Damaged bone or cartilage? Now, grow your own cells in a lab – Hindustan Times

By NEVAGiles23

When 14-year-old Aarav Gulati (name changed on request) met with an accident a couple of years ago while playing football, he injured his knee. A portion of the cartilage was damaged, and doctors used turned to a radical new procedure for a solution. They took Gulatis own cells, grew them in a lab and used them to replace the cartilage and repair the damage in a natural way.

He was an ideal case for the use of regenerative cell therapy that was a fairly new phenomenon in orthopaedic treatment in India, says Dr Yash Gulati, senior joint replacement and spine surgeon, New Delhis Indraprastha Apollo Hospital.

The regenerative cell therapy got US FDA approval this year, and the Apollo group partnered with RMS REGROW, a company that specialises in cell therapy technology, to exclusively offer the treatment to patients in India.

Instead of using artificial implants, the technique helps in healing the bone or cartilage damage in a natural way using a persons own cells to regain normal function. Cultured cells (grown in a lab) are injected into a patient to replace diseased or dysfunctional cells.

Instead of using artificial implants, the technique helps in healing the bone or cartilage damage in a natural way using a persons own cells to regain normal function. Cultured cells (grown in a lab) are injected into a patient to replace diseased or dysfunctional cells. (Illustration: Siddhant Jumde)

A small part of the joint cartilage is taken through a keyhole procedure, and is grown in a special manner to convert it into stem cells in the laboratory, says Dr Gulati. This is then applied on the area showing loss of joint cartilage.

Dr Gulati has so far treated 10 people using this therapy in Apollo, Delhi.

Stem cells lead to growth of joint cartilage in defective areas, and normal new cartilage re-grows. In bone damage, bone marrow cells are harvested, cultured and implanted in the area to be able to re-grow in a healthy way, Dr Gulati says.

In Mumbai, those in need of joint replacement because of injury, wear and tear or other lifestyle and ageing, are also realising that new cartilage can be grown in a lab from ones own cells and used instead of artificial materials.

Chondron or cartilage cell therapy is a patient-specific regenerative medical treatment which naturally regrows original cartilage. The therapy is used for repairing articular cartilage of the knee, ankle and shoulder joints and to help replace missing areas of cartilage.

This is a process where a biopsy of cartilage cells (chondrocytes) is taken from the patients knee, ankle or shoulder, says Satyen Sanghavi, chief scientific officer of Regenerative Medical Services Regrow, a biotechnology company in Mumbai.

Causes of bone or cartilage damage

They are then cultured to grow and multiply in a lab for 3-4 weeks into a surplus population of several million. The cultured cells are then re-implanted in the damaged area in a minimally invasive surgical procedure.

The process comes from eight years of work in cell and tissue therapy research. Chondron ACI is the countrys first cell therapy product.

These cells grow and repair tissue with properties similar to that of normal cartilage present in other joints, says Sanghavi. But replacement alone doesnt solve problems. Patients are expected to follow a rehabilitation program, to help the body adjust to new cells and them get back to day-to-day physical.

Its easy to see the advantages of a process like this. Experts say it may avoid the need for future prosthetic joints replacement (especially partial joint replacement) and allows patients the freedom to continue physical activities as before.

It also poses less risk of disease transmission or infection since it comes from the patients own tissue (no foreign material or metal goes inside the body). It may also halt further progression to osteoarthritis, a common problem with those in need of joint replacement.

The procedure costs Rs.3 to 3.5 lakhs.

In India, more than 500 patients have been treated with both bone and cartilage cell therapy procedures, says Sanghavi.

There is a success rate of more than 95%. During our clinical trials and research, we have treated working professionals, housewives, athletes, army men and mountaineers. Almost all of them have successfully recovered and got back to their active life.

However, this new technique has a flip side, too.

The price could be a bit steep for some because stem cell treatment is expensive; and the treatment gets prolonged as a patient has to wait for some time as cell culture takes time and one cannot bear weight on the affected area while the healing is on. Also, not all patients are suitable for it because it can correct only if damage isnt extensive, says Dr Ankit Goyal, associate professor, Safdarjung Sports Injury Centre (SIC) in Delhi.

Safdarjung Hospital had also treated about 35 patients, who had damaged their cartilage, with the technique a few years ago.

We would send cartilage for culture but only in cases where damage was limited. This is definitely not a substitute for knee or hip replacement procedure where the entire joint is extensively damaged. However, it may prevent the need for replacement later on in life, especially in young patients, he says.

Read more here:
Damaged bone or cartilage? Now, grow your own cells in a lab - Hindustan Times

Related Post


categoriaBone Marrow Stem Cells commentoComments Off on Damaged bone or cartilage? Now, grow your own cells in a lab – Hindustan Times | dataJuly 1st, 2017

About...

This author published 858 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025