Explainer: What is Crispr and why did it win the Nobel prize? – Chemistry World
By daniellenierenberg
Emmanuelle Charpentier and Jennifer Doudna have scooped the 2020 Nobel prize in chemistry for the development of a method for genome editing. Specifically, theyve been awarded the prize for their discovery of the CrisprCas9 genome editing technique that allows scientists to make precise alterations to the genetic code of living organisms. CrisprCas9 is a powerful tool that could revolutionise many aspects of our lives, from medical treatments to the way we produce food. Its also seen its fair share of controversy in recent years. Here, we take a deeper look at these genetic scissors and why theyve won the Nobel prize.
Since Charpentier and Doudna began investigating the CrisprCas9 system in 2011, the field has exploded. Due to the relative simplicity and affordability of Crispr systems, researchers around the world have been able to apply the tools to all manner of different problems. Today there are entire journals, conferences and companies dedicated to the technique.
The ability to cut any DNA molecule at a chosen site has huge potential from treating genetic illnesses to creating disease-resistant crops. Trials have even shown how Crispr-delivered genetic modifications can spread through populations of mosquitoes and stop malaria infections such gene-drives offer a way to eliminate the disease altogether. And in the face of the Covid-19 pandemic, researchers have found ways to use Crispr in rapid coronavirus diagnostic tests and have also proposed using it to attack the viruss genome.
As Claes Gustafsson, chair of the Nobel committee for chemistry, said at the award announcement, There is enormous power in this genetic tool, which affects us all.
Crispr technology has even been used to make more delicious beer.
The whole Crispr gene editing tool has been adapted from the immune system of bacteria. The term Crispr comes from clustered regularly interspaced short palindromic repeats, which refers to distinct genetic sequences found in the genomes of bacteria. Each Crispr sequence is transcribed into RNA sequences that will target the DNA of a virus. These sequences also include cas (Crispr-associated) genes that code for DNA-cutting Cas enzymes. Together, the guide RNA and Cas enzyme form a complex that hunts out viral DNA and chops it up.
In Crispr gene editing, scientists repurpose this system by designing a guide RNA sequence of around 20 nucleobases that matches up to a DNA sequence they wish to target in a cells genome. This RNA sequence is paired with the Cas9 enzyme that will cut the DNA strand at the targeted site. The whole DNA sequence coding for both these components of the Crispr-Cas9 tool can be delivered to the target cell via a plasmid.
The tool can therefore be used to edit a cells genome with incredible precision for example, it can cut out a dysfunctional gene associated with a hereditary illness. And if the healthy version of the gene is also delivered to the cell, the cells own repair system will then incorporate the healthy strands at the site where it has been cleaved.
In 2011, when investigating the bacteria Streptococcus pyogenes, Charpentier discovered a molecule called tracrRNA that forms a key part of the CrisprCas system in bacteria.
Meanwhile, Doudna had been investigated the function of the cas genes, and learned that the Cas proteins they code for are involved in cutting up DNA as part of the bacterial immune system against pathogenic viruses.
That year Charpentier teamed up with Doudna to investigate the system further. Together they revealed how the Cas9 protein, CrisprRNA and tracrRNA worked together to snip DNA strands into two parts. They then simplified the system by combining the CrisprRNA and tracrRNA into a single molecule guide RNA making it easier to use, and showed how this could be used to cut any DNA strand at a site of their choosing, opening the door to using the tool in all manner of genome editing experiments.
While previous tools for genetic editing existed before Crispr-Cas9, the new tools are much simpler and cheaper. This has led to the huge expansion of the field by making gene editing accessible for scientists all around the globe.
For years Crispr has been at the centre of a long-running patent dispute. Shortly after Doudna and Charpentiers discovery, Feng Zhangs team the Broad Institute in Cambridge, US, patented a way to use the technique in eukaryotic cells. There have been protracted court battles between Doudnas group at the University of California in Berkeley, US, and the Broad team over who holds the key piece of intellectual property. In the meantime, numerous groups and companies have been granted patents for many new Crispr-related technologies, meaning that as time goes on, the original patents at the centre of the dispute are becoming less relevant.
Another area of controversy surrounds the potential consequences of using genome editing tools at all. As the genome is so complex, we cant always know what will happen when we edit genes. Some genes have multiple and often unknown functions editing them to correct for one problem could end up creating new unforeseen ones. This is particularly important when it comes to editing germline cells (those that can be passed on to an organisms children), because the modified genes can be inherited by future generations.
As a relatively new technique, we also know that Crispr itself isnt perfect. Some studies have shown off-target cuts, where the tool has snipped DNA strands at additional locations to the desired site. This clearly can have harmful consequences, and so many researchers are looking into ways to improve the technique and make it more suitable for medical uses.
With these concerns in mind, scientists worldwide including Doudna and Charpentier have called for a moratorium on editing human germline cells, until we can know more about the consequences. Such calls intensified after the rogue Chinese scientist He Jiankui edited human embryos that were then brought to term in 2018. He is now serving a three year prison sentence for conducting the study.
Several clinical trials have already begun on Crispr-based therapies, with promising reports emerging this year. In February, the first study to look at a cancer treatment using Crispr-edited immune cells reported that the modified cells were safe, with no serious side-effects in the three patients studied. While the efficacy of the treatment on the cancers was minimal, it may help to inform future Crispr-based T-cell treatments.
One month later, a patient with hereditary blindness became the first person ever to have a CrisprCas9 therapy directly administered into their body. And in June, the Swiss gene-editing company Crispr Therapeutics announced that two patients with beta thalassaemia and one with sickle cell disease would no longer require blood transfusions after their bone marrow stem cells were edited using Crispr techniques.
Earlier this week, Doudna launched a new company, Scribe Therapeutics, to begin work on treatments for amyotrophic lateral sclerosis.
Other Crispr-based technologies are coming closer to commercial reality. For example, the US genome engineering company eGenesis is developing ways to use the technique to edit pigs genes so that their organs might be transplanted safely into humans. In the agricultural sector, many companies are working on ways to use Crispr to speed up the selection process for crops with desirable traits such as disease-resistance or improved flavour.
At the fundamental level, researchers are working on ways to improve the system itself. By using alternative Cas proteins, some groups hope to make the tool more effective and easier to use in certain settings. Doudnas group recently reported on a CasX protein that is smaller than Cas9 and potentially easier to introduce into target cells.
Delivering DNA into cells and tissues is an important part of gene therapy, even more so for Crispr-Cas9 approaches because plasmids carrying this system are very large. This research paper describes a non-viral vector for delivering plasmid DNA carrying Crispr-Cas9 into tumour spheroids, which are good in vitro models for tissues but also challenging transfecting targets.
1 S J Zamolo, T Darbre and J-L Reymond, Transfecting tissue models with CRISPR/Cas9 plasmid DNA using peptide dendrimers, Chem. Commun., 2020, DOI: 10.1039/d0cc04750c
Regulating the function of Crispr-Cas9 is on the agenda for many researchers because the ability to restrict it in a spatial and temporal manner opens the door to precisely manipulating genomes and minimising any side effects. By introducing photolabile groups into the system, these researchers have shown how they can regulate Cas9 activity with light
2 Y Wang et al, Photocontrol of CRISPR/Cas9 function by site-specific chemical modification of guide RNA,Chem. Sci., 2020, DOI: 10.1039/d0sc04343e
It seems that Crispr-Cas systems arent just handy for gene editing. This paper describes how the Crispr-Cas system was used to assemble a multi-enzyme cascade containing five distinct enzymes. The team behind the work hope it could be the beginnings of a general method for building complex scaffolded biocatalytic pathways
3 S Lim et al, CRISPR/Cas-directed programmable assembly of multi-enzyme complexes, Chem. Commun., 2020, 56, 4950 (DOI: 10.1039/d0cc01174f)
And to round things off, here are some reviews on how Crispr-Cas9 works, the delivery processes for therapeutic nanoparticles and the physiological obstacles for those process
4 Y Xu, R Liu and Z Dai, Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing, Nanoscale, 2020, DOI: 10.1039/d0nr05452f
5 Y Gong et al,Lipid and polymer mediated CRISPR/Cas9 gene editing, J. Mater. Chem. B, 2020,8, 4369 (DOI: 10.1039/d0tb00207k)
Excerpt from:
Explainer: What is Crispr and why did it win the Nobel prize? - Chemistry World
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to ... - November 15th, 2024
- Hematopoietic Stem Cells and Their Niche in Bone Marrow - November 15th, 2024
- Bone Marrow Transplant Program - Overview - Mayo Clinic - November 15th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to Cadavers - WIRED - November 15th, 2024
- More stem cells for sickle cell gene therapy readied with motixafortide - Sickle Cell Disease News - November 15th, 2024
- Skull bone marrow expands throughout life and remains healthy during aging, researchers discover - Medical Xpress - November 15th, 2024
- Adult skull bone marrow is an expanding and resilient haematopoietic reservoir - Nature.com - November 15th, 2024
- Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation -... - November 15th, 2024
- Stem cells grown in space show super powers but theres a catch - Study Finds - November 15th, 2024
- Getting a Stem Cell or Bone Marrow Transplant - October 21st, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 21st, 2024
- 1.5 Lakh Indians Register To Save Lives: Join the Mission To Fight Blood Cancer - The Better India - October 21st, 2024
- How Stem Cell and Bone Marrow Transplants Are Used to Treat Cancer - October 13th, 2024
- Stem Cell (Bone Marrow) Transplants - MD Anderson Cancer Center - October 13th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - October 13th, 2024
- What to expect as a stem cell or bone marrow donor - October 13th, 2024
- Structural organization of the bone marrow and its role in ... - October 13th, 2024
- Stem cell donor from down the road saved my life after global search - BBC.com - September 23rd, 2024
- Awaiting the call: family hopes to find blood stem cell donor - Claremont Courier - September 23rd, 2024
- Michigan woman one of first in world to successfully receive bone marrow from deceased donor - WDIV ClickOnDetroit - September 23rd, 2024
- Next-generation stem cell transplant: Revolutionizing a lifesaving cancer therapy - The Business Journals - September 23rd, 2024
- Sophie's life was saved by a stranger. Some in her position have an 'unfair' disadvantage - SBS News - September 23rd, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 23rd, 2024
- Giralt on MDS Transplant Timing and Candidacy - Targeted Oncology - September 14th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 14th, 2024
- A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and... - September 14th, 2024
- ISU researcher blown away by blood cell replication discovery - Radio Iowa - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 14th, 2024
- 9-year-old gets successful bone marrow transplant - The Times of India - September 14th, 2024
- Dr. Crandall: Stem Cell Treatment Heals the Heart - Newsmax - September 3rd, 2024
- Orion Corporation: Managers’ transactions – Hao Pan - August 19th, 2024
- BioCorRx Reports Business Update for the Second Quarter of 2024 - August 19th, 2024
- Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern, Eliminates... - August 19th, 2024
- Aligos Therapeutics Announces Reverse Stock Split - August 19th, 2024
- Lumos Pharma to Participate in H.C. Wainwright 26th Annual Global Investment Conference - August 19th, 2024
- Protect Pharmaceutical Corp. (PRTT) Announces New CEO and New Director; Moves to Finalize the Karinca Logistics Merger - August 19th, 2024
- OKYO Pharma Participates in H.C. Wainwright 4th Annual Ophthalmology Virtual Conference - August 19th, 2024
- CORRECTION – Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern,... - August 19th, 2024
- NurExone Biologic Achieves Key Milestone in Support of Robust Exosome Manufacturing Process - August 19th, 2024
- Silexion Therapeutics Ltd. and Moringa Acquisition Corp Announce Closing of their Business Combination - August 19th, 2024
- Vericel Announces FDA Approval of NexoBrid for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- Codexis Publishes FY2023 Sustainability Disclosures - August 19th, 2024
- MediWound Announces U.S. Food and Drug Administration Approval of NexoBrid® for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- First Successful Paediatric Allogeneic Bone Marrow Transplant In Bengaluru; Know All About The Procedure - Onlymyhealth - August 4th, 2024
- Is Stem Cell Transplant Often The Only Treatment Option For Blood Cancer Patients? Why So? - News18 - June 2nd, 2024
- This Swedish startup wants to reduce the cost, and controversy, around stem cell production - TechCrunch - March 10th, 2024
- Bone Marrow Transplantation | Johns Hopkins Medicine - December 20th, 2023
- Mansour bin Zayed witnesses inauguration of ADSCC Bone Marrow Transplant & Cellular Therapy Congress 2023 - ZAWYA - November 26th, 2023
- ADSCC Bone Marrow Transplant and Cellular Therapy Congress 2023 to take place in Abu Dhabi - ZAWYA - November 18th, 2023
- Orchard Therapeutics Reports First Quarter 2023 Financial Results and Announces Initiation of Rolling Submission for Biologics License Application of... - May 16th, 2023
- Family of 7-month-old in need of bone marrow transplant hosting donor registration event - CBS Pittsburgh - May 8th, 2023
- Anika Continues to Expand Addressable Market for Tactoset Injectable Bone Substitute with Additional 510(k) Clearance from FDA - Marketscreener.com - April 5th, 2023
- MorphoSys Completes Enrollment of Phase 3 MANIFEST-2 Study of Pelabresib in Myelofibrosis with Topline Results Expected by End of 2023 -... - April 5th, 2023
- VOR BIOPHARMA INC. Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-K) - Marketscreener.com - March 25th, 2023
- BioRestorative Therapies to Seek FDA Approval to Expand the Clinical Application of BRTX-100 - Marketscreener.com - March 17th, 2023
- BioSenic delivers a new post-hoc analysis of its Phase III JTA-004 trial on knee osteo-arthritis with positive action on the most severely affected... - March 17th, 2023
- JASPER THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 9th, 2023
- For a range of unmet medical needs, India offers a fantastic opportunity to push cell and gene therapies: B .. - ETHealthWorld - March 9th, 2023
- NGM BIOPHARMACEUTICALS INC Management's Discussion and Analysis of Financial Condition and Results of Operations. (form 10-K) - Marketscreener.com - March 1st, 2023
- Bone health: Tips to keep your bones healthy - Mayo Clinic - January 27th, 2023
- Bone marrow drive held for military wife with cancer - January 27th, 2023
- Bone cancer - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Bone | Definition, Anatomy, & Composition | Britannica - January 19th, 2023
- Bone Definition & Meaning - Merriam-Webster - January 19th, 2023
- What Is Bone? | NIH Osteoporosis and Related Bone Diseases National ... - January 19th, 2023
- Anatomy of the Bone | Johns Hopkins Medicine - January 19th, 2023
- Bone Health: Is Eating Meat Healthy For Your Bones? - January 19th, 2023
- Bone Keeper | Deepwoken Wiki | Fandom - January 19th, 2023
- With blood and plasma donations in short supply, uniting communities to give the gift of life - Toronto Star - January 3rd, 2023
- Side Effects of a Bone Marrow Transplant (Stem Cell Transplant) - December 25th, 2022
- 28-year-old cancer patient at Nebraska Medicine advocates for diversity in bone marrow registry - KMTV 3 News Now Omaha - December 17th, 2022
- Stem Cell Technologies and Applications Market Report 2022-2032 - Yahoo Finance - December 9th, 2022
- Fred Hutch at ASH: Global insights on AML outcomes, COVID-19 and cancer, CD19 CAR T-cell therapy updates, latest on precision oncology and more -... - December 9th, 2022
- Types of Stem Cell and Bone Marrow Transplants - American Cancer Society - December 1st, 2022
- Getting a Stem Cell or Bone Marrow Transplant - American Cancer Society - December 1st, 2022
- Woman, 41, With Bubbles In Her Urine Dismissed By Doctors. Turns Out To Have The Blood Cancer Multiple Myeloma. - SurvivorNet - December 1st, 2022
- Stem cell and bone marrow transplants - Cancer Research UK - November 22nd, 2022
- Donating Bone Marrow Experience | Be The Match - November 22nd, 2022
- Learn How to Donate Bone Marrow | Be The Match - October 29th, 2022
- Stem Cell Transplantation Program - DanaFarber Cancer Institute - October 29th, 2022