Discovery of a key regulatory gene in cardiac valve formation – Medical Xpress

By NEVAGiles23

May 23, 2017

Researchers from the University of Basel in Switzerland have identified a key regulator gene for the formation of cardiac valves - a process crucial to normal embryonic heart development. These results are published in the journal Cell Reports today.

The heart is the first functional organ that develops in vertebrate embryos. In humans, it starts to beat four weeks into the pregnancy. Unfortunately, congenital heart disease is one of the most common developmental abnormalities and the leading cause of birth defect-related deaths. These heart defects often involve malformations of cardiac valves, which are required to regulate the pressure and flow of blood in the cardiac chambers.

Unexpected role for HAND2 transcription factor in cardiac valve formation

A research team led by Prof. Zeller and Dr. Zuniga from the University of Basel has identified the so-called HAND2 gene as a key regulator that triggers the formation of cardiac valves in mouse embryos, a process that is crucial for normal heart development. Previous research using mouse models lacking HAND2 had shown that this gene regulates outflow tract and right ventricle development.

The researchers thus set out to identify the set of genes that are controlled by HAND2 in developing mouse hearts. In doing so, they identified a previously unknown heart defect in mouse embryos lacking HAND2. The mutant hearts lack the cardiac cushions, which would normally develop into cardiac valves. Normally, the cells contributing to these cushions undergo complex cellular rearrangements as they detach from the lining of the heart wall and migrate into the cushions to "fill them up". As this mechanism is crucial for heart development, the researchers investigated how HAND2 controls this fundamental event during cardiac valve development.

HAND2 controlled gene network

In humans, defects in valve formation underlie different congenital heart malformations but the molecular mechanisms controlling heart valve development are not well understood. By studying mouse embryos, the research group has now identified the network of genes directly controlled by HAND2 that regulates cardiac valve formation.

The discovery of the HAND2 controlled gene network is of general relevance as mutations in HAND2 have recently been linked to heart valve malformations in human patients. «Not only does this discovery advance our molecular knowledge of cardiac valve development, but it may also help to provide genetic diagnosis for patients that suffer from congenital heart malformations," says first author Frderic Laurent of the Department of Biomedicine.

Engineering valves from stem cells

Heart valve replacements are among the most common cardiac surgeries performed and one of the future promises of biomedical research is to engineer replacement valves from stem cells. The discovery that HAND2 is a key regulator of the cellular and gene regulatory processes underlying heart valve formation is a potential milestone in this direction.

Explore further: Scientists get the upperhand in biological pathway that leads to heart formation

More information: Frdric Laurent, Ausra Girdziusaite, Julie Gamart, Iros Barozzi, Marco Osterwalder, Jennifer A. Akiyama, Joy Lincoln, Javier Lopez-Rios, Axel Visel, Aime Zuniga, and Rolf Zeller, HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development, Cell Reports 19 (2017) DOI: 10.1016/j.celrep.2017.05.004

Journal reference: Cell Reports

Provided by: University of Basel

Researchers at UT Southwestern Medical Center's Hamon Center for Regenerative Science and Medicine have identified a pathway essential to heart formation and, in the process, unveiled a mechanism that may explain how some ...

Researchers at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) have demonstrated the crucial role of the NOTCH signaling pathway in the development of a fundamental heart structure, the heart valves. ...

Heart valve defects are a common cause of death in newborns. Scientists at the University of Bonn and the caesar research center have discovered "Creld1" is a key gene for the development of heart valves in mice. The researchers ...

There are certain matters of the heart that should be left to the experts, and mitral valve disease is one of them. Dr. Joseph Lamelas, associate chief of cardiac surgery in the Michael E. DeBakey Department of Surgery at ...

A gene known to be important in cardiac development has been newly associated with congenital heart malformations that result in obstruction of the left ventricular outflow tract. These are the findings from a study conducted ...

May 5, 2016A cell-to-cell signaling network that serves as a developmental timer could provide a framework for better understanding the mechanisms underlying human heart valve disease, say University of Oregon scientists.

The first known identification of two genes responsible for hypoplastic left heart syndrome (HLHS), a severe congenital heart defect, has been reported by researchers at the University of Pittsburgh School of Medicine. The ...

Coronary artery disease (CAD) is a leading cause of death worldwide. Despite dozens of regions in the genome associated with CAD, most of the genetic components of heart disease are not fully understood, suggesting that more ...

A new gene behind a rare form of inherited childhood kidney disease has been identified by a global research team.

In the earliest stages of embryonic development, a protein known as TET1 may be the factor that tips the balance toward health or disease. The first evidence for this vital role of TET1 is presented in Nature Genetics by ...

Stop-and-go traffic is typically a source of frustration, an unneccesary hold-up on the path from point A to point B. But when it comes to the molecular machinery that copies our DNA into RNA, a stop right at the beginning ...

A new study of inherited genetic risk indicates that common genetic variations throughout the genome act in addition to rare, deleterious mutations in autism-associated genes to create risk for autism.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Link:
Discovery of a key regulatory gene in cardiac valve formation - Medical Xpress

Related Post


categoriaCardiac Stem Cells commentoComments Off on Discovery of a key regulatory gene in cardiac valve formation – Medical Xpress | dataMay 23rd, 2017

About...

This author published 858 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025