Diabetes reversed in mice with genetically edited stem cells derived from patients – Washington University School of Medicine in St. Louis
By daniellenierenberg
Visit the News Hub
CRISPR corrects genetic defect so cells can normalize blood sugar
Researchers at Washington University School of Medicine in St. Louis have transformed stem cells into insulin-producing cells. They used the CRISPR gene-editing tool to correct a defect that caused a form of diabetes, and implanted the cells into mice to reverse diabetes in the animals. Shown is a microscopic image of insulin-secreting beta cells (insulin is green) that were made from stem cells produced from the skin of a patient with Wolfram syndrome.
Using induced pluripotent stem cells produced from the skin of a patient with a rare, genetic form of insulin-dependent diabetes called Wolfram syndrome, researchers transformed the human stem cells into insulin-producing cells and used the gene-editing tool CRISPR-Cas9 to correct a genetic defect that had caused the syndrome. They then implanted the cells into lab mice and cured the unrelenting diabetes in those mice.
The findings, from researchers at Washington University School of Medicine in St. Louis, suggest the CRISPR-Cas9 technique may hold promise as a treatment for diabetes, particularly the forms caused by a single gene mutation, and it also may be useful one day in some patients with the more common forms of diabetes, such as type 1 and type 2.
The study is published online April 22 in the journal Science Translational Medicine.
Patients with Wolfram syndrome develop diabetes during childhood or adolescence and quickly require insulin-replacement therapy, requiring insulin injections multiple times each day. Most go on to develop problems with vision and balance, as well as other issues, and in many patients, the syndrome contributes to an early death.
This is the first time CRISPR has been used to fix a patients diabetes-causing genetic defect and successfully reverse diabetes, said co-senior investigator Jeffrey R. Millman, PhD, an assistant professor of medicine and of biomedical engineering at Washington University. For this study, we used cells from a patient with Wolfram syndrome because, conceptually, we knew it would be easier to correct a defect caused by a single gene. But we see this as a stepping stone toward applying gene therapy to a broader population of patients with diabetes.
Wolfram syndrome is caused by mutations to a single gene, providing the researchers an opportunity to determine whether combining stem cell technology with CRISPR to correct the genetic error also might correct the diabetes caused by the mutation.
A few years ago, Millman and his colleagues discovered how to convert human stem cells into pancreatic beta cells. When such cells encounter blood sugar, they secrete insulin. Recently, those same researchers developed a new technique to more efficiently convert human stem cells into beta cells that are considerably better at controlling blood sugar.
In this study, they took the additional steps of deriving these cells from patients and using the CRISPR-Cas9 gene-editing tool on those cells to correct a mutation to the gene that causes Wolfram syndrome (WFS1). Then, the researchers compared the gene-edited cells to insulin-secreting beta cells from the same batch of stem cells that had not undergone editing with CRISPR.
In the test tube and in mice with a severe form of diabetes, the newly grown beta cells that were edited with CRISPR more efficiently secreted insulin in response to glucose. Diabetes disappeared quickly in mice with the CRISPR-edited cells implanted beneath the skin, and the animals blood sugar levels remained in normal range for the entire six months they were monitored. Animals receiving unedited beta cells remained diabetic. Their newly implanted beta cells could produce insulin, just not enough to reverse their diabetes.
We basically were able to use these cells to cure the problem, making normal beta cells by correcting this mutation, said co-senior investigator Fumihiko Urano, MD, PhD, the Samuel E. Schechter Professor of Medicine and a professor of pathology and immunology. Its a proof of concept demonstrating that correcting gene defects that cause or contribute to diabetes in this case, in the Wolfram syndrome gene we can make beta cells that more effectively control blood sugar. Its also possible that by correcting the genetic defects in these cells, we may correct other problems Wolfram syndrome patients experience, such as visual impairment and neurodegeneration.
In the future, using CRISPR to correct certain mutations in beta cells may help patients whose diabetes is the result of multiple genetic and environmental factors, such as type 1, caused by an autoimmune process that destroys beta cells, and type 2, which is closely linked to obesity and a systemic process called insulin resistance.
Were excited about the fact that we were able to combine these two technologies growing beta cells from induced pluripotent stem cells and using CRISPR to correct genetic defects, Millman said. In fact, we found that corrected beta cells were indistinguishable from beta cells made from the stem cells of healthy people without diabetes.
Moving forward, the process of making beta cells from stem cells should get easier, the researchers said. For example, the scientists have developed less intrusive methods, making induced pluripotent stem cells from blood and they are working on developing stem cells from urine samples.
In the future, Urano said, we may be able to take a few milliliters of urine from a patient, make stem cells that we then can grow into beta cells, correct mutations in those cells with CRISPR, transplant them back into the patient, and cure their diabetes in our clinic. Genetic testing in patients with diabetes will guide us to identify genes that should be corrected, which will lead to a personalized regenerative gene therapy.
Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ, Morikawa S, Urano F, Millman JR. Gene-edited human stem cell-derived cells from a patient with monogenic diabetes reverse pre-existing diabetes in mice. Science Translational Medicine, published online April 22, 2020.
This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of General Medical Sciences, the National Cancer Institute and the National Center for Advancing Translational Sciences of the National Institutes of Health (NIH). Grant numbers R01 DK114233, DK112921, TR002065, TR002345, T32 DK108742, R25 GM103757, T32 DK007120, P30 DK020579, P30 CA91842, UL1 TR000448 and UL1 TR002345. Additional assistance was provided by the Washington University Genome Engineering and iPSC Center, the Washington University Diabetes Center, and the Washington University Institute of Clnical and Translational Science, with additional funding from the JDRF, the Washington University Center of Regenerative Medicine, startup funds from the Washington University School of Medicine Department of Medicine, the Unravel Wolfram Syndrome Fund, Silberman Fund, Stowe Fund, Ellie White Foundation for Rare Genetic Disorders, Eye Hope Foundation, Snow Foundation, Feiock Fund, Childrens Discovery Institute, Manpei Suzuki Diabetes Foundation, and a JSPS Overseas Research Fellowship.
Washington University School of Medicines 1,500 faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Childrens hospitals. The School of Medicine is a leader in medical research, teaching and patient care, ranking among the top 10 medical schools in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Childrens hospitals, the School of Medicine is linked to BJC HealthCare.
Read more here:
Diabetes reversed in mice with genetically edited stem cells derived from patients - Washington University School of Medicine in St. Louis
- Skin science: Latest stories on cosmetics science and formulation - CosmeticsDesign-Asia.com - November 15th, 2024
- The Firsthand Results Of A Nanofat Treatment Using Stem Cells And PRP - Forbes - November 15th, 2024
- Boundary-Pushing Skin Care Company Exoceuticals Garners Beauty Innovation Award For 'Beauty Innovation Technology Of The Year - The Manila Times - November 15th, 2024
- New skin research could help slow signs of ageing - BBC.com - October 21st, 2024
- Human skin map gives 'recipe' to build skin and could help prevent scarring - Medical Xpress - October 21st, 2024
- A new cell therapy company takes its vision from four founders, and its skin from George Church - STAT - September 23rd, 2024
- Women 60+ love this hydrating stem cell-infused moisturizer that's $15 right now - Yahoo Life - September 23rd, 2024
- NKGen Biotech Publishes Phase 1 Interim Analysis Results of SNK02 Allogeneic NK Cell Therapy in Advanced Solid Tumors at the 2024 American Society of... - May 25th, 2024
- FibroGen Announces Presentation of Positive Interim Data from the Phase 1b Study of FG-3246 (FOR46) in Combination with Enzalutamide in Patients with... - May 25th, 2024
- Cogent Biosciences Appoints Cole Pinnow as Chief Commercial Officer - May 25th, 2024
- G1 Therapeutics Announces Upcoming Presentation at the 2024 American Society of Clinical Oncology (ASCO) Meeting - May 25th, 2024
- Updated Phase 1 Clinical Data for SYS-6002 (CRB-701) to be presented at 2024 ASCO Annual Meeting - May 25th, 2024
- Affimed Announces Positive Early Efficacy and Progression Free Survival Results of AFM24-102 Study in EGFR Wild-Type Non-Small Cell Lung Cancer at the... - May 25th, 2024
- SpringWorks Therapeutics Announces Data to be Presented at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Sensei Biotherapeutics Presents Promising Clinical Data from Phase 1 Dose Escalation Study of SNS-101 - May 25th, 2024
- Elicio Therapeutics Announces Preliminary Data from the Ongoing AMPLIFY-7P Phase 1a Study of ELI-002 7P in Patients with mKRAS-driven Solid Tumors at... - May 25th, 2024
- Kronos Bio to Present Clinical Update on Phase 1/2 Trial of KB-0742 at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Coherus Presents Preliminary Results from Phase I Dose Escalation Study of its Anti-chemokine receptor 8 (CCR8) Antibody, CHS-114, at the 2024... - May 25th, 2024
- 3Daughters to Participate in Women’s Health Panel During the 2024 BIO International Convention in San Diego, CA, June 3-6 - May 25th, 2024
- HUTCHMED Highlights Presentations at the 2024 ASCO Annual Meeting - May 25th, 2024
- Myriad Genetics Showcases New Research and Product Innovations Advancing Cancer Care at 2024 ASCO® Annual Meeting - May 25th, 2024
- Lift BioSciences Announces Abstract Publications at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Nicox: 2024 Ordinary Shareholder Meeting to be held on June 28th, 2024 - May 25th, 2024
- Adlai Nortye Ltd. to Present Encouraging Data of the Combination of AN0025 and Definitive Chemoradiotherapy (dCRT) at ASCO 2024 - May 25th, 2024
- Vitamin A could have a key role in both stem cell biology and wound healing: Study - Medical Dialogues - March 10th, 2024
- Cyclerion Strengthens Board of Directors with Experienced Company Builder and Cutting-edge Innovator - December 4th, 2023
- Aptose Appoints Fletcher Payne Chief Business Officer, Expanding his Executive Role - December 4th, 2023
- Opthea to Present at the FLORetina 2023 Congress - December 4th, 2023
- HUTCHMED Highlights Clinical Data to be Presented at 2023 ESMO Asia and ESMO Immuno-Oncology Congresses - December 4th, 2023
- AC Immune Strengthens Management, Appoints Madiha Derouazi as CSO and Christopher Roberts as CFO - December 4th, 2023
- Publication of a transparency notification received from Tolefi SA (Article 14 §1 of the Law of 2 May 2007) - December 4th, 2023
- Annovis Bio Appoints Andrew Walsh as Vice President Finance - December 4th, 2023
- Foghorn Therapeutics Announces Clinical Data from Phase 1 Study of FHD-286, a Novel BRG1/BRM Inhibitor, in Patients with Advanced Hematologic... - December 4th, 2023
- Akari Therapeutics Appoints Experienced Life Sciences Entrepreneur Samir R. Patel, M.D. to Board of Directors - December 4th, 2023
- Ovid Therapeutics to Present Five Abstracts Supporting its Epilepsy Programs at the 77th American Epilepsy Society Annual Meeting (2023) - December 4th, 2023
- Spectral Medical Announces CFO Departure - December 4th, 2023
- Are STEM CELL EXOSOMES the secret to a 'snatched' jawline? Discover the products that influencers are claiming - Daily Mail - November 18th, 2023
- Defence Mechanisms: Four ways your body is protecting you every time you fall sick - indulgexpress - May 16th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, 111SKIN, Nest & More - E! NEWS - May 16th, 2023
- INTERNATIONAL STEM CELL CORP MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - April 5th, 2023
- Skin Regeneration: The Science and How to Boost It - Healthline - March 9th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, U Beauty, Nest & More - E! NEWS - March 1st, 2023
- 7-year-old vows to find a cure for brother in need of bone marrow transplant - WJLA - February 21st, 2023
- World's most radioactive man 'cried blood' as his skin melted in 83-day nightmare - Times Now - February 4th, 2023
- How old are you, really? The answer is written on your face. - National Geographic UK - February 4th, 2023
- Skin: Layers, Structure and Function - Cleveland Clinic - January 27th, 2023
- Human skin | Definition, Layers, Types, & Facts | Britannica - January 27th, 2023
- Skin Disorders: Pictures, Causes, Symptoms, and Treatment - Healthline - January 27th, 2023
- Skin care: 5 tips for healthy skin - Mayo Clinic - January 27th, 2023
- Skin Care and Aging | National Institute on Aging - January 27th, 2023
- Wrinkles - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Dry skin - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Stem cells: a brief history and outlook - Science in the News - January 3rd, 2023
- Still Drinking Green Tea? Doctor Reveals A Healthier Drink With Proven Benefits For Diabetes, Aging, Oxidative Stress, And Cancer - Revyuh - January 3rd, 2023
- RUDN Physician And Russian Scientists Investigate Long-term Effects Of Treating Diabetic Ulcers With Stem Cells - India Education Diary - December 25th, 2022
- The Use of Stem Cells in Burn Wound Healing: A Review - Hindawi - December 1st, 2022
- FACTORFIVE Skincare The Power of Stem Cells for Skin - December 1st, 2022
- Embryonic Stem Cells - The Definitive Guide | Biology Dictionary - December 1st, 2022
- From pro soccer hopeful to hip hop artist with illness and addiction along the way, Tymaz Bagbani releases debut album - Toronto Star - December 1st, 2022
- Stem Cells | The ALS Association - November 22nd, 2022
- What is a stem cell? YourGenome - October 29th, 2022
- Skin Cell - The Definitive Guide | Biology Dictionary - October 29th, 2022
- Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend - Forbes - October 29th, 2022
- Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 - KXAN.com - October 21st, 2022
- Human skin color - Wikipedia - October 13th, 2022
- Mesenchymal Stem Cells | Properties, Process, Functions, & Therapies - October 13th, 2022
- Skin Grafting, Cryopreservation, and Diseases: A Review Article - Cureus - October 13th, 2022
- Anti-ageing cosmetics: Can they turn back the hands of the clock? - The Sunday Guardian Live - The Sunday Guardian - October 13th, 2022
- Brennand named Elizabeth Mears and House Jameson Professor of Psychiatry - Yale News - October 13th, 2022
- The Switch to Regenerative Medicine - Dermatology Times - October 13th, 2022
- Last Chance to Get The Collagen-Infused Massage Oil That Moisturizes Skin & Diminishes Cellulite For Less Than $20 - msnNOW - October 13th, 2022
- Addison's Disease Explained: Causes, Symptoms, And Treatments - Health Digest - October 13th, 2022
- Stem Cells Therapy for Autism: Does it Work? - October 5th, 2022
- Stem-like CD8 T cells mediate response of adoptive cell ... - PubMed - October 5th, 2022
- 6 Under Eye Products You Need To Have STAT - Grazia India - October 5th, 2022
- CellResearch Corporation (CRC) to present promising new stem cell products for the treatment of chronic diabetic foot ulcers at the world's premier... - September 27th, 2022
- Reprogramming pig cells leads way for new regenerative therapies - National Hog Farmer - September 27th, 2022
- A glimpse into Indian consumers expectations for cosmetic treatments and consumption insights - The Financial Express - September 27th, 2022
- Tajmeel redefines beauty to give its patients the best results - Gulf News - September 27th, 2022
- Here Is Why You Heal Slower As You Age - Health Digest - September 27th, 2022