Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 – Yahoo Finance
By daniellenierenberg
ReportLinker
Abstract: Whats New for 2022?? Global competitiveness and key competitor percentage market shares. Market presence across multiple geographies - Strong/Active/Niche/Trivial.
New York, Oct. 10, 2022 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Induced Pluripotent Stem Cell (iPSC) Industry" - https://www.reportlinker.com/p05798831/?utm_source=GNW
Online interactive peer-to-peer collaborative bespoke updates
Access to our digital archives and MarketGlass Research Platform
Complimentary updates for one yearGlobal Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027- In the changed post COVID-19 business landscape, the global market for Induced Pluripotent Stem Cell ((iPSC) estimated at US$1.4 Billion in the year 2020, is projected to reach a revised size of US$0 Thousand by 2027, growing at a CAGR of -100% over the analysis period 2020-2027. Vascular Cells, one of the segments analyzed in the report, is projected to record a -100% CAGR and reach US$0 Thousand by the end of the analysis period. Taking into account the ongoing post pandemic recovery, growth in the Cardiac Cells segment is readjusted to a revised -100% CAGR for the next 7-year period.- The U.S. Market is Estimated at $629.2 Million, While China is Forecast to Grow at -100% CAGR- The Induced Pluripotent Stem Cell ((iPSC) market in the U.S. is estimated at US$629.2 Million in the year 2020. China, the world`s second largest economy, is forecast to reach a projected market size of US$0 Thousand by the year 2027 trailing a CAGR of -100% over the analysis period 2020 to 2027. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at -100% and -100% respectively over the 2020-2027 period. Within Europe, Germany is forecast to grow at approximately -100% CAGR.Neuronal Cells Segment to Record -100% CAGR- In the global Neuronal Cells segment, USA, Canada, Japan, China and Europe will drive the -100% CAGR estimated for this segment. These regional markets accounting for a combined market size of US$188.9 Million in the year 2020 will reach a projected size of US$0 Thousand by the close of the analysis period. China will remain among the fastest growing in this cluster of regional markets.
Select Competitors (Total 51 Featured)Axol Bioscience Ltd.Cynata Therapeutics LimitedEvotec SEFate Therapeutics, Inc.FUJIFILM Cellular Dynamics, Inc.NcardiaPluricell BiotechREPROCELL USA, Inc.Sumitomo Dainippon Pharma Co., Ltd.Takara Bio, Inc.Thermo Fisher Scientific, Inc.ViaCyte, Inc.
Read the full report: https://www.reportlinker.com/p05798831/?utm_source=GNW
I. METHODOLOGY
II. EXECUTIVE SUMMARY
1. MARKET OVERVIEWInfluencer Market InsightsImpact of Covid-19 and a Looming Global RecessionInduced Pluripotent Stem Cells (iPSCs) Market Gains fromIncreasing Use in Research for COVID-19Studies Employing iPSCs in COVID-19 ResearchStem Cells, Application Areas, and the Different Types: A PreludeApplications of Stem CellsTypes of Stem CellsInduced Pluripotent Stem Cell (iPSC): An IntroductionProduction of iPSCsFirst & Second Generation Mouse iPSCsHuman iPSCsKey Properties of iPSCsTranscription Factors Involved in Generation of iPSCsNoteworthy Research & Application Areas for iPSCsInduced Pluripotent Stem Cell ((iPSC) Market: Growth Prospectsand OutlookDrug Development Application to Witness Considerable GrowthTechnical Breakthroughs, Advances & Clinical Trials to SpurGrowth of iPSC MarketNorth America Dominates Global iPSC MarketCompetitionRecent Market ActivitySelect Innovation/AdvancementInduced Pluripotent Stem Cell (iPSC) - Global Key CompetitorsPercentage Market Share in 2022 (E)Competitive Market Presence - Strong/Active/Niche/Trivial forPlayers Worldwide in 2022 (E)
2. FOCUS ON SELECT PLAYERSAxol Bioscience Ltd. (UK)Cynata Therapeutics Limited (Australia)Evotec SE (Germany)Fate Therapeutics, Inc. (USA)FUJIFILM Cellular Dynamics, Inc. (USA)Ncardia (Belgium)Pluricell Biotech (Brazil)REPROCELL USA, Inc. (USA)Sumitomo Dainippon Pharma Co., Ltd. (Japan)Takara Bio, Inc. (Japan)Thermo Fisher Scientific, Inc. (USA)ViaCyte, Inc. (USA)
3. MARKET TRENDS & DRIVERSEffective Research Programs Hold Key in Roll Out of AdvancediPSC TreatmentsInduced Pluripotent Stem Cells: A Giant Leap in the TherapeuticApplicationsResearch Trends in Induced Pluripotent Stem Cell SpaceWorldwide Publication of hESC and hiPSC Research Papers for thePeriod 2008-2010, 2011-2013 and 2014-2016Number of Original Research Papers on hESC and iPSC PublishedWorldwide (2014-2016)Concerns Related to Embryonic Stem Cells Shift the Focus ontoiPSCsRegenerative Medicine: A Promising Application of iPSCsInduced Pluripotent: A Potential Competitor to hESCs?Global Regenerative Medicine Market Size in US$ Billion for2019, 2021, 2023 and 2025Global Stem Cell & Regenerative Medicine Market by Product(in %) for the Year 2019Global Regenerative Medicines Market by Category: Breakdown(in %) for Biomaterials, Stem Cell Therapies and TissueEngineering for 2019Pluripotent Stem Cells Hold Significance for CardiovascularRegenerative MedicineLeading Causes of Mortality Worldwide: Number of Deaths inMillions & % Share of Deaths by Cause for 2017Leading Causes of Mortality for Low-Income and High-IncomeCountriesGrowing Importance of iPSCs in Personalized Drug DiscoveryPersistent Advancements in Genetics Space and Subsequent Growthin Precision Medicine Augur Well for iPSCs MarketGlobal Precision Medicine Market (In US$ Billion) for the Years2018, 2021 & 2024Increasing Prevalence of Chronic Disorders Supports Growth ofiPSCs MarketWorldwide Cancer Incidence: Number of New Cancer CasesDiagnosed for 2012, 2018 & 2040Number of New Cancer Cases Reported (in Thousands) by CancerType: 2018Fatalities by Heart Conditions: Estimated Percentage Breakdownfor Cardiovascular Disease, Ischemic Heart Disease, Stroke,and OthersRising Diabetes Prevalence Presents Opportunity for iPSCsMarket: Number of Adults (20-79) with Diabetes (in Millions)by Region for 2017 and 2045Aging Demographics Add to the Global Burden of ChronicDiseases, Presenting Opportunities for iPSCs MarketExpanding Elderly Population Worldwide: Breakdown of Number ofPeople Aged 65+ Years in Million by Geographic Region for theYears 2019 and 2030Growth in Number of Genomics Projects Propels Market GrowthGenomic Initiatives in Select CountriesNew Gene-Editing Tools Spur Interest and Investments inGenetics, Driving Lucrative Growth Opportunities for iPSCs:Total VC Funding (In US$ Million) in Genetics for the Years2014, 2015, 2016, 2017 and 2018Launch of Numerous iPSCs-Related Clinical Trials Set to BenefitMarket GrowthNumber of Induced Pluripotent Stem Cells based Studies bySelect Condition: As on Oct 31, 2020iPSCs-based Clinical Trial for Heart DiseasesInduced Pluripotent Stem Cells for Stroke Treatment?Off-the-shelf? Stem Cell Treatment for Cancer Enters ClinicalTrialiPSCs for Hematological DisordersMarket Benefits from Growing Funding for iPSCs-Related R&DInitiativesStem Cell Research Funding in the US (in US$ Million) for theYears 2016 through 2021Human iPSC Banks: A Review of Emerging Opportunities and DrawbacksHuman iPSC Banks Worldwide: An OverviewCell Sources and Reprogramming Methods Used by Select iPSC BanksInnovations, Research Studies & Advancements in iPSCsKey iPSC Research Breakthroughs for Regenerative MedicineResearchers Develop Novel Oncogene-Free and Virus-Free iPSCProduction MethodScientists Study Concerns of Genetic Mutations in iPSCsiPSCs Hold Tremendous Potential in Transforming Research EffortsResearchers Highlight Potential Use of iPSCs for DevelopingNovel Cancer VaccinesScientists Use Machine Learning to Improve Reliability of iPSCSelf-OrganizationSTEMCELL Technologies Unveils mTeSR? PlusChallenges and Risks Related to Pluripotent Stem CellsA Glance at Issues Related to Reprogramming of Adult Cells toiPSCsA Note on Legal, Social and Ethical Considerations with iPSCs
4. GLOBAL MARKET PERSPECTIVETable 1: World Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Geographic Region -USA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld Markets - Independent Analysis of Annual Sales in US$Thousand for Years 2020 through 2025 and % CAGR
Table 2: World 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Geographic Region - Percentage Breakdown ofValue Sales for USA, Canada, Japan, China, Europe, Asia-Pacificand Rest of World Markets for Years 2021 & 2025
Table 3: World Recent Past, Current & Future Analysis forVascular Cells by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 4: World 5-Year Perspective for Vascular Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 5: World Recent Past, Current & Future Analysis forCardiac Cells by Geographic Region - USA, Canada, Japan, China,Europe, Asia-Pacific and Rest of World Markets - IndependentAnalysis of Annual Sales in US$ Thousand for Years 2020 through2025 and % CAGR
Table 6: World 5-Year Perspective for Cardiac Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 7: World Recent Past, Current & Future Analysis forNeuronal Cells by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 8: World 5-Year Perspective for Neuronal Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 9: World Recent Past, Current & Future Analysis for LiverCells by Geographic Region - USA, Canada, Japan, China, Europe,Asia-Pacific and Rest of World Markets - Independent Analysisof Annual Sales in US$ Thousand for Years 2020 through 2025 and% CAGR
Table 10: World 5-Year Perspective for Liver Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 11: World Recent Past, Current & Future Analysis forImmune Cells by Geographic Region - USA, Canada, Japan, China,Europe, Asia-Pacific and Rest of World Markets - IndependentAnalysis of Annual Sales in US$ Thousand for Years 2020 through2025 and % CAGR
Table 12: World 5-Year Perspective for Immune Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 13: World Recent Past, Current & Future Analysis forOther Cell Types by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 14: World 5-Year Perspective for Other Cell Types byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 15: World Recent Past, Current & Future Analysis forCellular Reprogramming by Geographic Region - USA, Canada,Japan, China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 16: World 5-Year Perspective for Cellular Reprogrammingby Geographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 17: World Recent Past, Current & Future Analysis for CellCulture by Geographic Region - USA, Canada, Japan, China,Europe, Asia-Pacific and Rest of World Markets - IndependentAnalysis of Annual Sales in US$ Thousand for Years 2020 through2025 and % CAGR
Table 18: World 5-Year Perspective for Cell Culture byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 19: World Recent Past, Current & Future Analysis for CellDifferentiation by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 20: World 5-Year Perspective for Cell Differentiation byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 21: World Recent Past, Current & Future Analysis for CellAnalysis by Geographic Region - USA, Canada, Japan, China,Europe, Asia-Pacific and Rest of World Markets - IndependentAnalysis of Annual Sales in US$ Thousand for Years 2020 through2025 and % CAGR
Table 22: World 5-Year Perspective for Cell Analysis byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 23: World Recent Past, Current & Future Analysis forCellular Engineering by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 24: World 5-Year Perspective for Cellular Engineering byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 25: World Recent Past, Current & Future Analysis forOther Research Methods by Geographic Region - USA, Canada,Japan, China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 26: World 5-Year Perspective for Other Research Methodsby Geographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 27: World Recent Past, Current & Future Analysis for DrugDevelopment & Toxicology Testing by Geographic Region - USA,Canada, Japan, China, Europe, Asia-Pacific and Rest of WorldMarkets - Independent Analysis of Annual Sales in US$ Thousandfor Years 2020 through 2025 and % CAGR
Table 28: World 5-Year Perspective for Drug Development &Toxicology Testing by Geographic Region - Percentage Breakdownof Value Sales for USA, Canada, Japan, China, Europe,Asia-Pacific and Rest of World for Years 2021 & 2025
Table 29: World Recent Past, Current & Future Analysis forAcademic Research by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 30: World 5-Year Perspective for Academic Research byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 31: World Recent Past, Current & Future Analysis forRegenerative Medicine by Geographic Region - USA, Canada,Japan, China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 32: World 5-Year Perspective for Regenerative Medicine byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 33: World Recent Past, Current & Future Analysis forOther Applications by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 34: World 5-Year Perspective for Other Applications byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
III. MARKET ANALYSIS
UNITED STATESInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United Statesfor 2022 (E)Table 35: USA Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 36: USA 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
Table 37: USA Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 38: USA 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Research Method - Percentage Breakdown of ValueSales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 39: USA Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 40: USA 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
CANADATable 41: Canada Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 42: Canada 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Cell Type - Percentage Breakdown of ValueSales for Vascular Cells, Cardiac Cells, Neuronal Cells, LiverCells, Immune Cells and Other Cell Types for the Years 2021 &2025
Table 43: Canada Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 44: Canada 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Research Method - Percentage Breakdown ofValue Sales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 45: Canada Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 46: Canada 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
JAPANInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Japan for 2022 (E)Table 47: Japan Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 48: Japan 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
Table 49: Japan Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 50: Japan 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Research Method - Percentage Breakdown of ValueSales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 51: Japan Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 52: Japan 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
CHINAInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in China for 2022 (E)Table 53: China Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 54: China 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
Table 55: China Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 56: China 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Research Method - Percentage Breakdown of ValueSales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 57: China Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 58: China 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
EUROPEInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Europe for 2022 (E)Table 59: Europe Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Geographic Region -France, Germany, Italy, UK and Rest of Europe Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 60: Europe 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Geographic Region - Percentage Breakdown ofValue Sales for France, Germany, Italy, UK and Rest of EuropeMarkets for Years 2021 & 2025
Table 61: Europe Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 62: Europe 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Cell Type - Percentage Breakdown of ValueSales for Vascular Cells, Cardiac Cells, Neuronal Cells, LiverCells, Immune Cells and Other Cell Types for the Years 2021 &2025
Table 63: Europe Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 64: Europe 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Research Method - Percentage Breakdown ofValue Sales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 65: Europe Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 66: Europe 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
FRANCEInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in France for 2022 (E)Table 67: France Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 68: France 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Cell Type - Percentage Breakdown of ValueSales for Vascular Cells, Cardiac Cells, Neuronal Cells, LiverCells, Immune Cells and Other Cell Types for the Years 2021 &2025
Table 69: France Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 70: France 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Research Method - Percentage Breakdown ofValue Sales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 71: France Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 72: France 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
GERMANYInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Germany for 2022 (E)Table 73: Germany Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 74: Germany 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Cell Type - Percentage Breakdown of ValueSales for Vascular Cells, Cardiac Cells, Neuronal Cells, LiverCells, Immune Cells and Other Cell Types for the Years 2021 &2025
Table 75: Germany Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 76: Germany 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Research Method - Percentage Breakdown ofValue Sales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 77: Germany Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 78: Germany 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
ITALYTable 79: Italy Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 80: Italy 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
Table 81: Italy Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 82: Italy 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Research Method - Percentage Breakdown of ValueSales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 83: Italy Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 84: Italy 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
UNITED KINGDOMInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United Kingdomfor 2022 (E)Table 85: UK Recent Past, Current & Future Analysis for InducedPluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells,Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells andOther Cell Types - Independent Analysis of Annual Sales in US$Thousand for the Years 2020 through 2025 and % CAGR
Table 86: UK 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
Read the rest here:
Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 - Yahoo Finance
- Developing the Cell-Based Therapies of the Future - University of Miami - November 15th, 2024
- Advancing heart stem cell therapy - UHN Foundation - November 15th, 2024
- Heart defects affect 40,000 US babies every year but cutting edge AI and stem cell tech will save lives and even cure them in the womb - New York... - November 15th, 2024
- Science Is Finding Ways to Regenerate Your Heart - The Wall Street Journal - November 6th, 2024
- AIIMS Bathinda Makes Breakthrough in Stem Cell Therapy Research for Heart Ailments - Elets - October 21st, 2024
- USC launches collaboration with StemCardia to advance heart regeneration therapies - University of Southern California - October 13th, 2024
- The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish - Nature.com - September 3rd, 2024
- Opthea Announces Results of the A$55.9m (US$36.9m¹) Retail Entitlement Offer - July 16th, 2024
- Benitec Biopharma Reports Continued Durable Improvements in the Radiographic Assessments of Swallowing Efficiency and the Subject-Reported Outcome... - July 16th, 2024
- AstraZeneca Closes Acquisition of Amolyt Pharma - July 16th, 2024
- Addex Presents Positive Results from GABAB PAM Cough Program at the Thirteenth London International Cough Symposium (13th LICS) - July 16th, 2024
- Lexeo Therapeutics Announces Positive Interim Phase 1/2 Clinical Data of LX2006 for the Treatment of Friedreich Ataxia Cardiomyopathy - July 16th, 2024
- ANI Pharmaceuticals Announces the FDA Approval and Launch of L-Glutamine Oral Powder - July 16th, 2024
- MediWound Announces $25 Million Strategic Private Placement Financing - July 16th, 2024
- Atsena Therapeutics Appoints Joseph S. Zakrzewski as Board Chair - July 16th, 2024
- ASLAN Pharmaceuticals Announces Receipt of Nasdaq Delisting Determination; Has Determined Not to Appeal - July 16th, 2024
- Kraig Biocraft Laboratories Completes Phase One of its Spider Silk Production Facility Expansion - July 16th, 2024
- Pliant Therapeutics Announces Positive Long-Term Data from the INTEGRIS-PSC Phase 2a Trial Demonstrating Bexotegrast was Well Tolerated at 320 mg with... - July 16th, 2024
- Oncternal Announces Enrollment Completed and Dosing Initiated for Sixth Dose Cohort of Phase 1/2 Study of ONCT-534 for the Treatment of R/R Metastatic... - July 16th, 2024
- Rectify Pharmaceuticals Appoints Bharat Reddy as Chief Business Officer - July 16th, 2024
- Spectral AI Continues Support of Naked Short Selling Inquiry - July 16th, 2024
- Milestone Pharmaceuticals Refreshes Board of Directors - July 16th, 2024
- New Published Data Highlights Potential Cost-Savings of INPEFA® (sotagliflozin) for Heart Failure - July 16th, 2024
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 21st, 2023
- Cardiac stem cells: Current knowledge and future prospects - April 13th, 2023
- Stem cell therapies in cardiac diseases: Current status and future ... - April 13th, 2023
- Stem Cell and Regenerative Biology | Johns Hopkins Heart and Vascular ... - April 13th, 2023
- Center for Regenerative Biotherapeutics - Cardiac Regeneration - April 13th, 2023
- MAGENTA THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 25th, 2023
- CAREDX, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 1st, 2023
- A Possible Connection between Mild Allergic Airway Responses and Cardiovascular Risk Featured in Toxicological Sciences - Newswise - February 4th, 2023
- Baby's life saved by surgeon who carried out world's first surgery ... - December 25th, 2022
- An organoid model of colorectal circulating tumor cells with stem cell ... - December 25th, 2022
- Skeletal Muscle Cell Induction from Pluripotent Stem Cells - December 1st, 2022
- Stem-cell niche - Wikipedia - December 1st, 2022
- Scientists Discover Protein Partners that Could Heal Heart Muscle | Newsroom - UNC Health and UNC School of Medicine - October 13th, 2022
- Scientists Spliced Human Brain Tissue Into The Brains of Baby Rats - ScienceAlert - October 13th, 2022
- Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution | Communications Biology - Nature.com - October 13th, 2022
- Global Synthetic Stem Cells Market Is Expected To Reach Around USD 42 Million By 2025 - openPR - October 13th, 2022
- Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -... - October 13th, 2022
- Regenerative Medicine For Heart Diseases: How It Is Better Than Conventional Treatments | TheHealthSite.co - TheHealthSite - October 5th, 2022
- 'Love hormone' oxytocin could help reverse damage from heart attacks via cell regeneration - Study Finds - October 5th, 2022
- Recapitulating Inflammation: How to Use the Colon Intestine-Chip to Study Complex Mechanisms of IBD - Pharmaceutical Executive - September 27th, 2022
- Adult Stem Cells // Center for Stem Cells and Regenerative Medicine ... - September 19th, 2022
- CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease - Cardiovascular Diabetology - Cardiovascular... - September 19th, 2022
- Kite's CAR T-cell Therapy Yescarta First in Europe to Receive Positive CHMP Opinion for Use in Second-line Diffuse Large B-cell Lymphoma and... - September 19th, 2022
- Neural crest - Wikipedia - September 3rd, 2022
- Rise In Number Of CROS In Various Regions Such As Europe Is Expected To Fuel The Growth Of Induced Pluripotent Stem Cell Market At An Impressive CAGR... - September 3rd, 2022
- Discover the Mental and Physical Health Benefits of Fasting - Intelligent Living - September 3rd, 2022
- Heart Association fellowship to support research - Binghamton - August 26th, 2022
- Repeated intravenous administration of hiPSC-MSCs enhance the efficacy of cell-based therapy in tissue regeneration | Communications Biology -... - August 26th, 2022
- High intensity interval training protects the heart against acute myocardial infarction through SDF-1a, CXCR4 receptors and c-kit levels - Newswise - August 26th, 2022
- Yale University: Uncovering New Approaches to a Common Inherited Heart Disorder | India Education - India Education Diary - August 10th, 2022
- Heart failure in obesity: insights from proteomics in patients treated with or without weight-loss surgery | International Journal of Obesity -... - August 10th, 2022
- Pigs died after heart attacks. Scientists brought their cells back to life. - Popular Science - August 10th, 2022
- Protocol for a Nested, Retrospective Study of the Australian Placental Transfusion Study Cohort - Cureus - August 10th, 2022
- Autologous Cell Therapy Market Size to Grow by USD 4.11 billion, Bayer AG and Brainstorm Cell Therapeutics Inc. Among Key Vendors - Technavio - PR... - August 2nd, 2022
- UTSW researcher part of team awarded $36 million heart research grant - The Dallas Morning News - August 2nd, 2022
- Buffalo center fuels research that can save your life from heart disease and stroke - Buffalo News - August 2nd, 2022
- Hyperglycaemia-Induced Impairment of the Autorhythmicity and Gap Junction Activity of Mouse Embryonic Stem Cell-Derived Cardiomyocyte-Like Cells -... - July 25th, 2022
- NASA's Solution to Stem Cell Production is Out of this World - BioSpace - July 25th, 2022
- Inhibition of pancreatic EZH2 restores progenitor insulin in T1D donor | Signal Transduction and Targeted Therapy - Nature.com - July 25th, 2022
- 'My Teen Sweetheart And I Drifted Apart. 30 Years Later I Made a Shocking Discovery' - Newsweek - July 25th, 2022
- EU: New Blood? Proposed Revisions to the EUs Blood, Tissues and Cells Rules - GlobalComplianceNews - July 25th, 2022
- Stem Cells Market to Expand at a CAGR of 10.4% from 2021 to 2028 Travel Adventure Cinema - Travel Adventure Cinema - July 25th, 2022
- Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study - GlobeNewswire - July 25th, 2022
- Dental Membrane and Bone Graft Substitutes Market to Exceed Value of US$ 1,337 Mn by 2031 - PR Newswire UK - July 25th, 2022
- Stem Cells Used to Repair Heart Defects in Children - NBC 5 Dallas-Fort Worth - July 16th, 2022
- Pneumonia and Heart Disease: What You Should Know - Healthline - July 16th, 2022
- Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate - Nevada Today - July 16th, 2022
- Current and advanced therapies for chronic wound infection - The Pharmaceutical Journal - July 16th, 2022
- Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don't - Lookout Santa Cruz - July 16th, 2022
- Mesenchymal stem cells: from roots to boost - PMC - July 8th, 2022
- New study allows researchers to more efficiently form human heart cells from stem cells - University of Wisconsin-Madison - July 8th, 2022
- Dr Victor Chang saved hundreds of lives. 31 years ago today, he was murdered. - Mamamia - July 8th, 2022
- Exosome Therapeutics Market Research Report Size, Share, New Trends and Opportunity, Competitive Analysis and Future Forecast Designer Women -... - July 8th, 2022
- Cell Line Development Market: Increase in Prevalence of Cancer and Other Chronic Diseases to Drive the Market - BioSpace - July 8th, 2022
- Homology Medicines Announces Peer-Reviewed Publication on Novel Discovery of AAVHSC with Robust Distribution to the Central Nervous System and... - July 8th, 2022
- What New Advances are there in 3D Bioprinting Tissues? - AZoM - June 30th, 2022
- Technical Advancements & Innovative Products Likely to Expand Application of Surgical Meshes in Untapped Domains, States Fact.MR - BioSpace - June 30th, 2022