Global Stem Cell Banking Market Analysis, Trends, and Forecasts 2019-2025 – ResearchAndMarkets.com – Business Wire

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--The "Stem Cell Banking - Market Analysis, Trends, and Forecasts" report has been added to ResearchAndMarkets.com's offering.

The global market for Stem Cell Banking is projected to reach US$9.9 billion by 2025, driven by their growing importance in medicine given their potential to regenerate and repair damaged tissue.

Stem cells are defined as cells with the potential to differentiate and develop into different types of cells. Different accessible sources of stem cells include embryonic stem cells, fetal stem cells, peripheral blood stem cells, umbilical cord stem cells, mesenchymal stem cells (bmMSCs) and induced pluripotent stem cells. Benefits of stem cells include ability to reverse diseases like Parkinsons by growing new, healthy and functioning brain cells; heal and regenerate tissues and muscles damaged by heart attack; address genetic defects by introducing normal cells; reduce mortality among patients awaiting donor organs for transplant by regenerating healthy cells and tissues as an alternative to donated organs. While currently valuable in bone marrow transplantation, stem cell therapy holds huge potential in treating a host of common chronic diseases such as diabetes, heart disease (myocardial infarction), Parkinsons disease, spinal cord injury, arthritis, and amyotrophic lateral sclerosis. The technology has the potential to revolutionize public health.

The growing interest in regenerative medicine which involves replacing, engineering or regenerating human cells, tissues or organs, will push up the role of stem cells. Developments in stem cells bioprocessing are important and will be key factor that will influence and help regenerative medicine research move into real-world clinical use. The impact of regenerative medicine on healthcare will be comparable to the impact of antibiotics, vaccines, and monoclonal antibodies in current clinical care. With global regenerative medicine market poised to reach over US$45 billion 2025, demand for stem cells will witness robust growth.

Another emerging application area for stem cells is in drug testing in the pharmaceutical field. New drugs in development can be safely, accurately, and effectively be tested on stem cells before commencing tests on animal and human models. Among the various types of stem cells, umbilical cord stem cells are growing in popularity as they are easy and safe to extract. After birth blood from the umbilical cord is extracted without posing risk either to the mother or the child. As compared to embryonic and fetal stem cells which are saddled with safety and ethical issues, umbilical cord is recovered postnatally and is today an inexpensive and valuable source of multipotent stem cells. Until now discarded as waste material, umbilical cord blood is today acknowledged as a valuable source of blood stem cells. The huge gap between newborns and available cord blood banks reveals huge untapped opportunity for developing and establishing a more effective banking system for making this type of stem cells viable for commercial scale production and supply. Umbilical cord and placenta contain haematopoietic blood stem cells (HSCs). These are the only cells capable of producing immune system cells (red cells, white cells and platelet).

HSCs are valuable in the treatment of blood diseases and successful bone marrow transplants. Also, unlike bone marrow stem cells, umbilical cord blood has the advantage of having 'off-the-shelf' uses as it requires no human leukocyte antigen (HLA) tissue matching. Developments in stem cell preservation will remain crucial for successful stem cell banking. Among the preservation technologies, cryopreservation remains popular. Development of additives for protecting cells from the stresses of freezing and thawing will also be important for the future of the market. The United States and Europe represent large markets worldwide with a combined share of 60.5% of the market. China ranks as the fastest growing market with a CAGR of 10.8% over the analysis period supported by the large and growing network of umbilical cord blood banks in the country. The Chinese government has, over the years, systematically nurtured the growth of umbilical cord blood (UCB) banks under the 'Developmental and Reproductive Research Initiation' program launched in 2008. Several hybrid public-private partnerships and favorable governmental licensing policies today are responsible for the current growth in this market.

Companies Mentioned

Key Topics Covered:

I. METHODOLOGY

II. EXECUTIVE SUMMARY

1. MARKET OVERVIEW

2. FOCUS ON SELECT PLAYERS

3. MARKET TRENDS & DRIVERS

4. GLOBAL MARKET PERSPECTIVE

III. MARKET ANALYSIS

GEOGRAPHIC MARKET ANALYSIS

UNITED STATES

CANADA

JAPAN

CHINA

EUROPE

FRANCE

GERMANY

ITALY

UNITED KINGDOM

REST OF EUROPE

ASIA-PACIFIC

REST OF WORLD

IV. COMPETITION

V. CURATED RESEARCH

For more information about this report visit https://www.researchandmarkets.com/r/9b2ra3

See the article here:
Global Stem Cell Banking Market Analysis, Trends, and Forecasts 2019-2025 - ResearchAndMarkets.com - Business Wire

Related Post


categoriaBone Marrow Stem Cells commentoComments Off on Global Stem Cell Banking Market Analysis, Trends, and Forecasts 2019-2025 – ResearchAndMarkets.com – Business Wire | dataFebruary 3rd, 2020

About...

This author published 4819 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024