Disease in a dish approach could aid Huntington's disease discovery

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

5-Sep-2014

Contact: Lisa Newbern lisa.newbern@emory.edu 404-727-7709 Emory Health Sciences

Creating induced pluripotent stem cells or iPS cells allows researchers to establish "disease in a dish" models of conditions ranging from Alzheimer's disease to diabetes. Scientists at Yerkes National Primate Research Center have now applied the technology to a model of Huntington's disease (HD) in transgenic nonhuman primates, allowing them to conveniently assess the efficacy of potential therapies on neuronal cells in the laboratory.

The results were published in Stem Cell Reports.

"A highlight of our model is that our progenitor cells and neurons developed cellular features of HD such as intranuclear inclusions of mutant Huntingtin protein, which most of the currently available cell models do not present," says senior author Anthony Chan, PhD, DVM, associate professor of human genetics at Emory University School of Medicine and Yerkes National Primate Research Center. "We could use these features as a readout for therapy using drugs or a genetic manipulation."

Chan and his colleagues were the first in the world to establish a transgenic nonhuman primate model of HD. HD is an inherited neurodegenerative disorder that leads to the appearance of uncontrolled movements and cognitive impairments, usually in adulthood. It is caused by a mutation that introduces an expanded region where one amino acid (glutamine) is repeated dozens of times in the huntingtin protein.

The non-human primate model has extra copies of the huntingtin gene that contains the expanded glutamine repeats. In the non-human primate model, motor and cognitive deficits appear more quickly than in most cases of Huntington's disease in humans, becoming noticeable within the first two years of the monkeys' development.

First author Richard Carter, PhD, a graduate of Emory's Genetics and Molecular Biology doctoral program, and his colleagues created iPS cells from the transgenic monkeys by reprogramming cells derived from the skin or dental pulp. This technique uses retroviruses to introduce reprogramming factors into somatic cells and induces a fraction of them to become pluripotent stem cells. Pluripotent stem cells are able to differentiate into any type of cell in the body, under the right conditions.

Carter and colleagues induced the iPS cells to become neural progenitor cells and then differentiated neurons. The iPS-derived neural cells developed intracellular and intranuclear aggregates of the mutant huntingtin protein, a classic sign of Huntington's pathology, as well as an increased sensitivity to oxidative stress.

Read the original post:
Disease in a dish approach could aid Huntington's disease discovery

Related Post


categoriaIPS Cell Therapy commentoComments Off on Disease in a dish approach could aid Huntington's disease discovery | dataSeptember 5th, 2014

About...

This author published 5952 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025