How Kyoto Is Rebuilding Itself As A Nanotech And Regenerative Medicine Powerhouse – Forbes
By daniellenierenberg
As humans continue to pump more and more carbon dioxide into the atmosphere, concerns about global warming and climate change continue to grow. But what if that CO2 could be turned into a source of energy? One startup in Kyoto has developed cutting-edge nano-materials that could trap atmospheric CO2 and harness it as a power source. Its one way that Japans ancient capital is harnessing its large scientific and biomedical potential to address environmental and social problems.
Panning for invisible gold
Porous coordination polymers can be a form of carbon-capture technology, says discoverer Susumu Kitagawa, second from left, with (left to right) Atomis CTO Masakazu Higuchi, CEO Daisuke Asari, R&D officer Kenji Sumida, and COO Dai Kataoka.
Atomis is a new materials company that was spun off from Kyoto University. Founded in 2015 following government-supported research, its business is based on studies led by Susumu Kitagawa, a professor in the universitys Institute for Advanced Study. Its core technology is the production of materials comprising extremely small void spaces that can trap gases, including CO2. A breakthrough discovery in 1997 by Kitagawa, who has been considered a contender for the Nobel Prize in Chemistry, these porous coordination polymers (PCPs, aka metal-organic frameworks) have enormous potential as tools to precisely control gases.
Humans have used the principle behind PCPs for thousands of years. They work the same way that a hunk of charcoal traps ambient odor molecules in its large surface area, but PCPs are many times more powerful. To the naked eye, PCPs look like powders, pellets or granules of various colors, shapes and sizes. But if you were to zoom in, you would see that PCPs are sponge-like materials with pores the size of a nanometer, or one billionth of a meter. They can be designed as scaffoldlike 3D structures from metals and organic ligands, and can be used for storage, separation and conversion of molecules.
These materials are unique in that we can design the shapes and chemical properties of the pores to suit specific applications, and some of the materials have flexible structures, which can potentially provide them with even more advanced features, says Daisuke Asari, president and CEO of Atomis. The company is basically the only business in Japan working with these materials in an industrial context. Collaborating with Kitagawa is a big advantage over foreign rivals, adds Kenji Sumida, executive officer for R&D.
One challenge related to these nanomaterials is that its difficult and costly to produce more than a few kilograms per day. Massively scaling production so that PCPs can be used to fight climate change is one reason that Atomis was founded, says Atomis founder and CTO Masakazu Higuchi, one of Kitagawas collaborators. The firm is developing solid-state techniques and making capital investments to increase PCP production capacity. Meanwhile, Atomis has developed products that harness the groundbreaking potential of PCPs, including Cubitan, a compact and lightweight gas cylinder for industrial and consumer use packed with smart features, such as the ability to notify users when the amount of reserve gas becomes low.
When viewed without special equipment, PCPs look like powders, pellets or granules of various colors, shapes and sizes, but they are sponge-like materials with countless pores the size of a nanometer.
Kitagawa has his sights on the bigger picture. He believes PCPs can be used as a form of carbon-capture technology, allowing the synthesis of methanol, an energy source. Thats why he calls CO2 invisible gold.
In ancient China, Taoist mystics were said to live in the mountains and survive simply on mist, which consists of water, oxygen and CO2, says Kitagawa. They were taking something valueless and using it for energy. Similarly, PCPs can control gases that humans cannot use and turn them into something beneficial, for instance absorbing CO2 in the air and turning into methanol and other hydrocarbon materials.
Building a regenerative medicine Silicon Valley
Atomis is one of many science startups in Kyoto that have benefitted from collaborative research between industry and government. Its part of a growing startup industry in Japan, where total funding for new companies reached a record high of 388 billion yen in 2018, up from 64.5 billion yen in 2012, according to Japan Venture Research. One driver for this expansion is science and technology discoveries.
While it may be known for its traditional culture, Kyoto has a strong pedigree in scientific research. It is home to 38 universities and about 150,000 students, which form a large pool of institutional knowledge, experience and talent. Many recent Nobel laureates either graduated from or taught at Kyoto University, including professors Tasuku Honjo and Shinya Yamanaka, who won the Nobel Prize for Physiology or Medicine in 2018 and 2012, respectively. Working on discoveries by Yamanaka, Megakaryon has become a world leader in creating artificial blood platelets made from synthetic stem cells.Theres also a large group of high-tech companies that have carved out niches for themselves internationally.
Kyoto is a unique city in that it has an independent spirit that is similar to the U.S. West Coast, says Eiichi Yamaguchi, a professor at Kyoto University who has founded four companies.
Kyoto companies like Murata Manufacturing, Horiba, Shimadzu, and Kyocera have a global market and theyre competing with China, says Eiichi Yamaguchi, a professor at Kyoto University who has founded four companies. Thats the difference with companies in Tokyo, which are more domestically oriented.
Yamaguchi has authored several books on innovation, and says there is a growing awareness of the importance of collaborative research and entrepreneurship in Kyoto. He cites a recently formed cooperative group of seven university chairpersons and presidents from leading materials and biosciences companies that meets to discuss issues such as fostering new technologies, for instance building high-speed hydrogen fueling systems.
Kyoto is a unique city in that it has an independent spirit that is similar to the U.S. West Coast, says Yamaguchi. Kyoto is only a fraction of the size of Tokyo, but if you take a stand here, people will pay attention.
Another group that is promoting local high-tech business is Innovation Hub Kyoto. Its an open innovation facility based in the Kyoto University Graduate School of Medicine aimed at commercializing research from the university. Steps away from Kyotos historic Kamo River, its geared to researchers, investors, startups, and established companies working in the field of medical innovation including device development and drug discovery. This is where Japanese researchers are trying to build a Silicon Valley of regenerative medicine.
Tenants at Innovation Hub Kyoto can use this wet lab for research.
Part of the Kyoto University Medical Science and Business Liaison Organization, the hub was established about 15 years ago and opened a new building in 2017 with the support of the Ministry of Education, Culture, Sports, Science and Technology. The structure has a variety of labs, including ones meeting biosafety level P2 and for animal experiments.
Its tough for startups in Japan to access to animal laboratories like the one we have, says hub leader Yutaka Teranishi, a professor in the Graduate School of Medicine who estimates that some 50% of university researchers want to work with industry, up from 10% a few years ago. Were focused on university startups because its very difficult for them to develop drugs from just an alliance between companies and universities.
About 28 companies are tenants at Innovation Hub Kyoto. They include major brands such as Shimadzu and Nippon Boehringer Ingelheim as well as younger businesses. One is AFI, founded in 2013 and focused on fluid, electric filtering and sorting (FES) technology that can be used for applications ranging from food safety inspections to rapid diagnosis of disease to regenerative medicine.
Tomoko Bylund heads the Japan office of CELLINK, a Swedish bioprinting and bioink company that is a tenant at Innovation Hub Kyoto.
Another tenant is CELLINK, a Swedish bioprinting and bioink company headed in the Japan by Tomoko Bylund. Using its products, researchers can print body parts with human cells for drug and cosmetics testing. In 2019, the first 3D print of a human cornea in the U.S. was accomplished with the companys BIO X Bioprinter.
iHeart Japan is also a tenant. It was established in 2013 as a regenerative medicine business and is aiming to address a major shortage in the Japanese medical system: only about 40 out of 200,000 people on national waiting lists can receive donor hearts every year. The company is developing innovative medical products such as multi-layered cardiac cell sheets derived from synthetic stem cells. The Hub basis its success in fostering companies on its diversity and the business environment in Kyoto.
We have people from different backgrounds here who are exchanging cultures and experimental results, and this diversity is powering innovation here, says Teranishi. There are many traditional industries in Kyoto, and though people say its a conservative city, these companies have survived because theyre open to new technologies and have taken the time to choose which ones can help them. Thats how this city and its businesses have lasted for more than 1,000 years.
Diversity is powering innovation here, says Yutaka Teranishi, center, head of Innovation Hub Kyoto, with Kyoto University professor Hirokazu Yamamoto, left, and Graduate School of Medicine lecturer Taro Yamaguchi, right.
To learn more about Atomis, click here.
To learn more about Innovation Hub Kyoto, click here.
Visit link:
How Kyoto Is Rebuilding Itself As A Nanotech And Regenerative Medicine Powerhouse - Forbes
- Science fiction turned reality? Stem cell therapy set to repair child's heart - Ynetnews - January 5th, 2025
- Cardiac stem cell biology: a glimpse of the past, present, and future - PMC - December 27th, 2024
- Secretome Therapeutics Closes $20.4 Million Financing Round to Advance Cardiomyopathy and Heart Failure Therapies - Business Wire - November 29th, 2024
- Developing the Cell-Based Therapies of the Future - University of Miami - November 15th, 2024
- Advancing heart stem cell therapy - UHN Foundation - November 15th, 2024
- Heart defects affect 40,000 US babies every year but cutting edge AI and stem cell tech will save lives and even cure them in the womb - New York... - November 15th, 2024
- Science Is Finding Ways to Regenerate Your Heart - The Wall Street Journal - November 6th, 2024
- AIIMS Bathinda Makes Breakthrough in Stem Cell Therapy Research for Heart Ailments - Elets - October 21st, 2024
- USC launches collaboration with StemCardia to advance heart regeneration therapies - University of Southern California - October 13th, 2024
- The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish - Nature.com - September 3rd, 2024
- Opthea Announces Results of the A$55.9m (US$36.9m¹) Retail Entitlement Offer - July 16th, 2024
- Benitec Biopharma Reports Continued Durable Improvements in the Radiographic Assessments of Swallowing Efficiency and the Subject-Reported Outcome... - July 16th, 2024
- AstraZeneca Closes Acquisition of Amolyt Pharma - July 16th, 2024
- Addex Presents Positive Results from GABAB PAM Cough Program at the Thirteenth London International Cough Symposium (13th LICS) - July 16th, 2024
- Lexeo Therapeutics Announces Positive Interim Phase 1/2 Clinical Data of LX2006 for the Treatment of Friedreich Ataxia Cardiomyopathy - July 16th, 2024
- ANI Pharmaceuticals Announces the FDA Approval and Launch of L-Glutamine Oral Powder - July 16th, 2024
- MediWound Announces $25 Million Strategic Private Placement Financing - July 16th, 2024
- Atsena Therapeutics Appoints Joseph S. Zakrzewski as Board Chair - July 16th, 2024
- ASLAN Pharmaceuticals Announces Receipt of Nasdaq Delisting Determination; Has Determined Not to Appeal - July 16th, 2024
- Kraig Biocraft Laboratories Completes Phase One of its Spider Silk Production Facility Expansion - July 16th, 2024
- Pliant Therapeutics Announces Positive Long-Term Data from the INTEGRIS-PSC Phase 2a Trial Demonstrating Bexotegrast was Well Tolerated at 320 mg with... - July 16th, 2024
- Oncternal Announces Enrollment Completed and Dosing Initiated for Sixth Dose Cohort of Phase 1/2 Study of ONCT-534 for the Treatment of R/R Metastatic... - July 16th, 2024
- Rectify Pharmaceuticals Appoints Bharat Reddy as Chief Business Officer - July 16th, 2024
- Spectral AI Continues Support of Naked Short Selling Inquiry - July 16th, 2024
- Milestone Pharmaceuticals Refreshes Board of Directors - July 16th, 2024
- New Published Data Highlights Potential Cost-Savings of INPEFA® (sotagliflozin) for Heart Failure - July 16th, 2024
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 21st, 2023
- Cardiac stem cells: Current knowledge and future prospects - April 13th, 2023
- Stem cell therapies in cardiac diseases: Current status and future ... - April 13th, 2023
- Stem Cell and Regenerative Biology | Johns Hopkins Heart and Vascular ... - April 13th, 2023
- Center for Regenerative Biotherapeutics - Cardiac Regeneration - April 13th, 2023
- MAGENTA THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 25th, 2023
- CAREDX, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 1st, 2023
- A Possible Connection between Mild Allergic Airway Responses and Cardiovascular Risk Featured in Toxicological Sciences - Newswise - February 4th, 2023
- Baby's life saved by surgeon who carried out world's first surgery ... - December 25th, 2022
- An organoid model of colorectal circulating tumor cells with stem cell ... - December 25th, 2022
- Skeletal Muscle Cell Induction from Pluripotent Stem Cells - December 1st, 2022
- Stem-cell niche - Wikipedia - December 1st, 2022
- Scientists Discover Protein Partners that Could Heal Heart Muscle | Newsroom - UNC Health and UNC School of Medicine - October 13th, 2022
- Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 - Yahoo Finance - October 13th, 2022
- Scientists Spliced Human Brain Tissue Into The Brains of Baby Rats - ScienceAlert - October 13th, 2022
- Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution | Communications Biology - Nature.com - October 13th, 2022
- Global Synthetic Stem Cells Market Is Expected To Reach Around USD 42 Million By 2025 - openPR - October 13th, 2022
- Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -... - October 13th, 2022
- Regenerative Medicine For Heart Diseases: How It Is Better Than Conventional Treatments | TheHealthSite.co - TheHealthSite - October 5th, 2022
- 'Love hormone' oxytocin could help reverse damage from heart attacks via cell regeneration - Study Finds - October 5th, 2022
- Recapitulating Inflammation: How to Use the Colon Intestine-Chip to Study Complex Mechanisms of IBD - Pharmaceutical Executive - September 27th, 2022
- Adult Stem Cells // Center for Stem Cells and Regenerative Medicine ... - September 19th, 2022
- CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease - Cardiovascular Diabetology - Cardiovascular... - September 19th, 2022
- Kite's CAR T-cell Therapy Yescarta First in Europe to Receive Positive CHMP Opinion for Use in Second-line Diffuse Large B-cell Lymphoma and... - September 19th, 2022
- Neural crest - Wikipedia - September 3rd, 2022
- Rise In Number Of CROS In Various Regions Such As Europe Is Expected To Fuel The Growth Of Induced Pluripotent Stem Cell Market At An Impressive CAGR... - September 3rd, 2022
- Discover the Mental and Physical Health Benefits of Fasting - Intelligent Living - September 3rd, 2022
- Heart Association fellowship to support research - Binghamton - August 26th, 2022
- Repeated intravenous administration of hiPSC-MSCs enhance the efficacy of cell-based therapy in tissue regeneration | Communications Biology -... - August 26th, 2022
- High intensity interval training protects the heart against acute myocardial infarction through SDF-1a, CXCR4 receptors and c-kit levels - Newswise - August 26th, 2022
- Yale University: Uncovering New Approaches to a Common Inherited Heart Disorder | India Education - India Education Diary - August 10th, 2022
- Heart failure in obesity: insights from proteomics in patients treated with or without weight-loss surgery | International Journal of Obesity -... - August 10th, 2022
- Pigs died after heart attacks. Scientists brought their cells back to life. - Popular Science - August 10th, 2022
- Protocol for a Nested, Retrospective Study of the Australian Placental Transfusion Study Cohort - Cureus - August 10th, 2022
- Autologous Cell Therapy Market Size to Grow by USD 4.11 billion, Bayer AG and Brainstorm Cell Therapeutics Inc. Among Key Vendors - Technavio - PR... - August 2nd, 2022
- UTSW researcher part of team awarded $36 million heart research grant - The Dallas Morning News - August 2nd, 2022
- Buffalo center fuels research that can save your life from heart disease and stroke - Buffalo News - August 2nd, 2022
- Hyperglycaemia-Induced Impairment of the Autorhythmicity and Gap Junction Activity of Mouse Embryonic Stem Cell-Derived Cardiomyocyte-Like Cells -... - July 25th, 2022
- NASA's Solution to Stem Cell Production is Out of this World - BioSpace - July 25th, 2022
- Inhibition of pancreatic EZH2 restores progenitor insulin in T1D donor | Signal Transduction and Targeted Therapy - Nature.com - July 25th, 2022
- 'My Teen Sweetheart And I Drifted Apart. 30 Years Later I Made a Shocking Discovery' - Newsweek - July 25th, 2022
- EU: New Blood? Proposed Revisions to the EUs Blood, Tissues and Cells Rules - GlobalComplianceNews - July 25th, 2022
- Stem Cells Market to Expand at a CAGR of 10.4% from 2021 to 2028 Travel Adventure Cinema - Travel Adventure Cinema - July 25th, 2022
- Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study - GlobeNewswire - July 25th, 2022
- Dental Membrane and Bone Graft Substitutes Market to Exceed Value of US$ 1,337 Mn by 2031 - PR Newswire UK - July 25th, 2022
- Stem Cells Used to Repair Heart Defects in Children - NBC 5 Dallas-Fort Worth - July 16th, 2022
- Pneumonia and Heart Disease: What You Should Know - Healthline - July 16th, 2022
- Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate - Nevada Today - July 16th, 2022
- Current and advanced therapies for chronic wound infection - The Pharmaceutical Journal - July 16th, 2022
- Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don't - Lookout Santa Cruz - July 16th, 2022
- Mesenchymal stem cells: from roots to boost - PMC - July 8th, 2022
- New study allows researchers to more efficiently form human heart cells from stem cells - University of Wisconsin-Madison - July 8th, 2022
- Dr Victor Chang saved hundreds of lives. 31 years ago today, he was murdered. - Mamamia - July 8th, 2022
- Exosome Therapeutics Market Research Report Size, Share, New Trends and Opportunity, Competitive Analysis and Future Forecast Designer Women -... - July 8th, 2022