Creative Biolabs Leads the Forefront of iPSC Technology – Digital Journal

By daniellenierenberg

Creative Biolabs stem cell platform offers expertise in the generation, bioprocess scale-up, and differentiation of iPSCs.

New York, USA August 3, 2022 Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from somatic cells. iPSC technology has evolved rapidly since its inception in 2006 and has been widely used for disease modeling.

The global iPSC market is expected to grow from $2431.2 million in 2021 to $2640.80 million in 2022 at a compound annual growth rate (CAGR) of 8.6%. Meanwhile, the market is expected to reach $3571.48 million in 2026 at a CAGR of 7.8%, according to the Report Linker.

Creative Biolabs has constructed an advanced platform that offers various iPSC services, including:

iPSC reprogramming service

iPSC culture service

Pluripotency characterization service

iPSC genome editing service

iPSC differentiation service

With years of exploration in the iPSC development, Creative Biolabs is dedicated to providing helpful iPSC culture services, including maintenance of iPSC, 3D culture of iPSC, as well as scale-up of iPSC culture.

Researchers at Creative Biolabs have built two unique systems for iPSCs culture, which are the feeder-dependent culture system and the feeder-free culture system. In order to break the bottleneck for mass production of high-quality iPSCs, Creative Biolabs has built a 3D culture system for iPSC expansion and differentiation based on a thermoreversible hydrogel. The 3D culture system enables a long-term and serial expansion of multiple human iPSC lines via a mild process. With these wonderful advantages, the 3D culture system may be useful at various scales, from basic biological research to clinical trials.

Moreover, the use of bioreactor systems has greatly improved the development of dynamic suspension culture. Bioreactor systems can promote the control of iPSC aggregation, avoid the formation of gradients, and improve the mass transfer, thus leading to higher cell density.

With the advanced iPSC development platform, Creative Biolabs offers high-quality iPSC genome editing services. Nowadays, the application of custom-engineered sequence-specific nucleases enables genetic changes in human cells to be easily accessed with much greater efficiency and precision, such as CRISPR/Cas9 and TALEN. iPSC genome editing services at Creative Biolabs can help achieve the following goals:

Knock out a gene of interest

Knock in a disease-associated point mutation

Tag a gene of interest with required reporters

Reversion to wildtype in disease-derived iPSC line

Explore more top-notch services for stem cell therapy development at https://www.creative-biolabs.com/stem-cell-therapy.

About Creative Biolabs

With professional scientists and years of experience, Creative Biolabs provides high-quality products and services in the field of stem cell therapy development for customers all over the world.

Media ContactCompany Name: Creative BiolabsContact Person: Candy SwiftEmail: Send EmailPhone: 1-631-830-6441Country: United StatesWebsite: https://www.creative-biolabs.com/stem-cell-therapy

Read more here:
Creative Biolabs Leads the Forefront of iPSC Technology - Digital Journal

Related Post


categoriaIPS Cell Therapy commentoComments Off on Creative Biolabs Leads the Forefront of iPSC Technology – Digital Journal | dataAugust 10th, 2022

About...

This author published 4819 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024