How do bodies position arms, legs, wings and organs? – Knowable Magazine
By daniellenierenberg
In the 1986 horror classic The Fly, a scientist played by Jeff Goldblum manages, quite unintentionally, to mix his biology with that of a housefly with gruesome results.
But the real-world mutant fruit flies that scientists used to understand body patterning are almost as bizarre: Flies with legs on their brows instead of antennae. Flies with extra chest sections, complete with duplicate wings. Flies missing big chunks of their heads.
These freaky flies have something in common: Theyre mixing up their head-to-tail body plans. And they earned three scientists the Nobel Prize in Physiology or Medicine in 1995.
Two of the scientists, Eric Wieschaus and Christiane Nsslein-Volhard, conducted a now-famous genetic screen of fruit fly embryos in 1979 and 1980 while working at the European Molecular Biology Laboratory in Heidelberg, Germany. By feeding parent flies a powerful mutagen, they created a horde of larvae with genetic mistakes, including ones that affected how the fly embryo arranges bits of tissue, from head to tail, in sections a process called segmentation. (The pair tell the tale of this landmark experiment in the 2016 Annual Review of Cell and Developmental Biology.)
The other Nobel laureate, Edward Lewis of Caltech, discovered key players, later named Hox genes, that tell these fruit fly segments and other body parts what tissues and structures they should become.
Fruit flies, it turns out, have their own segmentation path, different from ours: They make a big chunk of tissue and then slice it up, like one would a loaf of bread. In contrast, vertebrates (including humans) churn out segments one by one, like a string of sausages, as they build the tissue. But many of the genes involved Hox and others found later are the same.
A landmark genetics screen by two scientists unearthed mutants with segmentation defects in the fruit fly Drosophila. On the left is the outer layer, or cuticle, of a normal early larva. To the right are ones of various mutants, with clear abnormalities.
CREDIT: E. WIESCHAUS & C. NSSLEIN-VOLHARD / AR CELL AND DEVELOPMENTAL BIOLOGY 2016
These commonalities extend to the need for a sort of ruler that guides segmentation and Hox actions by helping cells identify their position in the body. That ruler takes the form of a two-way gradient. Cells closest to the head end make lots of a chemical called retinoic acid, and those at the tail end make two other compounds, called FGF and Wnt. These diffuse along the body, such that different spots contain different amounts of the chemicals. So, for example, a cell thats closer to the head than the tail will know its position because its bathed in plenty of retinoic acid, but not so much Wnt or FGF.
Vertebrate segments arise from tissue called the mesoderm. Sandwiched between the cells that will make skin and those that will make most internal organs, the mesoderm will yield tissues such as bone and muscle.
As the embryo grows, part of the mesoderm tissue near the head begins to make its segments in the form of beads of tissue called somites, one on each side of the future spinal cord. They are squeezed out of that mesoderm like toothpaste from a tube, says Robb Krumlauf, a developmental biologist at the Stowers Institute for Medical Research in Kansas City, Missouri. These will turn into vertebrae and skeletal muscles. (Other body parts will develop from cells outside of the segments.)
If the segmentation process goes wrong, vertebrae can take the wrong shape: half-vertebrae, fused vertebrae or wedge-shaped ones, for example. In people, this causes a type of scoliosis, and also may affect the kidneys, heart and other body parts.
How does the embryo make just the right number of segments, all the right size? In the 1970s, English researchers came up with a model they called clock and wavefront. The embryos clock would tick to indicate each time a segment should be produced. The wavefront would consist of a maturation process traveling from head to tail, and cells at the crest of that maturation wave would be ready to segment. Whenever the clock ticked, they would spit out a new segment.
The developing mammalian embryo produces two somites, one each side of the future spinal canal, every time an internal clock ticks. The process is guided by a protein called FGF that is made by the tail end of the embryo and diffuses along its length, forming a gradient. Somite production occurs at a spot (the wave front) where the concentration of FGF is at just the right level when the clock makes a tick. The process repeats itself over and over, gradually building up segments, from which vertebrae and skeletal muscle are made. Two other molecules, Wnt and retinoic acid, also form gradients, and with FGF these are key to telling tissues where they are along an embryos length.
At that time, scientists had no idea what molecules would control either clock or wavefront, or if the theory was even correct. The first hard evidence for a clock came from experiments with chicken eggs, published in 1997.
Developmental biologist Olivier Pourqui, now at Harvard Medical School, was studying the chick version of a gene called hairy that is involved in segmentation in fruit flies. He and his colleagues saw the hairy gene turn on in a cyclical manner: starting out at the tail, and then closer to the head, every 90 minutes. And every 90 minutes, the embryo made a new segment.
That study confirmed that a ticking clock did underlie segmentation, says Michalis Averof, a comparative developmental biologist at CNRS in Lyon, France. In 2012, he reported a similar oscillator in beetles.
Scientists still dont know what sets that clocks pace, but they now know that a variety of other proteins, including two of those ruler proteins, Wnt and FGF (and another called Notch), turn on genes like hairy. The other part of the system the wavefront of maturation is characterized by concentrations of FGF. Since FGF is made at the tail end, levels of the protein will be highest there and lowest at the head. Cells that have a low enough level of FGF when the clock ticks will form a segment.
Changing the speed of the clock can have profound effects on the body plan, as Pourqui found in a 2008 study on snakes. Snakes have hundreds of vertebrae, compared to the few dozen in other vertebrates like chickens, mice and humans. How did this come to be? Compared with that of a mouse, their clock is accelerated, Pourqui found. The faster it ticks, the more segments get made, creating the snakes long spine. He doesnt yet know why the snake clock ticks faster, though.
The bone-and-muscle segments, and the rest of the embryos developing tissues, need instructions so that the ones near the front make shoulders and arms, the ones at the back end make hips and legs, and so on. This process, too, depends on the ruler laid down by retinoic acid, Wnt and FGF. The position of cells with respect to the ruler tells them which Hox genes to activate. The Hox genes then turn on other genes, to make the right size and shape of vertebrae, or a tail, arm, liver, etc.
Its complicated: Mammals have 39 different Hox genes, activated in different combinations along the body and with different parts to play. For example, mice usually grow a defined series of vertebrae, including 13 thoracic segments with ribs and six lumbar segments without. But when scientists bred mice to lack the Hox10 gene, the creatures grew little ribs on the lumbar segments. In rare cases in people, mutations in Hox genes cause diverse effects such as club foot, hair loss and extra fingers and toes.
Lewis, who worked with Hox mutant flies in the 1970s, also discovered a remarkable pattern to the Hox genes. In DNA, they are lined up in the same order in which they are produced, from head to tail, in the embryo. Genes at one end of the line spring into action in response to retinoic acid, with that signal emanating from the head; the other end responds to Wnt and FGF, signals from the rear.
A collection of genes called HOX are activated in different parts of an animals body plan, telling cells and tissues what to become. In the DNA, the genes line up in the same order as they are used in a developing embryo. There are remarkable similarities between the HOX genes of disparate creatures, such as fruit flies, mice and humans. In mammals, the HOX genes diversified so that there are four sets (HOX A, B, C and D) to the flys single set. Duplications also led to an expanded number of HOX genes in each set.
Much remains unknown about how bodies are arranged how the same set of Hox genes creates such different body plans in different animals, for example, and how the pace of the segmentation clock sets just right to make a spine to fit a snake or a mouse or a person. Studying such things in people, of course, is difficult. So Pourqui and colleagues recently turned to human stem cells in a dish.
Using genetic trickery, they engineered the cells to flash yellow every time a certain clock gene turned on. Watching for the yellow glow, the researchers detected a clock that had five hours between each tick. Pourqui now aims to figure out just what controls that five-hour timing.
Its astounding, Krumlauf says, how similar the parts of the body-plan system are across such a wide variety of organisms. Each animal uses many of the same genetic tools, in different ways, to create its own unique shape.
In that respect, then, its not so surprising that Jeff Goldblums character melded so completely with a fly. Wnt, FGF, Hox genes its how we apply them that makes us the creatures we are.
View post:
How do bodies position arms, legs, wings and organs? - Knowable Magazine
- Much-anticipated human trial aiming to repair spinal cord damage about to begin - ABC News - October 21st, 2024
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Evaluating the Growth Prospects of the Global Nerve Repair & Regeneration Market at a CAGR of 6.5% | Emergen - EIN News - April 21st, 2023
- Regenerative Therapies Market is Set to Grow at a CAGR of 8.7% by 2033, Propelled by Advancements in - EIN News - March 17th, 2023
- Kadimastem Submits IND Application to the FDA for its Phase IIa Clinical Trial with AstroRx for the Treatment of ALS - Marketscreener.com - February 21st, 2023
- My Back Is All F*cked Up 55-Year-Old Joe Rogan Curses at Worst Jiu-Jitsu for Painful Health Condition - EssentiallySports - February 21st, 2023
- Brain and Spinal Cord Tumors: Hope Through Research - January 3rd, 2023
- 14.3 The Brain and Spinal Cord Anatomy & Physiology - January 3rd, 2023
- Stem Cell Therapy for Spinal Cord Injury - PubMed - January 3rd, 2023
- Spinal cord injury - Diagnosis and treatment - Mayo Clinic - December 25th, 2022
- Spinal Cord Injury: Hope Through Research | National Institute of ... - December 1st, 2022
- Stem cell controversy - Wikipedia - October 13th, 2022
- Stem Cells Australia | Australian research, stem cell treatments and ... - October 13th, 2022
- The eye and stem cells: the path to treating blindness - October 13th, 2022
- World's first stem cell treatment for spina bifida delivered during fetal surgery - UC Davis Health - October 13th, 2022
- Fighting One Disease or Condition per Day - Daily Kos - October 13th, 2022
- UPDATE: NurExone Signs Letter of Intent with Nanometrix for Its Exosome and Cargo Molecular Profiling AI-Driven Technology - Yahoo Finance - October 13th, 2022
- Global Cell Therapy Market Report (2022 to 2028) - Featuring Thermo Fisher Scientific, MaxCyte, Danaher and Avantor Among Others -... - October 13th, 2022
- Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS... - October 13th, 2022
- Physiology, Spinal Cord - StatPearls - NCBI Bookshelf - October 5th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 ... - October 5th, 2022
- Revolutionary Jab that Could Repair Spinal Cord Injuries Developed by Scientists - Good News Network - October 5th, 2022
- How the 'Love Hormone' Oxytocin May Help Heal Heart Muscles - Healthline - October 5th, 2022
- Unlocking the Mysteries of Brain Regeneration Groundbreaking Study Offers New Insight - SciTechDaily - October 5th, 2022
- In Conversation: How to understand chronic pain - Medical News Today - October 5th, 2022
- New drug could cure aggressive brain cancer stopping tumours in their tracks... - The US Sun - September 27th, 2022
- Rehabilitating spinal cord injury and stroke with graphene and gaming - Nanowerk - September 19th, 2022
- Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace - September 19th, 2022
- Axolotls can regenerate their brains - Big Think - September 19th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 Clinical Study of Umbilical Cord-Derived Mesenchymal Stem Cells for the... - September 11th, 2022
- Spinal Muscular Atrophy: Causes and importance of early diagnosis for proactive management - Firstpost - September 11th, 2022
- Increasing Road Accidents and Fall Injuries among Aged Population Primarily Driving Need for Orthopedic Navigation Systems: Fact.MR Analysis - Yahoo... - September 3rd, 2022
- Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise - August 10th, 2022
- Curious kids: what is inside teeth? - The Conversation - August 10th, 2022
- Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration... - August 2nd, 2022
- How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News - August 2nd, 2022
- New TSXV listing looks to address the $3B spinal cord injury treatment market (NRX.V) - FXStreet - July 25th, 2022
- Human iPSC co-culture model to investigate the interaction between microglia and motor neurons | Scientific Reports - Nature.com - July 25th, 2022
- Negligence in treatment of diseases like glioblastoma can be fatal, seminar told - The News International - July 25th, 2022
- What lab-grown cerebral organoids are revealing about the brain - New Scientist - July 25th, 2022
- Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology - July 16th, 2022
- Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal - July 16th, 2022
- Stem Cell Therapy Market Is Expected To Reach USD 455.61 Billion By 2027 At A CAGR Of 16 percent By Forecast 2027 Says Maximize Market Research (MMR)... - June 30th, 2022
- This startup wants you to have a personal stem cell stash - Freethink - June 30th, 2022
- Parents of 12-Year-Old Boy Praying for a Miracle, Appealing UK Judge's Decision to Remove Life Support - CBN.com - June 30th, 2022
- The end of Roe v. Wade affects more than just abortion - Vox.com - June 30th, 2022
- Horizon Therapeutics plc Submits Regulatory Filing for UPLIZNA (inebilizumab) in Brazil - Business Wire - June 20th, 2022
- Effect of Electrical Stimulation on Spinal Cord Injury: In Vitro and In Vivo Analysis - Newswise - June 11th, 2022
- First-of-its-Kind Stem Cell and Gene Therapy Highlighted at Annual Stem Cell Meeting - Newswise - June 11th, 2022
- UK Judge to Decide if 12-Year-Old Will Be Removed from Life Support, Parents Beg for More Time to Heal - CBN.com - June 11th, 2022
- 'This is my life, and I'll try anything to save it': Woman with MS raising funds for treatment - The Brandon Sun - May 29th, 2022
- Racing Thoughts: Quadriplegic Man Drives Race Car With His Brain - Newsy - May 29th, 2022
- Physical therapy for vertigo: Exercises, benefits, and more - Medical News Today - May 29th, 2022
- Researchers find new function performed by almost half of brain cells - Medical News Today - May 13th, 2022
- Texas Family Fights to Access $2.1 Million Treatment for Baby - NBC 5 Dallas-Fort Worth - May 13th, 2022
- Severe COVID-19 may cause cognitive deficits equivalent to 20 years of aging - Medical News Today - May 13th, 2022
- Stem Cell Magic: 5 Promising Treatments For Major Medical Conditions - Study Finds - April 29th, 2022
- Neural Stem Cell Therapy For Spinal Cord Injury To Tap Into The Potential Of Stem Cells - Optic Flux - April 15th, 2022
- Still Blooming: Sams mission to raise money for spinal cord injury research - 7NEWS - April 15th, 2022
- Lineage and Cancer Research UK Announce Completion of Patient Enrollment in Phase 1 Clinical Study of VAC2 for the Treatment of Non-small Cell Lung... - April 15th, 2022
- Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss - Galveston County Daily News - March 22nd, 2022
- COVID-19: Even mild to moderate infection may cause brain anomalies - Medical News Today - March 22nd, 2022
- Scots mum with MS says 50k treatment abroad is 'last hope' of halting disease - Daily Record - January 18th, 2022
- Mending the gap: U of T's Molly Shoichet joins team developing new treatments for spinal cord injuries - News@UofT - January 18th, 2022
- Spinal Cord Injury Information Page | National Institute ... - January 3rd, 2022
- Dancing molecules successfully repair severe spinal cord ... - January 3rd, 2022
- Best 2021 Medical Breakthroughs And Treatments to Beat Cancer, Alzheimer's, Diabetes & More - Good News Network - January 3rd, 2022
- Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -... - December 23rd, 2021
- Scientists unravel a gene function that helps the genesis of neurons - Research Matters - December 23rd, 2021
- The 10 Most Compelling Research Stories of 2021 PharmaLive - PharmaLive - December 23rd, 2021
- 2021: The year in review | YaleNews - Yale News - December 23rd, 2021
- Polymyositis Pipeline to Progress with New and Emerging Drugs for Treatment, Analyzes DelveInsight - GlobeNewswire - December 10th, 2021
- Cell and Gene Therapy Market to reach US$ 47,095.2 Mn by end of 2028, Says Coherent Market Insights - PRNewswire - November 22nd, 2021
- From asthma to cancer to infertility, the new treatments, jabs and meds making us healthier... - The Sun - November 22nd, 2021
- Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen... - November 8th, 2021
- Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology - UConn Today - UConn Today - October 28th, 2021
- Team finds way to enhance stem cell therapy for CNS injuries - BioPharma-Reporter.com - October 28th, 2021
- 'Rogue' antibodies found in brains of teens with delusions and paranoia after COVID-19 - Livescience.com - October 28th, 2021
- Traumatic Spinal Cord Injury: An Overview of ... - October 16th, 2021
- Role of Stem Cells in Treatment of Neurological Disorder - October 16th, 2021