Gene editing used to repair diseased genes in embryos – NHS Choices
By Sykes24Tracey
Deadly gene mutations removed from human embryos in landmark study, reports The Guardian. Researchers have used a gene-editing technique to repair faults in DNA that can cause an often-fatal heart condition called hypertrophic cardiomyopathy.
This inherited heart condition is caused by a genetic change (mutation) in one or more genes. Babies born with hypertrophic cardiomyopathy have diseased and stiff heart muscles, which can lead to sudden unexpected death in childhood and in young athletes.
In this latest study researchers used a technique called CRISPR-cas9 to target and then remove faulty genes. CRISPR-cas9 acts like a pair of molecular scissors, allowing scientists to cut out certain sections of DNA. The technique has attracted a great deal of excitement in the scientific community since it was released in 2014. But as yet, there have been no practical applications for human health.
The research is at an early stage and cannot legally be used as treatment to help families affected by hypertrophic cardiomyopathy. And none of the modified embryos were implanted in the womb.
While the technique showed a high degree of accuracy, its unclear whether it is safe enough to be developed as a treatment. The sperm used in the study came from just one man with faulty genes, so the study needs to be repeated using cells from other people, to be sure that the findings can be replicated.
Scientists say it is now important for society to start a discussion about the ethical and legal implications of the technology. It is currently against the law to implant genetically altered human embryos to create a pregnancy, although such embryos can be developed for research.
The study was carried out by researchers from Oregon Health and Science University and the Salk Institute for Biological Studies in the US, the Institute for Basic Science and Seoul University in Korea, and BGI-Shenzen and BGI-Quingdao in China. It was funded by Oregon Health and Science University, the Institute for Basic Science, the G. Harold and Leila Y. Mathers Charitable Foundation, the Moxie Foundation and the Leona M. and HarryB. Helmsley Charitable Trust and the Shenzhen Municipal Government of China. The study was published in the peer-reviewed journal Nature.
The Guardian carried a clear and accurate report of the study. While their reports were mostly accurate, ITV News, Sky News and The Independent over-stated the current stage of research, with Sky News and ITV News saying it could eradicate thousands of inherited conditions and the Independent claiming it opens the possibility for inherited diseases to be wiped out entirely. While this may be possible, we dont know whether other inherited diseases might be as easily targeted as this gene mutation.
Finally, the Daily Mail rolls out the arguably tired clich of the technique leading to designer babies, which seems irrelevant at this point. The CRISPR-cas9 technique is only in its infancy and (ethics aside) its simply not possible to use genetic editing to select desirable characteristics - most of which are not the result of one single, identifiable gene. No reputable scientist would attempt such a procedure.
This was a series of experiments carried out in laboratories, to test the effects of the CRISPR-Cas9 technique on human cells and embryos. This type of scientific research helps us understand more about genes and how they can be changed by technology. It doesnt tell us what the effects would be if this was used as a treatment.
Researchers carried out a series of experiments on human cells, using the CRISPR-cas9 technique first on modified skin cells, then on very early embryos, and then on eggs at the point of fertilisation by sperm. They used genetic sequencing and analysis to assess the effects of these different experiments on cells and how they developed, up to five days. They looked specifically to see what proportion of cells carrying faulty mutations could be repaired, whether the process caused other unwanted mutations, and whether the process repaired all cells in an embryo, or just some of them.
They used skin cells (which were modified into stem cells) and sperm from one man, who carried the MYBPC3 mutation in his genome, and donor eggs from women without the genetic mutation. This is the mutation known to cause hypertrophic cardiomyopathy.
Normally in such cases, roughly half the embryos would have the mutation and half would not, as theres a 50-50 chance of the embryo inheriting the male or female version of the gene.
The CRISPR-cas9 technique can be used to select and delete specific genes from a strand of DNA. When this happens, usually the cut ends of the strand join together, but this causes problems so cant be used in the treatment of humans. The scientists created a genetic template of the healthy version of the gene, which they introduced at the same time as using CRISPR-cas9 to cut the mutated gene. They hoped the DNA would repair itself with a healthy version of the gene.
One important problem with changing genetic material is the development of mosaic embryos, where some of the cells have corrected genetic material and others have the original faulty gene. If that happened, doctors would not be able to tell whether or not an embryo was healthy.
The scientists needed to test all the cells in the embryos produced in the experiment, to see whether all cells had the corrected gene or whether the technique had resulted in a mixture. They also did whole genome sequencing on some embryos, to test for unrelated genetic changes that might have been introduced accidentally during the process.
All embryos in the study were destroyed, in line with legislation about genetic research on embryos.
Researchers found that the technique worked on some of the stem cells and embryos, but worked best when used at the point of fertilisation of the egg. There were important differences between the way the repair worked on the stem cells and the egg.
Only 28% of the stem cells were affected by the CRISPR-cas9 technique. Of these, most repaired themselves by joining the ends together, and only 41% were repaired by using a corrected version of the gene.
67% of the embryos exposed to CRISPR-cas9 had only the correct version of the gene higher than the 50% that would have been expected had the technique not been used. 33% of embryos had the mutated version of the gene, either in some or all their cells.
Importantly, the embryos didnt seem to use the template injected into the zygote to carry out the repair, in the way the stem cells did. They used the female version of the healthy gene to carry out the repair, instead.
Of the embryos created using CRISPR-cas9 at the point of fertilisation, 72% had the correct version of the gene in all their cells, and 28% had the mutated version of the gene in all their cells. No embryos were mosaic a mixture of cells with different genomes.
The researchers found no evidence of mutations induced by the technique, when they examined the cells using a variety of techniques. However, they did find some evidence of gene deletions caused by DNA strands splicing (joining) themselves together without repairing the faulty gene.
The researchers say they have demonstrated how human embryos employ a different DNA damage repair system to adult stem cells, which can be used to repair breaks in DNA made using the CRISPR-cas9 gene-editing technique.
They say that targeted gene correction could potentially rescue a substantial portion of mutant human embryos, and increase the numbers available for transfer for couples using pre-implantation diagnosis during IVF treatment.
However, they caution that despite remarkable targeting efficiency, CRISPR-cas9-treated embryos would not currently be suitable for transfer. Genome editing approaches must be further optimised before clinical application can be considered, they say.
Currently, genetically-inherited conditions like hypertrophic cardiomyopathy cannot be cured, only managed to reduce the risk of sudden cardiac death. For couples where one partner carries the mutated gene, the only option to avoid passing it on to their children is pre-implantation genetic diagnosis. This involves using IVF to create embryos, then testing a cell of the embryo to see whether it carries the healthy or mutated version of the gene. Embryos with healthy versions of the gene are then selected for implantation in the womb.
Problems arise if too few or none of the embryos have the correct version of the gene. The researchers suggest their technique could be used to increase the numbers of suitable embryos. However, the research is still at an early stage and has not yet been shown to be safe or effective enough to be considered as a treatment.
The other major factor is ethics and the law. Some people worry that gene editing could lead to designer babies, where couples use the tool to select attributes like hair colour, or even intelligence. At present, gene editing could not do this. Most of our characteristics, especially something as complex as intelligence, are not the result of one single, identifiable gene, so could not be selected in this way. And its likely that, even if gene editing treatments became legally available, they would be restricted to medical conditions.
Designer babies aside, society needs to consider what is acceptable in terms of editing human genetic material in embryos. Some people think that this type of technique is "playing God" or is ethically unacceptable because it involves discarding embryos that carry faulty genes. Others think that its rational to use the scientific techniques we have developed to eliminate causes of suffering, such as inherited diseases.
This research shows that the questions of how we want to legislate for this type of technique are becoming pressing. While the technology is not there yet, it is advancing fast. This research shows just how close we are getting to making genetic editing of human embryos a reality.
Read more from the original source:
Gene editing used to repair diseased genes in embryos - NHS Choices
- Skip the Botox and Try One of These Growth Factor Serums Instead - ELLE - January 14th, 2025
- Are Plant-Based Stem Cells the New Botox? This Derm Thinks So - The Daily Beast - January 5th, 2025
- Skin science: Latest stories on cosmetics science and formulation - CosmeticsDesign-Asia.com - November 15th, 2024
- The Firsthand Results Of A Nanofat Treatment Using Stem Cells And PRP - Forbes - November 15th, 2024
- Boundary-Pushing Skin Care Company Exoceuticals Garners Beauty Innovation Award For 'Beauty Innovation Technology Of The Year - The Manila Times - November 15th, 2024
- New skin research could help slow signs of ageing - BBC.com - October 21st, 2024
- Human skin map gives 'recipe' to build skin and could help prevent scarring - Medical Xpress - October 21st, 2024
- A new cell therapy company takes its vision from four founders, and its skin from George Church - STAT - September 23rd, 2024
- Women 60+ love this hydrating stem cell-infused moisturizer that's $15 right now - Yahoo Life - September 23rd, 2024
- NKGen Biotech Publishes Phase 1 Interim Analysis Results of SNK02 Allogeneic NK Cell Therapy in Advanced Solid Tumors at the 2024 American Society of... - May 25th, 2024
- FibroGen Announces Presentation of Positive Interim Data from the Phase 1b Study of FG-3246 (FOR46) in Combination with Enzalutamide in Patients with... - May 25th, 2024
- Cogent Biosciences Appoints Cole Pinnow as Chief Commercial Officer - May 25th, 2024
- G1 Therapeutics Announces Upcoming Presentation at the 2024 American Society of Clinical Oncology (ASCO) Meeting - May 25th, 2024
- Updated Phase 1 Clinical Data for SYS-6002 (CRB-701) to be presented at 2024 ASCO Annual Meeting - May 25th, 2024
- Affimed Announces Positive Early Efficacy and Progression Free Survival Results of AFM24-102 Study in EGFR Wild-Type Non-Small Cell Lung Cancer at the... - May 25th, 2024
- SpringWorks Therapeutics Announces Data to be Presented at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Sensei Biotherapeutics Presents Promising Clinical Data from Phase 1 Dose Escalation Study of SNS-101 - May 25th, 2024
- Elicio Therapeutics Announces Preliminary Data from the Ongoing AMPLIFY-7P Phase 1a Study of ELI-002 7P in Patients with mKRAS-driven Solid Tumors at... - May 25th, 2024
- Kronos Bio to Present Clinical Update on Phase 1/2 Trial of KB-0742 at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Coherus Presents Preliminary Results from Phase I Dose Escalation Study of its Anti-chemokine receptor 8 (CCR8) Antibody, CHS-114, at the 2024... - May 25th, 2024
- 3Daughters to Participate in Women’s Health Panel During the 2024 BIO International Convention in San Diego, CA, June 3-6 - May 25th, 2024
- HUTCHMED Highlights Presentations at the 2024 ASCO Annual Meeting - May 25th, 2024
- Myriad Genetics Showcases New Research and Product Innovations Advancing Cancer Care at 2024 ASCO® Annual Meeting - May 25th, 2024
- Lift BioSciences Announces Abstract Publications at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Nicox: 2024 Ordinary Shareholder Meeting to be held on June 28th, 2024 - May 25th, 2024
- Adlai Nortye Ltd. to Present Encouraging Data of the Combination of AN0025 and Definitive Chemoradiotherapy (dCRT) at ASCO 2024 - May 25th, 2024
- Vitamin A could have a key role in both stem cell biology and wound healing: Study - Medical Dialogues - March 10th, 2024
- Cyclerion Strengthens Board of Directors with Experienced Company Builder and Cutting-edge Innovator - December 4th, 2023
- Aptose Appoints Fletcher Payne Chief Business Officer, Expanding his Executive Role - December 4th, 2023
- Opthea to Present at the FLORetina 2023 Congress - December 4th, 2023
- HUTCHMED Highlights Clinical Data to be Presented at 2023 ESMO Asia and ESMO Immuno-Oncology Congresses - December 4th, 2023
- AC Immune Strengthens Management, Appoints Madiha Derouazi as CSO and Christopher Roberts as CFO - December 4th, 2023
- Publication of a transparency notification received from Tolefi SA (Article 14 §1 of the Law of 2 May 2007) - December 4th, 2023
- Annovis Bio Appoints Andrew Walsh as Vice President Finance - December 4th, 2023
- Foghorn Therapeutics Announces Clinical Data from Phase 1 Study of FHD-286, a Novel BRG1/BRM Inhibitor, in Patients with Advanced Hematologic... - December 4th, 2023
- Akari Therapeutics Appoints Experienced Life Sciences Entrepreneur Samir R. Patel, M.D. to Board of Directors - December 4th, 2023
- Ovid Therapeutics to Present Five Abstracts Supporting its Epilepsy Programs at the 77th American Epilepsy Society Annual Meeting (2023) - December 4th, 2023
- Spectral Medical Announces CFO Departure - December 4th, 2023
- Are STEM CELL EXOSOMES the secret to a 'snatched' jawline? Discover the products that influencers are claiming - Daily Mail - November 18th, 2023
- Defence Mechanisms: Four ways your body is protecting you every time you fall sick - indulgexpress - May 16th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, 111SKIN, Nest & More - E! NEWS - May 16th, 2023
- INTERNATIONAL STEM CELL CORP MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - April 5th, 2023
- Skin Regeneration: The Science and How to Boost It - Healthline - March 9th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, U Beauty, Nest & More - E! NEWS - March 1st, 2023
- 7-year-old vows to find a cure for brother in need of bone marrow transplant - WJLA - February 21st, 2023
- World's most radioactive man 'cried blood' as his skin melted in 83-day nightmare - Times Now - February 4th, 2023
- How old are you, really? The answer is written on your face. - National Geographic UK - February 4th, 2023
- Skin: Layers, Structure and Function - Cleveland Clinic - January 27th, 2023
- Human skin | Definition, Layers, Types, & Facts | Britannica - January 27th, 2023
- Skin Disorders: Pictures, Causes, Symptoms, and Treatment - Healthline - January 27th, 2023
- Skin care: 5 tips for healthy skin - Mayo Clinic - January 27th, 2023
- Skin Care and Aging | National Institute on Aging - January 27th, 2023
- Wrinkles - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Dry skin - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Stem cells: a brief history and outlook - Science in the News - January 3rd, 2023
- Still Drinking Green Tea? Doctor Reveals A Healthier Drink With Proven Benefits For Diabetes, Aging, Oxidative Stress, And Cancer - Revyuh - January 3rd, 2023
- RUDN Physician And Russian Scientists Investigate Long-term Effects Of Treating Diabetic Ulcers With Stem Cells - India Education Diary - December 25th, 2022
- The Use of Stem Cells in Burn Wound Healing: A Review - Hindawi - December 1st, 2022
- FACTORFIVE Skincare The Power of Stem Cells for Skin - December 1st, 2022
- Embryonic Stem Cells - The Definitive Guide | Biology Dictionary - December 1st, 2022
- From pro soccer hopeful to hip hop artist with illness and addiction along the way, Tymaz Bagbani releases debut album - Toronto Star - December 1st, 2022
- Stem Cells | The ALS Association - November 22nd, 2022
- What is a stem cell? YourGenome - October 29th, 2022
- Skin Cell - The Definitive Guide | Biology Dictionary - October 29th, 2022
- Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend - Forbes - October 29th, 2022
- Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 - KXAN.com - October 21st, 2022
- Human skin color - Wikipedia - October 13th, 2022
- Mesenchymal Stem Cells | Properties, Process, Functions, & Therapies - October 13th, 2022
- Skin Grafting, Cryopreservation, and Diseases: A Review Article - Cureus - October 13th, 2022
- Anti-ageing cosmetics: Can they turn back the hands of the clock? - The Sunday Guardian Live - The Sunday Guardian - October 13th, 2022
- Brennand named Elizabeth Mears and House Jameson Professor of Psychiatry - Yale News - October 13th, 2022
- The Switch to Regenerative Medicine - Dermatology Times - October 13th, 2022
- Last Chance to Get The Collagen-Infused Massage Oil That Moisturizes Skin & Diminishes Cellulite For Less Than $20 - msnNOW - October 13th, 2022
- Addison's Disease Explained: Causes, Symptoms, And Treatments - Health Digest - October 13th, 2022
- Stem Cells Therapy for Autism: Does it Work? - October 5th, 2022
- Stem-like CD8 T cells mediate response of adoptive cell ... - PubMed - October 5th, 2022
- 6 Under Eye Products You Need To Have STAT - Grazia India - October 5th, 2022
- CellResearch Corporation (CRC) to present promising new stem cell products for the treatment of chronic diabetic foot ulcers at the world's premier... - September 27th, 2022
- Reprogramming pig cells leads way for new regenerative therapies - National Hog Farmer - September 27th, 2022
- A glimpse into Indian consumers expectations for cosmetic treatments and consumption insights - The Financial Express - September 27th, 2022