Clearing Cellular Dead Wood | In the Pipeline – Science Magazine
By daniellenierenberg
For many years now, the topic of senescent cells has been the subject of plenty of research work. Back in the 1960s the Hayflick limit was noticed in cell culture: there was an apparent limit to the number of cell divisions that could take place before the cells just sort of stalled out. For human fibroblasts, that kicks in at around fifty divisions. Over time it was worked out that a primary mechanism involved is the shortening of telomeres with each cell division, specialized nucleotide sequences out at the ends of the chromosomes, and this cellular clock phenomenon has been making its way into the public consciousness ever since.
Its strange to think, but before these experiments human cells were considered to be more or less immortal and capable of unlimited numbers of divisions. Now, there are cells like that, but that (outside of some stem cell populations and a few other special cases) is a very short working definition of cancer. Those cells do indeed seem to be able to carry on for as long as conditions permit which in the artificial world of cell culture labs, means apparently forever. Henrietta Lacks died in 1951, but HeLa cells are still with us, and can be all too vigorous when they contaminate other lines. Tumor cells can pile up mutations that will make them die off, but short of that the jams have indeed been kicked out.
Its gradually become apparent that many aging or damaged tissues have a (sometimes substantial) population of cells that have reached their limit. Theyre alive and metabolically active but not really contributing much, in a stage of permanent growth arrest. Cellular senescence is a complex phenomenon, but its importance in aging, cancer, and tissue damaged by other factors (radiation, oxygen stress, etc.) is by now undeniable. Many of these non-aging states can be traced back to early telomere damage by other mechanisms, emphasizing that as a key countdown mechanism. But its clear that senescent have a different secretory profile (cytokines, growth factors and more) from the more vigorous cells around them and a number of other protein expression differences that can be used the characterize them.
Naturally enough, thoughts have turned to targeting such cells for therapy. There are a couple of very easy-to-picture hypotheses: first, could you keep telomeres from shortening (or shortening so much) and therefore keep cells in a non-senescent state for longer, potentially delaying biological aging? And second, could you somehow target cells that have already become senescent, and would doing so improve the health of the surrounding tissue? Though pretty obvious ideas, both of these are still very much in play. For now, Im going to talk about the second one, in light of a new paper.
That ones on the kidney. Younger people can regain some kidney function after an injury, but that ability goes down with aging, as youd imagine. It also goes down in states of chronic kidney disease, or after radiation damage. This new paper shows that targeting and removing senescent cells actually starts to reverse this phenotype once youve done that, the kidney tissue after injury shows increased function, increased regenerative ability, and less development of fibrosis. This is demonstrated both in aged tissue and in younger tissue exposed to radiation damage, in human cell culture and in mouse animal models.
You may well ask: how exactly does one target senescent cells? That takes us to ABT-263 (navitoclax), shown at right. This rather hefty molecule is part of a series of AbbVie protein-protein inhibitors for the Bcl-2 (B-cell-lymphoma) family. There are several of those, and navitoclax inhibits the function of Bcl-2, Bcl-xL, and Bcl-w. All of these proteins are intimately tied up in the pathways of apoptosis, programmed cell death, which is another monstrously huge pathway all its own. But one of the questions about senescent cells is why they dont go down some apoptotic pathway and just fall on their on cellular swords, instead of hanging around forever gumming up the works.
This one, like the others in its class, was developed to cause this to happen to tumor cells as an adjunct to other types of chemotherapy, but these have also turned out to be useful against senescent cells (although not all types of them). Similar to the kidney results reported in the new paper linked above, there have been reports in lung, CNS, muscle and other tissues of broadly similar enhancements (many of these summarized in this paper). So at this point you might be wondering why we dont just go ahead and put these things into the water supply already.
Theres a problem, unfortunately. It was clear from the clinical studies of the AbbVie compounds that platelet effects were dose-limiting. Cells in that pathway are sensitive to messing with these apoptosis pathways, and while you might be able to deal with that side effect in a chemotherapy situation, it doesnt exactly make for a good-for-what-ails-you drug. Navitoclax has alsorecently been shown to have profoundly bad effects on bone density and deposition, which is the exact opposite of what youd want for an aging population.
AbbVies next generation of such compounds, though, includes venetoclax, at right, also a lunker of a molecule and now approved for several types of leukemia. It still has platelet effects, but they arent nearly as disastrous as with navitoclax, thanks to deliberately lower binding to Bcl-xL. That also makes it a bit less of a mighty sword across senescent cell types for example, it appears that you need that pathway for activity against glioblastoma cells. But it has been reported to show strong protective effects against the development of Type I diabetes through the elimination of senescent cells in the islets of Langerhans. Meanwhile, other groups are looking at turning these ligands into targeted protein degraders, which (at least in some cases) seems to decrease the platelet problems and increase senolytic activity.
And before leaving the topic, it has to be noted that there are plenty of other ways to target these cells other than the Bcl pathway (although that one seems to be one of the most developed so far). What can I say? Im 59, and I doubtless have more senescent cells than I want or need, so I (and plenty of others) are interested in the idea. The whole cellular senescence pathway presumably developed as a way to avoid slipping into a tumor phenotype the more cellular divisions, the greater the chance of something going wrong along the way. Its a tradeoff, and evolution seems more than willing to shortchange older members of the species who have generally passed on their genes to all the offspring that theyre going to. But humans have other goals. We are looking at a rather rapidly aging planet, if current demographic trends hold up, and it would be extremely desirable to have that associated with less of a disease burden. Can we split the difference?
Here is the original post:
Clearing Cellular Dead Wood | In the Pipeline - Science Magazine
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to ... - November 15th, 2024
- Hematopoietic Stem Cells and Their Niche in Bone Marrow - November 15th, 2024
- Bone Marrow Transplant Program - Overview - Mayo Clinic - November 15th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to Cadavers - WIRED - November 15th, 2024
- More stem cells for sickle cell gene therapy readied with motixafortide - Sickle Cell Disease News - November 15th, 2024
- Skull bone marrow expands throughout life and remains healthy during aging, researchers discover - Medical Xpress - November 15th, 2024
- Adult skull bone marrow is an expanding and resilient haematopoietic reservoir - Nature.com - November 15th, 2024
- Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation -... - November 15th, 2024
- Stem cells grown in space show super powers but theres a catch - Study Finds - November 15th, 2024
- Getting a Stem Cell or Bone Marrow Transplant - October 21st, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 21st, 2024
- 1.5 Lakh Indians Register To Save Lives: Join the Mission To Fight Blood Cancer - The Better India - October 21st, 2024
- How Stem Cell and Bone Marrow Transplants Are Used to Treat Cancer - October 13th, 2024
- Stem Cell (Bone Marrow) Transplants - MD Anderson Cancer Center - October 13th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - October 13th, 2024
- What to expect as a stem cell or bone marrow donor - October 13th, 2024
- Structural organization of the bone marrow and its role in ... - October 13th, 2024
- Stem cell donor from down the road saved my life after global search - BBC.com - September 23rd, 2024
- Awaiting the call: family hopes to find blood stem cell donor - Claremont Courier - September 23rd, 2024
- Michigan woman one of first in world to successfully receive bone marrow from deceased donor - WDIV ClickOnDetroit - September 23rd, 2024
- Next-generation stem cell transplant: Revolutionizing a lifesaving cancer therapy - The Business Journals - September 23rd, 2024
- Sophie's life was saved by a stranger. Some in her position have an 'unfair' disadvantage - SBS News - September 23rd, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 23rd, 2024
- Giralt on MDS Transplant Timing and Candidacy - Targeted Oncology - September 14th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 14th, 2024
- A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and... - September 14th, 2024
- ISU researcher blown away by blood cell replication discovery - Radio Iowa - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 14th, 2024
- 9-year-old gets successful bone marrow transplant - The Times of India - September 14th, 2024
- Dr. Crandall: Stem Cell Treatment Heals the Heart - Newsmax - September 3rd, 2024
- Orion Corporation: Managers’ transactions – Hao Pan - August 19th, 2024
- BioCorRx Reports Business Update for the Second Quarter of 2024 - August 19th, 2024
- Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern, Eliminates... - August 19th, 2024
- Aligos Therapeutics Announces Reverse Stock Split - August 19th, 2024
- Lumos Pharma to Participate in H.C. Wainwright 26th Annual Global Investment Conference - August 19th, 2024
- Protect Pharmaceutical Corp. (PRTT) Announces New CEO and New Director; Moves to Finalize the Karinca Logistics Merger - August 19th, 2024
- OKYO Pharma Participates in H.C. Wainwright 4th Annual Ophthalmology Virtual Conference - August 19th, 2024
- CORRECTION – Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern,... - August 19th, 2024
- NurExone Biologic Achieves Key Milestone in Support of Robust Exosome Manufacturing Process - August 19th, 2024
- Silexion Therapeutics Ltd. and Moringa Acquisition Corp Announce Closing of their Business Combination - August 19th, 2024
- Vericel Announces FDA Approval of NexoBrid for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- Codexis Publishes FY2023 Sustainability Disclosures - August 19th, 2024
- MediWound Announces U.S. Food and Drug Administration Approval of NexoBrid® for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- First Successful Paediatric Allogeneic Bone Marrow Transplant In Bengaluru; Know All About The Procedure - Onlymyhealth - August 4th, 2024
- Is Stem Cell Transplant Often The Only Treatment Option For Blood Cancer Patients? Why So? - News18 - June 2nd, 2024
- This Swedish startup wants to reduce the cost, and controversy, around stem cell production - TechCrunch - March 10th, 2024
- Bone Marrow Transplantation | Johns Hopkins Medicine - December 20th, 2023
- Mansour bin Zayed witnesses inauguration of ADSCC Bone Marrow Transplant & Cellular Therapy Congress 2023 - ZAWYA - November 26th, 2023
- ADSCC Bone Marrow Transplant and Cellular Therapy Congress 2023 to take place in Abu Dhabi - ZAWYA - November 18th, 2023
- Orchard Therapeutics Reports First Quarter 2023 Financial Results and Announces Initiation of Rolling Submission for Biologics License Application of... - May 16th, 2023
- Family of 7-month-old in need of bone marrow transplant hosting donor registration event - CBS Pittsburgh - May 8th, 2023
- Anika Continues to Expand Addressable Market for Tactoset Injectable Bone Substitute with Additional 510(k) Clearance from FDA - Marketscreener.com - April 5th, 2023
- MorphoSys Completes Enrollment of Phase 3 MANIFEST-2 Study of Pelabresib in Myelofibrosis with Topline Results Expected by End of 2023 -... - April 5th, 2023
- VOR BIOPHARMA INC. Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-K) - Marketscreener.com - March 25th, 2023
- BioRestorative Therapies to Seek FDA Approval to Expand the Clinical Application of BRTX-100 - Marketscreener.com - March 17th, 2023
- BioSenic delivers a new post-hoc analysis of its Phase III JTA-004 trial on knee osteo-arthritis with positive action on the most severely affected... - March 17th, 2023
- JASPER THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 9th, 2023
- For a range of unmet medical needs, India offers a fantastic opportunity to push cell and gene therapies: B .. - ETHealthWorld - March 9th, 2023
- NGM BIOPHARMACEUTICALS INC Management's Discussion and Analysis of Financial Condition and Results of Operations. (form 10-K) - Marketscreener.com - March 1st, 2023
- Bone health: Tips to keep your bones healthy - Mayo Clinic - January 27th, 2023
- Bone marrow drive held for military wife with cancer - January 27th, 2023
- Bone cancer - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Bone | Definition, Anatomy, & Composition | Britannica - January 19th, 2023
- Bone Definition & Meaning - Merriam-Webster - January 19th, 2023
- What Is Bone? | NIH Osteoporosis and Related Bone Diseases National ... - January 19th, 2023
- Anatomy of the Bone | Johns Hopkins Medicine - January 19th, 2023
- Bone Health: Is Eating Meat Healthy For Your Bones? - January 19th, 2023
- Bone Keeper | Deepwoken Wiki | Fandom - January 19th, 2023
- With blood and plasma donations in short supply, uniting communities to give the gift of life - Toronto Star - January 3rd, 2023
- Side Effects of a Bone Marrow Transplant (Stem Cell Transplant) - December 25th, 2022
- 28-year-old cancer patient at Nebraska Medicine advocates for diversity in bone marrow registry - KMTV 3 News Now Omaha - December 17th, 2022
- Stem Cell Technologies and Applications Market Report 2022-2032 - Yahoo Finance - December 9th, 2022
- Fred Hutch at ASH: Global insights on AML outcomes, COVID-19 and cancer, CD19 CAR T-cell therapy updates, latest on precision oncology and more -... - December 9th, 2022
- Types of Stem Cell and Bone Marrow Transplants - American Cancer Society - December 1st, 2022
- Getting a Stem Cell or Bone Marrow Transplant - American Cancer Society - December 1st, 2022
- Woman, 41, With Bubbles In Her Urine Dismissed By Doctors. Turns Out To Have The Blood Cancer Multiple Myeloma. - SurvivorNet - December 1st, 2022
- Stem cell and bone marrow transplants - Cancer Research UK - November 22nd, 2022
- Donating Bone Marrow Experience | Be The Match - November 22nd, 2022
- Learn How to Donate Bone Marrow | Be The Match - October 29th, 2022
- Stem Cell Transplantation Program - DanaFarber Cancer Institute - October 29th, 2022