sciences - Newswise - February 4th, 2023
- Baby's life saved by surgeon who carried out world's first surgery ... - December 25th, 2022
- An organoid model of colorectal circulating tumor cells with stem cell ... - December 25th, 2022
- Skeletal Muscle Cell Induction from Pluripotent Stem Cells - December 1st, 2022
- Stem-cell niche - Wikipedia - December 1st, 2022
- Scientists Discover Protein Partners that Could Heal Heart Muscle | Newsroom - UNC Health and UNC School of Medicine - October 13th, 2022
- Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 - Yahoo Finance - October 13th, 2022
- Scientists Spliced Human Brain Tissue Into The Brains of Baby Rats - ScienceAlert - October 13th, 2022
- Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution | Communications Biology - Nature.com - October 13th, 2022
- Global Synthetic Stem Cells Market Is Expected To Reach Around USD 42 Million By 2025 - openPR - October 13th, 2022
- Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -... - October 13th, 2022
- Regenerative Medicine For Heart Diseases: How It Is Better Than Conventional Treatments | TheHealthSite.co - TheHealthSite - October 5th, 2022
- 'Love hormone' oxytocin could help reverse damage from heart attacks via cell regeneration - Study Finds - October 5th, 2022
- Recapitulating Inflammation: How to Use the Colon Intestine-Chip to Study Complex Mechanisms of IBD - Pharmaceutical Executive - September 27th, 2022
- Adult Stem Cells // Center for Stem Cells and Regenerative Medicine ... - September 19th, 2022
- CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease - Cardiovascular Diabetology - Cardiovascular... - September 19th, 2022
- Kite's CAR T-cell Therapy Yescarta First in Europe to Receive Positive CHMP Opinion for Use in Second-line Diffuse Large B-cell Lymphoma and... - September 19th, 2022
- Neural crest - Wikipedia - September 3rd, 2022
- Rise In Number Of CROS In Various Regions Such As Europe Is Expected To Fuel The Growth Of Induced Pluripotent Stem Cell Market At An Impressive CAGR... - September 3rd, 2022
- Discover the Mental and Physical Health Benefits of Fasting - Intelligent Living - September 3rd, 2022
- Heart Association fellowship to support research - Binghamton - August 26th, 2022
- Repeated intravenous administration of hiPSC-MSCs enhance the efficacy of cell-based therapy in tissue regeneration | Communications Biology -... - August 26th, 2022
- High intensity interval training protects the heart against acute myocardial infarction through SDF-1a, CXCR4 receptors and c-kit levels - Newswise - August 26th, 2022
- Yale University: Uncovering New Approaches to a Common Inherited Heart Disorder | India Education - India Education Diary - August 10th, 2022
- Heart failure in obesity: insights from proteomics in patients treated with or without weight-loss surgery | International Journal of Obesity -... - August 10th, 2022
- Pigs died after heart attacks. Scientists brought their cells back to life. - Popular Science - August 10th, 2022
- Protocol for a Nested, Retrospective Study of the Australian Placental Transfusion Study Cohort - Cureus - August 10th, 2022
- Autologous Cell Therapy Market Size to Grow by USD 4.11 billion, Bayer AG and Brainstorm Cell Therapeutics Inc. Among Key Vendors - Technavio - PR... - August 2nd, 2022
- UTSW researcher part of team awarded $36 million heart research grant - The Dallas Morning News - August 2nd, 2022
- Buffalo center fuels research that can save your life from heart disease and stroke - Buffalo News - August 2nd, 2022
- Hyperglycaemia-Induced Impairment of the Autorhythmicity and Gap Junction Activity of Mouse Embryonic Stem Cell-Derived Cardiomyocyte-Like Cells -... - July 25th, 2022
- NASA's Solution to Stem Cell Production is Out of this World - BioSpace - July 25th, 2022
- Inhibition of pancreatic EZH2 restores progenitor insulin in T1D donor | Signal Transduction and Targeted Therapy - Nature.com - July 25th, 2022
- 'My Teen Sweetheart And I Drifted Apart. 30 Years Later I Made a Shocking Discovery' - Newsweek - July 25th, 2022
- EU: New Blood? Proposed Revisions to the EUs Blood, Tissues and Cells Rules - GlobalComplianceNews - July 25th, 2022
- Stem Cells Market to Expand at a CAGR of 10.4% from 2021 to 2028 Travel Adventure Cinema - Travel Adventure Cinema - July 25th, 2022
- Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study - GlobeNewswire - July 25th, 2022
- Dental Membrane and Bone Graft Substitutes Market to Exceed Value of US$ 1,337 Mn by 2031 - PR Newswire UK - July 25th, 2022
- Stem Cells Used to Repair Heart Defects in Children - NBC 5 Dallas-Fort Worth - July 16th, 2022
- Pneumonia and Heart Disease: What You Should Know - Healthline - July 16th, 2022
- Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate - Nevada Today - July 16th, 2022
- Current and advanced therapies for chronic wound infection - The Pharmaceutical Journal - July 16th, 2022
- Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don't - Lookout Santa Cruz - July 16th, 2022
- Mesenchymal stem cells: from roots to boost - PMC - July 8th, 2022
- New study allows researchers to more efficiently form human heart cells from stem cells - University of Wisconsin-Madison - July 8th, 2022
- Dr Victor Chang saved hundreds of lives. 31 years ago today, he was murdered. - Mamamia - July 8th, 2022
- Exosome Therapeutics Market Research Report Size, Share, New Trends and Opportunity, Competitive Analysis and Future Forecast Designer Women -... - July 8th, 2022
- Cell Line Development Market: Increase in Prevalence of Cancer and Other Chronic Diseases to Drive the Market - BioSpace - July 8th, 2022
- Homology Medicines Announces Peer-Reviewed Publication on Novel Discovery of AAVHSC with Robust Distribution to the Central Nervous System and... - July 8th, 2022