How do bodies position arms, legs, wings and organs? – Knowable Magazine
By daniellenierenberg
In the 1986 horror classic The Fly, a scientist played by Jeff Goldblum manages, quite unintentionally, to mix his biology with that of a housefly with gruesome results.
But the real-world mutant fruit flies that scientists used to understand body patterning are almost as bizarre: Flies with legs on their brows instead of antennae. Flies with extra chest sections, complete with duplicate wings. Flies missing big chunks of their heads.
These freaky flies have something in common: Theyre mixing up their head-to-tail body plans. And they earned three scientists the Nobel Prize in Physiology or Medicine in 1995.
Two of the scientists, Eric Wieschaus and Christiane Nsslein-Volhard, conducted a now-famous genetic screen of fruit fly embryos in 1979 and 1980 while working at the European Molecular Biology Laboratory in Heidelberg, Germany. By feeding parent flies a powerful mutagen, they created a horde of larvae with genetic mistakes, including ones that affected how the fly embryo arranges bits of tissue, from head to tail, in sections a process called segmentation. (The pair tell the tale of this landmark experiment in the 2016 Annual Review of Cell and Developmental Biology.)
The other Nobel laureate, Edward Lewis of Caltech, discovered key players, later named Hox genes, that tell these fruit fly segments and other body parts what tissues and structures they should become.
Fruit flies, it turns out, have their own segmentation path, different from ours: They make a big chunk of tissue and then slice it up, like one would a loaf of bread. In contrast, vertebrates (including humans) churn out segments one by one, like a string of sausages, as they build the tissue. But many of the genes involved Hox and others found later are the same.
A landmark genetics screen by two scientists unearthed mutants with segmentation defects in the fruit fly Drosophila. On the left is the outer layer, or cuticle, of a normal early larva. To the right are ones of various mutants, with clear abnormalities.
CREDIT: E. WIESCHAUS & C. NSSLEIN-VOLHARD / AR CELL AND DEVELOPMENTAL BIOLOGY 2016
These commonalities extend to the need for a sort of ruler that guides segmentation and Hox actions by helping cells identify their position in the body. That ruler takes the form of a two-way gradient. Cells closest to the head end make lots of a chemical called retinoic acid, and those at the tail end make two other compounds, called FGF and Wnt. These diffuse along the body, such that different spots contain different amounts of the chemicals. So, for example, a cell thats closer to the head than the tail will know its position because its bathed in plenty of retinoic acid, but not so much Wnt or FGF.
Vertebrate segments arise from tissue called the mesoderm. Sandwiched between the cells that will make skin and those that will make most internal organs, the mesoderm will yield tissues such as bone and muscle.
As the embryo grows, part of the mesoderm tissue near the head begins to make its segments in the form of beads of tissue called somites, one on each side of the future spinal cord. They are squeezed out of that mesoderm like toothpaste from a tube, says Robb Krumlauf, a developmental biologist at the Stowers Institute for Medical Research in Kansas City, Missouri. These will turn into vertebrae and skeletal muscles. (Other body parts will develop from cells outside of the segments.)
If the segmentation process goes wrong, vertebrae can take the wrong shape: half-vertebrae, fused vertebrae or wedge-shaped ones, for example. In people, this causes a type of scoliosis, and also may affect the kidneys, heart and other body parts.
How does the embryo make just the right number of segments, all the right size? In the 1970s, English researchers came up with a model they called clock and wavefront. The embryos clock would tick to indicate each time a segment should be produced. The wavefront would consist of a maturation process traveling from head to tail, and cells at the crest of that maturation wave would be ready to segment. Whenever the clock ticked, they would spit out a new segment.
The developing mammalian embryo produces two somites, one each side of the future spinal canal, every time an internal clock ticks. The process is guided by a protein called FGF that is made by the tail end of the embryo and diffuses along its length, forming a gradient. Somite production occurs at a spot (the wave front) where the concentration of FGF is at just the right level when the clock makes a tick. The process repeats itself over and over, gradually building up segments, from which vertebrae and skeletal muscle are made. Two other molecules, Wnt and retinoic acid, also form gradients, and with FGF these are key to telling tissues where they are along an embryos length.
At that time, scientists had no idea what molecules would control either clock or wavefront, or if the theory was even correct. The first hard evidence for a clock came from experiments with chicken eggs, published in 1997.
Developmental biologist Olivier Pourqui, now at Harvard Medical School, was studying the chick version of a gene called hairy that is involved in segmentation in fruit flies. He and his colleagues saw the hairy gene turn on in a cyclical manner: starting out at the tail, and then closer to the head, every 90 minutes. And every 90 minutes, the embryo made a new segment.
That study confirmed that a ticking clock did underlie segmentation, says Michalis Averof, a comparative developmental biologist at CNRS in Lyon, France. In 2012, he reported a similar oscillator in beetles.
Scientists still dont know what sets that clocks pace, but they now know that a variety of other proteins, including two of those ruler proteins, Wnt and FGF (and another called Notch), turn on genes like hairy. The other part of the system the wavefront of maturation is characterized by concentrations of FGF. Since FGF is made at the tail end, levels of the protein will be highest there and lowest at the head. Cells that have a low enough level of FGF when the clock ticks will form a segment.
Changing the speed of the clock can have profound effects on the body plan, as Pourqui found in a 2008 study on snakes. Snakes have hundreds of vertebrae, compared to the few dozen in other vertebrates like chickens, mice and humans. How did this come to be? Compared with that of a mouse, their clock is accelerated, Pourqui found. The faster it ticks, the more segments get made, creating the snakes long spine. He doesnt yet know why the snake clock ticks faster, though.
The bone-and-muscle segments, and the rest of the embryos developing tissues, need instructions so that the ones near the front make shoulders and arms, the ones at the back end make hips and legs, and so on. This process, too, depends on the ruler laid down by retinoic acid, Wnt and FGF. The position of cells with respect to the ruler tells them which Hox genes to activate. The Hox genes then turn on other genes, to make the right size and shape of vertebrae, or a tail, arm, liver, etc.
Its complicated: Mammals have 39 different Hox genes, activated in different combinations along the body and with different parts to play. For example, mice usually grow a defined series of vertebrae, including 13 thoracic segments with ribs and six lumbar segments without. But when scientists bred mice to lack the Hox10 gene, the creatures grew little ribs on the lumbar segments. In rare cases in people, mutations in Hox genes cause diverse effects such as club foot, hair loss and extra fingers and toes.
Lewis, who worked with Hox mutant flies in the 1970s, also discovered a remarkable pattern to the Hox genes. In DNA, they are lined up in the same order in which they are produced, from head to tail, in the embryo. Genes at one end of the line spring into action in response to retinoic acid, with that signal emanating from the head; the other end responds to Wnt and FGF, signals from the rear.
A collection of genes called HOX are activated in different parts of an animals body plan, telling cells and tissues what to become. In the DNA, the genes line up in the same order as they are used in a developing embryo. There are remarkable similarities between the HOX genes of disparate creatures, such as fruit flies, mice and humans. In mammals, the HOX genes diversified so that there are four sets (HOX A, B, C and D) to the flys single set. Duplications also led to an expanded number of HOX genes in each set.
Much remains unknown about how bodies are arranged how the same set of Hox genes creates such different body plans in different animals, for example, and how the pace of the segmentation clock sets just right to make a spine to fit a snake or a mouse or a person. Studying such things in people, of course, is difficult. So Pourqui and colleagues recently turned to human stem cells in a dish.
Using genetic trickery, they engineered the cells to flash yellow every time a certain clock gene turned on. Watching for the yellow glow, the researchers detected a clock that had five hours between each tick. Pourqui now aims to figure out just what controls that five-hour timing.
Its astounding, Krumlauf says, how similar the parts of the body-plan system are across such a wide variety of organisms. Each animal uses many of the same genetic tools, in different ways, to create its own unique shape.
In that respect, then, its not so surprising that Jeff Goldblums character melded so completely with a fly. Wnt, FGF, Hox genes its how we apply them that makes us the creatures we are.
View post:
How do bodies position arms, legs, wings and organs? - Knowable Magazine
- 001 Paralyzed rat walks with own stem cells in 11 wks. [Last Updated On: July 11th, 2011] [Originally Added On: July 11th, 2011]
- 002 Stem Cells for Spinal Cord Injury: Community Outreach San Diego 2011 - Trish Stressman [Last Updated On: August 9th, 2011] [Originally Added On: August 9th, 2011]
- 003 Non-controversial Stem Cells: Rationale for Clinical Use: Neil Riordan, Ph.D. - Miami, FL [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 004 Cure for blindness - retina repair using stem cells. Future health keynote speaker [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 005 Geron's Embryonic Stem Cell Clinical Trial for Spinal Cord Injury [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- 006 William Rader MD - Paralyzed Spinal Cord Injury Patient Walks Again [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 007 Adult Stem Cell Sucess Stories - Laura Dominguez [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 008 Spinal Cord Injury Treatment With Stem Cells [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 009 Over Comes Spinal Cord Injury - No Surgery or Stem Cells http://www.releasetechnique.com [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- 010 Non-controversial Stem Cells: Rationale for Clinical Use - Dr. Neil Riordan [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- 011 Stem Cells Therapy for Spinal Cord Injury.flv [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- 012 Walking after Spinal Cord injury and Stem Cells [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 013 Stem Cells May Reverse Paralysis, Brain Damage, and Organ Failure [Last Updated On: September 18th, 2011] [Originally Added On: September 18th, 2011]
- 014 The Usefulness of Adult Olfactory Stem Cells in Spinal Cord Injury and Brain Injury [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 015 Stem cells for Parkinson's Disease, Spinal Cord Injury [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 016 Embryonal Stem Cells Promote Functional Recovery in Spinal Injured Animals [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 017 First Spinal-Cord Surgery With Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 018 Medra Inc - Paralyzed Spinal Cord Injury Patient Walks Again [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 019 Spinal Cord Injury - Embryonic Stem Cells - Dr. Keirstead [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 020 Stem cell treatment by Adiva Health Care India after Spinal Cord Injury [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 021 Embryonic Stem Cells Cure Spinal Cord Injury? [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 022 Stem Cells for Spinal Cord Injury [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 023 Stem Cells and Neurogenesis [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 024 Stemcells come alive: Fix Mouse with severed spine ABCnews [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 025 The Spinal Cord Journey - Stem cell therapy stories from three spinal cord injury patients [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 026 Spinal Cord Injury patient 10 years after injury after Stem Cell Treatment [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 027 StemCells Gains 5% on Neural Stem Cell Trial in Spinal Cord Injury [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 028 The Promises of Neural Stem Cells in Motor Neuron Disease [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 029 Stem Cell Series: Part 3 [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 030 Christopher "Kit" Bond - Spinal Cord Injury Stem Cell Patient [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 031 Roman Reed: What all patient advocates at the World Stem Cell Summit should know [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 032 Noah Stem Cell Transplant Day 3 [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 033 Spinal Patient Receives Stem Cells in First Experimental Treatment [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 034 Health and Home Stem-1 [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 035 UK's first approved adult stem cell bank Oristem® explained [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 036 Stem Cells: Hope, Hype and Progress - Session 1b [Last Updated On: October 8th, 2011] [Originally Added On: October 8th, 2011]
- 037 Stem Cells: Hope, Hype and Progress - Session 3 - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- 038 Human Trials of Embryonic Stem Cell Treatment Beginning - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- 039 (Film Trailer) - The Spinal Cord Journey: Stem Cell Therapy Stories of Recovery - Video [Last Updated On: October 26th, 2011] [Originally Added On: October 26th, 2011]
- 040 Stem Cell Treatment for Spinal Cord Injury - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- 041 Public Symposium: The Stem Cell Promise: Moving to the Clinic - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- 042 Stem Cells: Hope, Hype and Progress - Session 1a - Video [Last Updated On: October 29th, 2011] [Originally Added On: October 29th, 2011]
- 043 Stem Cell Treatment for T-6 Spinal Cord Injury - Video [Last Updated On: October 29th, 2011] [Originally Added On: October 29th, 2011]
- 044 Tamara Marquis - SCI Stem Cell Patient - Video [Last Updated On: October 31st, 2011] [Originally Added On: October 31st, 2011]
- 045 Stem Cells - Treatment for Spinal Cord Injury - Video [Last Updated On: October 31st, 2011] [Originally Added On: October 31st, 2011]
- 046 Electro-Medicine : Biological Physics - Paralysis Spinal Chord Injury Treatment - Video [Last Updated On: November 10th, 2011] [Originally Added On: November 10th, 2011]
- 047 Biological Physics : Stem Cells - Paralyzed Spinal Cord Injury Patient Walks Again - Video [Last Updated On: November 10th, 2011] [Originally Added On: November 10th, 2011]
- 048 Innovative stem cell treatment for Spinal Cord Injuries - Video [Last Updated On: November 22nd, 2011] [Originally Added On: November 22nd, 2011]
- 049 Stem Cells Treatment for Spinal Cord Injuries, Successfully Results, Stem Therapy - Video [Last Updated On: November 23rd, 2011] [Originally Added On: November 23rd, 2011]
- 050 Gabi - SCI Stem Cell Patient - Video [Last Updated On: November 23rd, 2011] [Originally Added On: November 23rd, 2011]
- 051 Stem Cell Treatment for Spinal Cord Injury - Patient Interview - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 052 StemCellTV Daily Report-November 22, 2011 - Video [Last Updated On: December 14th, 2011] [Originally Added On: December 14th, 2011]
- 053 Which Stem Cell Will Win The Race To Repair The Spinal Cord? - Video [Last Updated On: December 23rd, 2011] [Originally Added On: December 23rd, 2011]
- 054 China medical tourism--spinal cord injury--stem cells therapy - Video [Last Updated On: December 27th, 2011] [Originally Added On: December 27th, 2011]
- 055 MouseVideo-SCI - Video [Last Updated On: January 1st, 2012] [Originally Added On: January 1st, 2012]
- 056 Explaining stem cells - Video [Last Updated On: January 3rd, 2012] [Originally Added On: January 3rd, 2012]
- 057 China medical tourism--Spinal Injury--Stem Cell - Video [Last Updated On: January 22nd, 2012] [Originally Added On: January 22nd, 2012]
- 058 Stem cell therapy at VMC - Video [Last Updated On: January 22nd, 2012] [Originally Added On: January 22nd, 2012]
- 059 Breakthrough Spinal Cord Injury Treatment - Stem Cell Of America - Video [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 060 Stem cell treatments change girl's life [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 061 Neuralstem Announces Closing of $5.2-Million Registered Direct Offering [Last Updated On: February 15th, 2012] [Originally Added On: February 15th, 2012]
- 062 Stem-cell scientists find right chemistry [Last Updated On: February 19th, 2012] [Originally Added On: February 19th, 2012]
- 063 Panamanian-US Scientific Research Supports Using Fat Stem Cells to Treat Rheumatoid Arthritis [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- 064 Qatari students to present research on stem cells [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- 065 Bioethics Backlash [Last Updated On: February 23rd, 2012] [Originally Added On: February 23rd, 2012]
- 066 Waisan Poon, "Clinical trial of umbilical cord blood stem cells in spinal cord injury" - Video [Last Updated On: February 23rd, 2012] [Originally Added On: February 23rd, 2012]
- 067 Osamu Honmou, "Transplantation of bone marrow stem cells" - Video [Last Updated On: February 23rd, 2012] [Originally Added On: February 23rd, 2012]
- 068 Dah-Ching Ding, "Human umbilical cord mesenchymal stem cells support prolonged expansion of... - Video [Last Updated On: February 23rd, 2012] [Originally Added On: February 23rd, 2012]
- 069 Stem Cell Action Coalition Opposes Virginia Personhood Bill [Last Updated On: February 24th, 2012] [Originally Added On: February 24th, 2012]
- 070 Adding Six More, Omeros Now Has a Total of 33 Unlocked Orphan GPCRs in its Portfolio [Last Updated On: February 29th, 2012] [Originally Added On: February 29th, 2012]
- 071 It's not pulp fiction [Last Updated On: March 4th, 2012] [Originally Added On: March 4th, 2012]
- 072 Cryo-Cell's Affiliate, Saneron CCEL Therapeutics, Releases Pre-clinical Data Indicating That Cord Blood Stem Cells ... [Last Updated On: March 6th, 2012] [Originally Added On: March 6th, 2012]
- 073 Will StemCells Walk The Talk? [Last Updated On: March 7th, 2012] [Originally Added On: March 7th, 2012]
- 074 Young aims for spinal injury 'cure' [Last Updated On: March 7th, 2012] [Originally Added On: March 7th, 2012]
- 075 Doctor looks to China for spinal injury 'cure' [Last Updated On: March 7th, 2012] [Originally Added On: March 7th, 2012]
- 076 Fourteenth Patient Dosed in Neuralstem ALS Stem Cell Trial [Last Updated On: March 7th, 2012] [Originally Added On: March 7th, 2012]
- 077 Neuralstem Shows Solid Progress in Spinal Cord Neural Stem Cell Trial for ALS [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- 078 Oklahoma bill proposes umbilical cord blood bank [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- 079 Research suggests new therapeutic approach for spinal cord injury [Last Updated On: March 13th, 2012] [Originally Added On: March 13th, 2012]
- 080 Doctor looks to China for spinal injury ‘cure’ [Last Updated On: March 13th, 2012] [Originally Added On: March 13th, 2012]
